

Indoor Cannabis Grow Operations

Improving Energy Efficiency & Sustainability

Presented by Stevan Bratic

Outline

- Elements of indoor, controlled grow environment
 - Complete Grow Systems
 - Lighting
 - CHP (Combined Heat & Power)
 - Controlled Dehumidification
 - Solar System
 - Vertical Systems
 - Destratification
 - Roofs

ELEMENTS OF AN INDOOR GROW-ROOM

Building envelope

- typically sealed environment
- in insulated building, envelope htg/clg loads negligible
- Lighting (100% artificial)
- Heating (minimal)
- Ventilation (air movement only)
- Cooling & Dehumidification (dominate HVAC)
- Delivery of nutrients
 - ► CO2, water, fertilizer
- Energy Supply:

 electric utility, solar (PV), natural gas – combined heat & power (CHP)

Complete Grow Systems

CO2 Supplementation

Lowest cost CO2 is direct natural gas combustion with condensing heat recovery
CHP exhaust CO2 recovery is possible
Liquid CO2 systems Heating
CHP waste heat
Condensing boilers
Engine driven VRF

•Optimize your grow space

Implementation

Understanding Color Spectrum Chart

The colors of t											
spec	spectrum										
color	color wavelength interval										
red	~ 700–635 nm										
<u>orange</u>	~ 635–590 nm										
<u>yellow</u>	~ 590–560 nm										
green	~ 560–490 nm										
<u>blue</u>	~ 490–450 nm										
<u>violet</u>	~ 450–400 nm										

Traditional HID Lighting

- HPS (High Pressure Sodium)
 - 600W
 - 1000W
- MH (Metal Halite)
 - 600W
 - 1000W
- CMH (Ceramic Metal Halite)
 - 315W

Typical Incandescent, Fluorescent, HPS, MH, ML, & CMH Lighting Color Spectrum

How Does Traditional HID Lighting Work

1000W HPS PPFD Results (Gevita DE)

		3' FROM LIGHT									
18*	463		-	580		-	492				
12"		538		594		560					
6"			591	610	603						
0*	440	540	595	627	620	570	477				
5			555	590	579						
12"		525		584	- 1	556					
18"	444			605	2		536				
	18*	12*	6*	0"	6*	12"	18"				

316			361	1		335
	342		365		355	
		350	365	367		
305	337	356	370	371	354	3Z1
		340	358	350		
	315		350		339	
307			365		-	353

All and the ball of the

1.01	121	6.	01	100	1.78	181
10	16	0		U	14	10

5' FROM LIGHT

224	1.1		250	1		245
	234		246		242	
		242	246	245		
216	230	243	248	248	240	226
1		251	239	236		
	220		236		234	
215			242			250
18"	12"	6'	0*	6"	12"	18"

18"

12" 6"

LED Grow Lights (3 Options)

- Slim Series High Yield
 - 300W equivalent to 600W
 - 600W equivalent to 1000W
- Linear Series Large Footprint
 - 480W equivalent to 600W
 - 720W equivalent to 1000W

How Does LED Lighting Work

How Does LED Lighting Work (continued)

Slim LED Grow Light 325 Module 330W Full Spectrum for Veg & Flower 1 fixtures to are equivalent to 600 HPS

OPTION 1

Slim LED Grow Light 650 Module 660W Full Spectrum for Veg & Flower 2 fixtures to are equivalent to 1000W HPS

Slim LED Color Spectrum

330W Slim LED PPFD Results

Mounting Height (4' x 4' area):

OPTION 2

Linear Strip Grow Light 6 Strip Series 480W Full Spectrum for Veg 1 fixtures to are equivalent to 1000W HPS at 480W

Linear Strip Grow Light 9 Strip Series 720W Full Spectrum for Flower 1 fixtures to are equivalent to 1000W HPS at 720W

Color Spectrum

Veg. spectrum:

480W (Veg) & 720W (Flower)Linear LED PPFD Results

480W, 120-277V, UL Horticultural, Mounting Height:

					1'										2'										3'										4'				
				18	From L	ght								2ft	From Lig	ght				÷.,				3/1	From Li	ght					_	_		4ft	From Le	ght	_		_
24*	66				522				26	24*	130	-	-	-	437			-	175	24*	156				353				189	24"	163				284				179
18*	1	358			824			487		18"		316			606			382		18"		281			447			323		18*		246			337			263	
12*			803		930		872			12*			558		725		627			12"			426		526		464			12*			334		384		349		
6"				927	954	976				6"				738	786	775				6*				540	575	565				6*				399	378	410			
0*	102	400	816	944	969	970	882	558	170	0-	227	407	615	758	799	788	673	475	283	0-	255	363	475	558	598	564	522	412	312	0*	244	306	368	408	432	422	386	332	259
6*			-	945	062	963	-							760	776	776								E.17	507	574				6*				407	418	415			
120	-	-	675		075	000	10.4		-		-	_	-	130	115	ine .		_	-	0	_	_		34/	201	5/4		_	_		-	-	244		367		160		-
12	-		820	-	830		304		_	12-		_	575	_	747		634		_	12*	1		437	_	545		478		_	12			344	-	391		300		-
18"	-	397	-	-	856		-	520	_	18"		340			635			399	_	18"		294			465			340	_	18*	-	258			349			270	-
24*	76				620				121	24*	141				487				188	24*	171				380				213	24*	178				300				178
	24*	18"	12"	6,	0-	6.	12"	18"	24"		24*	18*	12"	6	0"	6*	12*	18"	24*		24"	18°	12°	61	0*	6"	121	18"	24*		24"	18*	12"	6"	0"	6"	12"	18"	24"
73		12	0.2	771																																			
72	ow,	, 12	0-2	77V	, UI 1'	Ho	rtic	ultu	ıral,	M	oun	ting	He	ight	: 2'										3'										4'				
72	ow,	, 12	0-2	77V	, UL 1'	Ho	rtic	ultu	ıral,	M	oun	ting	; He	ight	2'	ght								3ft	3'	ght								411	4'	pht			
72	DW ,	, 12	0-2	77V	, UI 1' From L 705	Ho	rtic	ultu	130	M(225	ting	He	ight 2n	2'	ight			218	24*	280			31	3' 1 From L 430	ght			300	24*	268			411	4' From Li 412	ght			250
72 24* 18*	DW ,	, 12	0-2	77V	, Ul 1' From L 705	ght	rtic	ultu 672	130	24" 18"	225	ting 523	; He	ight 2n	2' From L 611 874	ight		508	218	24* 18*	280	450		31	3' From L 430 631	ght		515	300	24* 18*	268	398		411	4' From Li 412 505	ght		372	250
24° 18° 12°	124	, 12	0-2	77V	705 1416	Ho	1224	ultu 672	130	24" 18" 12"	225	ting 523	887	ight 2n	2' From L 611 874 1077	ight	873	508	218	24* 18* 12*	280	450	700	31	3' 1 From L 430 631 789	ght	727	515	300	24* 18* 12*	266	398	515	41	4' Flom Li 412 505 570	aht.	496	372	250
24° 18° 12° 6°	124	642	1218	1418	, Ul 1 ⁹ From L 705 1228 1416 1461	ght 1420	1224	ultu 672	130	24" 18" 12" 6"	225	ting 523	887	2m	2 ³ From L 611 874 1077	1128	\$73	508	218	24* 18* 12* 8*	280	480	700	3n 857	3' From L 430 631 789 895	ght 865	727	515	300	24* 18* 12* 6*	266	398	515	4n 601	4' Flom Li 412 505 570 611	ght. 585	496	372	250
24° 18° 12° 6° 0°	124	642	1218	11ft	, Ul 1' From L 705 1228 1416 1461 1453	ght 1420	1224	672	130	24" 18" 12" 6"	225	523	887	2n	2' From L 611 874 1077 1185 1211	1128	673	508	218	24* 18* 12* 8* 0*	280	480	700	3n 857 908	3' From L 430 631 789 895 937	ght 865 925	727	515	300	24* 18* 12* 6* 0*	200	398	515	4n 601 609	412 505 570 611 621	ght 585	496	372	250
72 24* 18* 12* 6* 0*	124	642	1218	1414	r, Ul 1 ⁹ From L 705 1228 1416 1461 1453 1434	9ht 1425	1224	672	130	24 18 ⁻ 12 ⁻ 6 ⁻ 6 ⁻	225	523	887	2n	2 ³ From L 611 874 1077 1185 1211 1186	1128	873	508	218	24" 18" 12" 8" 0" 8"	280	480	700	3n 857 908 872	3' From L 430 631 789 895 937 884	ght 865 925 885	727	515	300	24* 18* 12* 6* 0*	200	398	515	4n 601 609	4 ² From Li 412 505 570 611 621 602	ght 585 591	496	372	250
720 24* 18* 12* 6* 0* 6*	124	642	1218	1418 1414	, UI 1' From L 705 1228 1416 1461 1453 1434	ght 1425	1224	672	130	24" 18" 12" 6" 6" 6"	225	523	887	2m	2' From L 611 874 1077 1185 1211	1128 1129	873	508	210	24" 18" 12" 8" 0" 6"	280	480	700	3m 857 908 872	3' 1From L 430 631 789 895 937 884 260	ght 865 925 885	727	515	300	24* 18* 12* 6* 0* 6*	208	398	515	4n 601 609 590	4' From Li 412 505 570 611 621 602	9ht 585 391 575	496	372	250
720 24* 18* 12* 6* 6* 12*	124	642	1218	1418 1414	1, Ul 1, Fiom L 705 1228 1416 1453 1434 1419	1420	1224 1229	672	130	24 18" 12" 6" 6" 6" 12"	225	523	887 915	2m 2m 1132	2 ³ Prom L 011 874 1077 1185 1211 1186 1112	1129	573	508	218	24" 18" 12" 8" 0" 6" 12"	280	480	700	3m 857 908 872	3 ^r Fiom L 430 631 789 895 937 884 768	9ht 865 925 885	727 835 728	515	300	24* 18* 12* 6* 6* 6* 12*	200	398	515	4n 601 609 590	4" From Li 412 505 570 611 621 602 556	ght 585 575	496	372	305
720 24* 18* 12* 6* 6* 12* 18*	124	642 641	1218	1418	1, Ul 1 ³ From L 705 1228 1416 1453 1453 1434 1419 1298	- Ho	1224 1229	672 720	130	24" 18" 12" 6" 6" 12" 12"	225	523	887 915	2m	2 ⁷ Piom L 611 874 1077 1185 1211 1186 1112 968	1129	873	508	210	24" 18" 12" 8" 0" 12" 12"	280	430 700 433	700	3/1 857 908 872	3' From L 430 631 789 895 937 884 768 619	ght 865 925 885	727 835 728	515	300	24* 18* 12* 6* 6* 12* 18*	200	398 481 382	515	4m 6C1 609	42 Fiom Li 412 505 570 611 621 602 556 485	ght	496	372 450 354	305

Simulations Results

Why is it important to follow electrical standards when buying any lighting product?

- If you have a fire and your insurance company finds out you did not purchase UL or related products, your insurance company will not cover you for the repair.
- Electrical standard have markings you should be looking for:

Nationally Recognized Testing Laboratories, or NRTLs, provide crucial third-party verification of the safety of lighting products. These labs apply a variety of marks, or badges, to indicate the level of examination a product has undergone and what standards it has met. Safety standards are developed and published by organizations such as the Canadian Standards Association (CSA) and Underwriters Laboratories (UL).

Conclusion:

- On average, 50% reduction from Traditional Lighting to LED
- LED life is 50K hrs typically vs HID at around 10K hrs
 - LED also has lower degradation rate than HID
- Due to the lower intensity levels and heat of LED/
 - Learn how to manage the lack of heat from LED
 - HVAC
 - Dehumidification
 - Mounting the LED much closer to the plants vs HID

300kW-10MW CHP System

<u>CONTROLLED</u> <u>DEHUMIDIFICATION</u>

Controlled Dehumidification provides equipment that delivers the deepest drying system available. Utilizing the power of desiccant dehumidification and vapor pressure reduction with optional discharge temperature control.

Report		System Met
røject Name	Bratic - Chesaning	Design
røject Address	15403 Sharon Rd Chesaning, Mi 48616	Module DC Nameplate
repared By	Bratic Enterprises,LLC	Inverter AC Nameplate
		Annual Production
	- Jak	Performance Ratio
		kWh/kWp
		Weather Dataset
		Simulator Version

System Met	rics
ph	Design 1
ale DC eplate	2.40 MW
ter AC eplate	1.98 MW Load Ratio: 1.21
ual uction	3.002 GWh
irmance	83,1%
kWp	1,252.3
her Dataset	TMY, 10km Grid (43.15,-84.15), NREL (prospector)
lator Version	9b6ea3edba-740144e756-4cf1fffc4d- a6b7ed59dd

Monthly Production

In Annu	al Production			& Condition
	Description	Output	% Delta	Description
	Annual Global Horizontal Irradiance	1,427.6		Weather Dataset
	POA Irradiance	1,507.3	5.6%	Solar Anela Locati
Irradiance	Shaded Irradiance	1,498.5	-0.6%	Sound See Focus
(kWit/m²)	Irradiance after Reflection	1,443.1	-3.7%	Transponition Mod
	Irradiance after Solling	1,353,3	-6.2%	Temperature Med
	Total Collector Irradiance	1,353.3	0.0%	
	Nameplate	3,247,314.8		
	Output at Irradiance Levels	3,213,634.3	-1.0%	Temperature Mod
	Output at Cell Temperature Derate	3,184,654.3	-0.9%	Parameters
Energy	Output After Mismatch	3,078,078.5	-3.3%	
(kWh)	Optimal DC Output	3,069,402.1	-0.3%	
	Constrained DC Output	3,066,148.0	-0.1%	Solling (%)
	Inverter Output	3,017,040.0	-1.6%	
	Energy to Grid	3,001,960.0	-0.5%	Irradiation Varian
Temperatur	Metrics			Cell Temperature
	Avg. Operating Ambient Temp		10.8 °C	Module Binning R
	Avg. Operating Cell Temp		17.4 °C	AC System Derate
Simulation N	tetrics			
		Operating Hours	4646	Module Character
		Solved Hours	4646	
				Component Characterizations

Sources of System Loss

A Condition Set													
Description	Cond	lition 5	et 1										
Weather Dataset	TMY, 10km Grid (43.15,-84.15), NREL (prospector)												
Solar Angle Location	Meteo Lat/Lng												
Transposition Model	Perez Model												
Temperature Model	Sand	ia Mod	el										
	Rack	Туре				b		Te	mper	ature	Delta		
Tampersture Medal	Fixed	TIL		-3.5	6	-0.07	15	3	Ċ.				
Parameters	Flust	Mour	it.	-2.8	T.	-0.0	455	0.	C				
	East	West		-3.5	6	-0.07	15	31	Ċ				
	Carp	+3,5	6	-0.07	75	3*C							
Salling (%)	1	F	м	A	М	1	1	A	5	0	N	D	
course (cos	25	35	20	-4	2	2	2	2	2	Z	2	10	
Irradiation Variance	5%												
Cell Temperature Spread	4º C												
Module Binning Range	-2.5% to 2.5%												
AC System Derate	0.501	6											
	Mod	ule						Chara	ctera	ation			
Module Characterizations	CS61 Solar	1-330P 1)	(Aug1	G) 150	0V (C	anadi	ən	Spec S PAN	Sheet	Chara	acteriz	ation	
Component	Devis								0	haract	erizati	an	
Characterizations	CSI-6	GKTL-	35 201	7-08 (Cana	dian S	olar)		5	ec Sh	eet		

SOLAR

VERTICAL GROW SYSTEMS

Vertical Systems allow for higher plant count and requires much less square footage.

DESTRATIFICATION

- Cut HVAC-related energy costs by more than 30%
- Extend the performance life of HVAC equipment
- Maintain dry floors and prevent accidents for improve customer safety
- Redistribute air and eliminate stale air to improve a quality standards
- Improve overall comfort for employees and customers
- Target air to strategically resolve building challenges

ENERGY STAR RATED ROOF

Big Savings ➤ High R value (R19-30 ➤ High reflectivity

- helpful in reducing peak energy demand, or the sharp peak in electrical demand observed in almost every building during the busiest hours of the day.
- Peak demand is a problem because it: • Requires additional power capacity

QUESTIONS?

Bratic Enterprises, LLC Stevan Bratic Managing Director 248.582.1408 stevan.bratic@bratic.net

