

2023 Annual Groundwater Monitoring Report

Belle River Power Plant Bottom Ash Basins 4505 King Road China Township, Michigan

January 2024

Vincent E. Buening, C.P.G. Senior Project Manager

Sarah B. Holmstrom, P.G. Senior Hydrogeologist

Prepared For: DTE Electric Company

Prepared By: TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

David B. McKenzie, P.E. Senior Project Engineer

TABLE OF CONTENTS

Exec	cutive	Summaryiii
1.0	Intro	oduction1
	1.1	Program Summary1
	1.2	Site Overview
	1.3	Geology/Hydrogeology2
2.0	Grou	undwater Monitoring4
	2.1	Monitoring Well Network4
	2.2	Semiannual Groundwater Monitoring4
		2.2.1 Data Summary
		2.2.2 Data Quality Review5
		2.2.3 Groundwater Flow Rate and Direction5
3.0	Stati	istical Evaluation6
	3.1	Establishing Background Limits6
	3.2	Data Comparison to Background Limits – First Semiannual Event (April 2023)6
	3.3	Data Comparison to Background Limits – Second Semiannual Event (October 2023)
	3.4	Verification Resampling for the Second Semiannual Event7
	4.1	Additional Uppermost Aquifer Characterization Study
	4.2	Bottom Ash Basins Retrofit8
5.0	Con	clusions and Recommendations10
6.0	Grou	undwater Monitoring Report Certification11
7.0	Refe	rences12
ТАВ	LES	

Table 1	Summary of Groundwater Elevation Data – April and October 2023
Table 2	Summary of Field Data – April to December 2023
Table 3	Comparison of Appendix III Parameter Results to Background Limits – April 2023
Table 4	Comparison of Appendix III Parameter Results to Background Limits – October
	and December 2023

FIGURES

Site Location Map
Site Plan
Groundwater Potentiometric Elevation Summary – April 2023
Groundwater Potentiometric Elevation Summary – October 2023

APPENDICES

- Appendix A April 2023 Aquifer Characterization Study
- Appendix B Laboratory Analytical
- Appendix C Data Quality Reviews

Executive Summary

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. The CCR Rule, which became effective on October 19, 2015 (with amendments in 2018 and 2020), applies to the DTE Electric Company (DTE Electric) Belle River Power Plant (BRPP) Bottom Ash Basins (BABs) CCR unit. Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e). On behalf of DTE Electric, TRC Engineers Michigan, Inc., the engineering entity of TRC, has prepared this Annual Groundwater Monitoring Report for calendar year 2023 activities at the BRPP BABs CCR unit.

The BRPP BABs CCR unit was operating under the detection monitoring program at the start of the 2023 annual reporting period and remained in the detection monitoring program through the end of the 2023 annual reporting period. The semiannual detection monitoring events for 2023 were completed in April and October 2023 and included sampling and analyzing groundwater within the groundwater monitoring system for the indicator parameters listed in Appendix III to the CCR Rule. As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify statistically significant increases (SSIs) in Appendix III parameters to determine if concentrations in groundwater exceed prediction limits. All the monitoring data that have been collected and evaluated under §257.90 through §257.98 in 2023 are presented in this report.

From December 2022 to April 2023 DTE Electric performed an additional uppermost aquifer characterization as detailed in the April 2023 Additional Uppermost Aquifer Characterization Study, Belle River Power Plant Bottom Ash Basins CCR Unit, 4505 King Road, China Township, Michigan (Aquifer Characterization Study) prepared by TRC. The Aquifer Characterization Study presents an analysis of geochemical, stable isotopic, and tritium data collected in December 2022 along with pre-existing data from the BRPP BABs CCR unit that confirms the uppermost aquifer is not in hydraulic communication with the CCR unit and further demonstrates that the uppermost aquifer groundwater is unaffected by the CCR unit water.

In addition, DTE Electric retrofitted the BRPP BABs with composite liners in accordance with §257.102(k) in 2023. The BABs were retrofitted from April to October 2023 in accordance with the February 10, 2023 *Belle River Retrofit Plan for Bottom Ash Impoundment prepared for DTE Electric Company, Coal Combustion Residual Rule Compliance, China Township, Michigan* (Retrofit Plan) prepared by Burns & McDonnell pursuant to §257.102(k)(2). The BABs were retrofitted by removing the existing CCR down to the clay-rich native soil and installing an alternative composite liner system that complies with §257.70(c) and §257.72. The north and south BABs were retrofitted sequentially so that one BAB could be retrofitted while the other remained in service. The retrofit construction activities along with the certification required by §257.102(k)(4) that certifies the retrofits were completed in accordance with the Retrofit Plan are summarized in the November 29, 2023 *DTE Electric Company Belle River Bottom Ash*

Impoundment Notification of Completion of Retrofit report (Retrofit Completion Report) prepared by Burns & McDonnell. Since October 2023, the BRPP BABs remain in service as lined CCR surface impoundments.

No SSIs over prediction limits were recorded through the 2023 monitoring period. Potential SSIs over prediction limits were noted for several Appendix III constituents in one or more monitoring wells during the April and October 2023 monitoring events. These potential SSIs were either not statistically significant (i.e. verification resampling did not confirm the exceedance) or were evaluated and determined to be a result of natural variability in groundwater quality as documented in alternate source demonstrations (ASDs) and not attributable to the BRPP BABs CCR unit. Therefore, detection monitoring will continue at the BRPP BABs CCR unit in accordance with §257.94.

1.0 Introduction

1.1 Program Summary

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. The CCR Rule, which became effective on October 19, 2015 (with amendments in 2018 and 2020), applies to the DTE Electric Company (DTE Electric) Belle River Power Plant (BRPP) Bottom Ash Basins (BABs) CCR unit. Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the Preceding year in accordance with §257.90(e). On behalf of DTE Electric, TRC Engineers Michigan, Inc., the engineering entity of TRC, has prepared this Annual Groundwater Monitoring Report for calendar year 2023 activities at the BRPP BABs CCR unit (2023 Annual Report).

This 2023 Annual Report presents the monitoring results and the statistical evaluation of the detection monitoring parameters (Appendix III to Part 257 of the CCR Rule) for the April and October 2023 semiannual groundwater monitoring events for the BRPP BABs CCR unit. Detection monitoring for these events continued to be performed in accordance with the *CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company Belle River Power Plant Bottom Ash Basins and Diversion Basin* (QAPP) (TRC, July 2016; revised August 2017) and statistically evaluated per the Stats Plan (TRC, October 2017). As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify SSIs of detection monitoring parameters compared to background levels.

Additional site characterization was completed in late 2020 and in 2021 with soil hydraulic conductivity testing extending into December 2022 including additional soil borings, cone penetrometer testing (CPT), soil sample collection for additional clay-rich soil, laboratory hydraulic conductivity testing, and additional slug testing (to measure the hydraulic conductivity of the uppermost aquifer in wells not previously tested) in support of the Alternative Liner Demonstration (ALD) that was submitted to the EPA on April 10, 2023 (Geosyntec, 2023). The ALD concludes that there is no reasonable probability that water from the BABs will cause releases to groundwater throughout the active life of the CCR unit at concentrations that will exceed the groundwater protection standard at the waste boundary.

From December 2022 to April 2023 DTE Electric performed an additional uppermost aquifer characterization as detailed in the April 2023 Additional Uppermost Aquifer Characterization Study, Belle River Power Plant Bottom Ash Basins CCR Unit, 4505 King Road, China Township, Michigan (Aquifer Characterization Study) prepared by TRC (TRC, April 2023). A copy of the Aquifer Characterization Study is included in Appendix A. The Aquifer Characterization Study presents an analysis of geochemical, stable isotopic, and tritium data collected in December 2022 along with pre-existing data from the BRPP BABs CCR unit that confirms the uppermost aquifer is not in hydraulic communication with the CCR unit and further demonstrates that the uppermost aquifer groundwater is unaffected by the CCR unit water as

discussed more in Section 4.1 of this report.

In addition, in 2023, DTE Electric retrofitted the BRPP BABs CCR unit by removing the existing CCR from both the north and south BABs down to the clay-rich native soil, removing any potentially impacted subgrade material, and constructing an alternative composite liner system. The north and south BABs were retrofitted sequentially so that one BAB could be retrofitted while the other remained in service. Since October 2023 the BRPP BABs have been in service as a lined CCR surface impoundment. A more detailed summary of the retrofit is provided in Section 4.2 of this report.

1.2 Site Overview

The BRPP is located in Section 13, Township 4 North, Range 16 East, at 4505 King Road, China Township in St. Clair County, Michigan. The BRPP was constructed in the early 1980s with plant operations beginning in 1984. Prior to Detroit Edison Company's operations commencing in the 1980s, the BRPP property was generally wooded and farmland. The property has been used continuously as a coal fired power plant since Detroit Edison Company (now DTE Electric) began power plant operations at BRPP in 1984 and is generally constructed over a natural clay-rich soil base. The BABs have been in use by the BRPP since it began operation and have collected CCR bottom ash that is periodically cleaned out and either sold for beneficial reuse or disposed of at the Range Road Landfill (RRLF).

1.3 Geology/Hydrogeology

The BRPP BABs CCR unit is located approximately one mile west of the St. Clair River. The BRPP BABs CCR unit is underlain by more than 100 feet of glacially deposited unconsolidated sediments, with the lower confining Bedford Shale generally encountered from 140 to 150 feet below ground surface (bgs). In general, the BRPP BABs CCR unit is initially underlain by at least 90 to as much as 130 feet of laterally extensive low hydraulic conductivity silty clay-rich deposits (TRC, 2017 and Geosyntec, 2023). The depth to the top of the confined sand-rich uppermost aquifer encountered immediately beneath the silty clay-rich deposits varies up to 50 feet within the monitoring well network and rapidly thins to the south and east of the BABs and pinches out (i.e., no longer present) to the southeast in the vicinity of SB-16-01 (Figure 1). Consequently, the uppermost aquifer is not laterally contiguous across the entire BRPP BABs CCR unit, and not present beneath the southeastern corner of the BABs.

The variability in the depth to the uppermost aquifer is a consequence of the heterogeneity of the glacial deposits and is driven by the lateral discontinuity of the sand outwash within the encapsulating fine-grained, silty clay till that confines the uppermost aquifer. There is an apparent lack of interconnection and/or significant vertical variation between the uppermost aquifer sand unit(s) encountered across the BRPP BABs CCR unit as demonstrated by the extensive amount of time (months) it took for water levels in monitoring well MW-16-02 to reach equilibrium after well construction and development (TRC, 2017).

Given the horizontally expansive clay with substantial vertical thickness that isolates the uppermost aquifer from the BRPP BABs CCR unit, the heterogeneity of the glacial deposits (with the top of the uppermost aquifer elevation across the BABs, where present varying up to

46 feet vertically), the no flow boundary where no sand or gravel is present in the southeastern portion of the BABs CCR unit area, and the apparent lack of hydraulic interconnectedness of the uppermost aquifer encountered at the BABs in some areas, it is not appropriate to infer horizontal flow direction or gradients across the footprint of the BRPP BABs CCR unit.

2.0 Groundwater Monitoring

2.1 Monitoring Well Network

A groundwater monitoring system has been established for the BRPP BABs CCR unit as detailed in the Groundwater Monitoring System Summary Report – DTE Electric Company Belle River Power Plant Bottom Ash Basins and Diversion Basin Coal Combustion Residual Units (GWMS Report) (TRC, October 2017). The detection monitoring well network for the BABs CCR unit currently consists of five monitoring wells that are screened in the uppermost aquifer. Monitoring wells MW-16-01 through MW-16-04 and MW-16-09 are located around the north, east and south perimeter of the BABs and provide data on both background and downgradient groundwater quality that has not been affected by the CCR unit (total of five background/downgradient monitoring wells). The monitoring well locations are shown on Figure 2.

2.2 Semiannual Groundwater Monitoring

The semiannual monitoring parameters for the detection monitoring program were selected per the CCR Rule's Appendix III to Part 257 – Constituents for Detection Monitoring. The Appendix III indicator parameters consist of boron, calcium, chloride, fluoride, pH (field reading), sulfate, and total dissolved solids (TDS) and were analyzed in accordance with the sampling and analysis plan included within the QAPP. In addition to pH, the collected field parameters included dissolved oxygen, oxidation reduction potential, specific conductivity, temperature, and turbidity.

2.2.1 Data Summary

The first semiannual detection monitoring event for 2023 was performed on April 26 and 28, 2023 by TRC personnel and samples were analyzed by Eurofins Environment Testing America (Eurofins) in accordance with the QAPP. Static water elevation data were collected at all five monitoring well locations. Groundwater samples were collected from the five detection monitoring wells for the Appendix III indicator parameters and field parameters. A summary of the groundwater data collected during the April 2023 event is provided on Table 1 (static groundwater elevation data), Table 2 (field data), and Table 3 (analytical results).

The second semiannual detection monitoring event for 2023 was performed on October 9 and 10, 2023 by TRC personnel and samples were analyzed by Eurofins in accordance with the QAPP. Static water elevation data were collected at all five monitoring well locations. Groundwater samples were collected from the five detection monitoring wells for the Appendix III indicator parameters and field parameters. A summary of the groundwater data collected during the October 2023 event is provided on Table 1 (static groundwater elevation data), Table 2 (field data), and Table 4 (analytical results). The laboratory analytical reports for each detection monitoring event are included in Appendix B.

2.2.2 Data Quality Review

Data from each round were evaluated for completeness, overall quality and usability, methodspecified sample holding times, precision and accuracy, and potential sample contamination. The data were found to be complete and usable for the purposes of the CCR monitoring program. Data quality reviews are summarized in Appendix C.

2.2.3 Groundwater Flow Rate and Direction

As presented in the GWMS Report, and mentioned above, given the horizontally expansive clay with substantial vertical thickness that isolates the uppermost aquifer from the BRPP BABs CCR unit; the heterogeneity of the glacial deposits (with the top of the uppermost aquifer elevation across the BABs; where present, varying up to 46 feet vertically); the no flow boundary where no sand or gravel is present in the southeastern portion of the BRPP BABs CCR unit area; and the apparent lack of hydraulic interconnectedness of the uppermost aquifer encountered at the BABs in some areas, it is not appropriate to infer horizontal flow direction or gradients across the site. Groundwater elevations measured during the April 2023 sampling event are provided on Table 1 and are summarized in plan view on Figure 3. Groundwater elevations measured during the October 2023 sampling event are provided on Table 1 and are summarized in plan view on Figure 3 and are summarized in plan view on Figure 4.

Groundwater elevation data collected during the 2023 sampling events show that groundwater conditions within the uppermost aquifer are consistent with previous monitoring events and continue to demonstrate that the monitoring wells are appropriately positioned to detect the presence of Appendix III parameters that could potentially migrate from the BRPP BABs CCR unit.

3.0 Statistical Evaluation

3.1 Establishing Background Limits

As discussed in the Stats Plan, intrawell statistical methods for the BABs CCR unit were selected based on the geology and hydrogeology at the site (primarily the presence of clay/hydraulic barrier, the variability in the presence of the uppermost aquifer across the site, lack of consistent groundwater flow direction and presence of no flow boundary on the southeast side of the aquifer), in addition to other supporting lines of evidence that the aquifer is unaffected by the CCR unit that have been further demonstrated in the ALD and Aquifer Characterization Study. An intrawell statistical approach requires that each downgradient well doubles as a background and compliance well, where data from each individual well during a detection monitoring event is compared to a statistical limit developed using the background dataset from that same well.

Per the Stats Plan, background limits were established for the Appendix III indicator parameters following the collection of at least eight background monitoring events using data collected from each of the five established detection monitoring wells (MW-16-01 through MW-16-04 and MW-16-09). The initial statistical evaluation of the background data is presented in the 2017 Annual Report. The Appendix III background limits for each monitoring well will be used throughout the detection monitoring period to determine whether groundwater has been impacted from the BRPP BABs CCR unit by comparing concentrations in the detection monitoring wells to their respective background limits for each Appendix III indicator parameter.

Consistent with the Stats Plan and the USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (Unified Guidance, USEPA, 2009), prediction limits are periodically updated to reflect the additional data and additional temporal variability observed over time. The Appendix III prediction limits for the BRPP BAB were updated per the Stats Plan and Unified Guidance in December 2021 to incorporate additional data collected since 2017 as presented in the December 15, 2021 Technical Memorandum, Prediction Limit Update – DTE Electric Company, Belle River Power Plant Bottom Ash Basin (included as Appendix C in the 2021 Annual Groundwater Monitoring Report – DTE Electric Company, Belle River Power Plant Bottom Residual Unit, TRC, January 2022).

3.2 Data Comparison to Background Limits – First Semiannual Event (April 2023)

The concentrations of the indicator parameters in each of the detection monitoring wells (MW-16-01 through MW-16-04 and MW-16-09) were compared to their respective statistical background limits calculated from the background data collected from each individual well (i.e., monitoring data from MW-16-01 is compared to the background limit developed using the background dataset from MW-16-01, and so forth).

The comparisons of the April 2023 monitoring event data to background limits are presented on Table 3. The statistical evaluation of the April 2023 Appendix III indicator parameters showed no potential initial potential SSIs over background.

The calcium exceedance at MW-16-09 during the first semiannual event in April 2023 has previously been demonstrated to be from natural variability and is not from a release from the CCR unit as presented in the still applicable February 2022 ASD that was included in the 2022 Annual Report.

3.3 Data Comparison to Background Limits – Second Semiannual Event (October 2023)

The concentrations of the indicator parameters in each of the detection monitoring wells (MW-16-01 through MW-16-04 and MW-16-09) were compared to their respective statistical background limits calculated from the background data collected from each individual well (i.e., monitoring data from MW-16-01 is compared to the background limit developed using the background dataset from MW-16-01, and so forth).

The comparisons of the October 2023 monitoring event are presented on Table 4. The statistical evaluation of the October 2023 Appendix III indicator parameters showed a potential initial SSI over background for:

Sulfate at MW-16-02

The calcium exceedance at MW-16-09 during the Second Semiannual Event in October 2023 has previously been demonstrated to be from natural variability and is not from a release from the CCR unit as presented in the still applicable February 2022 ASD that was included in the 2022 Annual Report.

3.4 Verification Resampling for the Second Semiannual Event

Verification resampling is recommended per the Stats Plan and the Unified Guidance to achieve performance standards as specified by §257.93(g) in the CCR Rule. Per the Stats Plan, if there is an exceedance of a prediction limit for one or more of the parameters, the well(s) of concern will be resampled within 30 days of the completion of the initial statistical analysis. Only constituents that initially exceed their statistical limit (i.e., have no previously recorded SSIs) will be analyzed for verification purposes. As such, verification resampling for the October 2023 event was conducted on December 6, 2023 by TRC personnel. A groundwater sample was collected for sulfate at MW-16-02 in accordance with the QAPP. A summary of the analytical results collected during the resampling event is provided on Table 4. The associated data quality review is included in Appendix C.

The verification sampling result for sulfate at MW-16-02 is below the prediction limit. Therefore, in accordance with the Stats Plan and the Unified Guidance, the original exceedance is not statistically significant, and no SSI will be recorded for the October 2023 detection monitoring sampling event.

4.0 Additional Aquifer Characterization and Retrofit Activities

4.1 Additional Uppermost Aquifer Characterization Study

From December 2022 to April 2023 DTE Electric had an additional uppermost aquifer characterization performed as described in the April 2023 Additional Characterization Study (TRC, April 2023) prepared by TRC. From December 14 to 16, 2022 TRC collected groundwater samples from the BRPP BABs groundwater monitoring well network (MW-16-01 through MW-16-04 and MW-16-09), a water sample from the north BAB (the south BAB was dewatered at the time) and a surface water sample from the St. Clair River.

These samples were analyzed for:

- Calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), sulfate (SO₄), chloride (Cl), HCO₃ and alkalinity (bicarbonate (HCO₃), carbonate (CO₃) and total alkalinity), boron (B), lithium (Li) and strontium (Sr);
- Stable isotopes δ^{11} B, δ^{87} Sr and δ^{7} Li, δ^{2} H, δ^{18} O and;
- Tritium.

The geochemical, stable isotopic and tritium data collected in December 2022 along with preexisting data collected from the BRPP BABs CCR unit was evaluated and confirmed that the uppermost aquifer is not in hydraulic communication with the CCR unit water with the following multiple lines of evidence:

- The geochemical composition of the uppermost aquifer groundwater is statistically distinct from the CCR unit water;
- The source of lithium, boron, strontium, hydrogen, and oxygen in the uppermost aquifer groundwater is from upgradient groundwater and, as demonstrated by the stable isotope data is distinct from the CCR unit water; and
- Age dating with tritium validates that the uppermost aquifer groundwater is not hydraulically connected to the CCR unit.

These multiple lines of evidence come together in an additive fashion to further validate the conceptual site model established in the ALD (Geosyntec, April 2023) and previous studies, which holds that the contiguous glacially compacted natural clay-rich soil beneath the BABs serves as a natural confining hydraulic barrier isolating the underlying uppermost aquifer from the CCR unit and maintains that the uppermost aquifer groundwater is unaffected by the CCR unit water (TRC, April 2023).

4.2 Bottom Ash Basins Retrofit

DTE Electric retrofitted the BRPP BABs with composite liner systems in accordance with §257.102(k) in 2023. As required by §257.102(k)(2) a written retrofit plan was completed by DTE Electric on February 10, 2023 entitled *Belle River Retrofit Plant for Bottom Ash Impoundment prepared for DTE Electric Company, Coal Combustion Residual Rule Compliance, China Township, Michigan* (Retrofit Plan) (Burns & McDonnell, February 2023). The Retrofit Plan included the north and south BAB and was approved by the Michigan Department of Environment, Great Lakes and Energy (EGLE) on April 14, 2023.

The BABs (north and south) were retrofitted from April to October 2023 in accordance with the Retrofit Plan by removing the existing CCR down to the clay-rich native soil, removing any potentially impacted subgrade material, and installing an alternative composite liner system that complies with §257.70(c) and §257.72 as described in the November 29, 2023 *DTE Electric Company Belle River Bottom Ash Impoundment Notification of Completion of Retrofit* report (Retrofit Completion Report) (Burns & McDonnell, November 2023b). The north and south BABs were retrofitted sequentially so that one BAB could be retrofitted while the other remained in service.

The south BAB CCR removal and retrofit construction activities occurred during April to June 2023. Completion of the south BAB retrofit construction was documented in the June 9, 2023 *Construction Quality Assurance Report, Belle River Bottom Ash Impoundment South Basin Retrofit* (Burns & McDonnell, June 2023) that was approved by the EGLE on June 30, 2023. The south BAB was returned to service as a lined CCR surface impoundment on July 6, 2023. The north BAB CCR removal and retrofit construction activities occurred during from July to October 2023. Completion of the north BAB retrofit construction was documented in the November 3, 2023 *Construction Quality Assurance Report, Belle River Bottom Ash Impoundment North Basin Retrofit* (Burns & McDonnell, November 2023a) that was approved by EGLE on January 8, 2023.

The certification required under $\frac{257.102(k)(4)}{4}$ that certifies the retrofits were completed in accordance with the Retrofit Plan prepared per $\frac{257.102(k)(2)}{2}$ is provided in the Retrofit Completion Report. Since approval of the North Basin retrofit in January 2024, both of the BRPP BABs are in service as a lined CCR surface impoundment.

5.0 Conclusions and Recommendations

No SSIs over prediction limits were recorded for the Appendix III constituents in the downgradient wells during the 2023 monitoring period. Therefore, detection monitoring will be continued at the BRPP BABs CCR unit in accordance with §257.94. As discussed above and in the GWMS Report as well as the ALD and Aquifer Characterization Study, with the laterally contiguous clay with substantial vertical thickness that isolates the uppermost aquifer from the BRPP BABs CCR unit along with the recent BAB retrofit construction activities in which a composite liner system was installed in each BAB, there is no reasonable probability for the uppermost aquifer to be affected by CCR from BRPP operations.

No corrective actions were performed in 2023. The next semiannual monitoring event is scheduled for the second calendar quarter of 2024.

6.0 Groundwater Monitoring Report Certification

The U.S. EPA's Disposal of Coal Combustion Residuals from Electric Utilities Final Rule Title 40 CFR Part 257 §257.90(e) requires that the owner or operator of an existing CCR unit prepare an annual groundwater monitoring and corrective action report.

Annual Groundwater Monitoring Report Certification Belle River Power Plant Bottom Ash Basins China Township, Michigan

CERTIFICATION

I hereby certify that the annual groundwater monitoring and corrective action report presented within this document for the BRPP BABs CCR unit has been prepared to meet the requirements of Title 40 CFR §257.90(e) of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.90(e).

December 17, 2025	DAVID B * MCKENZIE ENGINEER
Date:	No. 6201042332
January 31, 2024	POLESSIONAL
	Date:

7.0 References

- Burns & McDonnell. February 2023. Belle River Power Plant Retrofit Plan for Bottom Ash Impoundment prepared for DTE Electric Company, Coal Combustion Residual Rule Compliance, China Township, Michigan prepared for DTE Electric Company. February 10, 2023.
- Burns & McDonnell. June 2023. Construction Quality Assurance Report, Belle River Bottom Ash Impoundment South Basin Retrofit prepared for DTE Electric Company. June 9, 2023.
- Burns & McDonnell. November 2023a. Construction Quality Assurance Report, Belle River Bottom Ash Impoundment North Basin Retrofit prepared for DTE Electric Company. November 3, 2023.
- Burns & McDonnell. November 2023b. DTE Electric Company Belle River Bottom Ash Impoundment Notification of Completion of Retrofit. November 29, 2023.
- Geosyntec Consultants (Geosyntec). April 2023. Alternative Liner Demonstration Bottom Ash Basins, DTE Electric Company Belle River Power Plant, China Township, Michigan
- TRC. July 2016; Revised March and August 2017. CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company Belle River Power Plant Bottom Ash Basins and Diversion Basin, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017. Groundwater Monitoring System Summary Report DTE Electric Company Belle River Power Plant Bottom Ash Basins and Diversion Basin Coal Combustion Residual Units, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017. Groundwater Statistical Evaluation Plan DTE Electric Company Belle River Power Plant Coal Combustion Residual Bottom Ash Basins, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2023. 2022 Annual Groundwater Monitoring Report DTE Electric Company Belle River Power Plant Bottom Ash Basins, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. April 2023. Additional Uppermost Aquifer Characterization Study, Belle River Power Plant Bottom Ash Basins CCR Unit, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.
- USEPA. April 2015. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. 80 Federal Register 74 (April 17, 2015), pp. 21301-21501 (80 FR 21301).

- USEPA. July 2018. 40 CFR Part 257. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One); Final Rule. 83 Federal Register 146 (July 30, 2018), pp. 36435-36456 (83 FR 36435).
- USEPA. April 2018. Barnes Johnson (Office of Resource Conservation and Recovery) to James Roewer (c/o Edison Electric Institute) and Douglas Green, Margaret Fawal (Venable LLP). Re: Coal Combustion Residuals Rule Groundwater Monitoring Requirements. April 30, 2018. United States Environmental Protection Agency, Washington, D.C. 20460. Office of Solid Waste and Emergency Response, now the Office of Land and Emergency Management.

Tables

Table 1 Summary of Groundwater Elevation Data – April to October 2023 Belle River Power Plant Bottom Ash Basins – RCRA CCR Monitoring Program China Township, Michigan

Well ID	MW-16-01		MW-16-02		MW-16-03		MW-16-04		MW-16-09	
Date Installed	590.06		3/15/2016 588.94 Sand		6/1/2016 590.66 Silty Sand		3/8/2	2016	6/2/2016	
TOC Elevation							590.51 Sand		590.80 Sand	
Geologic Unit of Screened Interval										
Screened Interval Elevation	4963 to 4913		494.3 to 489.3		456.0 to 451.0		468.5 to 463.5		452.3 to 447.3	
Unit	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft
Measurement Date	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation
04/26/2023	16.04	574.02	13.63	575.31	16.31	574.35	16.65	573.86	16.45	574.35
10/09/2023	15.73	574.33	13.44	575.50	15.92	574.74	16.02	574.49	16.25	574.55

Notes:

Elevations are reported in feet relative to the North American Vertical Datum of 1988.

ft BTOC - feet Below top of casing.

Table 2Summary of Field Data – April to December 2023Belle River Power Plant BABsChina Township, Michigan

Sample Location	Sample Date	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)	pH (SU)	Specific Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)
MW-16-01	4/28/2023	1.34	-127.4	7.6	1,487	10.70	4.12
101001	10/9/2023	1.81	-67.0	7.4	1,185	11.60	1.22
	4/28/2023	1.26	-141.7	7.6	1,184	10.70	3.58
MW-16-02	10/9/2023	3.66	-83.7	7.4	959	12.60	1.54
	12/6/2023 ⁽¹⁾	1.37	-149.7	7.6	938	10.90	0.52
MW-16-03	4/28/2023	1.28	-149.5	7.7	1,761	11.20	3.53
10100-10-03	10/9/2023	1.25	-103.5	7.6	1,417	13.10	2.51
MW-16-04	4/28/2023	1.21	-201.9	7.9	1,599	11.60	15.80
10100-10-04	10/9/2023	2.17	-119.3	7.6	1,267	13.20	10.11
MW-16-09	4/28/2023	1.28	-159.3	7.9	2,793	11.20	51.70
10100-10-09	10/10/2023	1.36	-101.2	7.8	2,162	11.30	110.00

Notes:

mg/L -Milligrams per Liter.

mV - Millivolts.

SU - Standard Units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celsius.

NTU - Nephelometric Turbidity Unit

(1) Results shown for Verification sampling completed on 12/6/2023.

Table 3 Comparison of Groundwater Detection Monitoring Parameter Results to Background Limits – April 2023 Belle River Power Plant BABs China Township, Michigan

Sample Location:		MW-16-01		MW-1	MW-16-02		MW-16-03		MW-16-04		16-09
	Sample Date:	4/28/2023	PL	4/28/2023	PL	4/28/2023	PL	4/28/2023	PL	4/28/2023	P
Constituent	Unit	Data	FL	Data	FL	Data	FL	Data	FL	Data	
Appendix III											
Boron	ug/L	1,100	1,300	1,200	1,300	1,100	1,200	1,000	1,200	1,500	1,9
Calcium	ug/L	39,000	44,000	51,000	58,000	32,000	35,000	41,000	60,000	67,000 ⁽¹⁾	42,0
Chloride	mg/L	450	510	350	390	550	800	470	520	940	1,1
Fluoride	mg/L	1.7	1.9	1.2	1.3	1.7	1.9	1.7	1.8	1.4	1.
pH, Field	su	7.6	7.0 - 8.1	7.6	7.0 - 8.0	7.7	7.5 - 8.2	7.9	7.6 - 8.2	7.9	7.7 -
Sulfate	mg/L	13	14	9.2	15	< 1.0	5.9	9.0	36	9.6	3
Total Dissolved Solids	mg/L	860	970	700	910	960	1,100	880	1,100	1,700	2,0

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

(1) - Exceedance was determined to be from an alternate source in the Second 2021 Semiannual alternative source demonstration dated 2/24/2022.

PL
,900
2,000
,100
1.7
- 8.6
37
,000

Table 4 Comparison of Detection Monitoring Parameter Results to Background Limits – October and December 2023 Belle River Power Plant BABs – RCRA CCR Monitoring Program China Township, Michigan

Sample Location:		MW-	MW-16-01		MW-16-02			MW-16-03		MW-16-04		MW-1	
5	Sample Date:	10/9/2023	PL	10/9/2023	12/6/2023 (1)	PL	10/9/2023	PL	10/9/2023	PL	10/10/2023		
Constituent	Constituent Unit		F L	Data	Data	ΓL	Data		Data		Data		
Appendix III													
Boron	ug/L	1,000	1,300	1,100		1,300	1,100	1,200	940	1,200	1,500		
Calcium	ug/L	38,000	44,000	52,000		58,000	33,000	35,000	39,000	60,000	110,000 ⁽²⁾		
Chloride	mg/L	470	510	360		390	570	800	500	520	960		
Fluoride	mg/L	1.8	1.9	1.2		1.3	1.8	1.9	1.8	1.8	1.5		
pH, Field	su	7.4	7.0 - 8.1	7.4		7.0 - 8.0	7.6	7.5 - 8.2	7.6	7.6 - 8.2	7.8		
Sulfate	mg/L	6.8	14	17	2.7	15	< 1	5.9	13	36	5.9		
Total Dissolved Solids	mg/L	900	970	740		910	1,000	1,100	910	1,100	1,600		

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

(1) - Results Shown for Verification sampling performed on 12/6/2023.

(2) - Exceedance was determined to be from an alternate source in the Second 2021 Semiannual alternate source demonstration dated 2/24/2022.

W-′	W-16-09					
23	PL					
	1,900					
2)	42,000					
	1,100					
	1.7					
	7.7 - 8.6					
	37					
	2,000					

Figures

E:\DTE\CCR_Sites\2017_265996\518728-0003_SLM.mxd -- Saved By: AFOJTIK on 11/27/2023, 10:09:12 AM

LEGEND

Y

Ø

MONITORING WELL

DECOMMISSIONED MONITORING WELL

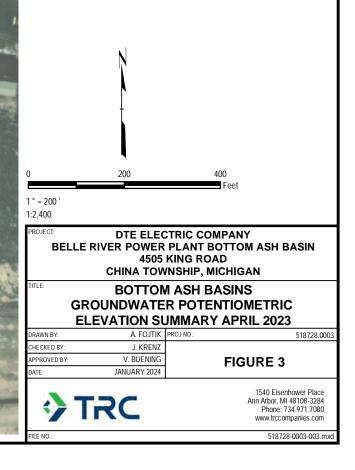
<u>NOTES</u>

- 1. BASE MAP IMAGERY FROM ESRI WORLD IMAGERY, (03/2022).
- 2. WELL LOCATIONS SURVEYED IN MARCH, APRIL, JUNE 2016, AND JUNE 2017 BY BMJ ENGINEERS & SURVEYORS, INC.

0	200	400 F	eet		
1 " = 200 ' 1:2,400		' '			
PROJECT:	BELLE RIV 4505	CTRIC COMP ER POWER P KING ROAD VNSHIP, MICH	LANT		
TITLE:	S	TE PLAN			
DRAWN BY:	A. FOJTIK	PROJ NO.:	518728.0003		
CHECKED BY:	J. KRENZ				
APPROVED BY:	V. BUENING	FIGURE 2			
DATE:	JANUARY 2024				
	RC		1540 Eisenhower Place Ann Arbor, MI 48108-3284 Phone: 734.971.7080 www.trccompanies.com		
FILE NO.:			518728-0003-002.mxd		

SOIL BORING MONITORING WELL

DECOMMISSIONED MONITORING WELL


MW ID GROUNDWATER


GROUNDWATER ELEVATION (DATE)

FT BGS FEET BELOW GROUND SURFACE FT NAVD 88 ELEVATION RELATIVE TO THE NORTH AMERICAN VERTICAL DATUM OF 1988

<u>NOTES</u>

- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO, (3/29/2022).
- 2. WELL LOCATIONS SURVEYED IN MARCH, APRIL AND JUNE 2016 AND JUNE 2017 BY BMJ ENGINEERS & SURVEYORS, INC.
- 3. NO SAND OR GRAVEL UNIT PRESENT ABOVE BEDROCK IN THIS LOCATION.

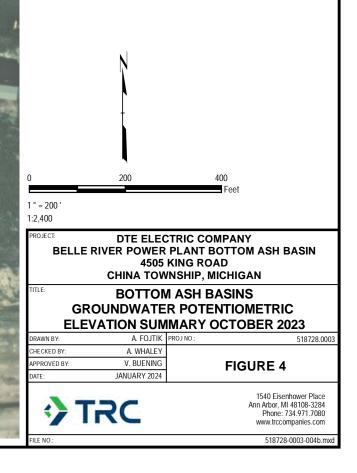
Coordinate System: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl Man Rotation:

 Plot Date:
 12/20/2023, 08:26:30 AM by AFOJTK
 -- LAYOUT: ANSI B(11"x17")

 24th:
 E-INTELICE
 E-INTELICE

SOIL BORING MONITORING WELL

DECOMMISSIONED MONITORING WELL


MW ID GROUNDWATER

GROUNDWATER ELEVATION (DATE)

FT BGS FEET BELOW GROUND SURFACE FT NAVD 88 ELEVATION RELATIVE TO THE NORTH AMERICAN VERTICAL DATUM OF 1988

<u>NOTES</u>

- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO, (3/29/2022).
- 2. WELL LOCATIONS SURVEYED IN MARCH, APRIL AND JUNE 2016 AND JUNE 2017 BY BMJ ENGINEERS & SURVEYORS, INC.
- 3. NO SAND OR GRAVEL UNIT PRESENT ABOVE BEDROCK IN THIS LOCATION.

Appendix A April 2023 Aquifer Characterization Study

Additional Uppermost Aquifer Characterization Study

Belle River Power Plant Bottom Ash Basins CCR Unit, 4505 King Road, China Township, Michigan

April 2023

Millen

Clint Miller, PhD., PG Senior Project Geochemist

Bine

Vincent E. Buening, C.P.G. Senior Project Manager

Prepared For: DTE Electric Company

Prepared By: TRC 1540 Eisenhower Pl. Ann Arbor, MI 48108

Elam 6

Alexander Eklund Data Scientist

TABLE OF CONTENTS

1.0	Intro	duction1
	1.1	Purpose and Objectives1
	1.2	Site Overview and Operational History2
	1.3	Geology/Hydrogeology2
2.0	Add	itional Data Collection4
	2.1	Groundwater Sample Collection4
	2.2	Bottom Ash Basin Water Sample Collection4
	2.3	Surface Water Sample Collection4
	2.4	Laboratory Analysis4
3.0	Geo	chemical and Isotopic Data Analysis5
	3.1	Geochemistry5
		3.1.1 General Chemistry5
		3.1.2 Ionic Speciation and Mineral Saturation6
	3.2	Stable Isotopes9
		3.2.1 Lithium (δ^7 Li) and Boron (δ^{11} B)
		3.2.2 Strontium (⁸⁷ Sr/ ⁸⁶ Sr)11
		3.2.3 Hydrogen (δ^2 H) and Oxygen (δ^{18} O)
	3.3	Age Dating with Tritium Isotopes13
4.0	Stat	istical Analysis16
	4.1	Principal Component Analysis16
	4.2	Linear Discriminant Analysis
5.0	Find	lings and Conclusions19
	5.1	Geochemistry
	5.2	Stable Isotopes
	5.3	Age Dating with Tritium Isotopes20
	5.4	Statistical Analysis20
	5.5	Final Assessment20
6.0	Refe	erences

TABLES IN TEXT

Table 4	Summary of Water Chemistry Results	6
Table 5	Calculated Average Geochemical Parameters	7

TABLES ATTACHED

- Table 1Summary of Field Data December 2022
- Table 2Summary of Analytical Results December 2020 to December 2022
- Table 3Summary of Stable Isotope and Tritium Results December 2022
- Table 6Summary Calculated Mineral Saturation December 2022

FIGURES

- Figure 1 Site Location Map
- Figure 2 Monitoring Well Network and Site Plan
- Figure 3 Offsite Surface Water Sample Locations
- Figure 4 Groundwater Potentiometric Elevation Summary October 2022
- Figure 5 Piper Diagram December 2022
- Figure 6 Summary of Calcium and Sulfate Saturation with Chloride and Sulfate Concentrations
- Figure 7 Molybdenum and Barium with Boron Concentrations
- Figure 8 Summary of Lithium and Boron Isotopic and Concentration Results
- Figure 9 Summary of Strontium and Boron Isotopic and Concentration Results
- Figure 10 Summary of Hydrogen and Oxygen Isotopic Results with Carbonate
- Figure 11 Tritium Data and Age Model
- Figure 12 BRPP BABs PCA Biplot
- Figure 13 BRPP BABs PCA Scree Plot
- Figure 14 BRPP LDA Origin
- Figure 15 BRPP Density of LDA Scores
- Figure 16 BRPP LDA ANOVA

APPENDICES

Appendix A December 2022 Laboratory Data

1.0 Introduction

1.1 Purpose and Objectives

The objective of this report is to document TRC's Additional Aquifer Characterization Study performed at the Belle River Power Plant Bottom Ash Basins CCR unit (BRPP BABs CCR unit) (hereinafter "the CCR unit"), which is located at the Belle River Power Plant, China Township, Michigan. This study was performed to determine if additional data, collected in December 2022, provide further lines of evidence to substantiate that groundwater in the uppermost aquifer is unimpacted by CCR operations. This additional uppermost aquifer characterization study is complementary to the preliminary alternative liner demonstration (ALD) prepared in accordance with 40 CFR §257.71 (d) that was submitted to the United States Environmental Protection Agency (EPA) on November 30, 2021 (Geosyntec, November 2021), and the previous studies (TRC, 2017, Bechtel, 1976) performed to establish the groundwater monitoring program developed pursuant to 40 CFR §257.91.

Previous studies performed at the site including the ALD have demonstrated and verified that the site is underlain by a thick laterally-continuous clay-rich deposit which meets the requirements of an alternate liner per 40 CFR §257.71 (d). The site characterization and groundwater data collected to-date from the CCR unit indicate that the natural underlying clay hydraulically separates the CCR unit from the uppermost aquifer and that groundwater quality is not affected by the CCR unit or any associated management activities. The data and analysis presented within the preliminary ALD further confirms the pre-existing site conceptual model, and through rigorous field testing and site-specific flow and transport modeling demonstrates the effectiveness of the clay. The preliminary ALD demonstrates that there is no reasonable probability that water from the CCR unit will result in a release to the uppermost aquifer throughout the CCR unit's active life, nor will data exceed the groundwater protection standard at the waste boundaries over the projected active life and post closure period of the CCR unit.

This additional characterization study included the collection of additional groundwater samples during December 2022, along with further analyses of existing data to further characterize the uppermost aquifer. Water samples were collected from the CCR unit groundwater monitoring well network, the BABs water, and a surface water sample was collected from the St. Clair River. Laboratory analysis performed during December 2022 included additional geochemical indicators, stable isotopes, and radiometric isotopes. Stable isotopes do not decay, but preferentially fractionate under physical, chemical and or environmental conditions. Radiometric isotopes are unstable and do decay; decay is at a constant rate, and therefore can be useful for age-dating different water sources. Additionally, data collected as part of monitoring under the state program (2020 to 2022) and the federal CCR program (2015-2022) were used as described and presented within this report.

In summary, the data collected in this assessment confirms that the uppermost aquifer is not in communication with the CCR unit water; groundwater geochemistry in the uppermost aquifer is reflective of the geogenic natural environmental conditions and is therefore unaffected by the CCR unit. Each of the multiple lines of evidence presented in this report independently supports this conclusion as discussed below.

1.2 Site Overview and Operational History

The BRPP is located in Section 13, Township 4 North, Range 16 East, at 4505 King Road, China Township in St. Clair County, Michigan (Figure 1). The BRPP was constructed in the early 1980s with plant operations beginning in 1984. Prior to Detroit Edison Company's operations commencing in the 1980s, the BRPP property was generally wooded and farmland. The property has been used continuously as a coal fired power plant since Detroit Edison Company (now DTE Electric) began power plant operations at BRPP in 1984 and is generally constructed over a natural clay-rich soil base. The BABs have been in use by the BRPP since it began operation and have collected CCR bottom ash that is periodically cleaned out and either sold for beneficial reuse or disposed of at the Range Road Landfill (RRLF).

The BRPP BABs are two adjacent physical sedimentation basins that are slightly raised CCR surface impoundments referred to as the North and South BABs, located north of the BRPP. These are considered one CCR unit. The BABs receive sluiced bottom ash and other process flow water from the power plant. Discharge water from each BAB flows over an outlet weir that gravity flows to a site storm water conveyance network of ditches and pipes, then flows into the diversion basin (DB) CCR unit, which is monitored as a separate CCR unit in accordance with the CCR Rule.

The DB is an incised CCR surface impoundment located east of the BRPP. Water flows into the DB from the North and South BABs through a network of pipes and ditches. The DB discharges to the St. Clair River with other site wastewater in accordance with a National Pollution Discharge Elimination System (NPDES) permit.

1.3 Geology/Hydrogeology

The geologic and hydrogeologic conditions at the CCR unit have been extensively studied and these studies (including TRC, 2017, Bechtel, 1976 and Geosyntec 2020), provide specific details on the hydrogeology and geology in the region, and at the BRPP. A brief discussion is provided below.

The CCR unit is located approximately one mile west of the St. Clair River. The CCR unit is underlain by more than 100 feet of unconsolidated sediments, with the lower confining Bedford Shale generally encountered from 140 to 150 feet below ground surface (bgs). In general, the CCR unit is initially underlain by at least 90 to as much as 130 feet of laterally extensive low hydraulic conductivity silty clay-rich deposits (TRC, 2017 and Geosyntec, 2021). The depth to the top of the confined sand-rich uppermost aquifer encountered immediately beneath the silty clay-rich deposits varies up to 46 feet within the monitoring well network and rapidly thins to the south and east of the BABs and pinches out (i.e., no longer present) to the southeast in the vicinity of SB-16-01 (Figure 2). Consequently, the uppermost aquifer is not laterally contiguous across the entire BRPP BABs CCR unit, and not present beneath the southeastern corner of the BABs. Monitoring wells MW-16-01 through MW-16-04 and MW-16-09 are all screened in the top of the sand-rich uppermost aquifer that is up to approximately 50 feet thick where it is present and underlain by the Bedford Shale.

The variability in the depth to the uppermost aquifer is a consequence of the heterogeneity of the glacial deposits and is driven by the lateral discontinuity of the sand outwash within the encapsulating fine-grained, silty clay till that is at least 82 feet thick that confines the uppermost aquifer beneath the BABs CCR unit. This is supported by the artesian conditions observed in the uppermost aquifer where the groundwater potentiometric surface elevation is well above the bottom of the overlying confining clay unit. There is a lack of interconnection and/or lack of significant vertical variation between the uppermost aquifer sand unit(s) encountered across the CCR unit as demonstrated by the extensive amount of time (months) it took for water levels in monitoring well MW-16-02 to reach equilibrium after well construction and development (TRC, 2017).

Given the horizontally expansive clay with substantial vertical thickness that isolates the uppermost aquifer from the CCR unit, the heterogeneity of the glacial deposits (with the top of the uppermost aquifer elevation across the BABs, where present varying up to 46 feet vertically), the no flow boundary where no sand or gravel is present in the southeastern portion of the CCR unit area, and the apparent lack of hydraulic interconnectedness of the uppermost aquifer encountered at the BABs in some areas, it is not appropriate to infer horizontal flow direction or gradients across the CCR unit (TRC, January 2023) (Figure 4).

2.0 Additional Data Collection

The additional groundwater, basin water and surface water sample collection was performed from December 14 to 16, 2022 to provide data to further characterize the uppermost aquifer at the CCR unit. These samples were collected in general accordance with the *CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company Belle River Power Plant Bottom Ash Basins and Diversion Basin* (QAPP) (TRC, July 2016; revised March and August 2017).

2.1 Groundwater Sample Collection

Groundwater samples were collected from the five wells within the CCR unit uppermost aquifer monitoring well network (MW-16-01 through MW-16-04 and MW-16-09) (Figure 2).

2.2 Bottom Ash Basin Water Sample Collection

A water sample was collected from the North BAB (North BAB) (Figure 2). A water sample could not be collected from the South BAB as it was dry in December 2022.

2.3 Surface Water Sample Collection

A surface water sample (SC-01) was collected from the St. Clair River from the approximate location shown on Figure 3.

2.4 Laboratory Analysis

The aforementioned samples were submitted to the laboratories listed below for analysis of the following parameters to support the additional aquifer characterization:

- Eurofins Environment Testing for analysis of calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), sulfate (SO₄), chloride (Cl), HCO₃ and alkalinity (bicarbonate (HCO₃), carbonate (CO₃) and total alkalinity), boron (B), lithium (Li) and strontium (Sr);
- ALS Scandinavia for analysis of δ^{11} B, δ^{87} Sr and δ^{7} Li;
- Waterloo Environmental Isotope Laboratory for analysis of δ^2 H and δ^{18} O; and
- Miami Tritium Laboratory for analysis of tritium.

Note: the δ notation is explained in Section 3. The December 2022 water data are summarized in Tables 1 through 3 and the December 2022 laboratory data for these water samples are provided in Appendix A.

3.0 Geochemical and Isotopic Data Analysis

3.1 Geochemistry

In order to provide a comprehensive evaluation of the data collected in December 2022, all of the existing Appendix III and Appendix IV data from groundwater samples collected from 2016 through 2022, as provided in the 2017 to 2022 Annual Reports (TRC, January 2018 through January 2023) were also included in the evaluation. These parameters included boron, calcium, chloride, fluoride, pH, sulfate, total dissolved solids, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226/228 combined. Additionally, concentrations of magnesium, potassium, sodium, strontium, and total organic carbon (TOC), as well as field measured parameters including oxidation-reduction potential (ORP), dissolved oxygen (DO), specific conductivity (SC), temperature, and turbidity were analyzed/measured and utilized in this evaluation. The December 2022 field data are summarized in Table 1, and data for samples collected from the CCR unit water (2020 to 2022) and groundwater data collected from the uppermost aquifer monitoring wells (December 2022) are summarized in Table 2.

Analyte concentrations were compared to their historical values to verify consistency with past data (when possible). Samples collected from the BABs water were compared to groundwater samples collected from the uppermost aquifer (MW-16-01 to MW-16-04 and MW-16-09). In addition, a surface water sample for analysis was collected from the St. Clair River (SC-01). The purpose of the St. Clair River sample was to provide analytical data independent of either the CCR unit water or the uppermost aquifer groundwater. This data serves to augment the conceptual site model (CSM) by providing background information of other water types in the area, particularly the source of some of the stable isotopes.

3.1.1 General Chemistry

Data show that the December 2022 sampling results are consistent with historical data, and the results were within typical ranges of previously analyzed samples. The uppermost aquifer groundwater, North BAB CCR unit water, and St. Clair River sample geochemistries are broadly differentiated from each other in virtually every analysis. Figure 5 provides a Piper Diagram which plots the concentrations into groups or facies commonly recognized for comparison of major ions. The St. Clair River surface water sample plots in the calcium-bicarbonate while the uppermost aquifer groundwater is tightly packed in the sodium-chloride group. The CCR unit water falls into the mixed-sodium-sulfate facies and is distinctively different from the uppermost aquifer groundwater.

Sulfate concentrations within the uppermost aquifer groundwater ranged from below the laboratory reporting limit (RL) of 1.0 milligrams per liter (mg/L) to 16 mg/L, and the St. Clair River sample was 15 mg/L. The CCR unit water sulfate concentration was 150 mg/L (Figure 6). Chloride concentrations in the uppermost aquifer groundwater ranged from 350 mg/L to 930 mg/L, while the St. Clair River concentration was 9.6 mg/L, and the CCR unit was 8.2 mg/L. Bicarbonate concentrations in the uppermost aquifer groundwater ranged from 150 mg/L to 200 mg/L, but the CCR unit water concentration was only 50 mg/L. Conversely, the carbonate ion concentration in the uppermost aquifer groundwater and the St. Clair River sample was below

the laboratory reporting limit of 5 mg/L, but the CCR unit concentration was 47 mg/L. Fluoride concentrations in the uppermost aquifer groundwater ranged from 1.2 mg/L to 1.8 mg/L, but the CCR unit water concentration was only 0.09 mg/L.

Sodium concentrations in the uppermost aquifer groundwater ranged from 190 mg/L to 580 mg/L, and the CCR unit water concentration was 49 mg/L. The CCR unit potassium concentration (3.2 mg/L) was higher than the uppermost aquifer groundwater (average 2.9 mg/L). Similarly, the lithium concentration in the CCR unit water (0.026 mg/L) was approximately 25% higher than the uppermost aquifer groundwater (average 0.020 mg/L). Calcium was, on average more concentrated in the CCR unit water (49 mg/L) than in the uppermost aquifer groundwater (average 41 mg/L), and magnesium was more concentrated in the upper most aquifer groundwater (8.2 mg/L). Barium concentrations in the uppermost aquifer groundwater ranged from 0.22 mg/L to 0.32 mg/L, and concentrations in the CCR unit (Figure 7). Boron concentration in the uppermost aquifer groundwater (average 1.1. mg/L) was, on average six times higher than the CCR unit water (0.19 mg/L).

Groundwater in the uppermost aquifer was close to neutral (pH 7.6 to 7.9 standard units (SUs) while the CCR unit water was alkaline (pH 9.3 SU), and the uppermost aquifer ORP was negative (-177 to -73 millivolts [mV]) while the CCR unit water ORP was only -4.5 mV. Table 4 below provides a summary of the data, which is discussed more fully in Section 3.1.2.

Parameter	Units	Aquifer Avg	CCR unit	St. Clair River
Na++ K++ Li+	mg/L	347	52	7
Ca ²⁺ + Mg ²⁺ + Ba ²⁺	mg/L	55	58	33
B ³⁺	mg/L	1.1	0.2	<0.1
HCO ₃ ⁻ + CO ₃ ²⁻ + SO ₄ ²⁻ + Cl ⁻ + F ⁻	mg/L	729	255	106
рН	SU	7.8	9.3	8.3
Eh	mV	-121	-4.5	5.9

 Table 4 - Summary of Water Chemistry Results

3.1.2 Ionic Speciation and Mineral Saturation

Using the measured data, the dominant dissolved species of each measured element was determined. Typically, the basis species were also the dominant ionic form. Due to the pH difference between the uppermost aquifer groundwater and the CCR unit water, dominant species were shifted because of the large quantity of hydroxide ions in the CCR unit water (e.g., bicarbonate to carbonate and boric acid to borate). The dominant calcium and magnesium species were Ca²⁺ and Mg²⁺ in the uppermost aquifer groundwater and St. Clair River, but additional masses of CaCO₃ and MgCO₃ in the CCR unit water. Similarly, boron was primarily B(OH)₃ in the uppermost aquifer groundwater and St. Clair River, but B(OH)₄⁻ contributed mass in the CCR unit water. SO₄⁻, Cl⁻, and F⁻ were the dominant anions in all groups. HCO₃⁻ was the primary species in the uppermost aquifer groundwater, but the CCR unit water had equal

6

contribution of CO_3^{2-} due to the pH.

Geochemical parameters for the CCR unit water and the uppermost aquifer groundwater were calculated from the measured data using Geochemist's Workbench® (GW). The average of the chemical parameters for each water are presented below in Table 5.

Parameter	Units	CCR Unit Water	Uppermost Aquifer Average
f O2(g)	fugacity	1.756E-51	5.889E-64
ре	ре	-0.08	-2.15
Eh (O ₂ (aq)/H ₂ O)	Volts	-0.005	-0.121
Ionic strength	molal	0.008	0.019
Chlorinity	molal	0.001	0.016
Hardness	Micrograms/Kilogram (as CaCO ₃)	156	158
Hardness (carbonate)	Micrograms/Kilogram (as CaCO ₃)	86	123
Hardness (non- carbonate)	Micrograms/Kilogram (as CaCO ₃)	71	35
Carbonate alkalinity	Carbonate alkalinity Micrograms/Kilogram (as CaCO ₃)		131
Charge imbalance	equivalents/Liter	0.0002	-0.0002
Charge imbalance error	percentage	2.48	-0.05

Table 5 - Calculated Average Geochemical Parameters

Fugacity is a thermodynamic parameter that can be used to differentiate water masses based on their geochemical properties. Fugacity is a measure of the escaping tendency of a gas or volatile substance from a liquid or solid phase, and it is commonly used to describe the behavior of gases and other volatile substances in aqueous environments. A very low fugacity, as observed in each of these waters, means that a gas or volatile substance is not readily escaping from a liquid or solid phase. Both pe and Eh can be used to describe water masses based on their oxidative or reducing potential. The pe and Eh values correspond to slightly reducing conditions, meaning although both waters are near 0, they have a slight tendency to donate electrons to other species. In other words, there is a small excess of electron donors (such as ferrous iron) compared to electron acceptors (such as oxygen) in the system.

lonic strength is a measure of the concentration of charged ions (e.g., Na⁺, Cl⁻, Mg²⁺, etc.) in a solution. Chlorinity is a measure of the concentration of chloride ions (Cl⁻) in a solution and is often used as a proxy for salinity. The CCR unit water and the uppermost aquifer groundwater

differ significantly in their lonic strength and chlorinity values. The CCR water has a lower chlorinity and a higher ionic strength compared to the uppermost aquifer groundwater, which has a higher chlorinity and a lower ionic strength. The higher ionic strength of the CCR water indicates that there is a higher concentration of ions in the water, which could be due to the presence of dissolved salts, acids, or bases, or other dissolved ionic species.

Carbonate and non-carbonate hardness are two measures of water hardness that can be used to differentiate water masses based on their composition. Carbonate hardness, also known as temporary hardness, is caused by the presence of dissolved bicarbonate and carbonate ions in the water. These ions are derived from the dissolution of calcium and magnesium carbonates in the rock formations through which the water has passed. Non-carbonate hardness, also known as permanent hardness, is caused by the presence of dissolved calcium and magnesium ions in the water that are not associated with carbonate or bicarbonate ions. This type of hardness is typically caused by the dissolution of calcium and magnesium sulfates or chlorides in the water. The differences in carbonate and noncarbonate hardness between the CCR unit water and uppermost aquifer groundwater are significant. The CCR water has a lower carbonate hardness and a higher noncarbonate hardness compared to the uppermost aquifer.

Mineral saturation indices of 102 mineral phases were also calculated using GW. Log(Q/K) mineral saturation data is typically used to determine the saturation state of minerals. Q represents the activity of a particular mineral species, while K represents the equilibrium constant for the mineral reaction in question. The logarithm of the ratio of Q to K is taken to calculate log(Q/K), which provides an indication of the saturation state of the mineral. If log(Q/K) is positive, it indicates that the mineral is oversaturated and may precipitate out of solution. If log(Q/K) is negative, it indicates that the mineral is undersaturated and may dissolve into solution. If log(Q/K) is zero, it indicates that the mineral is in a state of equilibrium. The saturation results are provided in Table 6.

Based on the calculations presented in Table 6, the St. Clair River sample was undersaturated with respect to all minerals except witherite (BaCO₃) and several oxides. The CCR unit water was oversaturated with respect to the following minerals:

- Carbonates
 - Calcite/Aragonite CaCO₃
 - Dolomite CaMg(CO₃)₂
 - Strontianite SrCO₃
 - Witherite BaCO₃
- Sulfates
 - Barite BaSO₄
- Oxides
 - Ferrite-Ca/Mg Ca(FeO₂)₂/MgFe₂O₄
 - Goethite α-FeO(OH)
 - Hematite Fe₂O₃

Additionally, alstonite (BaCa(CO₃)₂), barytocalcite (BaCa(CO₃)₂), magnesite (MgCO₃), monohydrocalcite (CaCO₃·H₂O), and celestite (SrSO₄), were near equilibrium in the CCR unit water. The uppermost aquifer groundwater was only over saturated with respect to the following minerals:

- Carbonates
 - Dolomite CaMg(CO₃)₂
 - Strontianite SrCO₃
 - Witherite BaCO₃
- Oxides
 - Ferrite-Ca/Mg Ca(FeO₂)₂/MgFe₂O₄
 - Goethite α -FeO(OH)
 - Hematite Fe₂O₃

Additionally, calcite and aragonite (CaCO3), magnesite (MgCO₃), monohydrocalcite (CaCO₃·H₂O), and barite (BaSO4) were near equilibrium. In general, minerals with boron, chloride, fluoride, lithium, potassium, and sodium were undersaturated and minerals with calcium and magnesium were oversaturated in both waters. Oxides were oversaturated or near equilibrium in all samples. Carbonates were oversaturated in the CCR unit water, and near equilibrium in the uppermost aquifer groundwater. Sulfate minerals were oversaturated in the CCR unit water but were undersaturated in the uppermost aquifer groundwater. This is also presented in Figure 6, which provides the concentration of calcium plus magnesium as a function of concentration of dissolved sulfate.

Based on these results calcium, magnesium, strontium, and dissolved inorganic carbon (DIC) may be precipitating out of the uppermost aquifer groundwater, however this effect is likely minor given the saturation indices. Sulfate is expected to dissolve out of the uppermost aquifer material into the groundwater due to the substantial combined undersaturation of sulfate minerals (-4.8 average).

Although the carbonates are oversaturated in the CCR unit water, they may not be precipitating due to the pH. In alkaline conditions, carbonates can dissolve due to the formation of bicarbonate ions in solution. Note that calcium plus magnesium concentration as a function of the concentration of dissolved bicarbonate is provided in Figure 10 (discussed below).

3.2 Stable Isotopes

While concentration, speciation, and saturation data provide useful geochemical information to characterize water types, and can be particularly useful to determine if one body of water is in hydraulic connection with another, stable isotope analyses can provide unique "signatures" to differentiate and source waters. In order to build on the information presented above in Section 3.1, several isotopic evaluations were performed. For this study, lithium, boron strontium, hydrogen and oxygen isotopic data were used to determine the sources of various analytes and to build a CSM of the hydrogeologic and geochemical conditions. The stable isotope water data collected in December 2022 is summarized in Table 3.

Isotopes are commonly expressed with the delta notation (δ). The delta notation is a common way to express the relative abundance of isotopes in a sample, relative to a standard reference material. It is used to express the differences in the isotopic composition of a sample relative to the reference material, in parts per thousand (per mil or ‰). The delta notation is defined as:

$$\delta = \left(\frac{R_{sample}}{R_{standard}} - 1\right) 1,000$$

Where R is typically the rare isotope abundance divided by the abundant isotope abundance.

3.2.1 Lithium (δ^7 Li) and Boron (δ^{11} B)

Lithium (δ^7 Li) and boron (δ^{11} B) isotopes can be used to distinguish CCR water from background because the isotopic composition of lithium and boron in CCR is typically distinct from the composition in natural sources, such as rocks and sediments. The isotopic composition of lithium and boron in CCR is different from that of in natural sources because coal has a unique isotopic signature due to its geological origins and the processes involved in its formation.

The isotopic composition of lithium can change during coal formation due to several factors, including the geological origins of the coal, the depositional environment, and the processes involved in coal formation (Owen, 2015). Lithium has two stable isotopes, lithium-6 and lithium-7, and their relative abundance can be expressed as the delta value (δ^7 Li) relative to a standard reference material (LSVEC NIST 8545 RM). The δ^7 Li value can be used to track changes in the isotopic composition of lithium during coal formation (Teichert, 2022). The δ^7 Li value of coal generally increases with increasing rank, or maturity, of the coal. This is because as coal is buried and subjected to increasing pressure and temperature, it undergoes a process called devolatilization, in which the volatile components of the coal, including lithium, are released. The released lithium preferentially enriches the remaining coal in the lighter isotope, lithium-6, leading to an enrichment in the δ^7 Li value in the coal. The exact extent to which the δ^7 Li value changes during coal formation can also depend on other factors, such as the depositional environment and the source of the organic matter that forms the coal. For example, coal formed from organic matter derived from plants that preferentially take up lithium-6 during growth may have a higher δ^7 Li value than coal formed from marine organisms that have a higher δ^7 Li value (Schlesinger, 2021).

Boron is a trace element that can be found in coal in varying amounts. The isotopic composition of boron in coal can change during coal formation, but the specifics of this process depend on several factors, including the source of boron, the depositional environment, and the conditions during coalification (Williams, 2004). In general, boron is derived from several sources during coal formation, including volcanic activity, seawater, and groundwater. Boron has two stable isotopes, boron-10 and boron-11, and their relative abundance can be expressed as the delta value (δ^{11} B) relative to a standard reference material (NIST SRM 951 RM). The isotopic composition of boron in these sources can vary, with different isotopic ratios of boron-10 to boron-11. During coal formation, boron can be incorporated into organic matter or minerals in the coal, and the isotopic composition of boron can be affected by processes such as adsorption, diffusion, and precipitation. For example, boron may be adsorbed onto clay minerals or organic matter in the coal, leading to a shift in the isotopic composition of boron towards the

composition of the adsorbent (Williams, 2004). The depositional environment can also play a role in determining the isotopic composition of boron in coal. In marine environments, boron may be more enriched in boron-11 due to the fractionation of boron isotopes during seawater evaporation (Xiao, 2007). In freshwater environments, boron isotopes may be more fractionated due to differences in boron uptake by plants (Xiao, 2022).

For these reasons, the δ^7 Li and δ^{11} B values in water can provide information about the source and transport of CCR and CCR affected water. The unique isotopic composition of lithium and boron in CCRs can be used as a tracer. Therefore, this additional uppermost aquifer characterization utilized the measurement of δ^7 Li and δ^{11} B values in the CCR unit water and the uppermost aquifer groundwater to determine if the unique CCR unit isotopic composition is observed in the uppermost aquifer groundwater. In order to make this effort even more robust, a surface water sample was collected from the nearby St. Clair River upstream from the CCR unit (Figure 3) in order to determine their δ^7 Li and δ^{11} B values.

The δ^7 Li and δ^{11} B of the CCR unit water was -0.13 per mil (‰) and -0.81 ‰, respectively, and the uppermost aquifer groundwater ranged from 28.75 to 31.21 ‰ and 39.26 to 43.49 ‰, respectively. As observed in Figure 8, the CCR unit water and the uppermost aquifer groundwater plot in two distinct groups. The St. Clair surface water sample plots in a distinct region at 20.8 ‰ and -4.82 ‰, respectively. The distinct CCR water, uppermost aquifer groundwater, and St. Clair River sample isotopic compositions are echoed in the distinctive concentration profiles in Figure 8. The CCR unit water lithium and boron isotopic compositions fall within ranges commonly observed of fractionated CCR material (Davidson, 1993; Spivak-Birndorf, 2006; Harkness 2015; Teichert, 2022). The δ^7 Li and δ^{11} B vales of the uppermost aquifer groundwater samples and the surface water sample from St. Clair River are compositionally distinct from the CCR values (Ruhl, 2014; Owen, 2015) and fall within ranges commonly observed in the natural environment (Gonfiantini, 2006).

3.2.2 Strontium (⁸⁷Sr/⁸⁶Sr)

Similar to lithium and boron, the isotopic composition of strontium can be used to identify coal combustion residuals because coal and the minerals associated with it have a distinct strontium isotope signature that is different from other geologic materials (Brandt, 2018). During the coal combustion process, the strontium isotopic composition of the coal and any associated minerals is altered. CRR, including fly ash and bottom ash, can therefore be identified by analyzing their strontium isotopic composition and comparing it to the strontium isotopic composition of nearby liquids and solids that have not been affected by coal combustion (Hurst, 1981). The isotopic composition of strontium can be determined as a ratio of two of the stable isotopes, Sr-86, Sr-87, expressed as the ratio ⁸⁷Sr/⁸⁶Sr relative to a standard reference material (NIST SRM 987).

Strontium is a trace element that occurs naturally in coal-forming environments, and its isotopic composition can be affected by the source of the sedimentary materials, as well as by diagenetic processes. During coal formation, organic matter is buried and subjected to heat and pressure, which causes it to transform into coal. This process can lead to the release of fluids from the sedimentary rocks surrounding the coal seam, which can affect the isotopic composition of strontium in the coal (Spivak-Birndorf, 2012). In particular, the fluids may contain different concentrations of strontium isotopes compared to the original sedimentary rocks, which

can lead to changes in the isotopic composition of strontium in the coal.

In addition, strontium can be incorporated into the organic matter itself during coal formation, which can also alter its isotopic composition. The extent to which strontium is incorporated into the organic matter is dependent on several factors, including the original concentration of strontium in the sedimentary materials and the conditions during coal formation. The isotopic composition of strontium in coal can be influenced by both the source materials and the processes that occur during coal formation (Korte, 2003). This makes it a useful tool for determining if CCR impacted waters are in hydraulic connection with natural water.

Therefore, this additional uppermost aquifer characterization utilized the measurement of ⁸⁷Sr/⁸⁶Sr values in the CCR unit water and the uppermost aquifer groundwater to determine if the unique CCR unit isotopic composition is observed in the groundwater. Surface water collected from the nearby St. Clair River (Figure 3) in order to determine their ⁸⁷Sr/⁸⁶Sr values.

The ⁸⁷Sr/⁸⁶Sr ratios of the CCR unit water was 0.708901 while the uppermost aquifer groundwater ranged from 0.709290 to 0.709517. The ⁸⁷Sr/⁸⁶Sr ratio of the CCR unit water was approximately 0.0002 lower than the uppermost aquifer groundwater, which although seeming small, amounts to more than two times the internal range of all uppermost aquifer groundwater sample results. The St. Clair River sample strontium ratio was 0.709999, which is isotopically distinct from the other two groundwater groups. As observed in Figure 9, the CCR unit water, uppermost aquifer groundwater, and St. Clair surface water sample plot in three separate regions. The ⁸⁷Sr/⁸⁶Sr ratio of the CCR unit water is within published ranges of CCR leachate (Ruhl, 2014; Wang, 2020), and the uppermost aquifer groundwater samples and St. Clair River sample composition fit with values observed in natural waters (Shahand, 2009).

3.2.3 Hydrogen (δ^2 H) and Oxygen (δ^{18} O)

Hydrogen and oxygen isotopes are commonly used in environmental studies to trace the sources and fate of water molecules. The use of hydrogen and oxygen isotopes in water can provide valuable insights into the impacts of CCRs on water quality. In the case of CCR impacts in water, hydrogen and oxygen isotopes can be used to determine the source of water in ponds and if those molecules have migrated to natural waters (Liu, 2006). The isotopic composition of water molecules within these CCR water bodies can be compared to the isotopic composition of nearby uncontaminated water bodies. The isotopic composition of hydrogen and oxygen in water molecules is expressed as δ^2 H and δ^{18} O, respectively, and is measured in ‰ relative to a standard (Vienna Standard Mean Ocean Water [VMOW]). The isotopic signature of CCRs can vary depending on the source of coal, combustion conditions, and post-combustion processing (Huang, 2017).

Additionally, precipitation can have a significant effect on hydrogen and oxygen isotopes in groundwater. This is because the isotopic composition of precipitation varies in different regions (global and local meteoric water lines) due to variations in temperature, altitude, and atmospheric circulation patterns (Jouzel, 1984). When precipitation falls to the ground, it can either infiltrate into the soil and recharge the groundwater, or it can run off and enter streams or ponds. In the case of infiltration, the isotopic composition of the precipitation is generally preserved as it moves through the soil and into the groundwater. This means that the δ^2 H and

 δ^{18} O values of the groundwater will be similar to those of the precipitation that recharged it. The degree to which precipitation affects the isotopic composition of groundwater can vary depending on factors such as the depth and age of the groundwater, the nature of the subsurface materials, and the rate of recharge. Therefore, δ^2 H and δ^{18} O values in groundwater can be used to trace the origin and movement of water in aquifers and to Identify if CCR has impacted water.

For these reasons this additional uppermost aquifer characterization utilized the measurement of δ^2 H and δ^{18} O values in the CCR unit water and the uppermost aquifer groundwater to determine if the unique CCR unit isotopic composition is observed in the uppermost aquifer groundwater. Surface water was collected from the nearby St. Clair River where shown on Figure 3 in order to determine their δ^2 H and δ^{18} O compositions.

The δ^2 H and δ^{18} O compositions of the CCR unit water were -54.32 ‰ and -7.44 ‰, respectively, and the uppermost aquifer groundwater compositions ranged from -112.02 to -102.29 ‰ and -15.80 to -14.67 ‰, respectively. The uppermost aquifer groundwater samples all plot above the global meteoric water line¹, and the CCR unit water sample and the St. Clair River sample plot below the line (Craig, 1961). The St. Clair River sample and the CCR unit sample δ^2 H and δ^{18} O compositions were essentially equal (percent difference of δ^2 H and δ^{18} O were 1.14% and 1.12%, respectively). The CCR unit water δ^2 H, on was 50.84 ‰ heavier than the uppermost aquifer groundwater average, and the δ^{18} O was 7.59 δ^{18} O more positive. As observed in Figure 10, the CCR unit water and the uppermost aquifer groundwater plot in two distinct groups. The differences between the δ^2 H and δ^{18} O CCR water and the uppermost aquifer groundwater are more than 5 times and 7 times, respectively greater than the total range of uppermost aquifer groundwater compositions.

3.3 Age Dating with Tritium Isotopes

The use of the isotope tritium to age date water is a well-established science and it has been successfully used to age date water sources for decades (Schlosser, 1988). Tritium (³H) is a radioactive isotope of hydrogen, that decays at a constant rate to Helium-3 (³He*) with a half-life of about 12.3 years. It is a naturally occurring radioactive isotope, but also can be produced by human activities such as nuclear weapons testing. Tritium can be used to determine the age of groundwater because it can serve as a tracer of the time since the water was last in contact with the atmosphere (Telloli, 2022). Tritium is introduced into the atmosphere through nuclear weapons testing and naturally occurring cosmic radiation. It then becomes incorporated into precipitation and infiltrates into the ground, where it is taken up by plants or recharges groundwater. There are no subsurface reactions that generate tritium. Because tritium has a relatively short half-life, its concentration in precipitation, surface water and groundwater can be used to determine the age of the water (Dove, 2021).

When groundwater is recharged by precipitation that contains tritium, the concentration of tritium in the groundwater will be proportional to the age of the water since it was last in contact with the atmosphere. For example, if the concentration of tritium in the groundwater is high, it

¹ The global meteoric water line describes the global annual average relationship between hydrogen and oxygen isotope ratios (deuterium and oxygen 18) in natural meteoric waters. It is widely used to track water masses in environmental geochemistry and hydrogeology (Craig, 1961).

indicates that the water was recharged relatively recently, whereas if the concentration of tritium is low or undetectable, it indicates that the water is older. This information is important for understanding the hydrology of aquifers and for managing and protecting groundwater resources.

The groundwater age can be estimated using the concentration of tritium in the water and the known rate of decay of tritium. The basic equation for calculating tritium age is:

$$Age = ln\left(\frac{A/A_0}{\lambda}\right)$$

Where A is the measured tritium in the water sample in tritium units (TU), A_0 is the tritium concentration in precipitation, and λ is the decay constant which is 0.693 divided by the half-life of 12.3 years. The tritium age calculated from this equation represents the time since the water was last in contact with the atmosphere. However, it is important to note that the tritium age reflects the time since the water entered the subsurface but may not necessarily reflect the time since the water some time in the unsaturated zone (i.e., the soil and rock above the water table) before entering the aquifer, and this time is not accounted for in the tritium age calculation.

This additional uppermost aquifer characterization utilized tritium to determine if water from the CCR unit was impacting the uppermost aquifer groundwater. This was accomplished by collecting a water sample from within the CCR unit water, uppermost aquifer groundwater samples, and a surface water sample from nearby St. Clair River upgradient of the unit. The tritium water data collected in December 2022 is summarized in Table 3. The St. Clair River and CCR unit water measured tritium values were 23.9 and 26.4 TU while the while the uppermost aquifer groundwater ranged from less than the detection limit of 0.1 TU to 0.18 TU. Using the equation above, either the St. Clair River sample or the CCR unit water can be used to represent A₀. Therefore, age estimates are calculated using both values. Using the CCR water as A₀, the water in the St. Clair River would be 2.5 years old, MW-16-09 would be approximately 90 years old, and the remaining aquifer samples would be greater than 100 years old (Figure 11). Using the St. Clair River sample as A_0 yields similar results (MW-16-09 at 85 years old and the remaining aquifer samples are greater than 98 years old). If a significant amount of CCR-impacted water were entering the groundwater, we should see an impact on the tritium concentration. Therefore, the downgradient uppermost aquifer groundwater is not in hydraulic communication with the CCR unit water and the uppermost aquifer has not been affected.

It is important to note that diffusion may affect tritium concentrations. Diffusion can affect tritium values in groundwater by altering the concentration gradient of tritium in the subsurface. Diffusion is the process by which molecules move from areas of high concentration to areas of low concentration due to random thermal motion. In the subsurface, diffusion can cause tritium to move from areas of higher concentration to areas of lower concentration, resulting in a decrease in tritium concentration over time. In groundwater systems, tritium is introduced into the subsurface through infiltration of tritium-containing precipitation. The tritium concentration in

the groundwater is initially highest near the recharge zone and decreases as the water flows through the subsurface. As the tritium moves through the subsurface, it can be affected by diffusion, which can cause it to move from areas of higher concentration to areas of lower concentration.

The rate of diffusion of tritium in groundwater is therefore primarily dependent on the hydraulic conductivity of the subsurface materials and the concentration gradient of tritium. It is important to consider the effects of diffusion when interpreting tritium data in groundwater studies, as it can impact the accuracy of age estimates and the interpretation of the hydrogeological processes in the subsurface.

The control of diffusion in a groundwater system can be demonstrated by calculating the Peclet number. The Peclet number is a dimensionless number that describes the relative importance of advection and diffusion in a fluid system. In groundwater, the Peclet number can be calculated using the following equation:

$$Pe = \frac{(Lv)}{D}$$

where *Pe* is the Peclet number, *L* is the characteristic length scale of the system (e.g. the distance between the source and the monitoring well), v is the groundwater velocity, and *D* is the molecular diffusion coefficient. A Peclet number greater than 1 indicates that advection is dominant, while a Peclet number less than 1 indicates that diffusion is dominant. Given the distance (100 ft) to the monitoring wells and a seepage velocity of 3 ft/year, at standard temperature and pressure the Peclet number for tritium is greater than 10. Therefore, diffusion can be ruled out as an influence on the downgradient tritium age.

4.0 Statistical Analysis

TRC performed statistical evaluations of the data collected as part of this study to evaluate additional lines of evidence to support aquifer characterization. In order to compare the different water groups (CCR unit vs uppermost aquifer groundwater) to each other in a holistic manner, principal component analysis (PCA) and linear discriminant analysis (LDA) were selected as appropriate data analysis tools. PCA and LDA are statistical techniques that are used for large data sets containing a high number of dimensions/features per observation allowing for visualization of multidimensional data. PCA is a well-established statistical method for evaluating data and has been around for over 100 years. Likewise, LDA analysis is a statistical method that has been used to evaluate large data sets since the 1930s. Geochemists and groundwater statisticians use these tools because they are effective to evaluate large data sets that are typical for sites that have numerous wells and numerous parameters tested, which result in potentially large data dimensionality.

The data used for this analysis consisted of the data collected from the uppermost aquifer monitoring well network from August 2016 through December 2022 and bottom ash basin water samples from December 2020 through December 2022. Based on the recommendations from the Electric Power Research Institute (EPRI) New Technique in Alternative Source Demonstrations (EPRI, October 2022) guidance and the minimum requirements of LDA, only Appendix III analytes (boron, calcium, chloride, fluoride, sulfate, pH, and total dissolved solids (TDS)) were retained for analysis. Furthermore, it was found that TDS was not consistently reported in all the CCR unit water data and was removed from the analyte suite leaving boron, calcium, chloride, fluoride, sulfate, and pH. Due to the limited number of diversion basin and bottom ash basin samples and the minimum requirements of LDA, the diversion basin and bottom ash basin samples were combined to form a diversion basin and bottom ash basin group for the linear discriminant analysis. Non-detects were multiplied by 0.5 as this has been found to produce the most accurate results for PCA (Farnham et al, 2002).

4.1 Principal Component Analysis

The goal of principal component analysis is to reduce the dimensionality of the data while preserving the variation contained within the dataset. To reduce the dimensionality, the data is linearly transformed from *n* dimensions to *n* linearly transformed dimensions or principal components (PCs). These resulting PCs are ordered in terms of which components contain the most variation of the original dataset from PC1 having the most variation to PC*n* having the least variation. The amount of variation each PC contains can be found in the eigenvalue of the PC, with higher eigenvalues corresponding to a higher percentage of the original dataset variation explained. These eigenvalues can be plotted to compare PCs to each other on what's known as a scree plot. Typically, the first two PCs are retained for further analysis, but any PCs with eigenvalues near or above 1 can be beneficial for analysis. The results of the PCA are commonly presented on a plot that contains both the loading scores of the PCs and the original data points projected using the PCs in what is known as a biplot. The loading scores indicate how much each analyte affects the corresponding PC and the projected points can be used to find clusters of similar data within the original dataset.

Figure 12, called a Scree plot, shows the eigenvalues for the six PCs created from the original data. PC1 and PC2 are above 1 and are therefore retained for further analysis. Figure 13 (Biplot) contains two sets of data, the blue arrows centered around the origin represent the loading scores for the PCs and the colored points represented the projected data. As can be seen in the percentages provided for each axis, PC1 contains 40.91% of the variation of the original dataset, meaning that most of the variation of the data can be seen in the horizontal axis. PC2 contains 28.79% of the variation of the original dataset. Together PC1 and PC2 account for 69.71% of the variation of the original data, showing that the data has been reduced from six dimensions to two dimensions while only losing 30.29% of the variation. There is no established criteria for how much variation is required to be explained by the PCs but at least 70% is a common target which the first two PCs are close to (Jolliffe and Cadima 2016).

Because the data are standardized before PCA is performed, the loading scores are multiplied to the standardized score of each analyte. As can be seen by the arrows in Figure 13 (Biplot), fluoride points almost directly left, meaning that higher than average concentrations of fluoride in a sample would project that sample further to the left on the biplot. Conversely, if a sample has lower than average concentrations of fluoride it would be projected more to the right. From the loading scores we can see that PC1 is strongly influenced by fluoride, chloride, boron, and pH and weakly influenced by calcium, sulfate. PC2 is strongly influenced by calcium and sulfate and weakly influenced by chloride, boron, fluoride, and pH. The standardized data points are projected using the loading scores and are displayed as the color-coded points on the biplot. 95% confidence intervals were calculated to observe possible separation between the groups. As can be seen on the graph, most of the uppermost aguifer groundwater samples fall close to the origin and within the 95% confidence interval with a few outliers. The CCR unit water samples are also located around the origin and the confidence interval encompasses a similar area to the uppermost aquifer groundwater. While this graph does not show the uppermost aguifer groundwater and BABs CCR unit water samples are neatly separated, it does not conclusively show that they are inseparable. Because PCA attempts to preserve the most amount of variation within the data, it is not attempting to separate the groups from each other and can choose a projection which may not separate the groups but does preserve the most variation.

4.2 Linear Discriminant Analysis

In addition to PCA, linear discriminant analysis (LDA) was performed to demonstrate separation between the groups. LDA is similar to PCA in that it performs dimensionality reduction on the data, however, instead of preserving the most amount of variation of the dataset, it attempts to separate the provided groups and then predicts the group membership of each data point. Because LDA is a classification method, we can directly measure the separability of the groups based on the performance of the model. There is an additional requirement of LDA in which each group must have at least as many samples as there are analytes used in the model. Since there are only five samples from the bottom ash basin, four samples from the nearby diversion basin, were added to the bottom ash basin dataset to ensure complete coverage of the six analytes.

Figure 14 (LDA Origin) shows the eigenvalues, canonical coefficients which are analogous to loading scores in PCA, the prediction matrix, and the error rate of the LDA. Because LDA is attempting to separate the groups from each other the percentage of variance shown in the eigenvalues table is the variance between the different groups and not the total variance of the dataset. The canonical variables, which are analogous to PCs, are able to explain all of the variation between groups in just one variable instead of the six variables PCA produced. Similar to PCA, when we observe the standardized canonical coefficients table, we can see that the canonical variable is strongly influenced by chloride and fluoride while only being weakly influenced by boron, calcium, and sulfate; it is insignificantly influenced by pH. The classification count table shows the predicted classification of each point in the columns while the actual class row represents the correct classification, where the prediction class column doesn't match the actual class row represents a misclassification. The LDA model only classified the points into the correct classes, demonstrating that the groups are separate from each other, this can also be seen in the error rate table within Figure 14 (LDA Origin) that the total error rate is 0%.

Figure 15, called an LDA Histogram, visually represents where each point is projected to using CV1. The rows represent the true classification of the data within them while the colors represent the model's prediction. As can be seen, the model perfectly separated the groups showing that the groups are distinct from each other. Additionally, an analysis of variance (ANOVA) was performed on the projected data to demonstrate a statistically significant difference between the three groups, the output of this analysis is presented in Figure 16 (LDA ANOVA). As can be seen in the figure, at the p = 0.05 level, the population means of the uppermost aquifer groundwater and the BABs and DB CCR units water are significantly different.

5.0 Findings and Conclusions

The data analyzed in this assessment demonstrate that the CCR unit water is not in hydraulic communication with the uppermost aquifer and therefore has not impacted the uppermost aquifer groundwater. Each of the individual analyzes provides a line of evidence in support of this conclusion.

5.1 Geochemistry

The geochemistry data provides three distinct lines of evidence that the uppermost aquifer and the CCR unit are not in communication. The first is the distribution of mass or concentration of individual analytes in the three water groups (uppermost aquifer groundwater, St. Clair River upgradient surface water, and CCR unit water). The second is the geochemical condition of each water group, and the third is calculated environmental conditions calculated from the first two lines of evidence. From a simple perspective it can be seen that the concentrations of individual analytes in the CCR unit water are very different than within the uppermost aquifer groundwater. These differences are not minor. For example, sulfate is 15 times more concentrated in the CCR unit water than the concentration in the uppermost aquifer groundwater. The differences are very apparent in the Piper diagram.

When two water masses become hydraulically connected, they tend to become more like each other chemically and physically. For example, the uppermost aquifer groundwater has more than 67 times more chloride and 16 times more fluoride than the CCR unit water. The chloride and fluoride are not coming from the CCR unit. They are naturally in the uppermost aquifer groundwater.

Geochemical conditions in the CCR unit water are very different from the uppermost aquifer groundwater. The pH of the CCR unit water pH is approximately 9 SU, but the uppermost aquifer groundwater is only 7.8 SU. This means that there are approximately 17 times as many hydroxide ions in the CCR unit water than in the underlying groundwater. Similarly, the ORP of the uppermost aquifer groundwater is significantly higher than the uppermost aquifer groundwater.

The third line of geochemical evidence adds weight to the first two. The minerals which are undersaturated in the uppermost aquifer groundwater have component elements which are higher downgradient, and conversely the minerals which are oversaturated have component elements which are lower downgradient. Therefore, these geochemical calculations represent the natural conditions in the uppermost aquifer groundwater quite well. Therefore, the water geochemistry demonstrates that the uppermost aquifer groundwater and the CCR unit water are not in communication, the existing concentrations of Appendix III and IV analytes in groundwater are geogenic and the uppermost aquifer has not been affected.

5.2 Stable Isotopes

Similar to the multiple lines of evidence described in the preceding section, the stable isotope results reinforce the conclusions described above. The stable isotope analyses provide five distinct lines of evidence (δ^7 Li, δ^{11} B, 87 Sr/ 86 Sr, δ^2 H, and δ^{18} O) which unequivocally show that the lithium, boron, strontium, hydrogen, and oxygen in the uppermost aquifer groundwater does not

come from nor is it in communication with the CCR unit water. Not only do the compositions of each of these species fall within well-known natural ranges in the uppermost aquifer groundwater, but each is also statistically different than the corresponding composition in the CCR unit water at 95% confidence intervals. Therefore, the stable isotopes demonstrate that the uppermost aquifer groundwater and the CCR unit water are not in communication and the uppermost aquifer has not been affected.

5.3 Age Dating with Tritium Isotopes

Each of the previously discussed lines of evidence develops different aspects of the CSM and by themselves conclusively show that the CCR unit water is not in communication with the uppermost aquifer and the uppermost aquifer groundwater has not been affected. The tritium data, likewise, reinforces the concept that the uppermost aquifer groundwater is not in communication with the CCR unit. Tritium has a half-life of 12.3 years, and the reporting limit is 0.1 TU. Therefore, groundwater ages up to 95 years in age from recharge should be observable. Based on the results presented within Section 3.3, groundwater within all of the BABs monitoring wells was recharged at least 85 years ago (the BABs entered service 39 years ago). If a significant amount of CCR-impacted water were entering the groundwater, we should see an impact on the tritium concentration. Therefore, the downgradient uppermost aquifer groundwater is not in hydraulic communication with the CCR unit water and the uppermost aquifer has not been affected.

5.4 Statistical Analysis

Principal component analysis was performed on bottom ash basin samples for App III analytes to compare the uppermost aquifer groundwater to the CCR unit water in a holistic manner. The results of the PCA were inconclusive in separating the CCR unit water from the uppermost aquifer groundwater and additional analysis was required.

Linear discriminant analysis was performed to further investigate if the CCR unit water from the uppermost aquifer groundwater are in communication with each other. Linear discriminant analysis is similar to PCA in that they are both dimensionality reduction techniques, but LDA attempts to separate the groups while PCA simply attempts to preserve the variance within the dataset. The model created by the LDA had perfect accuracy and was able to completely separate the groups from each other with a large distance between them. To further provide evidence that the separation is strong, an ANOVA was performed on the data transformed by the LDA. Analysis of variance compares groups of data to each other to determine if it is statistically probable for the data to be from the same population or different populations. The results of the ANOVA showed that at the 95% confidence level, the units are distinct from each other demonstrating that the uppermost aquifer groundwater, and the CCR unit water are not in communication and the uppermost aquifer has not been affected.

5.5 Final Assessment

In conclusion, the data collected in this assessment confirms that the uppermost aquifer is not in hydraulic communication with the CCR unit water. This conclusion is supported by each of the multiple lines of evidence presented in this report:

- The geochemical composition of the uppermost aquifer groundwater is statistically distinct from the CCR unit water;
- The source of lithium, boron, strontium, hydrogen, and oxygen in the uppermost aquifer groundwater is from upgradient groundwater and, as demonstrated by the stable isotope data is distinct from the CCR unit water; and
- Age dating with tritium validates that the uppermost aquifer groundwater is not hydraulically connected to the CCR unit.

These multiple lines of evidence come together in an additive fashion to further validate the CSM established in the ALD and previous studies, which holds that the contiguous glacially compacted natural clay-rich soil natural liner system serves as a natural confining hydraulic barrier isolating the underlying uppermost aquifer from the CCR unit and the uppermost aquifer groundwater is unaffected by the CCR unit water.

6.0 References

- Bechtel. August 1976. Subsurface Investigation and Foundation Report The Detroit Edison Company, Belle River Units 1 & 2.
- Brandt, J. E., Lauer, N. E., Vengosh, A., Bernhardt, E. S., & Di Giulio, R. T. (2018). Strontium isotope ratios in fish otoliths as biogenic tracers of coal combustion residual inputs to freshwater ecosystems. Environmental Science & Technology Letters, 5(12), 718-723.
- Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.
- Davidson, G. R., & Bassett, R. L. (1993). Application of boron isotopes for identifying contaminants such as fly ash leachate in groundwater. Environmental science & technology, 27(1), 172-176.
- Dove, A., Backus, S. M., & King-Sharp, K. (2021). Tritium in Laurentian Great Lakes surface waters. Journal of Great Lakes Research, 47(5), 1458-1463.
- Electric Power Research Institute (EPRI) (October 2022). New Techniques in Alternative Source Demonstrations., EPRI, Palo Alto, CA: 2022 3002023683
- Farnham, I. M., Singh, A. K., Stetzenbach, K. J., & Johannesson, K. H. (2002). Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics and Intelligent Laboratory Systems, 60(1-2), 265–281.
- Geosyntec Consultants (Geosyntec). November 2021. Preliminary Alternative Liner Demonstration Bottom Ash Basins, DTE Electric Company Belle River Power Plant, China Township, Michigan
- Gonfiantini, R., & Pennisi, M. (2006). The behaviour of boron isotopes in natural waters and in water–rock interactions. Journal of Geochemical Exploration, 88(1-3), 114-117.
- Hurst, R. W., & Davis, T. E. (1981). Strontium isotopes as tracers of airborne fly ash from coalfired power plants. Environmental Geology, 3(6), 363-367.
- Huang, X., Wang, G., Liang, X., Cui, L., Ma, L., & Xu, Q. (2017). Hydrochemical and stable isotope (δD and δ18O) characteristics of groundwater and hydrogeochemical processes in the Ningtiaota Coalfield, Northwest China. Mine Water and the Environment, 1(37), 119-136.
- Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 374(2065), 20150202.
- Jouzel, J., & Merlivat, L. (1984). Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. Journal of Geophysical Research: Atmospheres, 89(D7), 11749-11757.

- Korte, C., Kozur, H. W., Bruckschen, P., & Veizer, J. (2003). Strontium isotope evolution of Late Permian and Triassic seawater. Geochimica et Cosmochimica Acta, 67(1), 47-62.
- Liu, C. Q., Li, S. L., Lang, Y. C., & Xiao, H. Y. (2006). Using δ15N-and δ18O-values to identify nitrate sources in karst ground water, Guiyang, Southwest China. Environmental science & technology, 40(22), 6928-6933.
- Owen, D. D. R., Millot, R., Négrel, P., Meredith, K., & Cox, M. E. (2015). Stable isotopes of lithium as indicators of coal seam gas-bearing aquifers. Procedia Earth and Planetary Science, 13, 278-281.
- Rice, Cynthia A., Timothy T. Bartos, and Margaret S. Ellis. 2002. Chemical and isotopic composition of water in the Fort Union and Wasatch formations of the Powder River Basin, Wyoming and Montana: Implications for coalbed methane development.
- Ruhl, L. S., Dwyer, G. S., Hsu-Kim, H., Hower, J. C., & Vengosh, A. (2014). Boron and strontium isotopic characterization of coal combustion residuals: validation of new environmental tracers. Environmental science & technology, 48(24), 14790-14798.
- Schlesinger, W. H., Klein, E. M., Wang, Z., & Vengosh, A. (2021). Global biogeochemical cycle of lithium.
- Schlosser, P., Stute, M., Dörr, H., Sonntag, C., & Münnich, K. O. (1988). Tritium/3He dating of shallow groundwater. Earth and Planetary Science Letters, 89(3-4), 353-362.
- Shand, P., Darbyshire, D. F., Love, A. J., & Edmunds, W. M. (2009). Sr isotopes in natural waters: Applications to source 23haracterization and water–rock interaction in contrasting landscapes. Applied Geochemistry, 24(4), 574-586.
- Spivak-Birndorf, L. J., & Stewart, B. W. (2006, October). Use of boron isotopes to track the interaction of coal utilization byproducts with water in the environment. In The Geological Society of America, 2006 Philadelphia Annual Meeting (pp. 22-25).
- Spivak-Birndorf, L. J., Stewart, B. W., Capo, R. C., Chapman, E. C., Schroeder, K. T., & Brubaker, T. M. (2012). Strontium Isotope Study of Coal Utilization By-Products Interacting with Environmental Waters. Journal of environmental quality, 41(1), 144-154.
- Teichert, Z., Eble, C. F., Bose, M., & Williams, L. B. (2022). Effects of contact metamorphism on the lithium content and isotopic composition of kerogen in coal. Chemical Geology, 602, 120885.
- Telloli, C., Rizzo, A., Salvi, S., Pozzobon, A., Marrocchino, E., & Vaccaro, C. (2022). Characterization of groundwater recharge through tritium measurements. Advances in Geosciences, 57, 21-36.

- TRC. July 2016; Revised March and August 2017. CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company Belle River Power Plant Bottom Ash Basins and Diversion Basin, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017. Groundwater Monitoring System Summary Report DTE Electric Company Belle River Power Plant Bottom Ash Basins and Diversion Basin Coal Combustion Residual Units, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2023. 2022 Annual Groundwater Monitoring Report DTE Electric Company Belle River Power Plant Bottom Ash Basins, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2022. 2021 Annual Groundwater Monitoring Report DTE Electric Company Belle River Power Plant Bottom Ash Basins, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2021. 2020 Annual Groundwater Monitoring Report DTE Electric Company Belle River Power Plant Bottom Ash Basins, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2020. 2019 Annual Groundwater Monitoring Report DTE Electric Company Belle River Power Plant Bottom Ash Basins, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2019. 2018 Annual Groundwater Monitoring Report DTE Electric Company Belle River Power Plant Bottom Ash Basins, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company
- TRC. January 2018. Annual Groundwater Monitoring Report (2017) DTE Electric Company Belle River Power Plant Bottom Ash Basins, 4505 King Road, China Township, Michigan. Prepared for DTE Electric Company
- Wang, Z., Coyte, R. M., Dwyer, G. S., Ruhl, L. S., Hsu-Kim, H., Hower, J. C., & Vengosh, A. (2020). Distinction of strontium isotope ratios between water-soluble and bulk coal fly ash from the United States. International Journal of Coal Geology, 222, 103464.
- Williams, L. B., & Hervig, R. L. (2004). Boron isotope composition of coals: a potential tracer of organic contaminated fluids. Applied Geochemistry, 19(10), 1625-1636.
- Xiao, Y. K., Li, S. Z., Wei, H. Z., Sun, A. D., Liu, W. G., Zhou, W. J., ... & Swihart, G. H. (2007). Boron isotopic fractionation during seawater evaporation. Marine chemistry, 103(3-4), 382-392.
- Xiao, J., Vogl, J., Rosner, M., & Jin, Z. (2022). Boron isotope fractionation in soil-plant systems and its influence on biogeochemical cycling. Chemical Geology, 606, 120972.

Tables

Table 1Summary of Field Data – December 2022Belle River Power Plant Bottom Ash Basins CCR Unit
China Township, Michigan

Sample Location	Sample Date	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)	pH (SU)	Specific Conductivity (umhos/cm)	Temperature (deg C)	Turbidity (NTU)
Bottom Ash Basins	Monitoring Wells/U	ppermost Aquifer					
MW-16-01	12/14/2022	1.31	-110.6	7.8	1,371	9.9	1.54
MW-16-02	12/14/2022	1.28	-72.6	7.6	1,085	10.2	1.85
MW-16-03	12/14/2022	1.23	-128.9	7.9	1,615	10.7	0.91
MW-16-04	12/15/2022	1.15	-176.9	7.8	1,498	11.5	10.6
MW-16-09	12/16/2022	1.37	-117.2	7.8	2,527	9.8	46.9
Bottom Ash Basins	Water						
North BAB	12/14/2022	10.21	-4.5	9.3	411	10.5	3.68
Surface Water/St. C	lair River						
SC-01	12/16/2022	12.01	5.9	8.3	149	4.5	5.57

Notes:

mg/L -Milligrams per Liter.

mV - Millivolts.

SU - Standard Units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celsius.

NTU - Nephelometric Turbidity Unit

Table 2Summary of Analytical Results – December 2020 to December 2022Belle River Power Plant Bottom Ash Basin CCR Unit
China Township, Michigan

	Constituent:	Alkalinity, bicarbonate	Alkalinity, carbonate	Alkalinity, total	Barium	Boron	Calcium	Chloride	Fluoride	Lithium	Magnesium	Molybdenum	Potassium	Sodium	Strontium	Sulfate	Total Organic Carbon
	Unit:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Location	Sample Date																
Bottom Ash Basins	Monitoring Wells/U	ppermost Aqu	lifer														
MW-16-01	12/14/2022	170	< 5	170	0.22 F1	1.0	42	450	1.8	0.015	14	0.071	2.7	300	1.2	9.0	0.79 J
MW-16-02	12/14/2022	150	< 5	150	0.25	1.1	54	350	1.2	0.015	16	0.025	3.4	190	1.5	9.1	0.72 J
MW-16-03	12/14/2022	160	< 5	160	0.32	0.99	34	550	1.8	0.020	11	0.087	2.8	350	0.96	< 1	0.73 J
MW-16-04	12/15/2022	160	< 5	160	0.29	1.0	46	470	1.8	0.019	15	0.068	3.0	300	1.2	16	0.75 J
MW-16-09	12/16/2022	200	< 5	200	0.22	1.4	31	930	1.5	0.025	9.6	0.035	2.7	580	0.84	13	2.5
Bottom Ash Basins	Water																
NORTH BAB	1/29/2021	88	< 10	88	0.48	0.17	42	9.0	0.26	0.017	8.1	0.018	3.0	28		100	
NORTH DAD	12/14/2022	50	47	97	0.27	0.19	49	8.2	0.099	0.026	8.2	0.023	3.2	49	2.0	150	1.1
SOUTH BAB	1/29/2021	46	14	60	0.42	0.41	29	9.6	0.52	< 0.01	7.4	0.024	3.8	44		110	
BAB-E ⁽¹⁾	12/16/2020	71	20	91	0.21	0.26	39	8.6	0.25	0.014	7.9	0.024	3.0	29		94	
BAB-W ⁽²⁾	12/16/2020	83	< 10	89	0.30	0.21	54	9.9	0.22	0.013	10	0.016	3.4	33		140	
Surface Water/St. C	lair River																
SC-01	12/16/2022	81	< 5	81	0.013	< 0.1	25	9.6	0.08	< 0.008	7.6	< 0.005	1.1	5.9	0.086	15	1.9

Notes:

mg/L = milligram per liter, -- = not analyzed.

Bold font denotes concentrations detected above laboratory reporting limits.

J = estimated value. Concentration above the laboratory method detection limit but below the reporting limit.

F1 = MS and/or MSD recovery exceeds control limits

(1) = same location as NORTH BAB, (2) = same location as SOUTH BAB

Table 3 Summary of Stable Isotope and Tritium Results – December 2022 Belle River Power Plant Bottom Ash Basins CCR Unit China Township, Michigan

	Constituent:	δ ⁸⁷ Sr	δ ¹¹ Β	δ ⁷ Li	δ²H	δ ¹⁸ Ο	Tritium
	Units:	‰	‰	‰	‰	‰	TU
Sample Location	Sample Date						
Bottom Ash Basin	s Monitoring Wells/U	ppermost Aquifer			•		
MW-16-01	12/14/2022	0.709290	39.26	31.21	-103.940542	-14.96447	<0.1
MW-16-02	12/14/2022	0.709517	39.32	30.67	-104.862778	-15.035052	<0.1
MW-16-03	12/14/2022	0.709430	39.49	29.15	-102.293772	-14.683754	<0.1
MW-16-04	12/15/2022	0.709343	40.63	28.75	-102.675451	-14.665324	<0.1
MW-16-09	12/16/2022	0.709459	43.49	29.89	-112.022478	-15.80079	0.18
Bottom Ash Basin	s Water						
North BAB	12/14/2022	0.708901	-0.81	-0.13	-54.318947	-7.441738	26.4
Surface Water/St.	Clair River						
SC-01	12/16/2022	0.709999	-4.82	20.80	-53.700517	-7.358694	23.9

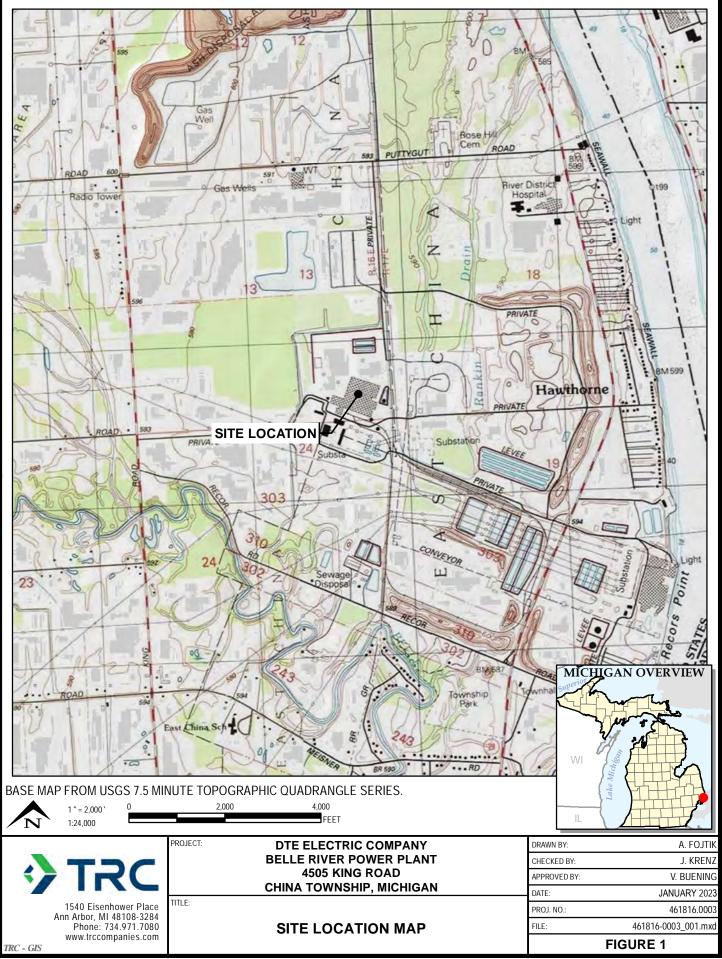
Notes:

‰ = per mil

TU = Tritium Units

Bold font denotes concentrations detected above laboratory reporting limits.

Table 6Summary Calculated Mineral Saturation – December 2022Belle River Power Plant – RCRA CCR Monitoring Program
China Township, Michigan


Sample Location	Linit		MW 16 02	MW-16-03	MW 16 04	MW 16.00	North BAB	SC 01	
Alstonite (BaCa(CO3)2)	Unit log Q/K	-1.45	-1.53	-1.46	-1.41	-3.87	-1.28	SC-01 -3.70	N BAB MW Avg -1.94
Anhydrite (CaSO4)	log Q/K	-3.40	-3.25	-4.45	-3.11	-3.48	-2.00	-3.17	-3.54
Antarcticite (CaCl ₂ ·6H ₂ O) Aragonite (CaCO ₃)	log Q/K log Q/K	-11.18 0.05	-11.26 0.03	-11.12 -0.08	-11.12 0.03	-10.77 -1.24	-14.53 0.16	-14.52 -0.59	-11.09 -0.24
Aragonite (CaCO ₃) Arcanite (K2SO4)	log Q/K	-10.80	-10.58	-0.08	-10.49	-1.24	-9.34	-0.59	-0.24
Artinite $(Mg_2(OH)_2 \cdot 3H_2O)$	log Q/K	-6.69	-6.85	-6.85	-6.68	-10.30	-6.62	-8.28	-7.47
Ba(OH)2^8H2O BaCl2(c)	log Q/K log Q/K	-15.06 -12.28	-15.16 -12.42	-14.84 -11.96	-14.97 -12.13	-17.22 -11.73	-14.54 -15.68	-16.76 -16.70	-15.45 -12.10
Baciz(c) BaCi2^2H2O	log Q/K	-9.98	-10.12	-9.68	-9.86	-9.43	-13.39	-14.30	-9.81
BaCl2^H2O	log Q/K	-10.73	-10.86	-10.41	-10.59	-10.18	-14.12	-15.09	-10.55
BaF2(c)	log Q/K	-8.41	-8.68	-8.27	-8.31	-8.64	-10.84	-12.14	-8.46
BaO(c) Barite (BaSO4)	log Q/K log Q/K	-40.34 -0.08	-40.41 0.00	-40.02 -0.90	-40.05 0.25	-42.51 -0.01	-39.75 1.25	-42.76 -0.72	-40.67 -0.15
Barytocalcite (BaCa(CO_3) ₂)	log Q/K	-1.61	-1.69	-1.62	-1.57	-4.03	-1.44	-3.86	-2.10
BaS(c)	log Q/K	-165.10	-164.80	-165.30	-163.60	-165.10	-165.20	-171.10	-164.78
Bassanite (CaSO ₄ ·1/2H ₂ O) Bischofite (MgCl ₂ ·6H ₂ O)	log Q/K log Q/K	-4.03 -12.04	-3.88 -12.17	-5.08 -11.97	-3.74 -11.96	-4.11 -11.64	-2.63 -15.68	-3.81 -15.52	-4.17 -11.96
Bloedite (Bloedite)	log Q/K	-13.69	-13.97	-15.58	-13.18	-13.12	-12.85	-16.48	-13.91
Borax ($Na_2H_{20}B_4O_{17}$)	log Q/K	-20.14	-20.52	-19.76	-20.13	-21.05	-24.14	-28.18	-20.32
Boric acid (H3BO3) Brucite (Mg(OH) ₂)	log Q/K	-5.02 -4.94	-4.97 -5.03	-4.96	-4.99	-4.86 -7.25	-5.74	-6.10 -5.84	-4.96
Burkeite (Na6(CO3)(SO4)2)	log Q/K log Q/K	-4.94	-5.03	-4.95 -25.27	-4.89 -23.35	-7.25	-4.66 -25.74	-33.11	-5.41 -24.02
Ca(OH)2(c)	log Q/K	-11.01	-11.04	-11.00	-10.93	-13.31	-10.41	-11.90	-11.46
Ca2Cl2(OH)2^H2O	log Q/K	-21.50	-21.62	-21.45	-21.40	-23.39	-24.26	-25.61	-21.87
Ca4Cl2(OH)6^13H2O CaCl2^2H2O	log Q/K log Q/K	-37.53 -15.64	-37.78 -15.71	-37.63 -15.54	-37.60 -15.52	-44.01 -15.23	-39.23 -18.96	-42.36 -19.15	-38.91 -15.53
CaCl2^4H2O	log Q/K	-12.11	-12.19	-12.03	-12.03	-11.70	-15.45	-15.50	-12.01
CaCl2^H2O	log Q/K	-15.84	-15.91	-15.75	-15.72	-15.44	-19.16	-19.38	-15.73
Calcite (CaCO3)	log Q/K	0.21	0.20	0.09	0.20	-1.07	0.32	-0.42	-0.07
Carnallite (KMgCl3·6(H2O)) CaSO4^1/2H2O(beta)	log Q/K log Q/K	-17.91 -4.22	-18.04 -4.07	-17.75 -5.27	-17.79 -3.92	-17.22 -4.30	-23.19 -2.82	-23.29 -4.00	-17.74 -4.36
Celestite (SrSO4)	log Q/K	-2.94	-4.07	-4.00	-3.92	-4.30	-1.40	-4.00	-4.30
Chloromagnesite (MgCl2)	log Q/K	-30.83	-30.93	-30.69	-30.61	-30.44	-34.42	-34.81	-30.70
Colemanite (Ca2B6O11·5H2O) Dolomite (CaMg(CO3)2)	log Q/K log Q/K	-27.62 1.01	-27.42 0.93	-27.35 0.75	-27.43 0.98	-31.25 -1.57	-30.82 0.92	-35.51 -0.36	-28.21 0.42
Dolomite (Calvig(CO3)2) Dolomite-dis (Calvig(CO3)2)	log Q/K	-0.65	-0.72	-0.90	-0.67	-1.57 -3.23	-0.73	-0.36	-1.23
Dolomite-ord (CaMg(CO3)2)	log Q/K	1.01	0.93	0.75	0.98	-1.57	0.92	-0.36	0.42
Epsomite (MgSO4·7H2O)	log Q/K	-5.86	-5.77	-6.93	-5.60	-5.96	-4.78	-5.63	-6.02
Fe(OH)3(ppd) Fe2(SO4)3(c)	log Q/K log Q/K	2.56 -47.51	2.65 -46.71	2.46 -50.66	2.56 -46.43	3.61 -38.78	1.52 -47.02	2.70 -45.35	2.77 -46.02
FeF3(c)	log Q/K	-47.51	-40.71	-9.03	-40.43	-38.78	-14.29	-45.35	-40.02
errite-2-Ca (Ca2Fe2O5)	log Q/K	-19.27	-19.15	-19.45	-19.07	-21.79	-20.16	-20.98	-19.75
Ferrite-Ca (Ca(FeO2)2) Ferrite-Mg (MgFe2O4)	log Q/K log Q/K	5.16 5.22	5.30 5.31	4.94 5.00	5.21 5.28	4.95 5.00	3.65 3.41	4.63 4.57	5.11 5.16
Fluorite (CaF2)	log Q/K	-0.24	-0.46	-0.35	-0.23	-0.61	-2.63	4.57	-0.38
Gaylussite (Na ₂ Ca(CO ₃) ₂ ·5H ₂ O)	log Q/K	-6.53	-7.10	-6.63	-6.76	-8.35	-8.01	-10.50	-7.07
Goethite (α-FeO(OH))	log Q/K	7.12	7.21	7.01	7.10	8.17	6.07	7.33	7.32
Graphite (C)	log Q/K	-77.98	-77.85	-77.81	-77.47	-77.02	-79.15	-80.55	-77.63
Gypsum (CaSO 4·2H2O) Halite (NaCl)	log Q/K log Q/K	-3.07 -5.44	-2.93 -5.74	-4.13 -5.29	-2.79 -5.43	-3.15 -4.87	-1.68 -7.94	-2.79 -8.73	-3.21 -5.36
Hematite (Fe2O3)	log Q/K	15.16	15.33	14.93	15.12	17.25	13.05	15.54	15.56
Hexahydrite (MgSO4 · 6H2O)	log Q/K	-6.20	-6.12	-7.27	-5.93	-6.30	-5.12	-6.01	-6.36
Huntite (Mg3Ca(CO3)4) Hydroboracite (CaMgB6O8(OH)6·3H2O)	log Q/K log Q/K	-4.42 -24.04	-4.62 -23.95	-4.92 -23.93	-4.44 -24.16	-9.60 -27.66	-4.89 -27.66	-7.41 -30.94	-5.60 -24.75
Hydromagnesite ($Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O$		-14.04	-14.38	-14.55	-14.01	-21.54	-14.54	-18.02	-15.70
Hydrophilite (CaCl2)	log Q/K	-19.69	-19.75	-19.58	-19.54	-19.28	-23.00	-23.32	-19.57
Jarosite-K (KFe3(SO4)2(OH)6)	log Q/K	-5.11	-4.44 -4.72	-7.41 -7.40	-4.49 -4.68	1.39 1.74	-6.25 -7.13	-3.65 -4.23	-4.01 -4.02
Jarosite-Na (NaFe3(SO4)2(OH)6) <2CO3^3/2H2O	log Q/K log Q/K	-5.05 -16.14	-4.72	-7.40	-4.00 -16.17	-17.25	-15.97	-4.23	-4.02
<8H4(CO3)6^3H2O	log Q/K	-58.65	-58.37	-59.01	-58.89	-61.07	-58.94	-62.46	-59.20
Kainite (KMg(SO4)CI·3H2O)	log Q/K	-13.90	-13.81	-14.87	-13.56	-13.71	-14.45	-15.72	-13.97
Kalicinite (KHCO3) Kieserite (MgSO4·H2O)	log Q/K log Q/K	-6.64 -8.10	-6.60 -8.01	-6.72 -9.14	-6.69 -7.78	-6.69 -8.20	-6.80 -7.00	-7.08 -8.07	-6.67 -8.25
(MgCl3	log Q/K	-36.19	-36.30	-35.96	-35.94	-35.51	-41.43	-42.06	-35.98
KMgCl3^2H2O	log Q/K	-28.36	-28.49	-28.17	-28.17	-27.69	-33.62	-34.04	-28.18
(NaCO3^6H2O	log Q/K	-9.81	-10.07	-9.84	-9.98	-10.63	-10.54	-11.82	-10.07
_eonhardtite (MgSO4•4H2O) _ime (CaO)	log Q/K log Q/K	-7.12 -21.73	-7.02 -21.75	-8.17 -21.70	-6.82 -21.59	-7.21 -24.04	-6.03 -21.11	-6.99 -22.86	-7.27 -22.16
Magnesite (MgCO3)	log Q/K	-0.93	-0.99	-1.05	-0.93	-2.23	-1.12	-1.70	-1.23
Mercallite (KHSO4)	log Q/K	-14.72	-14.51	-15.70	-14.43	-13.56	-13.57	-14.37	-14.58
Mg2CI(OH)3^4H2O MgCl2^2H2O	log Q/K log Q/K	-11.62 -21.10	-11.84 -21.22	-11.66 -20.99	-11.61 -20.94	-14.89 -20.71	-13.07 -24.72	-14.35 -24.84	-12.32 -20.99
/19012^2H2O /19Cl2^4H2O	log Q/K	-15.22	-15.35	-20.99	-20.94	-14.83	-18.86	-24.04	-20.99
/lgCl2^H2O	log Q/K	-24.70	-24.82	-24.58	-24.52	-24.31	-28.31	-28.54	-24.59
MgF2(c) MgOHCl	log Q/K	-3.59 -14.56	-3.86 -14.66	-3.70 -14.50	-3.56 -14.44	-3.98 -15.52	-6.28	-6.43 -16.94	-3.74 -14.74
лдОНСІ ЛgSO4(c)	log Q/K log Q/K	-14.56 -13.59	-14.66	-14.50 -14.61	-14.44 -13.24	-15.52 -13.69	-16.22 -12.48	-16.94	-14.74 -13.72
/HSH(Mg1.5)	log Q/K	-11.78	-11.72	-12.82	-11.42	-13.03	-10.54	-12.25	-12.15
Airabilite (Na2SO4·10H2O)	log Q/K	-6.40	-6.79	-7.26	-6.23	-5.74	-6.67	-9.14	-6.48
/lisenite (K8H8(SO4)7) /lolysite (FeCl3)	log Q/K log Q/K	-97.94 -36.52	-96.50 -36.45	-104.80 -36.39	-95.98 -36.26	-90.94 -31.43	-89.64 -43.37	-95.91 -41.01	-97.23 -35.41
Aonohydrocalcite (CaCO3·H2O)	log Q/K	-0.75	-0.77	-0.88	-0.77	-2.04	-0.64	-1.38	-1.04
Na3H(SO4)2	log Q/K	-20.96	-21.44	-22.74	-20.51	-18.86	-20.94	-24.83	-20.90
laFeO2(c) lesquehonite (MgCO3 · 3H2O)	log Q/K log Q/K	-7.15 -4.05	-7.33 -4.11	-7.13 -4.16	-7.11 -4.03	-6.89 -5.35	-8.71 -4.23	-9.17 -4.91	-7.12 -4.34
Pentahydrite (MgSO4•5(H2O))	log Q/K	-4.03 -6.53	-4.11	-4.10	-4.03	-5.55	-4.23	-4.91	-4.34
Pirssonite (Na2Ca(CO3)2•2(H2O))	log Q/K	-7.27	-7.83	-7.34	-7.44	-9.09	-8.73	-11.45	-7.79
Portlandite (Ca(OH)2)	log Q/K	-11.01	-11.04	-11.00	-10.93	-13.31	-10.41	-11.90	-11.46
Gr(OH)2(c) GrCl2(c)	log Q/K log Q/K	-17.03 -16.60	-17.08 -16.69	-17.02 -16.51	-16.98 -16.52	-19.35 -16.20	-16.29 -19.78	-18.93 -21.06	-17.49 -16.50
SrCl2 [^] 2H2O	log Q/K	-11.62	-11.71	-11.54	-11.58	-11.22	-14.81	-15.95	-11.53
SrCI2^6H2O	log Q/K	-9.41	-9.51	-9.35	-9.40	-9.01	-12.61	-13.62	-9.33
SrCl2^H2O	log Q/K	-13.23	-13.32	-13.15	-13.18	-12.84	-16.43	-17.62	-13.14 -4.79
SrF2(c) SrO(c)	log Q/K log Q/K	-4.64 -32.45	-4.88 -32.48	-4.75 -32.39	-4.66 -32.30	-5.03 -34.77	-6.88 -31.67	-8.27 -34.67	-4.79 -32.88
SrS(c)	log Q/K	-165.40	-165.00	-165.90	-164.00	-165.60	-165.20	-171.40	-165.18
Strontianite (SrCO3)	log Q/K	1.35	1.32	1.21	1.27	0.06	1.60	-0.14	1.05
Sulfur-Rhmb (S) Sylvite (KCI)	log Q/K	-112.60	-112.20	-113.20	-111.50	-110.40	-112.80	-115.40	
	log Q/K log Q/K	-6.96 -40.06	-6.96 -40.39	-6.87 -39.83	-6.92 -39.78	-6.67 -38.86	-8.60 -50.67	-8.89 -50.56	-6.88 -39.78
Fachyhydrite (CaMg2Cl6·12H2O)					•				
achyhydrite (CaMg2Cl6·12H2O) Thenardite (Na2SO4) Vitherite (BaCO3)	log Q/K log Q/K	-7.95 2.52	-8.32 2.44	-8.77 2.62	-7.71 2.54	-7.29 1.38	-8.20 2.56	-10.93 1.00	-8.01 2.30

Notes:


Positive values are oversaturated and may precipitate out of solution Negative values are undersaturated and may dissolve into solution

Figures

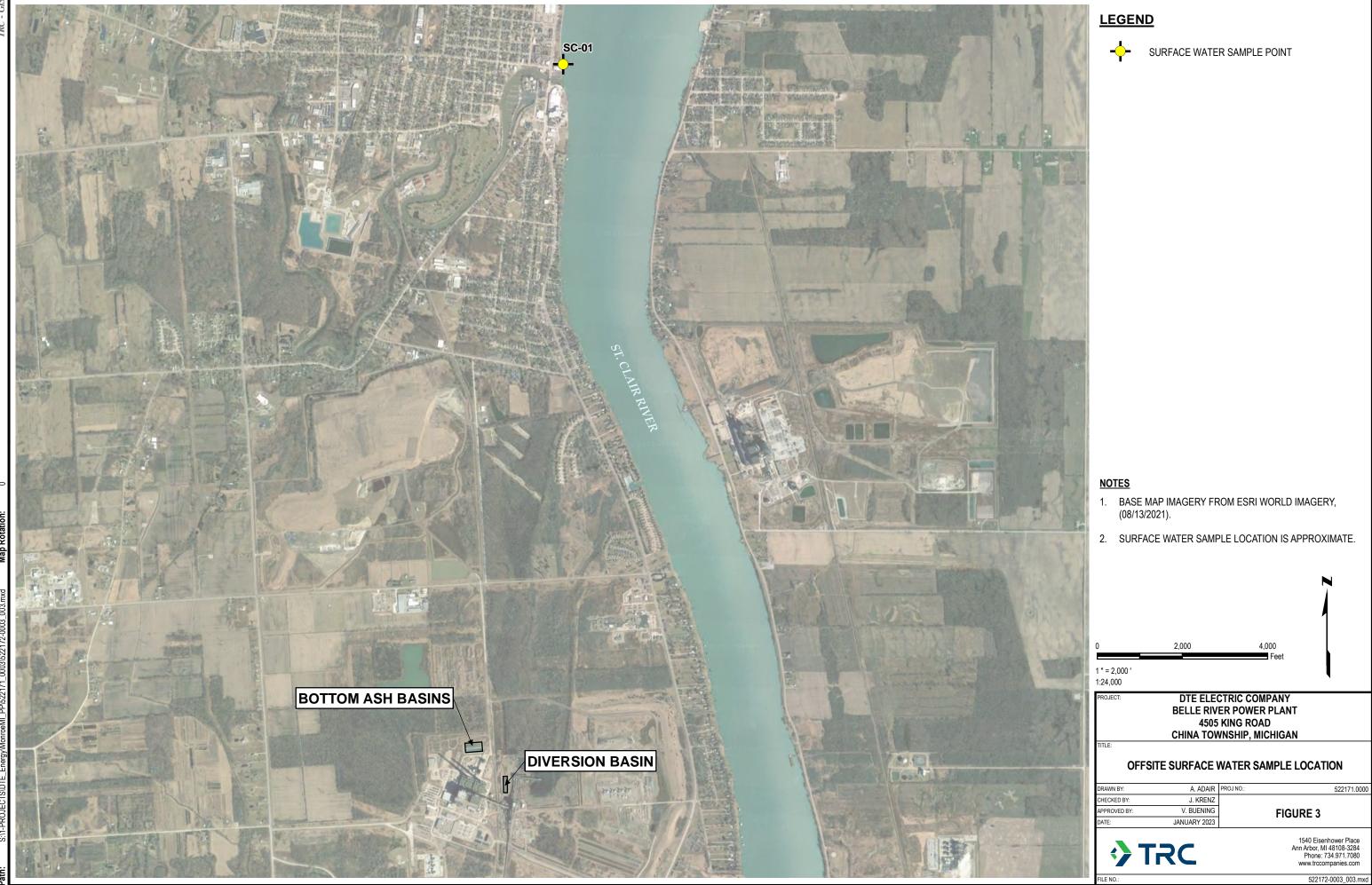
E:\Projects\DTE\CCR_Sites\2017_265996\461816-0003_001.mxd -- Saved By: AFOJTIK on 5/12/2022, 16:20:09 PM

Coordinate System: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl (Foot)

B(11"x17")

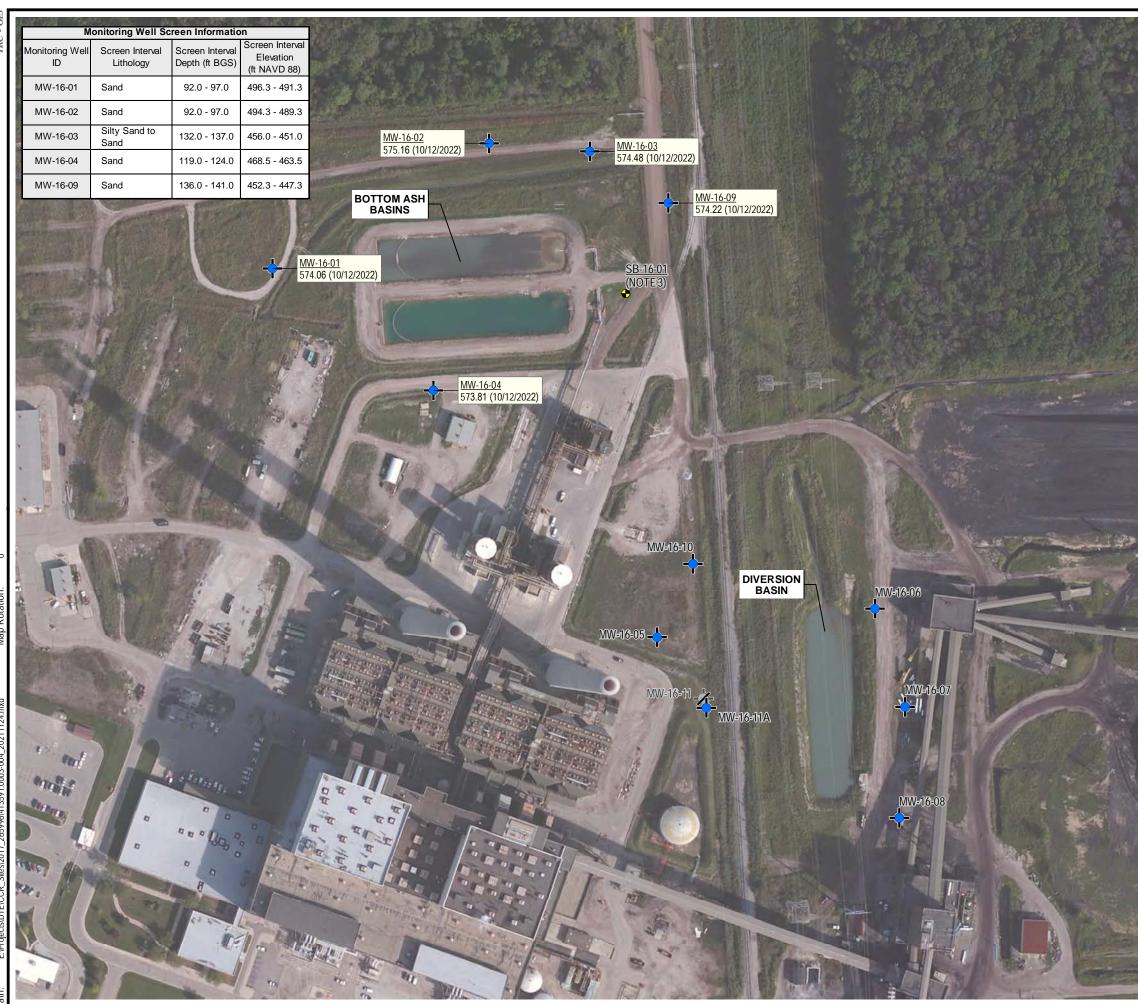
SOIL BORING

SURFACE WATER SAMPLE POINT


MONITORING WELL

DECOMMISSIONED MONITORING WELL

<u>NOTES</u>


- 1. BASE MAP IMAGERY FROM ESRI WORLD IMAGERY, (08/13/2021).
- WELL LOCATIONS SURVEYED IN MARCH, APRIL, JUNE 2016, AND JUNE 2017 BY BMJ ENGINEERS & SURVEYORS, INC.

0	200	400				
		Feet				
1 " = 200 '						
1:2,400						
PROJECT:	BELLE RIV 4505	CTRIC COMPANY ER POWER PLANT KING ROAD VNSHIP, MICHIGAN				
TITLE:	S	ITE PLAN				
DRAWN BY:	A. ADAIR	PROJ NO.:	522172.0000			
CHECKED BY:	J. KRENZ					
APPROVED BY:	V. BUENING					
DATE:	JANUARY 2023					
_	RC	Ann	40 Eisenhower Place Arbor, MI 48108-3284 Phone: 734.971.7080 ww.trccompanies.com			
FILE NO.:			522172-0003_002.mxd			

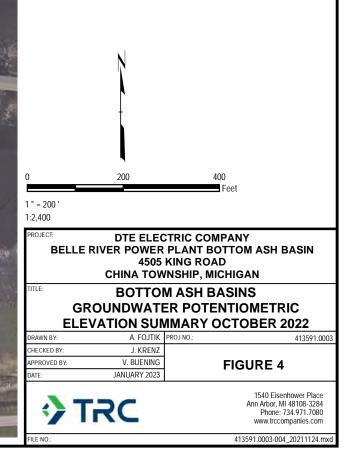
(Foot) eet 13 3 NAD Sys Coord

N i de

SOIL BORING

MONITORING WELL

DECOMMISSIONED MONITORING WELL


MW ID

GROUNDWATER ELEVATION (DATE)

FT BGS FEET BELOW GROUND SURFACE FT NAVD 88 ELEVATION RELATIVE TO THE NORTH AMERICAN VERTICAL DATUM OF 1988

NOTES

- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO, (3/23/2019).
- 2. WELL LOCATIONS SURVEYED IN MARCH, APRIL AND JUNE 2016 AND JUNE 2017 BY BMJ ENGINEERS & SURVEYORS, INC.
- 3. NO SAND OR GRAVEL UNIT PRESENT ABOVE BEDROCK IN THIS LOCATION.

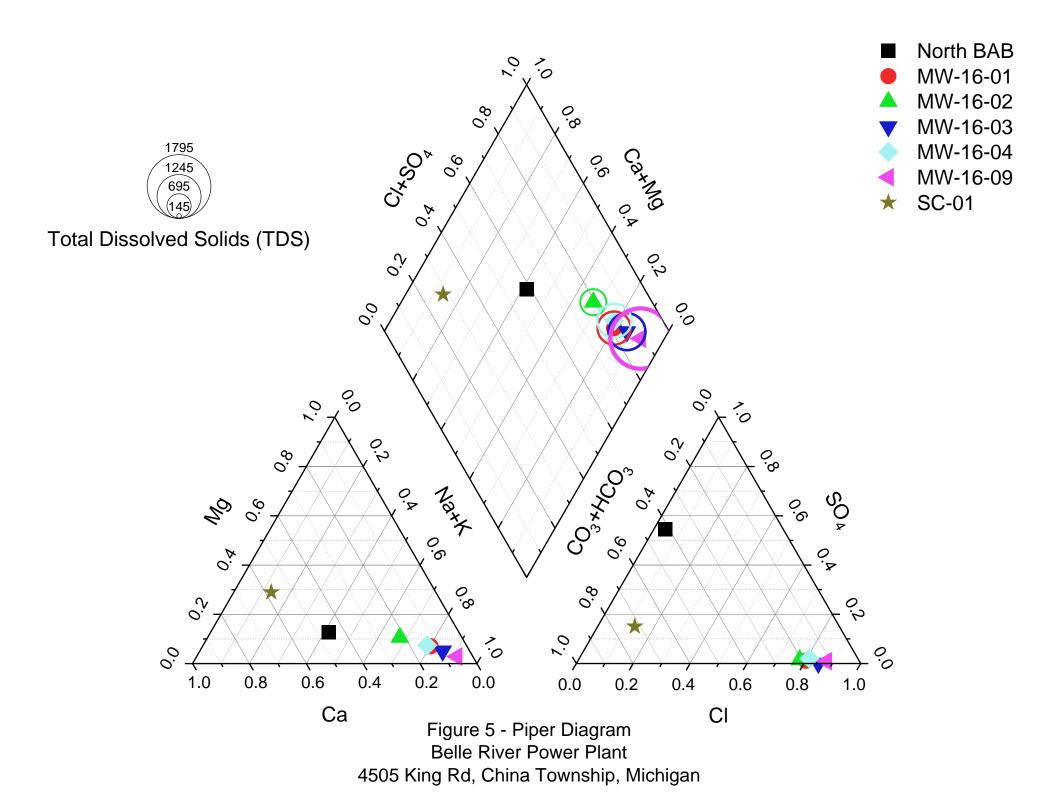
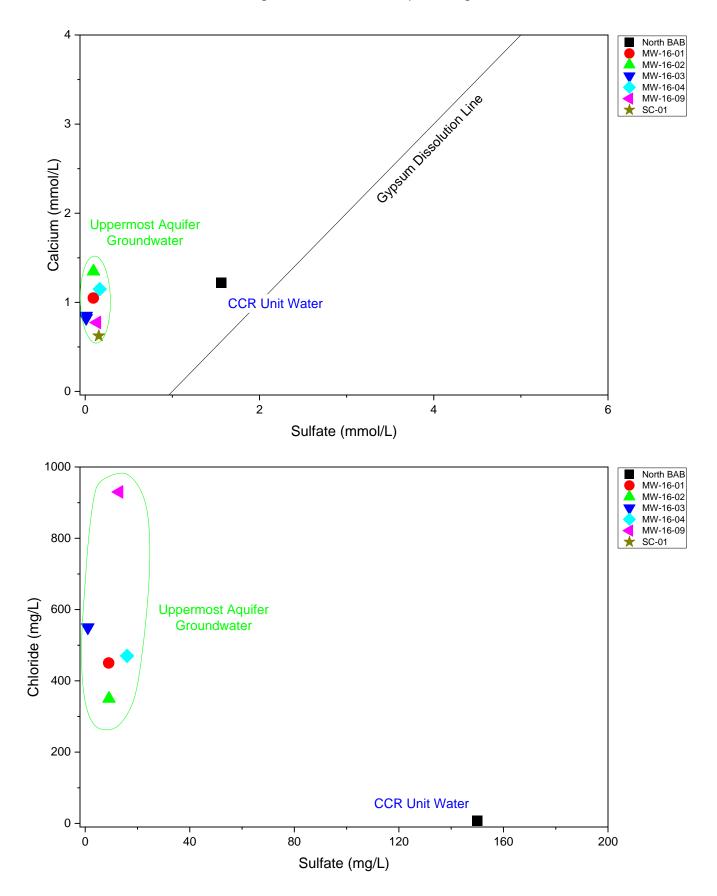
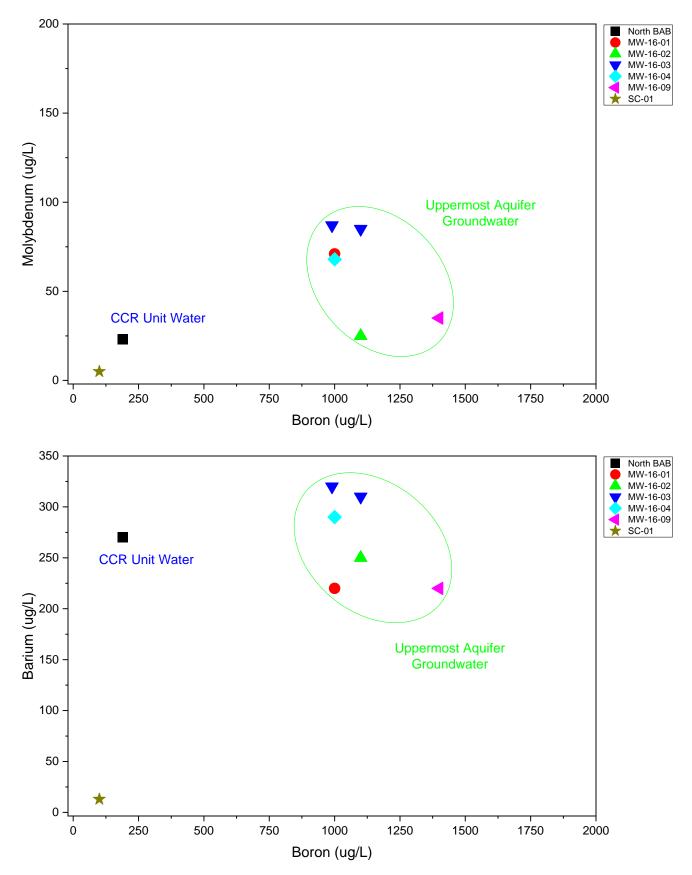
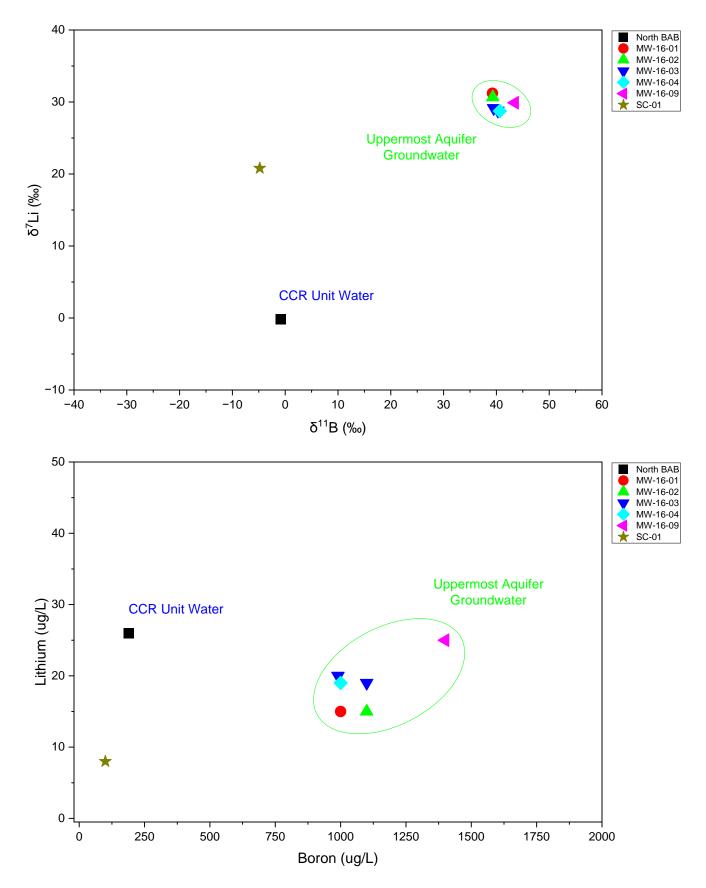
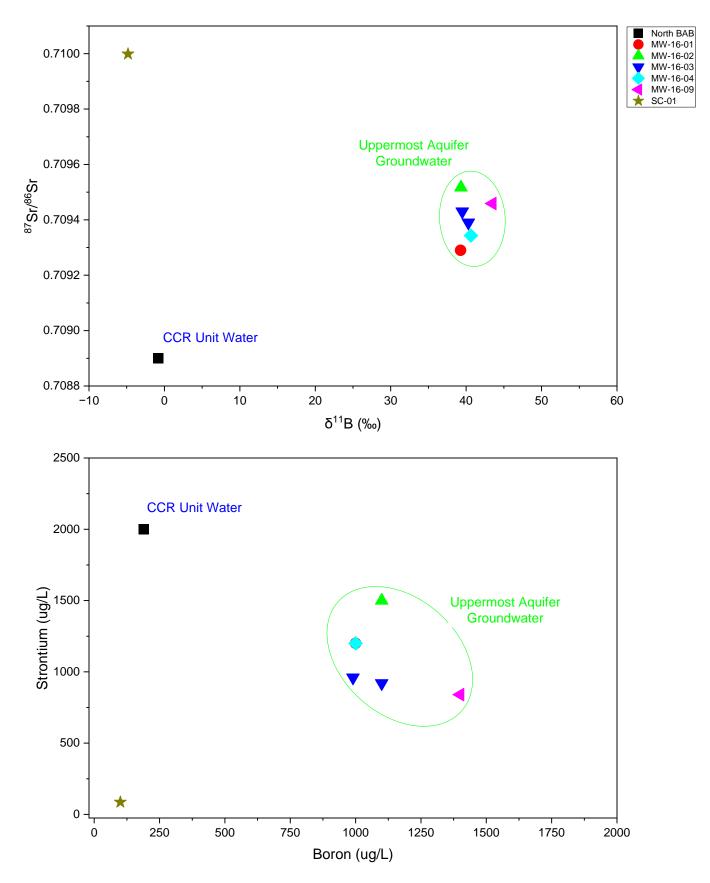
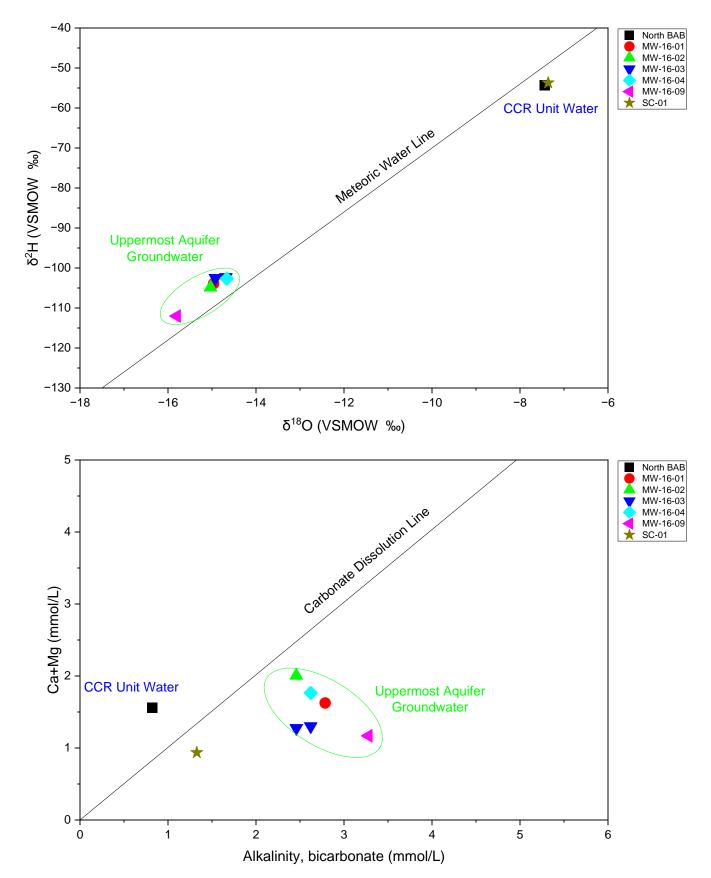
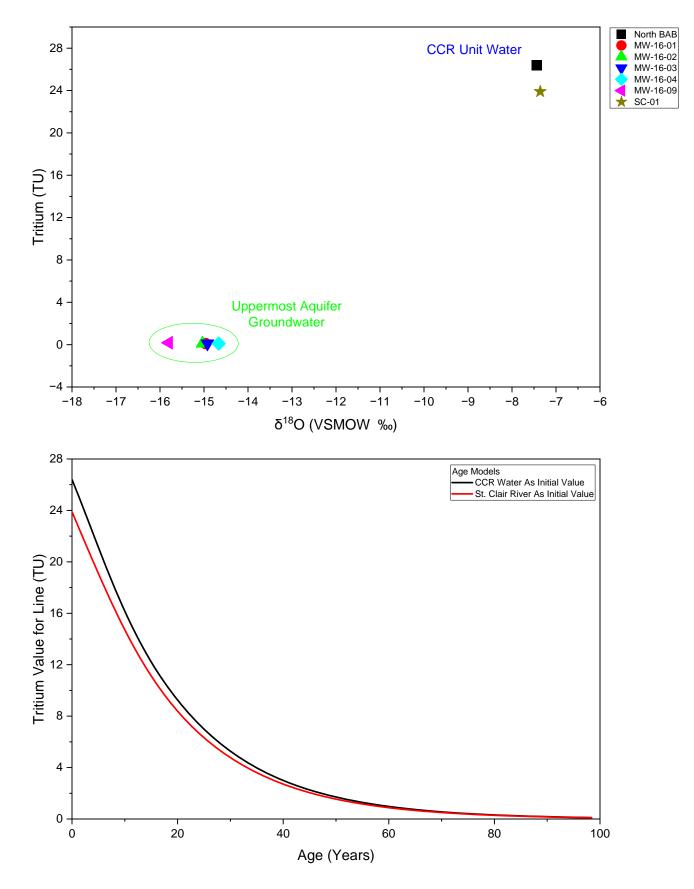




Figure 6 Summary of Calcium and Sulfate Saturation with Chloride and Sulfate Concentrations Belle River Power Plant 4505 King Rd, China Township, Michigan

Figure 7 Molybdenum and Barium with Boron Concentrations Belle River Power Plant 4505 King Rd, China Township, Michigan

Figure 8 Lithium and Boron Isotopic Compositions and Concentrations Belle River Power Plant 4505 King Rd, China Township, Michigan


Figure 9 Strontium and Boron Isotopic Compositions and Concentrations Belle River Power Plant 4505 King Rd, China Township, Michigan

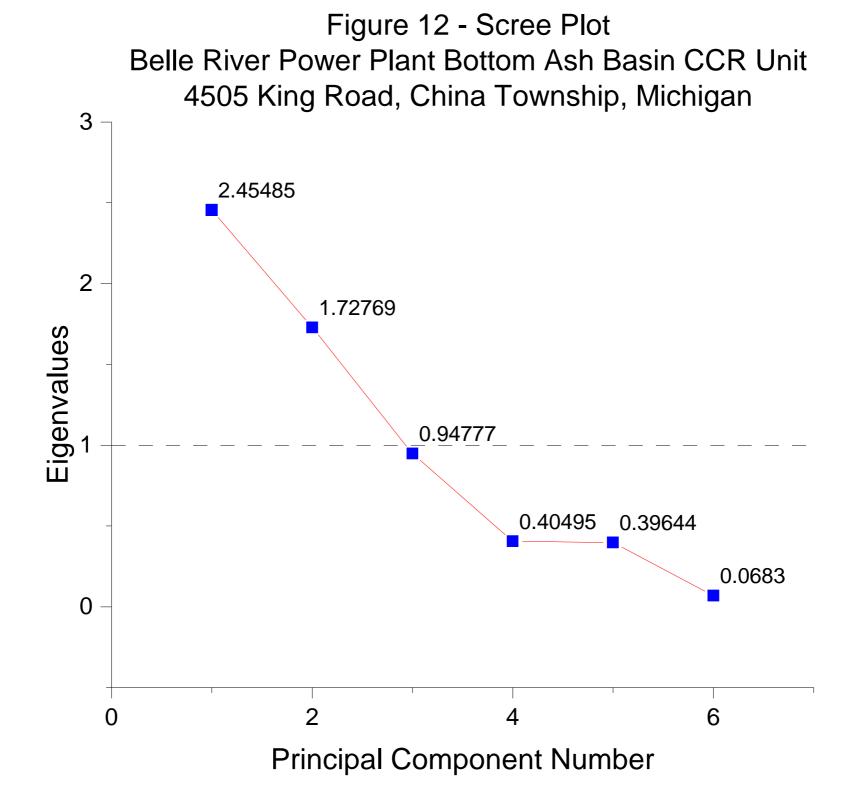


Figure 10 Hydrogen and Oxygen Isotopic Compositions and Carbonate Saturation Belle River Power Plant 4505 King Rd, China Township, Michigan

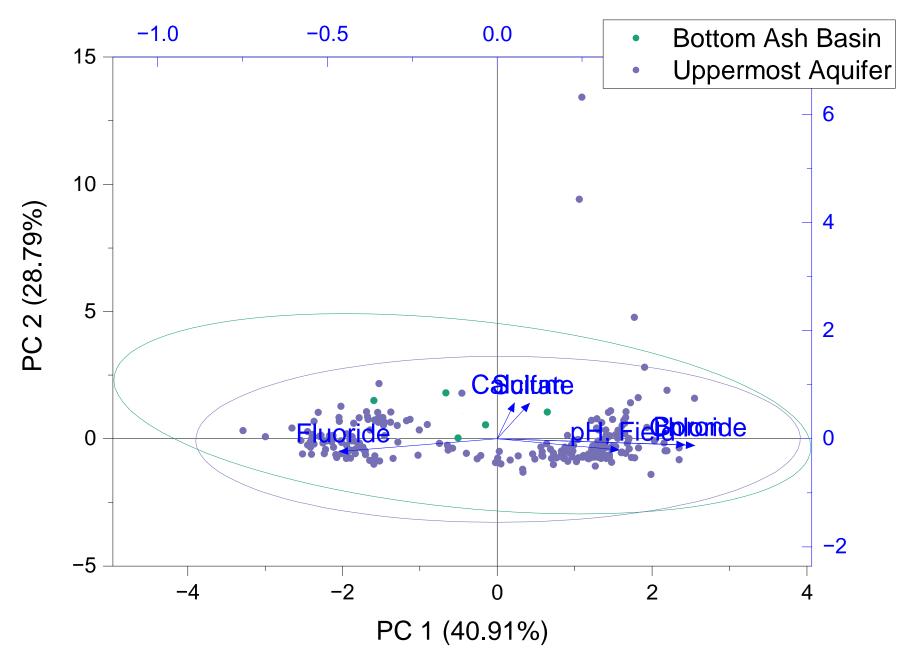


Figure 11 Tritium Data and Age Model Belle River Power Plant 4505 King Rd, China Township, Michigan

Figure 13 - Biplot Belle River Power Plant Bottom Ash Basin CCR Unit 4505 King Road, China Township, Michigan

Figure 14 - BRPP LDA Origin

Discriminant Analysis (3/24/2023 15:04:1

Canonical Discriminant Analysis

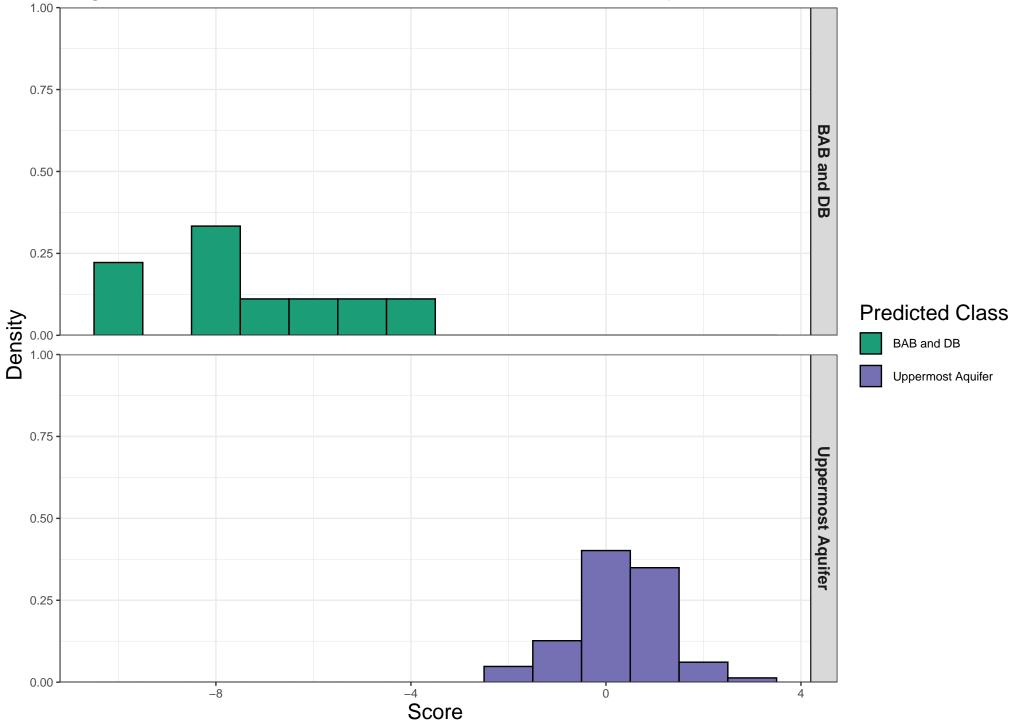
Eigenvalues

	Eigenvalue	Percentage of Variance	Cumulative	Canonical Correlation
1	1.23366	100.00%	100.00%	0.74317

Standardized Canonical Coefficients

	Canonical Variable 1
Boron	-0.22198
Calcium	0.34127
Chloride	1.19871
Fluoride	1.11313
pH, Field	-2.95507E-7
Sulfate	-0.3104

Classification Summary for Training Data Classification Count


	Predicted Group				
	BAB and DB	Uppermost Aquifer	Total		
DAD and DD	9	0	9		
BAB and DB	100.00%	0.00%	100.00%		
I Innormoot Aquifor	0	229	229		
Uppermost Aquifer	0.00%	100.00%	100.00%		
Tatal	9	229	238		
TOLAT	3.78%	96.22%	100.00%		

Error Rate

	BAB and DB	Uppermost Aquifer	Total
Prior	0.5	0.5	
Rate	0.00%	0.00%	0.00%

Error rate for classification of training data is 0.00%.

Figure 15 – Belle River Power Plant Density of LDA Scores

Figure 16 - BRPP LDA ANOVA

ANOVAOneWay (3/24/2023 15:07:06

Descriptive Statistics

	N Analysis	N Missing	Mean	Standard Deviation	SE of Mean
BAB and DB	9	0	-5.57907	1.75276	0.58425
Uppermost Aquifer	229	0	0.21926	0.96296	0.06363

One Way ANOVA

Overall ANOVA

	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	1	291.14412	291.14412	291.14412	<0.0001
Error	236	236	1		
Total	237	527.14412			

Null Hypothesis: The means of all levels are equal.

Alternative Hypothesis: The means of one or more levels are different.

At the 0.05 level, the population means are significantly different.

Appendix A December 2022 Laboratory Data

ALS Environmental

05-Jan-2021

Michael Coram Geosyntec Consultants 2100 Commonwealth Blvd. Suite 100 Ann Arbor, MI 48105

Re: DTE- Belle River (GLP-8017)

Work Order: 20121752

Dear Michael,

ALS Environmental received 3 samples on 18-Dec-2020 10:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 21.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Chad Whelton

Enuironmental 🕽

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS HIGHT PARTNER

Client:	Geosyntec Consultants
Project:	DTE- Belle River (GLP-8017)
Work Order:	20121752

Work Order Sample Summary

Lab Samp ID Client Sample ID	<u>Matrix Tag Number</u>	Collection Date Date Received Hold
20121752-01 ВАВ-Е	Groundwater	12/16/2020 15:00 12/18/2020 10:00 🗆
20121752-02 BAB-W	Groundwater	12/16/2020 14:00 12/18/2020 10:00 🗆
20121752-03 DB	Groundwater	12/16/2020 16:00 12/18/2020 10:00 🗆

Date: 05-Jan-21

Client:	Geosyntec Consultants	
Project:	DTE- Belle River (GLP-8017)	Case Narrative
Work Order:	20121752	

Samples for the above noted Work Order were received on 12/18/2020. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Metals:

No other deviations or anomalies were noted.

Wet Chemistry:

Batch R306912, Method SW9040C, Sample BAB-E (20121752-01B): pH is considered a "field test" and, as such, the recommended sample holding time expired prior to sample receipt.

Batch R306912, Method SW9040C, Sample BAB-W (20121752-02B): pH is considered a "field test" and, as such, the recommended sample holding time expired prior to sample receipt.

Batch R306912, Method SW9040C, Sample DB (20121752-03B): pH is considered a "field test" and, as such, the recommended sample holding time expired prior to sample receipt.

Batch R307145, Method SW9056A, Sample 20121752-03B MSD: The MSD recovery was outside of the control limit for Sulfate; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required.

-

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
а	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
Е	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
O P	Sample amount is > 4 times amount spiked Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Х	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
А	APHA Standard Methods
D	ASTM
Е	EPA
SW	SW-846 Update III
Units Reported	Description
°C	Degrees Celcius
mg/L	Milligrams per Liter
s.u.	Standard Units

Geosyntec Consultants

BAB-E

Collection Date: 12/16/2020 03:00 PM

DTE- Belle River (GLP-8017)

Client:

Project:

Sample ID:

Work Order: 20121752 Lab ID: 20121752-01

Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7470A		Prep: SW7470 12/30/20 13:08	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	12/30/2020 01:26 PM
METALS BY ICP-MS			SW602	0B	Prep: SW3005A 12/30/20 15:00	Analyst: STP
Antimony	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Arsenic	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Barium	0.21		0.0050	mg/L	1	12/30/2020 09:06 PM
Beryllium	ND		0.0020	mg/L	1	12/30/2020 09:06 PM
Boron	0.26		0.020	mg/L	1	12/30/2020 09:06 PM
Cadmium	ND		0.0020	mg/L	1	12/30/2020 09:06 PM
Calcium	39		0.50	mg/L	1	12/30/2020 09:06 PM
Chromium	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Cobalt	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Iron	ND		0.080	mg/L	1	12/30/2020 09:06 PM
Lead	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Lithium	0.014		0.010	mg/L	1	12/30/2020 09:06 PM
Magnesium	7.9		0.20	mg/L	1	12/30/2020 09:06 PM
Manganese	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Molybdenum	0.024		0.0050	mg/L	1	12/30/2020 09:06 PM
Potassium	3.0		0.20	mg/L	1	12/30/2020 09:06 PM
Selenium	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Sodium	29		0.20	mg/L	1	12/30/2020 09:06 PM
Thallium	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
ALKALINITY			A2320	B-11		Analyst: QTN
Alkalinity, Bicarbonate (as CaCO3)	71		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Carbonate (as CaCO3)	20		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Hydroxide (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Phenolphthalein (as CaCO3	10		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Total (as CaCO3)	91		10	mg/L	1	12/29/2020 11:55 AM
ANIONS BY ION CHROMATOGRAPHY			SW905	64		Analyst: JDR
Chloride	8.6		1.0	mg/L	1	12/30/2020 07:11 PM
Fluoride	0.25		0.10	mg/L	1	12/30/2020 07:11 PM
Sulfate	94		8.0	mg/L	8	12/31/2020 02:59 PM
PH (LABORATORY)			SW904	00		Analyst: QTN
pH (laboratory)	8.84	н	0.100	s.u.	1	12/29/2020 11:55 AM
Temperature	20.8	н	0.100	°C	1	12/29/2020 11:55 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/22/20 11:40	Analyst: AJS
Total Dissolved Solids	240		50	mg/L	1	12/23/2020 02:50 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Geosyntec Consultants

BAB-W

Collection Date: 12/16/2020 02:00 PM

DTE- Belle River (GLP-8017)

Client:

Project:

Sample ID:

Work Order: 20121752 Lab ID: 20121752-02

Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 12/30/20 13:08	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	12/30/2020 01:28 PM
METALS BY ICP-MS			SW602	0B	Prep: SW3005A 12/30/20 15:00	Analyst: STP
Antimony	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Arsenic	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Barium	0.30		0.0050	mg/L	1	12/30/2020 09:08 PM
Beryllium	ND		0.0020	mg/L	1	12/30/2020 09:08 PM
Boron	0.21		0.020	mg/L	1	12/30/2020 09:08 PM
Cadmium	ND		0.0020	mg/L	1	12/30/2020 09:08 PM
Calcium	54		0.50	mg/L	1	12/30/2020 09:08 PM
Chromium	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Cobalt	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Iron	0.28		0.080	mg/L	1	12/31/2020 05:14 PM
Lead	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Lithium	0.013		0.010	mg/L	1	12/30/2020 09:08 PM
Magnesium	10		0.20	mg/L	1	12/30/2020 09:08 PM
Manganese	0.0078		0.0050	mg/L	1	12/30/2020 09:08 PM
Molybdenum	0.016		0.0050	mg/L	1	12/30/2020 09:08 PM
Potassium	3.4		0.20	mg/L	1	12/30/2020 09:08 PM
Selenium	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Sodium	33		0.20	mg/L	1	12/30/2020 09:08 PM
Thallium	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
ALKALINITY			A2320	B-11		Analyst: QTN
Alkalinity, Bicarbonate (as CaCO3)	83		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Carbonate (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Hydroxide (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Phenolphthalein (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Total (as CaCO3)	89		10	mg/L	1	12/29/2020 11:55 AM
ANIONS BY ION CHROMATOGRAPHY			SW905	6A		Analyst: JDR
Chloride	9.9		1.0	mg/L	1	12/30/2020 07:30 PM
Fluoride	0.22		0.10	mg/L	1	12/30/2020 07:30 PM
Sulfate	140		8.0	mg/L	8	12/30/2020 06:36 PM
PH (LABORATORY)			SW904	0C		Analyst: QTN
pH (laboratory)	8.43	н	0.100	s.u.	1	12/29/2020 11:55 AM
Temperature	20.7	н	0.100	°C	1	12/29/2020 11:55 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/22/20 11:40	Analyst: AJS
Total Dissolved Solids	330		50	mg/L	1	12/23/2020 02:50 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

DB

Collection Date: 12/16/2020 04:00 PM

Geosyntec Consultants

DTE- Belle River (GLP-8017)

Client:

Project:

Sample ID:

Work Order: 20121752 Lab ID: 20121752-03

Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 12/30/20 13:08	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	12/30/2020 01:30 PM
METALS BY ICP-MS			SW602	0B	Prep: SW3005A 12/30/20 15:00	Analyst: STP
Antimony	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
Arsenic	0.0057		0.0050	mg/L	1	12/30/2020 09:09 PM
Barium	0.19		0.0050	mg/L	1	12/30/2020 09:09 PM
Beryllium	ND		0.0020	mg/L	1	12/30/2020 09:09 PM
Boron	6.0		0.20	mg/L	10	12/31/2020 05:15 PM
Cadmium	ND		0.0020	mg/L	1	12/30/2020 09:09 PM
Calcium	110		0.50	mg/L	1	12/30/2020 09:09 PM
Chromium	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
Cobalt	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
Iron	0.35		0.080	mg/L	1	12/31/2020 05:17 PM
Lead	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
Lithium	0.061		0.010	mg/L	1	12/30/2020 09:09 PM
Magnesium	18		0.20	mg/L	1	12/30/2020 09:09 PM
Manganese	0.068		0.0050	mg/L	1	12/30/2020 09:09 PM
Molybdenum	0.30		0.0050	mg/L	1	12/30/2020 09:09 PM
Potassium	13		0.20	mg/L	1	12/30/2020 09:09 PM
Selenium	0.0087		0.0050	mg/L	1	12/30/2020 09:09 PM
Sodium	510		2.0	mg/L	10	12/31/2020 05:15 PM
Thallium	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
ALKALINITY			A2320	B-11		Analyst: QTN
Alkalinity, Bicarbonate (as CaCO3)	140		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Carbonate (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Hydroxide (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Phenolphthalein (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Total (as CaCO3)	140		10	mg/L	1	12/29/2020 11:55 AM
ANIONS BY ION CHROMATOGRAPHY			SW905	64		Analyst: JDR
Chloride	43		20	mg/L	20	12/30/2020 06:55 PM
Fluoride	0.44		0.10	mg/L		12/30/2020 07:49 PM
Sulfate	1,200		100	mg/L	100	12/31/2020 03:21 PM
PH (LABORATORY)			SW904	00		Analyst: QTN
pH (laboratory)	8.32	н	0.100	s.u.	1	12/29/2020 11:55 AM
Temperature	20.1	н	0.100	°C	1	12/29/2020 11:55 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/22/20 11:40	Analyst: AJS
Total Dissolved Solids	2,100		300	mg/L	1	12/23/2020 02:50 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client:	Geosyntec Consultants
Work Order:	20121752
Project:	DTE- Belle River (GLP-8017)

Date: 05-Jan-21

QC BATCH REPORT

DF: 1

DF: 1 RPD

Limit

Qual

Qual

RPD

Limit

%RPD

%RPD

Batch ID: 170071 Instrument ID HG4 Method: SW7470A MBLK Analysis Date: 12/30/2020 01:14 PM Sample ID: MBLK-170071-170071 Units: mg/L Prep Date: 12/30/2020 Client ID: Run ID: HG4_201230A SeqNo: 7040771 SPK Ref RPD Ref Control Value Limit Value Analyte Result PQL SPK Val %REC Mercury ND 0.00020 LCS Analysis Date: 12/30/2020 01:16 PM Sample ID: LCS-170071-170071 Units: mg/L Client ID: Run ID: HG4_201230A SeqNo: 7040772 Prep Date: 12/30/2020 SPK Ref Control **RPD** Ref Value Limit Value

Analyte Result PQL SPK Val %REC 0.002085 0.00020 0.002 0 104 80-120 0 Mercury

MS	Sample ID: 20121813-10DMS				Units: mg/L			Analysis Date: 12/30/2020 01:55 F			
Client ID:	Run	Run ID: HG4_201230A					SeqNo: 7040812		Prep Date: 12/30/2020		
Analyte	Result	PQL	SPK Val	SPK Re Value	f	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.00219	0.00020	0.002	0.0000	003	109	75-125	(0		
MSD	Sample ID: 20121813-10DMSD					Units: mg/L	-	Analysis Date: 12/30/2020 01:57 PM			

The following samp	ples were analyzed in this batch:	[20121752-01A	20	121752-02A	20	121752-03A			
Mercury	0.002115	0.0002	0 0.002	0.00000	03 106	75-125	0.00219	3.48	20	
Analyte	Result	PQ		SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Client ID:	Run I	ID: HG4	_201230A		SeqNo: 7040	0815	Prep Date: 12/	30/2020	DF: 1	
						_	·			

Client:Geosyntec ConsultantsWork Order:20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: 170083

Instrument ID ICPMS4

Method: SW6020B

MBLK	Sample ID: MBLK-170083-1700	33			Units: mg/	L	Analysis Date: 12/30/2020 08:51 PI				
Client ID:	Run I	D: ICPMS	ICPMS4_201230A		SeqNo: 7043005		Prep Date: 12/30/2020		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Antimony	ND	0.0050									
Arsenic	ND	0.0050									
Barium	ND	0.0050									
Beryllium	ND	0.0020									
Boron	ND	0.020									
Cadmium	ND	0.0020									
Calcium	ND	0.50									
Chromium	ND	0.0050									
Cobalt	ND	0.0050									
Iron	ND	0.080									
Lead	ND	0.0050									
Lithium	ND	0.010									
Magnesium	ND	0.20									
Manganese	ND	0.0050									
Molybdenum	ND	0.0050									
Potassium	ND	0.20									
Selenium	ND	0.0050									
Sodium	ND	0.20									
Thallium	ND	0.0050									

QC BATCH REPORT

QC BATCH REPORT

Batch ID: 170083

DTE- Belle River (GLP-8017)

Instrument ID ICPMS4

Method: SW6020B

Client ID: Run ID: ICPMS4_201230A SeqNo: Prep Date: 12/30/2020 DF: 1 Analyte Result PQL SPK Val SPK Ref Control RPD Ref RPD Ref RPD RPD RPD RPD RPD Ref Ref<	8:52 PM
AnalyteResultPQLSPK ValValue%RECLimitValue%RPDLimitAntimony0.099840.00500.1099.880-12000Arsenic0.0990.00500.109980-12000Barium0.10050.00500.1010080-12000Beryllium0.097930.00200.1097.980-12000Boron0.44590.0200.5089.280-12000Cadmium0.10490.00200.1010580-12000Calcium9.9590.5010099.680-12000Chromium0.097640.00500.1097.680-12000Cobalt0.098650.00500.1097.480-12000Lead0.098960.00500.1099.480-12000Lithium0.099390.0100.1099.480-12000Magnesium10.410.2010010480-12000Magnese0.097260.00500.1097.380-12000Molybdenum0.099490.00500.1099.580-12000Selenium10.090.2010010180-12000Selenium <t< td=""><td></td></t<>	
Arsenic 0.099 0.0050 0.1 0 99 80-120 0 Barium 0.1005 0.0050 0.1 0 100 80-120 0 Beryllium 0.09793 0.0020 0.1 0 97.9 80-120 0 Boron 0.4459 0.020 0.5 0 89.2 80-120 0 Cadmium 0.1049 0.0020 0.1 0 105 80-120 0 Calcium 9.959 0.50 10 0 99.6 80-120 0 Cobalt 0.09764 0.0050 0.1 0 99.6 80-120 0 Cobalt 0.09865 0.0050 0.1 0 99.6 80-120 0 Iron 9.742 0.080 10 0 97.4 80-120 0 Lead 0.09896 0.0050 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Magnesium 0.09726 <	Qual
Barium 0.1005 0.0050 0.1 0 100 80-120 0 Barium 0.00793 0.0020 0.1 0 100 80-120 0 Beryllium 0.09793 0.0020 0.1 0 97.9 80-120 0 Boron 0.4459 0.020 0.5 0 89.2 80-120 0 Cadmium 0.1049 0.0020 0.1 0 105 80-120 0 Cadmium 0.1049 0.0020 0.1 0 105 80-120 0 Calcium 9.959 0.50 10 0 99.6 80-120 0 Chromium 0.09764 0.0050 0.1 0 97.6 80-120 0 Iron 9.742 0.080 10 0 97.4 80-120 0 Lithium 0.09939 0.010 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20	
Beryllium 0.09793 0.0020 0.1 0 97.9 80-120 0 Boron 0.4459 0.020 0.5 0 89.2 80-120 0 Cadmium 0.1049 0.0020 0.1 0 105 80-120 0 Calcium 9.959 0.50 10 0 99.6 80-120 0 Calcium 0.09764 0.0050 0.1 0 97.6 80-120 0 Cobalt 0.09865 0.0050 0.1 0 97.6 80-120 0 Cobalt 0.09865 0.0050 0.1 0 98.6 80-120 0 Iron 9.742 0.080 10 0 97.4 80-120 0 Lead 0.09896 0.0050 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Magnese 0.09726 0.0050 0.1 0 97.3 80-120 0 Molybdenum 0.09949	
Boron 0.4459 0.020 0.5 0 89.2 80-120 0 Cadmium 0.1049 0.0020 0.1 0 105 80-120 0 Cadmium 9.959 0.50 10 0 99.6 80-120 0 Calcium 9.959 0.50 10 0 99.6 80-120 0 Chromium 0.09764 0.0050 0.1 0 97.6 80-120 0 Cobalt 0.09865 0.0050 0.1 0 97.6 80-120 0 Iron 9.742 0.080 10 0 97.4 80-120 0 Lead 0.09896 0.0050 0.1 0 99.4 80-120 0 Lithium 0.09939 0.010 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Magnesium 10.41 0.20 10 0 97.3 80-120 0 Molybdenum 0.09949 <t< td=""><td></td></t<>	
Cadmium 0.1049 0.0020 0.1 0 105 80-120 0 Cadmium 9.959 0.50 10 0 99.6 80-120 0 Calcium 9.959 0.50 10 0 99.6 80-120 0 Chromium 0.09764 0.0050 0.1 0 97.6 80-120 0 Cobalt 0.09865 0.0050 0.1 0 98.6 80-120 0 Cobalt 0.09865 0.0050 0.1 0 98.6 80-120 0 Iron 9.742 0.080 10 0 97.4 80-120 0 Lead 0.09896 0.0050 0.1 0 99 80-120 0 Lithium 0.09939 0.010 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Malganese 0.09726 0.0050 0.1 0 99.5 80-120 0 Potassium 10.09	
Calcium 9.959 0.50 10 0 99.6 80-120 0 Chromium 0.09764 0.0050 0.1 0 97.6 80-120 0 Cobalt 0.09865 0.0050 0.1 0 97.6 80-120 0 Cobalt 0.09865 0.0050 0.1 0 97.6 80-120 0 Iron 9.742 0.080 10 0 97.4 80-120 0 Lead 0.09896 0.0050 0.1 0 99.4 80-120 0 Lithium 0.09939 0.010 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Magnese 0.09726 0.0050 0.1 0 97.3 80-120 0 Molybdenum 0.09949 0.0050 0.1 0 99.5 80-120 0 Potassium 10.09 0.20	
Chromium 0.09764 0.0050 0.1 0 97.6 80-120 0 Cobalt 0.09865 0.0050 0.1 0 98.6 80-120 0 Iron 9.742 0.080 10 0 97.4 80-120 0 Lead 0.09896 0.0050 0.1 0 99 80-120 0 Lithium 0.09939 0.010 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Magnese 0.09726 0.0050 0.1 0 99.4 80-120 0 Molybdenum 0.09949 0.0050 0.1 0 97.3 80-120 0 Potassium 10.09 0.20 10 0 101 80-120 0 Selenium 0.09876 0.0050 0.1 0 99.5 80-120 0	
Cobalt 0.09865 0.0050 0.1 0 98.6 80-120 0 Iron 9.742 0.080 10 0 97.4 80-120 0 Lead 0.09896 0.0050 0.1 0 99 80-120 0 Lithium 0.09939 0.010 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Magnese 0.09726 0.0050 0.1 0 99.4 80-120 0 Molybdenum 0.09949 0.0050 0.1 0 97.3 80-120 0 Potassium 10.09 0.20 10 0 101 80-120 0 Molybdenum 0.09949 0.0050 0.1 0 99.5 80-120 0 Potassium 10.09 0.20 10 0 101 80-120 0 Selenium 0.09876 0.0050 0.1 0 98.8 80-120 0	
Iron 9.742 0.080 10 0 97.4 80-120 0 Lead 0.09896 0.0050 0.1 0 99 80-120 0 Lithium 0.09939 0.010 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Magnese 0.09726 0.0050 0.1 0 97.3 80-120 0 Molybdenum 0.09949 0.0050 0.1 0 99.5 80-120 0 Potassium 10.09 0.20 10 0 101 80-120 0 Selenium 0.09876 0.0050 0.1 0 99.5 80-120 0	
Lead 0.09896 0.0050 0.1 0 99 80-120 0 Lithium 0.09939 0.010 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Manganese 0.09726 0.0050 0.1 0 97.3 80-120 0 Molybdenum 0.09949 0.0050 0.1 0 97.3 80-120 0 Potassium 10.09 0.20 10 0 101 80-120 0 Selenium 0.09876 0.0050 0.1 0 99.5 80-120 0	
Lithium 0.09939 0.010 0.1 0 99.4 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Magnese 0.09726 0.0050 0.1 0 97.3 80-120 0 Molybdenum 0.09949 0.0050 0.1 0 99.5 80-120 0 Potassium 10.09 0.20 10 0 101 80-120 0 Selenium 0.09876 0.0050 0.1 0 98.8 80-120 0	
Magnesium 10.41 0.20 10 0 104 80-120 0 Magnesium 10.41 0.20 10 0 104 80-120 0 Magnesium 0.09726 0.0050 0.1 0 97.3 80-120 0 Molybdenum 0.09949 0.0050 0.1 0 99.5 80-120 0 Potassium 10.09 0.20 10 0 101 80-120 0 Selenium 0.09876 0.0050 0.1 0 98.8 80-120 0	
Manganese 0.09726 0.0050 0.1 0 97.3 80-120 0 Molybdenum 0.09949 0.0050 0.1 0 99.5 80-120 0 Potassium 10.09 0.20 10 0 101 80-120 0 Selenium 0.09876 0.0050 0.1 0 98.8 80-120 0	
Molybdenum 0.09949 0.0050 0.1 0 99.5 80-120 0 Potassium 10.09 0.20 10 0 101 80-120 0 Selenium 0.09876 0.0050 0.1 0 98.8 80-120 0	
Potassium 10.09 0.20 10 0 101 80-120 0 Selenium 0.09876 0.0050 0.1 0 98.8 80-120 0	
Selenium 0.09876 0.0050 0.1 0 98.8 80-120 0	
Sodium 10.48 0.20 10 0 105 80-120 0	
Thallium 0.09419 0.0050 0.1 0 94.2 80-120 0	

.

Batch ID: 170083

Instrument ID ICPMS4

Method: SW6020B

MS	Sample ID: 20121813-01DMS				Units: mg/	L	Analysis	Date: 12/	30/2020 09	:13 PM
Client ID:	Run	ID: ICPMS	4_201230A		SeqNo: 704		Prep Date: 12/3	0/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.0939	0.0050	0.1	0.00001	9 93.9	75-125	0			
Arsenic	0.09542	0.0050	0.1	0.00052	3 94.9	75-125	0			
Barium	0.1197	0.0050	0.1	0.0191	4 101	75-125	0			
Beryllium	0.1028	0.0020	0.1	0.00342	2 99.4	75-125	0			
Boron	0.5173	0.020	0.5	0.0786	6 87.7	75-125	0			
Cadmium	0.09866	0.0020	0.1	0.00304	6 95.6	75-125	0			
Calcium	63.88	0.50	10	53.0	4 108	75-125	0			0
Chromium	0.09053	0.0050	0.1	0.00035	1 90.2	75-125	0			
Cobalt	0.2039	0.0050	0.1	0.113	4 90.5	75-125	0			
Iron	8.964	0.080	10	0.0208	3 89.4	75-125	0			
Lead	0.09794	0.0050	0.1	0.00067	4 97.3	75-125	0			
Lithium	0.1112	0.010	0.1	0.0109	5 100	75-125	0			
Magnesium	61.4	0.20	10	51.1	6 102	75-125	0			0
Molybdenum	0.09472	0.0050	0.1	0.00100	8 93.7	75-125	0			
Potassium	12.35	0.20	10	2.60	5 97.4	75-125	0			
Selenium	0.1012	0.0050	0.1	0.00594	9 95.3	75-125	0			
Sodium	65.82	0.20	10	55.8	3 99.9	75-125	0			0
Thallium	0.09224	0.0050	0.1	0.00003	7 92.2	75-125	0			

MS	Sample ID: 20121813-10DMS				Units: mg /	Ľ	Analysis Date: 12/30/2020 09:35 Pl				
Client ID:	Run I	D: ICPMS4	_201230A		SeqNo: 704	3031	Prep Date: 12/	30/2020	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Antimony	0.09845	0.0050	0.1	0.00004	1 98.4	75-125	()			
Arsenic	0.1005	0.0050	0.1	0.0002	21 100	75-125	()			
Barium	0.125	0.0050	0.1	0.0258	99.1	75-125	()			
Beryllium	0.1046	0.0020	0.1	0.00221	4 102	75-125	()			
Boron	0.5169	0.020	0.5	0.05	56 92.2	75-125	()			
Cadmium	0.1056	0.0020	0.1	0.00545	54 100	75-125	()			
Calcium	34.88	0.50	10	25.1	97.2	75-125	()			
Chromium	0.09457	0.0050	0.1	0.00078	93.8	75-125	()			
Cobalt	0.2768	0.0050	0.1	0.180	96.2	75-125	()			
Iron	9.488	0.080	10	0.14	93.5	75-125	()			
Lead	0.09729	0.0050	0.1	0.00159	91 95.7	75-125	()			
Lithium	0.107	0.010	0.1	0.00654	9 100	75-125	()			
Magnesium	24.92	0.20	10	15.2	96.4	75-125	()			
Molybdenum	0.0977	0.0050	0.1	0.00038	97.3	75-125	()			
Potassium	12.88	0.20	10	3.0	98.5	75-125	()			
Selenium	0.09792	0.0050	0.1	0.00189	94 96	75-125	()			
Sodium	71.55	0.20	10	61.6	63 99.1	75-125	()		0	
Thallium	0.09151	0.0050	0.1	0.00010	91.4	75-125	()			

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

QC BATCH REPORT

Batch ID: 170083 Instrument ID ICPMS4 Method: SW6020B

					-						
MS	Sample ID: 20121813-01DMS				Units: mg/ I	L	Analysis	Date: 12/3	1/2020 05	5:20 PM	
Client ID:	Run I	D: ICPMS	4_201231A	5	SeqNo: 7046	6543	Prep Date: 12/3	DF: 10			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Manganese	3.991	0.050	0.1	3.949	41.3	75-125	0			SO	
MS	Sample ID: 20121813-10DMS				Units: mg/ I	L	Analysis	Date: 12/3	31/2020 0	5:39 PM	
Client ID:	Run I	D: ICPMS	4_201231A	5	SeqNo: 7046	6555	Prep Date: 12/3	0/2020	DF: 10		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Manganese	4.091	0.050	0.1	3.865	227	75-125	0			SO	
MSD	Sample ID: 20121813-01DMSD	Units: mg/L						Analysis Date: 12/30/2020 09:15 P			
Client ID:	Run	D: ICPMS	4_201230A	5	SeqNo: 704 3	3019	Prep Date: 12/3	0/2020	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Antimony	0.09655	0.0050	0.1	0.000019	96.5	75-125	0.0939	2.78	20		
Arsenic	0.09753	0.0050	0.1	0.000523	97	75-125	0.09542	2.18	20		
Barium	0.1208	0.0050	0.1	0.01914	102	75-125	0.1197	0.848	20		
Beryllium	0.1044	0.0020	0.1	0.003422	101	75-125	0.1028	1.59	20		
Boron	0.5179	0.020	0.5	0.07866	87.8	75-125	0.5173	0.103	20		
Cadmium	0.1013	0.0020	0.1	0.003046	98.3	75-125	0.09866	2.67	20		
Calcium	62.93	0.50	10	53.04	98.9	75-125	63.88	1.49	20	0	
Chromium	0.09296	0.0050	0.1	0.000351	92.6	75-125	0.09053	2.65	20		
Cobalt	0.2064	0.0050	0.1	0.1134	92.9	75-125	0.2039	1.18	20		
Iron	9.236	0.080	10	0.02083	92.1	75-125	8.964	2.99	20		
Lead	0.09947	0.0050	0.1	0.000674	98.8	75-125	0.09794	1.55	20		
Lithium	0.1128	0.010	0.1	0.01095		75-125	0.1112	1.45	20		
Magnesium	61.51	0.20	10	51.16		75-125	61.4	0.185	20	0	
Molybdenum	0.09663	0.0050	0.1	0.001008		75-125	0.09472	2	20		
Potassium	12.63	0.20	10	2.605		75-125	12.35	2.27	20		
Selenium	0.1029	0.0050	0.1	0.005949		75-125	0.1012	1.62	20		
Sodium	66.86	0.20	10	55.83		75-125	65.82	1.56	20	0	
Thallium	0.09366	0.0050	0.1	0.000037	93.6	75-125	0.09224	1.53	20		

Batch ID: 170083 Instru

Instrument ID ICPMS4

Method: SW6020B

MSD	Sample ID: 20121813-10DMSD				Units: mg/	L	Analysis	Date: 12/3	0/2020 09	:37 PM		
Client ID:	Run II	D: ICPMS	4_201230A	:	SeqNo: 704:	3032	Prep Date: 12/3	0/2020	DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Antimony	0.09824	0.0050	0.1	0.000041	1 98.2	75-125	0.09845	0.211	20			
Arsenic	0.09954	0.0050	0.1	0.00021	1 99.3	75-125	0.1005	0.917	20			
Barium	0.1229	0.0050	0.1	0.02584	4 97	75-125	0.125	1.7	20			
Beryllium	0.1039	0.0020	0.1	0.002214	102	75-125	0.1046	0.636	20			
Boron	0.517	0.020	0.5	0.056	6 92.2	75-125	0.5169	0.0288	20			
Cadmium	0.1044	0.0020	0.1	0.005454	4 99	75-125	0.1056	1.11	20			
Calcium	34.42	0.50	10	25.15	5 92.7	75-125	34.88	1.31	20			
Chromium	0.09402	0.0050	0.1	0.000785	5 93.2	75-125	0.09457	0.58	20			
Cobalt	0.2727	0.0050	0.1	0.1806	6 92.2	75-125	0.2768	1.48	20			
Iron	9.402	0.080	10	0.143	3 92.6	75-125	9.488	0.913	20			
Lead	0.0969	0.0050	0.1	0.001591	95.3	75-125	0.09729	0.394	20			
Lithium	0.1057	0.010	0.1	0.006549	9 99.1	75-125	0.107	1.23	20			
Magnesium	24.72	0.20	10	15.27	7 94.4	75-125	24.92	0.809	20			
Molybdenum	0.09638	0.0050	0.1	0.000386	6 96	75-125	0.0977	1.36	20			
Potassium	12.71	0.20	10	3.03	3 96.8	75-125	12.88	1.33	20			
Selenium	0.09719	0.0050	0.1	0.001894	4 95.3	75-125	0.09792	0.75	20			
Sodium	70.5	0.20	10	61.63	8 88.7	75-125	71.55	1.48	20	0		
Thallium	0.09051	0.0050	0.1	0.000106	6 90.4	75-125	0.09151	1.1	20			
MSD	Sample ID: 20121813-01DMSD				Units: mg/	L	Analysis	Date: 12/3	1/2020 05	:22 PM		
Client ID:	Run II	D: ICPMS	4_201231A	:	SeqNo: 704	6544	Prep Date: 12/3	0/2020	DF: 10			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Manganese	4.164	0.050	0.1	3.949	9 215	75-125	3.991	4.26	20	SO		
MSD	Sample ID: 20121813-10DMSD				Units: mg/	L	Analysis	Analysis Date: 12/31/2020 05:41 I				
Client ID:	Run II	D: ICPMS	4_201231A	:	SeqNo: 704	6556	Prep Date: 12/3	0/2020	DF: 10			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Manganese	4.094	0.050	0.1	3.865	5 229	75-125	4.091	0.0533	20	SO		
The following sa	mples were analyzed in this batch:	20)121752-01/	A 201	21752-02A	20	121752-03A					

Client:Geosyntec ConsultantsWork Order:20121752Project:DTE- Belle River (GLP-8017)

QC BATCH REPORT

Batch ID: 169727 Instrument ID TDS Method: A2540 C-11

Sample ID: MBLK-1697	27-169727				L	Inits: mg/l	-	Analysi	s Date: 12/2	23/2020 02	2:50 PN
	Run ID:	TDS_20	01223B		Se	qNo: 702 1	476	Prep Date: 12/	22/2020	DF: 1	
	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
s	ND	30									
Sample ID: LCS-169727	-169727				L	Inits: mg/l	-	Analysi	s Date: 12/2	23/2020 02	2:50 PN
	Run ID:	TDS_20	01223B		Se	qNo: 702 1	475	Prep Date: 12/	22/2020	DF: 1	
	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
S	476	30	495		0	96.2	85-109	С)		
Sample ID: 20121752-03	3B DUP				U	Inits: mg/I	_	Analysi	s Date: 12/2	23/2020 02	2:50 PN
	Run ID:	TDS_20	01223B		Se	qNo: 702 1	469	Prep Date: 12/	22/2020	DF: 1	
	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
S	1940	300	0		0	0	0-0	2100	7.92	10	
los woro analyzod in this	hatch.	20)121752-01F	3 20	1121	752-02B	20	121752-03B			
	s Sample ID: LCS-169727 s Sample ID: 20121752-03	Result s ND Sample ID: LCS-169727-169727 Run ID: Result s 476 Sample ID: 20121752-03B DUP Run ID: Run ID:	Run ID: TDS_24 Result PQL s ND 30 Sample ID: LCS-169727-169727 Run ID: TDS_24 Result PQL Result PQL s 476 30 Sample ID: 20121752-03B DUP Run ID: TDS_24 s 476 30 Sample ID: 20121752-03B DUP Run ID: TDS_24 s 1940 300	Run ID: TDS_201223B Result PQL SPK Val ND 30	Run ID:TDS_201223BResultPQLSPK ValSample ID:LCS-169727-169727Run ID:TDS_201223BRun ID:TDS_201223BSample ID:20121752-03B DUPSample ID:20121752-03B DUPRun ID:TDS_201223BSample ID:20121752-03B DUPRun ID:TDS_201223BSample ID:20121752-03B DUPSample ID:20121752-03B DUPSam	Run ID: TDS_201223B Set Result PQL SPK Val SPK Ref Value s ND 30	Run ID: TDS_201223B SeqNo: 7021 Result PQL SPK Val SPK Ref Value % REC Sample ID: LCS-169727-169727 Units: mg/I Run ID: TDS_201223B SeqNo: 7021 Sample ID: LCS-169727-169727 Units: mg/I Run ID: TDS_201223B SeqNo: 7021 Sample ID: LCS-169727-169727 Units: mg/I Result PQL SPK Val SeqNo: 7021 Sample ID: LCS-169727-169727 Units: mg/I Result PQL SPK Val SeqNo: 7021 Sample ID: 20121752-03B DUP Units: mg/I Run ID: TDS_201223B Units: mg/I Sample ID: 20121752-03B DUP Units: mg/I Run ID: TDS_201223B Units: mg/I Sample ID: 20121752-03B DUP Units: mg/I Result PQL SPK Val SeqNo: 7021 Sample ID: 20121752-03B DUP Units: mg/I Result PQL SPK Val SeqNo: 7021 Sample ID: 20121752-03B DUP SeqNo: 7021 SeqNo: 7021	Run ID:TDS_201223BSeqNo:TO21476ResultPQLSPK Val $^{SPK Ref}$ Value NREC Control LimitND3030Units: $MREC$ $MREC$ Sample ID:LCS-169727-169727Run ID: $TDS_201223B$ Units: $MGEC$ Run ID: $TDS_201223B$ Units: $MGEC$ $MREC$ ResultPQLSPK Val $^{SPK Ref}$ Value NREC Control Limits47630495096.285-109Sample ID:20121752-03B DUP $IDS_201223B$ Units: $IDS_201213B$ $IDS_201213B$ $IDS_201213B$ Sample ID:20121752-03B DUP $IDS_201213B$ $IDS_201213B$ $IDS_201213B$ $IDS_201213B$ $IDS_201213B$ Result PQL $SPK Val$ $SPK Ref$ Value NREC $Control$ Limits19403000000.0	Run ID: TDS_201223B SeqNo: 7021476 Prep Date: 12/2 Result PQL SPK Val SPK Ref Value Control Limit RPD Ref Value Sample ID: LCS-169727-169727 Units: mg/L Units: mg/L Analysis Run ID: TDS_201223B SPK Ref Value SeqNo: 7021475 Prep Date: 12/2 Sample ID: LCS-169727-169727 SPK Val SeqNo: 7021475 Prep Date: 12/2 Run ID: TDS_201223B SPK Ref Value SeqNo: 7021475 Prep Date: 12/2 Sample ID: 20121752-03B DUP SPK Ref Value SeqNo: 7021475 Prep Date: 12/2 Run ID: TDS_201223B Units: mg/L Analysis Sample ID: 20121752-03B DUP SPK Ref Value SeqNo: 7021469 Prep Date: 12/2 Run ID: TDS_201223B SPK Ref Value SeqNo: 7021469 Prep Date: 12/2 Sample ID: 20121752-03B DUP SeqNo: 7021469 Prep Date: 12/2 Run ID: TDS_201223B SPK Ref Value SeqNo: 7021469 Prep Date: 12/2 Sample ID: 20121752-03B DUP SPK Ref Value SeqNo: 7021469 Prep Date: 12/2 Sample ID: 20121752-03B DUP SPK Ref Value SeqNo: 7021469 Prep Date: 12/2 Sample ID: 20121752-03B DUP <td>Run ID: TDS_201223B SeqNo: 7021476 Prep Date: 12/22/2020 Result PQL SPK Val SPK Ref Value Control %REC RPD Ref Value %RPD s ND 30 SeqNo: 7021476 Prep Date: 12/22/2020 s ND 30 SeqNo: SeqNo: Control (Limit) RPD Ref Value %RPD Sample ID: LCS-169727-169727 Val Units: mg/L Analysis Date: 12/2 Run ID: TDS_201223B SPK Ref Value SeqNo: Control %REC RPD Ref Value %RPD s 476 30 495 0 96.2 85-109 0 0 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2 Result PQL SPK Val SPK Ref Value SeqNo: Control %REC RPD Ref Value %RPD Sample ID: 20121752-03B DUP SPK Val SPK Ref Value SeqNo: Oo Oo Oo</td> <td>Run ID: TDS_201223B SeqNo: 7021476 Prep Date: 12/22/2020 DF: 1 Result PQL SPK Ref SPK Ref Control RPD Ref Ref RPD s ND 30 SPK Ref Control RPD Ref RPD Ref RPD RPD s ND 30 SPK Ref Units: mg/L Analysis Date: 12/2/2020 DF: 1 Sample ID: LCS-169727-169727 Run ID: TDS_201223B Units: mg/L Analysis Date: 12/2/2020 DF: 1 Result PQL SPK Ref SeqNo: 7021475 Prep Date: 12/2/2020 DF: 1 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2/2020 DF: 1 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2/2020 DF: 1 Result PQL SPK Ref SeqNo: 7021469 Prep Date: 12/2/2020 DF: 1 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2/2020 DF: 1 Result PQL SPK Ref SeqNo: 7021469 Prep Date: 12/2/2020 DF: 1 Result PQL SPK Ref SeqNo: 7021469 Prep Date: 12/2/2020 DF: 1</td>	Run ID: TDS_201223B SeqNo: 7021476 Prep Date: 12/22/2020 Result PQL SPK Val SPK Ref Value Control %REC RPD Ref Value %RPD s ND 30 SeqNo: 7021476 Prep Date: 12/22/2020 s ND 30 SeqNo: SeqNo: Control (Limit) RPD Ref Value %RPD Sample ID: LCS-169727-169727 Val Units: mg/L Analysis Date: 12/2 Run ID: TDS_201223B SPK Ref Value SeqNo: Control %REC RPD Ref Value %RPD s 476 30 495 0 96.2 85-109 0 0 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2 Result PQL SPK Val SPK Ref Value SeqNo: Control %REC RPD Ref Value %RPD Sample ID: 20121752-03B DUP SPK Val SPK Ref Value SeqNo: Oo Oo Oo	Run ID: TDS_201223B SeqNo: 7021476 Prep Date: 12/22/2020 DF: 1 Result PQL SPK Ref SPK Ref Control RPD Ref Ref RPD s ND 30 SPK Ref Control RPD Ref RPD Ref RPD RPD s ND 30 SPK Ref Units: mg/L Analysis Date: 12/2/2020 DF: 1 Sample ID: LCS-169727-169727 Run ID: TDS_201223B Units: mg/L Analysis Date: 12/2/2020 DF: 1 Result PQL SPK Ref SeqNo: 7021475 Prep Date: 12/2/2020 DF: 1 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2/2020 DF: 1 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2/2020 DF: 1 Result PQL SPK Ref SeqNo: 7021469 Prep Date: 12/2/2020 DF: 1 Sample ID: 20121752-03B DUP Units: mg/L Analysis Date: 12/2/2020 DF: 1 Result PQL SPK Ref SeqNo: 7021469 Prep Date: 12/2/2020 DF: 1 Result PQL SPK Ref SeqNo: 7021469 Prep Date: 12/2/2020 DF: 1

QC BATCH REPORT

Batch ID: R306910

Instrument ID Titrator 1 Method: A2320 B-11

MBLK	Sample ID: MB-R30	6910-R30691	D			Units: mg/	L	Analys	is Date: 12/	29/2020 1	1:55 AM
Client ID:		Run ID	TITRAT	OR 1_2012	29A	SeqNo: 703	3262	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicar	rbonate (as CaCO3)	ND	10								
Alkalinity, Carb	onate (as CaCO3)	ND	10								
Alkalinity, Hydro	oxide (as CaCO3)	ND	10								
Alkalinity, Phen	nolphthalein (as CaCO3	ND	10								
Alkalinity, Total	l (as CaCO3)	ND	10								

LCS	Sample ID: LCS-R3069	10-R306910)			ι	Jnits: mg/l	-	Analy	sis Date: 12/2	29/2020 11	:55 AM
Client ID:		Run ID:	TITRAT	OR 1_2012	29A	Se	qNo: 7033	263	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Carbonate	(ac CaCO3)	923.7	10	925		0	99.9	88-110		0		
Aikainity, Carbonate	(as CaCOS)	020.1	10	525		0	00.0	00-110		0		

DUP	Sample ID: 20121803-0	1E DUP				U	Inits: mg/l	-	Analysis	Date: 12/2	9/2020 11	:55 AM
Client ID:		Run ID:	TITRAT	OR 1_2012	29A	Sec	qNo: 7033	273	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicarbonat	e (as CaCO3)	219.1	10	0		0	0	0-0	224.9	2.6	10	
Alkalinity, Carbonate	(as CaCO3)	ND	10	0		0	0	0-0	0	0	10	

DUP Sample II	D: 20121990-05A DUP				U	Jnits: mg/l	L	Analysi	s Date: 12/2	2 9/2020 1 1	:55 AM
Client ID:	Run ID:	TITRAT	OR 1_2012	29A	Se	qNo: 703 3	3276	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Total (as CaCO3)	66.2	10	0		0	0	0-0	62.95	5.03	10	
DUP Sample I	D: 20122120-08C DUP				L	Jnits: mg/l	L	Analysi	s Date: 12/2	2 9/2020 1 1	:55 AN
Client ID:	Run ID:	TITRAT	OR 1_2012	29A	Se	qNo: 703 3	3278	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Total (as CaCO3)	127.7	10	0		0	0	0-0	127.9	0.11	10	

The following samples were analyzed in this batch: 20121752-01B 20121752-02B 20121752-03B

QC BATCH REPORT

Batch ID: R306912 Instrument ID Titrator 1 Method: A4500-H B-11

LCS	Sample ID: LCS-R30691	12-R30691	2			U	Inits: s.u.		Analy	/sis Date: 12/2	29/2020 1	1:55 AN
Client ID:		Run ID	TITRAT	OR 1_2012	29B	Se	qNo: 703 :	3301	Prep Date:		DF: 1	
Analyte	1	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.99	0.10	4		0	99.8	92-108		0		
LCS	Sample ID: LCS-R30691	12-R30691	2			U	Inits: s.u.		Analy	/sis Date: 12/2	29/2020 1	1:55 AN
Client ID:		Run ID	: TITRAT	OR 1_2012	29B	Se	qNo: 703 :	3308	Prep Date:		DF: 1	
Analyte	I	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.99	0.10	4		0	99.8	92-108		0		
DUP	Sample ID: 20122120-08	BC DUP				U	Inits: s.u.		Analy	/sis Date: 12/2	29/2020 1	1:55 AI
Client ID:		Run ID	TITRAT	OR 1_2012	29B	Se	qNo: 703 3	3305	Prep Date:		DF: 1	
Analyte	I	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
pH (laboratory)		8.05	0.10	0		0	0	0-0	7.	99 0.748	5	н
Temperature		20.95	0.10	0		0	0	0-0	20.	76 0.911		Н
DUP	Sample ID: 20121990-05	5A DUP				U	Inits: s.u.		Analy	sis Date: 12/2	29/2020 1	1:55 AI
Client ID:		Run ID	TITRAT	OR 1_2012	29B	Se	qNo: 703 :	3315	Prep Date:		DF: 1	
Analyte	I	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
pH (laboratory)		7.51	0.10	0		0	0	0-0	7.	56 0.664	5	н
Temperature		20.63	0.10	0		0	0		19.9	96 3.3		Н
The following san	nples were analyzed in this	batch:	20)121752-018	3 20	0121	752-02B	20	121752-03B			

Client:Geosyntec ConsultantsWork Order:20121752

Project: DTE- Belle River (GLP-8017)

QC BATCH REPORT

Batch ID: R307142 Instrument ID IC3

Method: SW9056A

MBLK	Sample ID: MBLK-R30714	2					Units: mg/L	-	Analy	/sis [Date: 12/3	0/2020 04	:56 PN
Client ID:		Run ID: IC3	_201	230A		S	eqNo: 7043	048	Prep Date:			DF: 1	
Analyte	Re	esult PC	QL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qual
Chloride		ND 1	1.0										
Fluoride		ND 0.	10										
LCS	Sample ID: LCS-R307142						Units: mg/L	_	Analy	/sis [Date: 12/3	0/2020 05	:15 PI
Client ID:		Run ID: IC3	_201	230A		S	eqNo: 7043	049	Prep Date:			DF: 1	
Analyte	Re	esult PC	QL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qua
Chloride	9.	.321 1	1.0	10		0	93.2	88-110		0			
Fluoride	2.	.135 0.	10	2		0	107	82-116		0			
MS	Sample ID: 20122223-01D	MS					Units: mg/L	-	Analy	/sis [Date: 12/3	1/2020	
Client ID:		Run ID: IC3	_201	230A		S	eqNo: 7043	070	Prep Date:			DF: 40	
Analyte	Re	esult PC	QL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qua
Chloride		405	40	400	28.4	42	94.1	88-110		0			
Fluoride	84	4.26 4	1.0	80		0	105	82-116		0			
MSD	Sample ID: 20122223-01D	MSD					Units: mg/L	-	Analy	/sis [Date: 12/3	1/2020 12	:19 A
Client ID:		Run ID: IC3	_201	230A		S	eqNo: 7043	071	Prep Date:			DF: 40	
Analyte	Re	esult PC	QL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qua
Chloride	40	06.1	40	400	28.	42	94.4	88-110	4	05	0.286	20	
Fluoride	83	3.74 4	1.0	80		0	105	82-116	84.	26	0.614	20	
The following s	amples were analyzed in this b	atch:	20	121752-01E	3 20)12	1752-02B	20	121752-03B				

Batch ID: R307145

QC BATCH REPORT

Instrument ID IC4 Method: SW9056A

MBLK	Sample ID: MBLK-R3071	45				ι	Units: mg/l	L	Analysi	s Date: 12/3	0/2020 01	:43 PI
Client ID:		Run ID: I	C4_20	1230A		Se	eqNo: 7043	8217	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Chloride		ND	1.0									
Sulfate		ND	1.0									
LCS	Sample ID: LCS-R30714	5				ι	Units: mg/l	L	Analysi	s Date: 12/3	0/2020 02	2:39 PI
Client ID:		Run ID: I	C4_20	1230A		Se	eqNo: 7043	8218	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Chloride		9.353	1.0	10		0	93.5	88-110	C	1		
Sulfate	9	9.647	1.0	10		0	96.5	90-110	C	1		
MS	Sample ID: 20121752-03	B MS				ι	Units: mg/l	L	Analysi	s Date: 12/3	0/2020 07	':14 PI
Client ID: DB		Run ID: I	C4_20	1230A		Se	eqNo: 7043	3233	Prep Date:		DF: 20	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Chloride		228.2	20	200	42.	57	92.8	88-110	C	1		
Sulfate		1470	20	200	12	51	109	90-110	C)		EO
MSD	Sample ID: 20121752-03	B MSD				ι	Units: mg/l	L	Analysi	s Date: 12/3	0/2020 07	':34 PI
Client ID: DB		Run ID: I	C4_20	1230A		Se	eqNo: 7043	3234	Prep Date:		DF: 20	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Chloride		229.3	20	200	42.	57	93.4	88-110	228.2	0.476	20	
Sulfate		1480	20	200	12	51	114	90-110	1470	0.669	20	SEC
The following sar	nples were analyzed in this	batch:	20	0121752-01E	3 20	0121	1752-02B	20	121752-03B			

Client:Geosyntec ConsultantsWork Order:20121752

Project: DTE- Belle River (GLP-8017)

QC BATCH REPORT

Batch ID: R307276 Instrument ID IC3 Method: SW9056A

Sample ID: MBLK-R3072	276				Un	its: mg/l	L	Analys	is Date: 12/3	31/2020 01	:42 PM
	Run ID	IC3_20	1231A		Seq	No: 7047	7811	Prep Date:		DF: 1	
F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	ND	1.0									
Sample ID: LCS-R30727	6				Un	its: mg/l	L	Analys	is Date: 12/3	31/2020 02	2:01 PN
	Run ID	: IC3_20 ⁻	1231A		Seq	No: 7047	7812	Prep Date:		DF: 1	
F	Result	PQL	SPK Val	SPK Ref Value	,	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	9.654	1.0	10		0	96.5	90-110		0		
Sample ID: 20122530-06	AMS				Un	its: mg/l	L	Analys	is Date: 12/3	1/2020 06	:35 PN
	Run ID	IC3_20	1231A		Seq	No: 7047	7826	Prep Date:		DF: 40	
F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	424.4	40	400	43.2	11	95.3	90-110		0		
Sample ID: 20122530-06	A MSD				Un	its: mg/l	L	Analys	is Date: 12/3	31/2020 06	54 PN
	Run ID	IC3_20	1231A		Seq	No: 7047	7827	Prep Date:		DF: 40	
F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	425.5	40	400	43.2	11	95.6	90-110	424.	4 0.255	20	
	F Sample ID: LCS-R30727 F Sample ID: 20122530-06 F Sample ID: 20122530-06	Run ID Result ND Sample ID: LCS-R307276 Run ID Run ID 9.654 Sample ID: 20122530-06A MS Run ID Run ID Result 424.4 Sample ID: 20122530-06A MSD	Run ID: IC3_20 Result PQL ND 1.0 Sample ID: LCS-R307276 Run ID: IC3_20 Result PQL 9.654 1.0 Sample ID: 20122530-06A MS Run ID: IC3_20 Result PQL 424.4 40 Sample ID: 20122530-06A MSD Result PQL 424.4 40 Sample ID: 20122530-06A MSD Run ID: IC3_20 Result PQL 424.4 40	Run ID: IC3_201231A Result PQL SPK Val ND 1.0 1.0 Sample ID: LCS-R307276 Run ID: IC3_201231A Result PQL SPK Val 9.654 1.0 10 Sample ID: 20122530-06A MS IC3_20122530-06A MS Result PQL SPK Val Result PQL SPK Val A24.4 40 400 Sample ID: 20122530-06A MSD IC3_20122530-06A MSD Result PQL SPK Val A24.4 40 400 Sample ID: 20122530-06A MSD IC3_20122530-06A MSD Run ID: IC3_20122530-06A MSD IC3_20122530-06A MSD	Run ID:IC3_201231AResultPQLSPK ValND1.01.0Sample ID:LCS-R307276Run ID:IC3_201231ARun ID:IC3_201231ASample ID:QLSPK Val9.6541.0109.6541.010Sample ID:20122530-06A MSRun ID:IC3_2012231ASample ID:20122530-06A MSRun ID:IC3_2012231ASample ID:20122530-06A MSDRun ID:SPK ValSample ID:20122530-06A MSDRun ID:IC3_201231ASample ID:20122530-06A MSDRun ID:IC3_201231A	Run ID: IC3_201231A Sequence Result PQL SPK Val SPK Ref Value Sequence ND 1.0 1.0 1.0 1.0 1.0 Sequence Sample ID: LCS-R307276 IC3_201231A Sequence Sequence Sequence Run ID: IC3_201231A Sequence Sequence Sequence Sequence 9.654 1.0 10 0 0 0 Sample ID: 20122530-06A MS Image: Sequence Sequence Image: Sequence Sequence Result PQL SPK Val 10 0 0 0 Sample ID: 20122530-06A MS Image: Sequence Sequence Sequence Sequence Result PQL SPK Val Sequence Sequence Sequence Sequence Sample ID: 20122530-06A MSD Image: Sequence Sequence Sequence Sequence Sequence Sample ID: 20122530-06A MSD Image: Sequence Sequence Sequence Sequence Sample ID: 20122530-06A MSD Image: Sequence <	Run ID: IC3_201231A SeqNo: 7047 Result PQL SPK Val SPK Ref Value %REC ND 1.0 1.0 Units: mg/l Sample ID: LCS-R307276 SPK Val SeqNo: 7047 Run ID: IC3_201231A SeqNo: 7047 Run ID: IC3_201231A SeqNo: 7047 Sample ID: LCS-R307276 SPK Val %REC 9.654 1.0 10 0 96.5 Sample ID: 20122530-06A MS Units: mg/l SeqNo: 7047 Result PQL SPK Val SeqNo: 7047 Sample ID: 20122530-06A MSD Units: mg/l SeqNo: 7047 Sample ID: 20122530-06A MSD SPK Val %REC Sample ID: 20122530-06A MSD Units: mg/l SeqNo: 7047 Sample ID: 20122530-06A MSD Units: mg/l SeqNo: 7047 Sample ID: 20122530-06A MSD Units: mg/l SeqNo: 7047 Run ID: IC3_201231A SeqNo: 7047 Sample ID: 20122530-06A MSD Units: mg/l Run ID: IC3_201231A SeqNo: 7	Run ID: IC3_201231A SeqNo: 7047811 Result PQL SPK Val %REC Control 1.0" ND 1.0 Units: mg/L SeqNo: 7047812 Sample ID: LCS-R307276 Units: Mg/L SeqNo: 7047812 Sample ID: LCS-R307276 Units: Mg/L SeqNo: 7047812 Run ID: IC3_201231A SeqNo: 7047812 Result PQL SPK Val SeqNo: 7047812 Sample ID: 20122530-06A MS Units: mg/L SeqNo: 7047826 Sample ID: 20122530-06A MS Units: Mg/L SeqNo: 7047826 Result PQL SPK Val SeqNo: 7047826 Sample ID: 20122530-06A MSD Units: Mg/L Mg/L Mg/L Mg/L Mg/L Sample ID: 20122530-06A MSD Units: Mg/L SeqNo: 7047827 Sample ID: 20122530-06A MSD Units: Mg/L SeqNo: 7047827 Sample ID: 20122530-06A MSD SeqNo: SeqNo:	Run ID: IC3_201231A SeqNo: 7047811 Prep Date: Result PQL SPK Val SPK Ref Value Control %REC Control Limit RPD Ref Value ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Sample ID: LCS-R307276 Units: Units: mg/L Analys Run ID: IC3_201231A SeqNo: 7047812 Prep Date: 1.0 Sample ID: LCS-R307276 SPK Val SeqNo: Control RPD Ref Result PQL SPK Val SeqNo: 7047812 Prep Date: 9.654 1.0 10 0 96.5 90-110 Sample ID: 20122530-06A MS Units: mg/L Analys Run ID: IC3_201231A SeqNo: 7047826 Prep Date: Result PQL SPK Val SeqNo: 7047826 Prep Date: Sample ID: 20122530-06A MSD Units: mg/L Analys Sample ID: 20122530-06A MSD Units: mg/L Analys Sample ID:	Run ID:IC3_201231ASeqNo:7047811Prep Date:ResultPQLSPK Val SPK Ref Value SPR Ref Value Control RPD Ref Value SRPD ND1.01.01.01.01.01.01.01.01.01.0Sample ID:LCS-R307276ValueValueValueND1.0 <td>Run ID: IC3_201231A SeqNo: 7047811 Prep Date: DF: 1 Result PQL SPK Val SPK Ref Value Control RPD Ref Limit %RPD RPD RPD ND 1.0 ND 1.0 Units: mg/L SPK Ref Value SeqNo: 7047812 Prep Date: DF: 1 Sample ID: LCS-R307276 Units: mg/L Analysis Date: 12/31/2020 02 Run ID: IC3_201231A SeqNo: 7047812 Prep Date: DF: 1 Sample ID: LCS-R307276 Units: mg/L Analysis Date: 12/31/2020 02 Run ID: IC3_201231A SeqNo: Control RPD Ref %RPD RPD Imit 9.654 1.0 10 0 9.65 90-110 0 0 9.71 Sample ID: 20122530-06A MS Euro SPK Ref Value %REC Control RPD Ref %RPD RPD Imit Run ID: IC3_201231A SPK Ref Value Qult SPK Ref Qult Prep Date: DF: 40 Sample ID: <t< td=""></t<></td>	Run ID: IC3_201231A SeqNo: 7047811 Prep Date: DF: 1 Result PQL SPK Val SPK Ref Value Control RPD Ref Limit %RPD RPD RPD ND 1.0 ND 1.0 Units: mg/L SPK Ref Value SeqNo: 7047812 Prep Date: DF: 1 Sample ID: LCS-R307276 Units: mg/L Analysis Date: 12/31/2020 02 Run ID: IC3_201231A SeqNo: 7047812 Prep Date: DF: 1 Sample ID: LCS-R307276 Units: mg/L Analysis Date: 12/31/2020 02 Run ID: IC3_201231A SeqNo: Control RPD Ref %RPD RPD Imit 9.654 1.0 10 0 9.65 90-110 0 0 9.71 Sample ID: 20122530-06A MS Euro SPK Ref Value %REC Control RPD Ref %RPD RPD Imit Run ID: IC3_201231A SPK Ref Value Qult SPK Ref Qult Prep Date: DF: 40 Sample ID: <t< td=""></t<>

The following samples were analyzed in this batch:20121752-01B20121752-03B

Chain of Custody Form

Page <u>1</u> of <u>1</u>

 ✓ ALS Environmental 3352 128th Avenue Holland, Michigan 49424 (Tel) 616.399.6070 (Fax) 616.399.6185
 ✓ ○Г2.1752

				[ALS Projec	t Manager:	Γ			7	LS W	ork Ord	er #:	f	337	730	
Cus	tomer Info	rmation		Pr	oject Inform	ation				Paran	neter/l	letho	d Req	uest f	or Ana	alysis		
Purchase Ord	er		Project N	ame D	TE Belle River			Α	Metals									1
Work Ord	er		Project Nun	nber G	LP 8017			B	pH, Ani	ons, TD	S, Alkali	nity						
Company Nam	e Geosynt	tec Consultants	Bill To Comp	any G	eosyntec Cons	ultants		C										
Send Report T	o Michael	Coram	Invoice /	Attn. N	1ichael Coram			D										
Addres	2100 Co	mmonwealth Blvd.	Add	ress	100 Commonw	ealth Bivd.		Ε										
	Suite 10			S	uite 100			F										
City/State/Z		or, MI 48105	City/State	-	nn Arbor, MI 4	8105		G										
Phor					34-794-1547			н										
Fa		-8063		Fax 7	34-332-8063			<u> </u>										
e-Mail Addres	8					0	1	J			1	.	T	r	r	· · · · · ·		
No.	Sample De	scription	Date	Time	Matrix	Pres. Key Numbers	# Bottles	A	В	C	D	E	F	G	н	1	J	Hold
1	BAB	-E	12/16/2020	3:00	GW	2	2	x	x									
2	BAB-	W	12/16/2020	2:00	GW	2	2	x	×									
3	DB	}	12/16/2020	4:00	GW	2	2	x	x									
4		*******														1		
5												1				+		
6												1				1		+
7		<u></u>							_			+						+
												<u> </u>	-			 		
8																		
9																		
10																		
11																		
12																		
13													Τ]		1		T
14		·····									1			İ		1		1
15												1		 		1		
16																<u> </u>		+
ampler(s); Pleas	Print & Sig	n	Z IShi	pment Me	athod Tur	naround Tin	l ne: (Busines	e Dave	<u> </u>		Othe	<u> </u>	1	 Ro	sults D	L Date	<u>.</u>	
Nito		am b		artier /			5 BD	3 2 2 3 80		🗌 2 BD		* 1 BC	 >		34113 0	ac Dat		
telinguished by:	LUIC	Date:	Time	Received b			Date:	Time:	Note		ieparati					 .		
W	ĊĽ	- 12/17	3:00		· · ·			rmo.		· · ·	eparau	е керо	'r L					
telinquished by:		Date	Time:	Received b	y (Laboratory):	57	Date:	Time:	ALS	Cooler	Coo	er Q	C Pack	age: (C	heck B	ox Belo	ow)	
F	eder	1418ko	10:00	11/6	f					ID	Tem		Level II:] Level II)ata
ogged by (Laborator)			Time:	Checked b	y (Laboratory)	<i>y</i>					5.8	°C [□	TRRP LR	c	Ľ	TRRP Le	evel IV	
0	ATE	2/06	124				(c)				In) Level IV	SW846	Methods/	CLP like		
P	1 0	Date: (2/1/8/20	15,76	<u>.</u> ,							PAZ	23) Other:					
Preservative K	y: 1-HCl	2-HNO3 3-H2	SO ₄ 4-N	aOH	5-Na ₂ S ₂ O ₃	6-NaHS	0₄ 7-0t	her	8-4°C		ote: A	•					e	
levision 2 - Effect			·		Copyright 201	6 by ALS En	vironmental			s	amples	and C	OC Fo	m have	e been s	ubmitt	ed to A	LS.

Sample Receipt Checklist

Client Name: GEOSYNTEC - AA		Date/Time F	Received:	18-Dec-20	<u>10:00</u>
Work Order: 20121752		Received by	y: <u>I</u>	<u>MJG</u>	
Checklist completed by Matthew Gaylord	18-Dec-20	Reviewed by:	Chad Wh	elton	18-Dec-20
eSignature Matrices: <u>Groundwater</u> Carrier name: <u>FedEx</u>	Date		eSignature		Date
Shipping container/cooler in good condition?	Yes 🗸	No	Not Preser	nt 🗌	
Custody seals intact on shipping container/cooler?	Yes 🗸	No 🗌	Not Preser	nt 🗌	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Preser	nt 🗹	
Chain of custody present?	Yes 🗸	No			
Chain of custody signed when relinquished and received?	Yes 🗸	No			
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌			
Samples in proper container/bottle?	Yes 🗸	No 🗌			
Sample containers intact?	Yes 🗸	No 🗌			
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌			
All samples received within holding time?	Yes 🗸	No 🗌			
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌			
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes ✔ <u>5.8/5.8C</u>	No	IR1		
Cooler(s)/Kit(s):					
Date/Time sample(s) sent to storage:	12/18/2020) 1:47:53 PM			_
Water - VOA vials have zero headspace?	Yes	No	No VOA vials s	submitted	\checkmark
Water - pH acceptable upon receipt?	Yes 🗸	No	N/A		
pH adjusted? pH adjusted by:	Yes	No 🗸	N/A		

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:	
Contacted By:	Regarding:		
Comments:			
CorrectiveAction:			
			SF

Ft. Collins, Colorado

LIMS Version: 7.012

Tuesday, January 19, 2021

Michael Coram Geosyntec Consultants 2100 Commonwealth Blvd. Suite 100 Ann Arbor, MI 48105

Re: ALS Workorder: 2012397 Project Name: DTE - Belle River Project Number: GLP-8017

Dear Mr. Coram:

Three water samples were received from Geosyntec Consultants, on 12/18/2020. The samples were scheduled for the following analyses:

Radium-226	
Radium-228	

The results for these analyses are contained in the enclosed reports.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely,

mlie Elliza

ALS Environmental Julie Ellingson Project Manager

ADDRESS 225 Commerce Drive, Fort Collins, Colorado, USA 80524 | PHONE +1 970 490 1511 | FAX +1 970 490 1522 ALS GROUP USA, CORP. Part of the ALS Laboratory Group An ALS Limited Company <u>Accreditations</u>: ALS Environmental – Fort Collins is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

ALS Environmental – Fort Collins						
Accreditation Body	License or Certification Number					
California (CA)	2926					
Colorado (CO)	CO01099					
Florida (FL)	E87914					
Idaho (ID)	CO01099					
Kansas (KS)	E-10381					
Kentucky (KY)	90137					
PJ-LA (DoD ELAP/ISO 170250)	95377					
Maryland (MD)	285					
Missouri (MO)	175					
Nebraska(NE)	NE-OS-24-13					
Nevada (NV)	CO010992018-1					
New York (NY)	12036					
North Dakota (ND)	R-057					
Oklahoma (OK)	1301					
Pennsylvania (PA)	68-03116					
Tennessee (TN)	TN02976					
Texas (TX)	T104704241					
Utah (UT)	CO01099					
Washington (WA)	C1280					

<u>40 CFR Part 136</u>: All analyses for Clean Water Act samples are analyzed using the 40 CFR Part 136 specified method and include all the QC requirements.

2012397

Radium-228:

The samples were analyzed for the presence of ²²⁸Ra by low background gas flow proportional counting of ²²⁸Ac, which is the ingrown progeny of ²²⁸Ra, according to the current revision of SOP 724.

All remaining acceptance criteria were met.

Radium-226:

The samples were prepared and analyzed according to the current revision of SOP 783.

Sample 2012397-2 has a calculated yield as determined by ICP-AES above the 110% control limit at 132%. It is believed that there was native barium present in the sediment portion of the sample that was unaccounted for in the initial ICP aliquot. The result has been calculated conservatively, assuming a quantitative yield of 100%. This sample is identified with a "Y2" flag in the final reports, and the results are submitted without further qualification.

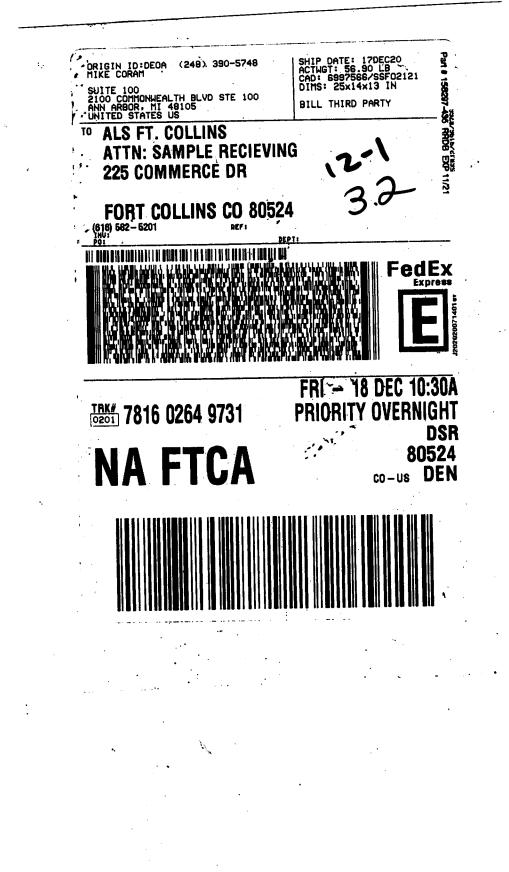
All remaining acceptance criteria were met.

ALS -- Fort Collins

Sample Number(s) Cross-Reference Table

OrderNum: 2012397 Client Name: Geosyntec Consultants Client Project Name: DTE - Belle River Client Project Number: GLP-8017 Client PO Number:

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
BAB-E	2012397-1		WATER	16-Dec-20	15:00
BAB-W	2012397-2		WATER	16-Dec-20	14:00
DB	2012397-3		WATER	16-Dec-20	16:00


		Cincinnati, OH +1 513 733 5336	36 Fort Collins, CO	\cap	Chain of Custody Form	ustody	Form	Houston, TX +1 281 530 5656	Spring City, PA +1 610 948 4903	South Charleston, WV +1 304 356 3168
		Everett, WA +1 425 356 2600	Holland, MI +1 616 399 6070	6070	Page	of /		Middletown, PA +1 717 944 SS41	Salt Lake City, UT +1 801 266 7700	York, PA +1 717 505 5280
4					COCI	coc ID: 230240	240		ß	2012397
					ALS Pr	ALS Project Manager:	Jer:	AL	ALS Work Order #:	33730
	Customer Information	on		Projec	Project Information			Parameter/M	Parameter/Method Request for Analysis	Analysis
Purchase Order			Project Name	Te DT	F-Belk	River	<u>ح</u>	Radium 226 and 228 combined	mbined	
Work Order			Project Number	Der 7	17-80	()	8			
Company Name	Geosyntec Consultants	ants	Bill To Company	-	Geosyntec Consultants		v	REDOLT	FOCI (A	He
Send Report To	Michael Coram		Invoice Attn	┼──	Niichael Coram		0	•	· /-	
Address	2100 Commonwealth Bivu Suite 100	th Biva	Address		2100 Commonwealth Blvd Suite 100	p	ш			
City/State/Zip	Ann Arbor MI 45105	16 16	City/State/Zip		Ann Attor, MI 48105		σ			
Phone	(734) 794-1547		Phone	-	(734) 794-1547		I			
Fax	(734) 332-8063			Fax (734) 3	(734) 332-8068		-			
e-Mail Address			e-Mail Address	SS			-			
No.	Sample Description		Date	Time	Matrix Pr	Pres. # Bottles	les A	E C B	L D T	PIOH C I
-	B-E		12/16	2:00	Set of the	2	×			
2	R-W	8	12/16	2:00	01/400	2	× ×			
3	XX	m	12/16	20: h	Contraction of the second	2	< X			
4					X					
6										
ø										
7										
8										
σ										
Sampler(s) Please Print & Sign	rint & Sign	- 20/	Shipment Method	Method	Required T	Required Turnaround Time: (Check Box)	ie: (Check Bo	Other	-	Results Due Date:
Relinguietted by:		Date: //-7	Time: Z . PO F	Received by:		A STO TO WAY DAYS	Notes:	2 WK DeVs	24 Hour	
Relinquished by:	2	Date:	>	Received by (Laboratory):	boratory):		Cooler ID	Cooler Temp.	QC Package: (Check One Box Below)	ox Below)
Logged by (Laboratory):	×	Date:	Time:	Checked by (Laboratory):	oratory):				Level III Std CCPar Data	TERP CheckList
Preservative Key:	1-HCI 2-HNO ₃	3-H ₂ SO ₄ 4-N	4-NaOH 5-Na ₂ S ₂ O ₃	6-NaHSO4	7-Other	8-4°C 9-5035	5		Clevel W SW846-CLP	
Note: 1. Any change 2. Unless othe	Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.	ng once samples an contract, services	d COC Form have b provided by ALS Em	een submitted vironmental ar	to ALS Environme re expressly limited	ntal. to the terms ar	id conditions	stated on the reverse.		Copyright 2011 by ALS Environmental

3. The Chain of Custody is a legal document. All information must be completed accurately.

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

Client Name/ID:	G	eosyntec MI		Workorder No:	20	012397
Project Manager:			Initials:	RGA	Date:	12/18/2020
1. Are airbills / shipping	documents pre	sent and/or remov	vable?		Drop Off	
2. Are custody seals on	shipping contain	ners intact?		a and the second s		
3. Are custody seals on	sample containe	ers intact?		Weeks COMMENDER TITLE		
4. Is there a COC (chain	-of-custody) pre	sent?				
5. Is the COC in agreem	ent with sample	s received? (IDs, date	s, times, # of sample	es, # of containers, matrix, requested a	nalyses, etc.)	
6. Are short-hold sampl	es present?					YES 🖌 NO
7. Are all samples within	n holding times	for the requested	analyses?	······································		
8. Were all sample cont	ainers received	intact? (not broken or le	aking)			
9. Is there sufficient san	nple for the requ	uested analyses?	· · · · · · · · · · · · · · · · · · ·	•		
10. Are samples in prop	er containers fo	r requested analys	es? (form 250, Sc	ample Handling Guidelines)		
11. Are all aqueous sam	ples preserved o	orrectly, if require	ed?		□ N/A [YES 🖌 NO
12. Were unpreserved s	amples pH chec	ked, if required?			🖌 N/A 🗌	
13. Are all samples requiri	ng no headspace (VOC, GRO, RSK/MEE, radon)	ree of bubble	es > 6 mm in diameter?	✓ N/A	
14. Were the samples sh	nipped on ice?					
15. Were cooler temper	atures measure	d at 0.1 - 6.0°C?	IR gun used*:	#3 🖌 #5	Rad Only	
Cooler #:	1			-		
Temperature (°C):	3.2					
# of custody seals on cooler:	1	11.27				
External mR/hr reading:	12					
Background mR/hr reading:	3	acceptance cr	iteria? (If no, se	•	□ N/A [
				r 2 thru 5 & 7 thru 12, notify I		ı/ login.
11) Sample 2012397	7-1-2 had a pH	of 4, 0.5mL of H	NO3 was a	added to achieve a pH	1<2	
·····						
t a shan t a	· · · · · · · · · · · · · · · · · · ·				And	
······································						0 199
			NERGENERAL STREET	executive of the second state of the second st		
· · · · · · · · · · · · · · · · · · ·						
CENTRE LETTER CONTRACTOR	44.500 <u>bar</u> a	·		1111-1111-111-11-1-1-1-1-1-1-1-1-1-1-1		
N 144						
If applicable, was the cl	lient contacted?			All client bottle ID's vs ALS lab	ID's double-che	cked by: RGA Date:
						vale.
Project Manager Sig	nature / Date:	_{	- 12	/21/20		
			/	/		

SAMPLE SUMMARY REPORT

Client:	Geosyntec Consultant	S				Date: 19-J	[an-21		
Project:	GLP-8017 DTE - Bell	le River	Work Order: 2012397						
Sample ID:	BAB-E					Lab ID: 2012	2397-1		
Legal Location:			Matrix: WATER						
Collection Date:	12/16/2020 15:00		Percent Moisture:						
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed		
Radium-226 by R	adon Emanation - M	ethod 903.1	SOP	783	Prep	Date: 1/4/2021	PrepBy: TRB		
Ra-226		0.57 (+/- 0.35)	Y1	0.41	pCi/l	NA	1/12/2021 11:32		
Carr: BARIUM		101	Y1	40-110	%REC	DL = NA	1/12/2021 11:32		
Radium-228 Anal	ysis by GFPC		SOP	724	Prep	Date: 1/11/2021	PrepBy: RGS		
COMBINED RADIU	M (226+228)	1.49 (+/- 0)		0.78	pCi/l	NA	1/15/2021 07:48		
Ra-228		0.92 (+/- 0.45)		0.78	pCi/l	NA	1/15/2021 07:48		
Carr: BARIUM		99.2		10 110	%REC	DL = NA	1/15/2021 07:48		

SAMPLE SUMMARY REPORT

Client: Geosyn	tec Consultants				Date: 19-J	[an-21			
Project: GLP-80	017 DTE - Belle River		Work Order: 2012397						
Sample ID: BAB-W	V				Lab ID: 2012	2397-2			
Legal Location:		Matrix: WATER							
Collection Date: 12/16/2	2020 14:00	Percent Moisture:							
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed			
Radium-226 by Radon E	manation - Method 903.1	SOP	783	Prep	Date: 1/4/2021	PrepBy: TRB			
Ra-226	1.78 (+/- 0.66)	Y2	0.3	pCi/l	NA	1/12/2021 11:32			
Carr: BARIUM	132	Y2	40-110	%REC	DL = NA	1/12/2021 11:32			
Radium-228 Analysis by	/ GFPC	SOP	724	Prep	Date: 1/11/2021	PrepBy: RGS			
COMBINED RADIUM (226+	-228) 1.78 (+/- 0)		1.32	pCi/l	NA	1/15/2021 07:48			
						1/15/0001 07 10			
Ra-228	ND (+/- 0.69)	U,M	1.32	pCi/l	NA	1/15/2021 07:48			

SAMPLE SUMMARY REPORT

Client:	Geosyntec Consultants					Date: 19-J	lan-21		
Project:	GLP-8017 DTE - Belle	River	Work Order: 2012397						
Sample ID:	DB					Lab ID: 2012	2397-3		
Legal Location:		Matrix: WATER							
Collection Date: 12/16/2020 16:00 Percent									
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed		
Radium-226 by R	adon Emanation - Me	thod 903.1	SOP	783	Prep	Date: 1/4/2021	PrepBy: TRB		
Ra-226		ND (+/- 0.21)	U	0.3	pCi/l	NA	1/12/2021 11:32		
Carr: BARIUM		95		40-110	%REC	DL = NA	1/12/2021 11:32		
Radium-228 Anal	ysis by GFPC		SOP	724	Prep	Date: 1/11/2021	PrepBy:RGS		
COMBINED RADIU	M (226+228)	ND (+/-0)	U	1.8	pCi/l	NA	1/15/2021 07:48		
Ra-228		ND (+/- 0.83)	U,M	1.8	pCi/l	NA	1/15/2021 07:48		
Carr: BARIUM		45		40-110	%REC	DL = NA	1/15/2021 07:48		

SAMPLE SUMMARY REPORT

Client:	Geosyntec Consultants				Date:	: 19-Jan-21
Project:	GLP-8017 DTE - Belle River				Work Order:	2012397
Sample ID:	DB				Lab ID:	2012397-3
Legal Location:					Matrix:	WATER
Collection Date:	12/16/2020 16:00			Per	cent Moisture:	
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyz
Explanation of (Jualifiers					
Radiochemistry:						
Y1 - Chemical Yield i Y2 - Chemical Yield (W - DER is greater th	ss than the sample specific MDC. s in control at 100-110%. Quantitative yield is assumed.	L - H - P -	activity is g LCS Recover LCS Recover LCS, Matrix S	reater than th y below lower y above uppe Spike Recover		

B - Result is less than the requested reporting limit but greater than the instrument method detection limit (MDL).

U or ND - Indicates that the compound was analyzed for but not detected.

E - The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.

M - Duplicate injection precision was not met.

N - Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike duplicate fail and the native sample concentration is less than four times the spike added concentration.

Z - Spiked recovery not within control limits. An explanatory note may be included in the narrative.

* - Duplicate analysis (relative percent difference) not within control limits.

S - SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Organics:

U or ND - Indicates that the compound was analyzed for but not detected.

B - Analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user.

E - Analyte concentration exceeds the upper level of the calibration range.

J - Estimated value. The result is less than the reporting limit but greater than the instrument method detection limit (MDL).

A - A tentatively identified compound is a suspected aldol-condensation product.

- X The analyte was diluted below an accurate quantitation level.
- * The spike recovery is equal to or outside the control criteria used.
- + The relative percent difference (RPD) equals or exceeds the control criteria.
- G A pattern resembling gasoline was detected in this sample.
- D A pattern resembling diesel was detected in this sample.
- M A pattern resembling motor oil was detected in this sample.
- C A pattern resembling crude oil was detected in this sample.
- 4 A pattern resembling JP-4 was detected in this sample.
- 5 A pattern resembling JP-5 was detected in this sample.
- H Indicates that the fuel pattern was in the heavier end of the retention time window for the analyte of interest.
- L Indicates that the fuel pattern was in the lighter end of the retention time window for the analyte of interest.
- Z This flag indicates that a significant fraction of the reported result did not resemble the patterns of any of the following petroleum hydrocarbon products: gasoline
- JP-8
- diesel
- mineral spirits
- motor oil
- Stoddard solvent - bunker C
- Duriker

Client:Geosyntec ConsultantsWork Order:2012397Project:GLP-8017 DTE - Belle River

QC BATCH REPORT

Batch ID: R	RE210104-1-3	Inst	rument ID: Alp	ha Scin		Method:	Radium-226	by Rado	on Emanation				
LCS	Sample ID:	RE210104-1					Units: pCi/l		Analy	sis Date: 1	/12/202	21 12:16	
Client ID:			Run II	D: RE210104-	A				Prep Date: 1/4	/2021	DF	: NA	
Analyte			Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qual
Ra-226			46 (+/- 12)	0	46.8		98.8	67-120					Р
Carr: BARI	UM		15230		15490		98.3	40-110					
МВ	Sample ID:	RE210104-1					Units: pCi/l		Analy	sis Date: 1	/12/202	21 12:16	
Client ID:			Run II	D: RE210104-	A				Prep Date: 1/4	/2021	DF	: NA	
Analyte			Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qual
Ra-226			ND	0.31									U
Carr: BARI	UM		15370		15490		99.2	40-110					
	ving samples	were analyzed ir	h this batch.	20123	97-1	20123	397-2	201	2397-3				

Project: GLP-8017 DTE - Belle River

QC BATCH REPORT

Batch ID: R	A210111-1-5	Instrument ID: GA	SPROP		Method: R	adium-228	Analysis	s by GFPC				
LCS	Sample ID: F	RA210111-1			U	nits: ug		Analy	sis Date: 1	/15/202	21 07:48	
Client ID:		Run I	D: RA210111-	1A			I	Prep Date: 1/1	1/2021	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qual
Carr: BARI	UM	34290		36030		95.2	40-110					
Ra-228		17.3 (+/- 4.1)	0.7	22.86		75.6	70-130					Ρ
LCSD	Sample ID: F	RA210111-1			Units: ug Analysis Date: 1/15/2021 07:4			21 07:48				
Client ID:		Run I	n ID: RA210111-1A Pr		Prep Date: 1/1	ep Date: 1/11/2021						
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qual
Carr: BARI	UM	33960		36030		94.2	40-110		34290			
Ra-228		22.7 (+/- 5.3)	0.7	22.86		99.3	70-130		17.3	0.81	2.13	Ρ
МВ	Sample ID: F	RA210111-1			U	nits: ug		Analy	sis Date: 1	/15/202	21 07:48	
Client ID:		Run I	D: RA210111-	1A			I	Prep Date: 1/1	1/2021	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qual
Carr: BARI	UM	34280		36150		94.8	40-110					
Ra-228		ND	0.77									U
The follow	ving samples w	ere analyzed in this batch:	20123	397-1	201239)7-2	2012	2397-3				

11-Feb-2021

Michael Coram Geosyntec Consultants 2100 Commonwealth Blvd. Suite 100 Ann Arbor, MI 48105

Re: DTE- Belle River (GLP-8017)

Work Order: 21020218

Dear Michael,

ALS Environmental received 3 samples on 03-Feb-2021 09:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 24.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Chad Whelton

Enuironmental 🕽

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Client:	Geosyntec Consultants
Project:	DTE- Belle River (GLP-8017)
Work Order:	21020218

Work Order Sample Summary

Lab Samp ID <u>Client Sample ID</u>	Matrix Tag Number	Collection Date Date Received Hole	1
21020218-01 BAB-North	Groundwater	1/29/2021 12:35 2/3/2021 09:00	
21020218-02 BAB-South	Groundwater	1/29/2021 12:15 2/3/2021 09:00	
21020218-03 DB	Groundwater	1/29/2021 13:20 2/3/2021 09:00	

Date: 11-Feb-21

Client:	Geosyntec Consultants	
Project:	DTE- Belle River (GLP-8017)	Case Narrative
Work Order:	21020218	

Samples for the above noted Work Order were received on 02/03/2021. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Metals:

No other deviations or anomalies were noted.

Wet Chemistry:

Batch R309524, Method SW9040C, Sample BAB-North (21020218-01B): pH is considered a "field test" and, as such, the recommended sample holding time expired prior to sample receipt.

Batch R309524, Method SW9040C, Sample BAB-South (21020218-02B): pH is considered a "field test" and, as such, the recommended sample holding time expired prior to sample receipt.

Batch R309524, Method SW9040C, Sample DB (21020218-03B): pH is considered a "field test" and, as such, the recommended sample holding time expired prior to sample receipt.

	•
Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
а	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
Е	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND O	Not Detected at the Reporting Limit Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Х	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
А	APHA Standard Methods
D	ASTM
Е	EPA
SW	SW-846 Update III
<u>Units Reporte</u>	-
°C	Degrees Celcius
mg/L	Milligrams per Liter
s.u.	Standard Units

Client: Geosyntec Consultants

Project: DTE- Belle River (GLP-8017)

Sample ID: BAB-North

Collection Date: 1/29/2021 12:35 PM

Work Order: 21020218 Lab ID: 21020218-01

Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed	
MERCURY BY CVAA			SW7470A		Prep: SW7470 2/8/21 13:14	Analyst: MAC	
Mercury	ND		0.00020	mg/L	1	2/8/2021 01:39 PM	
MERCURY BY CVAA (DISSOLVED)			SW747	0A	Prep: SW7470 2/8/21 13:14	Analyst: MAC	
Mercury	ND		0.00020	mg/L	1	2/8/2021 01:41 PM	
METALS BY ICP-MS			SW602	0B	Prep: SW3005A 2/9/21 15:19	Analyst: STP	
Antimony	ND		0.0050	mg/L	1	2/9/2021 05:26 PM	
Arsenic	ND		0.0050	mg/L	1	2/9/2021 05:26 PM	
Barium	0.48		0.0050	mg/L	1	2/9/2021 05:26 PM	
Beryllium	ND		0.0020	mg/L	1	2/9/2021 05:26 PM	
Boron	0.17		0.020	mg/L	1	2/9/2021 05:26 PM	
Cadmium	ND		0.0020	mg/L	1	2/9/2021 05:26 PM	
Calcium	42		0.50	mg/L	1	2/9/2021 05:26 PM	
Chromium	ND		0.0050	mg/L	1	2/9/2021 05:26 PM	
Cobalt	ND		0.0050	mg/L	1	2/9/2021 05:26 PM	
Iron	ND		0.080	mg/L	1	2/9/2021 05:26 PM	
Lead	ND		0.0050	mg/L	1	2/9/2021 05:26 PM	
Lithium	0.017		0.010	mg/L	1	2/9/2021 05:26 PM	
Magnesium	8.1		0.20	mg/L	1	2/9/2021 05:26 PM	
Manganese	ND		0.0050	mg/L	1	2/9/2021 05:26 PM	
Molybdenum	0.018		0.0050	mg/L	1	2/10/2021 08:12 PM	
Potassium	3.0		0.20	mg/L	1	2/9/2021 05:26 PM	
Selenium	ND		0.0050	mg/L	1	2/9/2021 05:26 PM	
Sodium	28		0.20	mg/L	1	2/9/2021 05:26 PM	
Thallium	ND		0.0050	mg/L	1	2/9/2021 05:26 PM	
METALS BY ICP-MS (DISSOLVED)			SW602	0B	Prep: FILTER 2/9/21 09:47	Analyst: STP	
Antimony	ND		0.0050	mg/L	1	2/9/2021 04:30 PM	
Arsenic	ND		0.0050	mg/L	1	2/9/2021 04:30 PM	
Barium	0.46		0.0050	mg/L	1	2/9/2021 04:30 PM	
Beryllium	ND		0.0020	mg/L	1	2/9/2021 04:30 PM	
Boron	0.21		0.020	mg/L	1	2/10/2021 07:41 PM	
Cadmium	ND		0.0020	mg/L	1	2/9/2021 04:30 PM	
Calcium	41		0.50	mg/L	1	2/9/2021 04:30 PM	
Chromium	ND		0.0050	mg/L	1	2/9/2021 04:30 PM	
Cobalt	ND		0.0050	mg/L	1	2/9/2021 04:30 PM	
Iron	ND		0.080	mg/L	1	2/9/2021 04:30 PM	
Lead	ND		0.0050	mg/L	1	2/9/2021 04:30 PM	
Lithium	0.017		0.010	mg/L	1	2/9/2021 04:30 PM	
Magnesium	7.8		0.20	mg/L	1	2/9/2021 04:30 PM	

Geosyntec Consultants

BAB-North

Collection Date: 1/29/2021 12:35 PM

DTE- Belle River (GLP-8017)

Client:

Project:

Sample ID:

Work Order: 21020218 Lab ID: 21020218-01

Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Manganese	ND		0.0050	mg/L	1	2/9/2021 04:30 PM
Molybdenum	0.017		0.0050	mg/L	1	2/9/2021 04:30 PM
Potassium	2.9		0.20	mg/L	1	2/9/2021 04:30 PM
Selenium	ND		0.0050	mg/L	1	2/9/2021 04:30 PM
Sodium	27		0.20	mg/L	1	2/9/2021 04:30 PM
Thallium	ND		0.0050	mg/L	1	2/9/2021 04:30 PM
ALKALINITY			A2320	B-11		Analyst: QTN
Alkalinity, Bicarbonate (as CaCO3)	88		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Carbonate (as CaCO3)	ND		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Hydroxide (as CaCO3)	ND		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Phenolphthalein (as CaCO3)	ND		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Total (as CaCO3)	88		10	mg/L	1	2/9/2021 12:49 PM
ANIONS BY ION CHROMATOGRAPHY			SW905	6A		Analyst: JDR
Chloride	9.0		1.0	mg/L	1	2/5/2021 08:18 PM
Fluoride	0.26		0.10	mg/L	1	2/5/2021 08:18 PM
Sulfate	100		10	mg/L	10	2/5/2021 08:37 PM
PH (LABORATORY)			SW904	0C		Analyst: QTN
pH (laboratory)	7.87	Н	0.10	s.u.	1	2/9/2021 12:49 PM
Temperature	20.3	Н	0.10	°C	1	2/9/2021 12:49 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 2/7/21 15:44	Analyst: ERW
Total Dissolved Solids	200		50	mg/L	1	2/9/2021 02:45 PM

Client: Geosyntec Consultants

Project: DTE- Belle River (GLP-8017)

Sample ID: BAB-South

Collection Date: 1/29/2021 12:15 PM

Work Order: 21020218 Lab ID: 21020218-02

Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 2/8/21 13:14	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	2/8/2021 01:48 PM
MERCURY BY CVAA (DISSOLVED)			SW747	0A	Prep: SW7470 2/8/21 13:14	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	2/8/2021 01:50 PM
METALS BY ICP-MS			SW602	0B	Prep: SW3005A 2/9/21 15:19	Analyst: STP
Antimony	ND		0.0050	mg/L	1	2/9/2021 05:31 PM
Arsenic	ND		0.0050	mg/L	1	2/9/2021 05:31 PM
Barium	0.42		0.0050	mg/L	1	2/9/2021 05:31 PM
Beryllium	ND		0.0020	mg/L	1	2/9/2021 05:31 PM
Boron	0.41		0.020	mg/L	1	2/9/2021 05:31 PM
Cadmium	ND		0.0020	mg/L	1	2/9/2021 05:31 PM
Calcium	29		0.50	mg/L	1	2/9/2021 05:31 PM
Chromium	ND		0.0050	mg/L	1	2/9/2021 05:31 PM
Cobalt	ND		0.0050	mg/L	1	2/9/2021 05:31 PM
Iron	0.97		0.080	mg/L	1	2/9/2021 05:31 PM
Lead	ND		0.0050	mg/L	1	2/9/2021 05:31 PM
Lithium	ND		0.010	mg/L	1	2/9/2021 05:31 PM
Magnesium	7.4		0.20	mg/L	1	2/9/2021 05:31 PM
Manganese	0.0095		0.0050	mg/L	1	2/9/2021 05:31 PM
Molybdenum	0.024		0.0050	mg/L	1	2/10/2021 08:13 PM
Potassium	3.8		0.20	mg/L	1	2/9/2021 05:31 PM
Selenium	ND		0.0050	mg/L	1	2/9/2021 05:31 PM
Sodium	44		0.20	mg/L	1	2/9/2021 05:31 PM
Thallium	ND		0.0050	mg/L	1	2/9/2021 05:31 PM
METALS BY ICP-MS (DISSOLVED)			SW602	0B	Prep: FILTER 2/9/21 09:47	Analyst: STP
Antimony	ND		0.0050	mg/L	1	2/9/2021 04:32 PM
Arsenic	ND		0.0050	mg/L	1	2/9/2021 04:32 PM
Barium	0.16		0.0050	mg/L	1	2/9/2021 04:32 PM
Beryllium	ND		0.0020	mg/L	1	2/9/2021 04:32 PM
Boron	0.42		0.020	mg/L	1	2/10/2021 07:42 PM
Cadmium	ND		0.0020	mg/L	1	2/9/2021 04:32 PM
Calcium	25		0.50	mg/L	1	2/9/2021 04:32 PM
Chromium	ND		0.0050	mg/L	1	2/9/2021 04:32 PM
Cobalt	ND		0.0050	mg/L	1	2/9/2021 04:32 PM
Iron	ND		0.080	mg/L	1	2/9/2021 04:32 PM
Lead	ND		0.0050	mg/L	1	2/9/2021 04:32 PM
Lithium	ND		0.010	mg/L	1	2/9/2021 04:32 PM
Magnesium	6.4		0.20	mg/L	1	2/9/2021 04:32 PM

Geosyntec Consultants

BAB-South

Collection Date: 1/29/2021 12:15 PM

DTE- Belle River (GLP-8017)

Client:

Project:

Sample ID:

Work Order: 21020218 Lab ID: 21020218-02 Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Manganese	ND		0.0050	mg/L	1	2/9/2021 04:32 PM
Molybdenum	0.022		0.0050	mg/L	1	2/9/2021 04:32 PM
Potassium	3.7		0.20	mg/L	1	2/9/2021 04:32 PM
Selenium	ND		0.0050	mg/L	1	2/9/2021 04:32 PM
Sodium	42		0.20	mg/L	1	2/9/2021 04:32 PM
Thallium	ND		0.0050	mg/L	1	2/9/2021 04:32 PM
ALKALINITY			A2320	B-11		Analyst: QTN
Alkalinity, Bicarbonate (as CaCO3)	46		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Carbonate (as CaCO3)	14		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Hydroxide (as CaCO3)	ND		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Phenolphthalein (as CaCO3)	ND		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Total (as CaCO3)	60		10	mg/L	1	2/9/2021 12:49 PM
ANIONS BY ION CHROMATOGRAPHY			SW905	6A		Analyst: JDR
Chloride	9.6		1.0	mg/L	1	2/5/2021 08:56 PM
Fluoride	0.52		0.10	mg/L	1	2/5/2021 08:56 PM
Sulfate	110		8.0	mg/L	8	2/5/2021 09:16 PM
PH (LABORATORY)			SW904	0C		Analyst: QTN
pH (laboratory)	8.71	н	0.10	s.u.	1	2/9/2021 12:49 PM
Temperature	19.5	Н	0.10	°C	1	2/9/2021 12:49 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 2/7/21 15:44	Analyst: ERW
Total Dissolved Solids	220		50	mg/L	1	2/9/2021 02:45 PM

Client: Geosyntec Consultants

Project:DTE- Belle River (GLP-8017)Sample ID:DB

Collection Date: 1/29/2021 01:20 PM

Work Order: 21020218 Lab ID: 21020218-03

Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 2/8/21 13:14	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	2/8/2021 01:52 PM
MERCURY BY CVAA (DISSOLVED)			SW747	0A	Prep: SW7470 2/8/21 13:14	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	2/8/2021 01:53 PM
METALS BY ICP-MS			SW602	0B	Prep: SW3005A 2/9/21 15:19	Analyst: STP
Antimony	ND		0.0050	mg/L	1	2/9/2021 05:33 PM
Arsenic	ND		0.0050	mg/L	1	2/9/2021 05:33 PM
Barium	0.35		0.0050	mg/L	1	2/9/2021 05:33 PM
Beryllium	ND		0.0020	mg/L	1	2/9/2021 05:33 PM
Boron	0.68		0.20	mg/L	10	2/10/2021 08:15 PM
Cadmium	ND		0.0020	mg/L	1	2/9/2021 05:33 PM
Calcium	41		0.50	mg/L	1	2/9/2021 05:33 PM
Chromium	0.0056		0.0050	mg/L	1	2/9/2021 05:33 PM
Cobalt	ND		0.0050	mg/L	1	2/9/2021 05:33 PM
Iron	0.26		0.080	mg/L	1	2/9/2021 05:33 PM
Lead	ND		0.0050	mg/L	1	2/9/2021 05:33 PM
Lithium	0.016		0.010	mg/L	1	2/9/2021 05:33 PM
Magnesium	9.0		0.20	mg/L	1	2/9/2021 05:33 PM
Manganese	0.0097		0.0050	mg/L	1	2/9/2021 05:33 PM
Molybdenum	0.029		0.0050	mg/L	1	2/9/2021 05:33 PM
Potassium	3.9		0.20	mg/L	1	2/9/2021 05:33 PM
Selenium	ND		0.0050	mg/L	1	2/9/2021 05:33 PM
Sodium	58		0.20	mg/L	1	2/9/2021 05:33 PM
Thallium	ND		0.0050	mg/L	1	2/9/2021 05:33 PM
METALS BY ICP-MS (DISSOLVED)			SW602	0B	Prep: FILTER 2/9/21 09:47	Analyst: STP
Antimony	ND		0.0050	mg/L	1	2/9/2021 04:34 PM
Arsenic	ND		0.0050	mg/L	1	2/9/2021 04:34 PM
Barium	0.24		0.0050	mg/L	1	2/9/2021 04:34 PM
Beryllium	ND		0.0020	mg/L	1	2/9/2021 04:34 PM
Boron	0.61		0.020	mg/L	1	2/10/2021 07:44 PM
Cadmium	ND		0.0020	mg/L	1	2/9/2021 04:34 PM
Calcium	39		0.50	mg/L	1	2/9/2021 04:34 PM
Chromium	ND		0.0050	mg/L	1	2/9/2021 04:34 PM
Cobalt	ND		0.0050	mg/L	1	2/9/2021 04:34 PM
Iron	ND		0.080	mg/L	1	2/9/2021 04:34 PM
Lead	ND		0.0050	mg/L	1	2/9/2021 04:34 PM
Lithium	0.015		0.010	mg/L	1	2/9/2021 04:34 PM
Magnesium	8.5		0.20	mg/L	1	2/9/2021 04:34 PM

DB

Collection Date: 1/29/2021 01:20 PM

Geosyntec Consultants

DTE- Belle River (GLP-8017)

Client:

Project:

Sample ID:

Work Order: 21020218 Lab ID: 21020218-03 Matrix: GROUNDWATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Manganese	ND		0.0050	mg/L	1	2/9/2021 04:34 PM
Molybdenum	0.029		0.0050	mg/L	1	2/9/2021 04:34 PM
Potassium	3.7		0.20	mg/L	1	2/9/2021 04:34 PM
Selenium	ND		0.0050	mg/L	1	2/9/2021 04:34 PM
Sodium	57		0.20	mg/L	1	2/9/2021 04:34 PM
Thallium	ND		0.0050	mg/L	1	2/9/2021 04:34 PM
ALKALINITY			A2320	B-11		Analyst: QTN
Alkalinity, Bicarbonate (as CaCO3)	69		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Carbonate (as CaCO3)	35		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Hydroxide (as CaCO3)	ND		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Phenolphthalein (as CaCO3	18		10	mg/L	1	2/9/2021 12:49 PM
Alkalinity, Total (as CaCO3)	100		10	mg/L	1	2/9/2021 12:49 PM
ANIONS BY ION CHROMATOGRAPHY			SW905	6A		Analyst: JDR
Chloride	14		1.0	mg/L	1	2/5/2021 09:35 PM
Fluoride	0.31		0.10	mg/L	1	2/5/2021 09:35 PM
Sulfate	130		8.0	mg/L	8	2/5/2021 09:54 PM
PH (LABORATORY)			SW904	0C		Analyst: QTN
pH (laboratory)	9.01	Н	0.10	s.u.	1	2/9/2021 12:49 PM
Temperature	19.7	Н	0.10	°C	1	2/9/2021 12:49 PM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 2/7/21 15:44	Analyst: ERW
Total Dissolved Solids	300		50	mg/L	1	2/9/2021 02:45 PM

Client:	Geosyntec Consultants
Work Order:	21020218
Project:	DTE- Belle River (GLP-8017)

QC BATCH REPORT

Batch ID: 171771 Instrument ID HG4

Method: SW7470A

MBLK	Sample ID: MBLK-171771-171	771			Units: mg/	L	Analysis	Date: 2/8/	2021 01:2	7 PM
Client ID:	Run	ID: HG4	_210208A		SeqNo: 7127171		Prep Date: 2/8/2021		DF: 1	
Analyte	Result	PQ	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	ND	0.0002	0							
LCS	Sample ID: LCS-171771-17177	1			Units: mg/	L	Analysis	Date: 2/8/	2021 02:5	0 PM
Client ID:	Run	ID: HG4	_210208A		SeqNo: 712	7218	Prep Date: 2/8/	2021	DF: 1	
Analyte	Result	PQ	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	0.001785	0.0002	0 0.002		0 89.2	80-120	0			
MS	Sample ID: 21020251-02AMS				Units: mg/	L	Analysis	Date: 2/8/	2021 02:1	1 PM
Client ID:	Run	ID: HG4	_210208A		SeqNo: 712	7196	Prep Date: 2/8/	2021	DF: 1	
Analyte	Result	PQ	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	0.01995	0.002	0 0.02	0.000	75 96	75-125	0			
MSD	Sample ID: 21020251-02AMSD)			Units: mg/	L	Analysis	Date: 2/8/	2021 02:1	3 PM
Client ID:	Run	ID: HG4	_210208A		SeqNo: 712	7197	Prep Date: 2/8/	2021	DF: 1	
Analyte	Result	PQ	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	0.0198	0.002	0 0.02	0.000	75 95.2	75-125	0.01995	0.755	20	
The following s	samples were analyzed in this batch		21020218-01/ 21020218-020		1020218-01C 1020218-03A		020218-02A 020218-03C			

QC BATCH REPORT

Batch ID: 171827

Instrument ID ICPMS3

Method: SW6020B (Dissolve)

MBLK	Sample ID: MBLK-171827-171	827	Sample ID: MBLK-171827-171827							/2021 04:21 PM		
Client ID:	Run	ID: ICPMS	3_210209A		SeqNo: 713	1167	Prep Date: 2/9	/2021	DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua		
								/***** =				
Antimony	ND ND	0.0050										
Arsenic	ND	0.0050										
Barium	ND	0.0050										
Beryllium	ND	0.0020										
Cadmium	ND	0.0020										
Calcium		0.50										
Chromium	ND	0.0050										
Cobalt	ND	0.0050										
Iron	ND	0.080										
Lead	ND	0.0050										
Lithium	ND	0.010										
Magnesium	ND	0.20										
Manganese	ND	0.0050										
Molybdenum	ND	0.0050										
Potassium	ND	0.20										
Selenium	ND	0.0050										
Sodium	ND	0.20										
Thallium	ND	0.0050										
MBLK	Sample ID: MBLK-171827-171	827			Units: mg/	L	Analysi	s Date: 2/1	0/2021 07:	33 PM		
Client ID:	Dum		3 210210B		0	2808	Prep Date: 2/9	/2021	DF: 1			
	Run	ID: ICPMS	5_2102100		SeqNo: 7133	5050	•	/_0_!				
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua		
· · · · · · · · · · · · · · · · · · ·						Control	RPD Ref		RPD	Qua		
Boron	Result	PQL 0.020			%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit			
Boron	Result ND Sample ID: LCS-171827-17182	PQL 0.020	SPK Val			Control Limit	RPD Ref Value	%RPD s Date: 2/9	RPD Limit	Qua 2 PM		
Boron LCS Client ID:	Result ND Sample ID: LCS-171827-17182 Run	PQL 0.020 7 ID: ICPMS	SPK Val 3_210209A	Value SPK Ref	%REC Units: mg/ SeqNo: 713 *	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref	%RPD s Date: 2/9 / 2021	RPD Limit /2021 04:2	2 PM		
Boron LCS Client ID:	Result ND Sample ID: LCS-171827-17182 Run Result	PQL 0.020 7 ID: ICPMS PQL	SPK Val 3_210209A SPK Val	Value	%REC Units: mg/ SeqNo: 713 %REC	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref Value	%RPD s Date: 2/9 / 2021 %RPD	RPD Limit /2021 04:2 DF: 1 RPD	2 PM		
Boron LCS Client ID: Analyte Antimony	Result ND Sample ID: LCS-171827-17182 Run Result 0.0857	PQL 0.020 7 ID: ICPMS PQL 0.0050	SPK Val 3_210209A SPK Val 0.1	Value SPK Ref	%REC Units: mg/ SeqNo: 713 %REC 0 85.7	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref Value	%RPD s Date: 2/9 / 2021 %RPD	RPD Limit /2021 04:2 DF: 1 RPD	2 PM		
Boron LCS Client ID: Analyte Antimony	Result ND Sample ID: LCS-171827-17182 Run Result 0.0857 0.08929	PQL 0.020 7 ID: ICPMS PQL	SPK Val 3_210209A SPK Val 0.1 0.1	Value SPK Ref	%REC Units: mg/ SeqNo: 713 %REC	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref Value	%RPD s Date: 2/9 / 2021 %RPD	RPD Limit /2021 04:2 DF: 1 RPD	2 PM		
Boron LCS Client ID: Analyte Antimony Arsenic	Result ND Sample ID: LCS-171827-17182 Run Result 0.0857	PQL 0.020 7 ID: ICPMS PQL 0.0050	SPK Val 3_210209A SPK Val 0.1	Value SPK Ref	%REC Units: mg/ SeqNo: 713 %REC 0 85.7	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref Value	%RPD s Date: 2/9 /2021 %RPD	RPD Limit /2021 04:2 DF: 1 RPD	2 PM		
Boron LCS Client ID: Analyte Antimony Arsenic Chromium	Result ND Sample ID: LCS-171827-17182 Run Result 0.0857 0.08929 0.08766 0.0894	PQL 0.020 7 ID: ICPMS PQL 0.0050 0.0050	SPK Val 3_210209A SPK Val 0.1 0.1	Value SPK Ref	%REC Units: mg/ SeqNo: 713* %REC 0 85.7 0 89.3	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref Value	%RPD s Date: 2/9 / 2021 %RPD	RPD Limit /2021 04:2 DF: 1 RPD	2 PM		
Boron LCS Client ID: Analyte Antimony Arsenic Chromium Cobalt	Result ND Sample ID: LCS-171827-17182 Run Result 0.0857 0.08929 0.08766	PQL 0.020 7 ID: ICPMS PQL 0.0050 0.0050 0.0050	SPK Val 3_210209A SPK Val 0.1 0.1 0.1	Value SPK Ref	%REC Units: mg/ SeqNo: 713* %REC 0 85.7 0 89.3 0 87.7	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref Value	%RPD s Date: 2/9 / 2021 %RPD))	RPD Limit /2021 04:2 DF: 1 RPD	2 PM		
Boron LCS Client ID: Analyte Antimony Arsenic Chromium Cobalt Iron	Result ND Sample ID: LCS-171827-17182 Run Result 0.0857 0.08929 0.08766 0.0894	PQL 0.020 7 ID: ICPMS PQL 0.0050 0.0050 0.0050	SPK Val 3_210209A SPK Val 0.1 0.1 0.1 0.1 0.1	Value SPK Ref	%REC Units: mg/ SeqNo: 713 %REC 0 85.7 0 89.3 0 87.7 0 89.4	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%RPD s Date: 2/9 / 2021)))))	RPD Limit /2021 04:2 DF: 1 RPD	2 PM		
Boron LCS Client ID: Analyte Antimony Arsenic Chromium Cobalt Iron Magnesium	Result ND Sample ID: LCS-171827-17182 Run Result 0.0857 0.08929 0.08766 0.0894 9.019	PQL 0.020 7 ID: ICPMS PQL 0.0050 0.0050 0.0050 0.0050 0.0050 0.0080	SPK Val 3_210209A SPK Val 0.1 0.1 0.1 0.1 10	Value SPK Ref	%REC Units: mg/ SeqNo: 713* %REC 0 85.7 0 89.3 0 87.7 0 89.4 0 90.2	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref Value (((((((((((((((((((%RPD s Date: 2/9 /2021 /2021)))))))	RPD Limit /2021 04:2 DF: 1 RPD	2 PM		
Analyte Boron LCS Client ID: Analyte Antimony Arsenic Chromium Cobalt Iron Magnesium Potassium Selenium	Result ND Sample ID: LCS-171827-17182 Run Run 0.0857 0.08929 0.08766 0.0894 9.019 9.509	PQL 0.020 7 ID: ICPMS PQL 0.0050 0.0050 0.0050 0.0050 0.0050 0.080	SPK Val 3_210209A SPK Val 0.1 0.1 0.1 0.1 10 10	Value SPK Ref	%REC Units: mg/ SeqNo: 713* %REC %REC 0 85.7 0 89.3 0 87.7 0 90.2 0	Control Limit	RPD Ref Value Analysi Prep Date: 2/9 RPD Ref Value (((((((((((((((((((%RPD s Date: 2/9 /2021 /2021	RPD Limit /2021 04:2 DF: 1 RPD			

Batch ID: 171827

Instrument ID ICPMS3

Method: SW6020B

(Dissolve)

LCS	Sample ID: LCS-171827	-171827				Units: mg/L			Analysis Date: 2/10/2021 07:34 PM			
Client ID:		Run II	D: ICPMS3	8_210210B		SeqNo: 7133899			Prep Date: 2/9/2021		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Barium	0.0	09386	0.0050	0.1		0	93.9	80-120	()		
Beryllium	0.0	09556	0.0020	0.1		0	95.6	80-120	C)		
Boron		0.451	0.020	0.5		0	90.2	80-120	C)		
Cadmium	0	.1006	0.0020	0.1		0	101	80-120	C)		
Calcium		9.733	0.50	10		0	97.3	80-120	C)		
Lead	0	.0935	0.0050	0.1		0	93.5	80-120	C)		
Lithium	0.0	09548	0.010	0.1		0	95.5	80-120	C)		
Manganese	0.0	09292	0.0050	0.1		0	92.9	80-120	C)		
Molybdenum	0.0	09283	0.0050	0.1		0	92.8	80-120	C)		
Thallium	0.0	09105	0.0050	0.1		0	91	80-120	C)		

MS	Sample ID: 21020221-05CMS				Units: mg /	Ľ	Analysis Date: 2/9/2021 04:43 PM			
Client ID:	Run	ID: ICPMS	3_210209A		SeqNo: 713	1181	Prep Date: 2/9	/2021	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.1073	0.0050	0.1	0.00469	5 103	75-125	(D		
Arsenic	0.1256	0.0050	0.1	0.0273	98.3	75-125	()		
Barium	0.1975	0.0050	0.1	0.0972	27 100	75-125	(C		
Beryllium	0.102	0.0020	0.1	0.00000	102	75-125	()		
Cadmium	0.1033	0.0020	0.1	0.00085	68 102	75-125	(C		
Chromium	0.09276	0.0050	0.1	-0.00010	92.9	75-125	(0		
Cobalt	0.0935	0.0050	0.1	0.00007	4 93.4	75-125	(C		
Iron	9.544	0.080	10	-0.00025	68 95.4	75-125	(C		
Lead	0.09906	0.0050	0.1	-0.00000	99.1	75-125	(C		
Lithium	0.1067	0.010	0.1	0.00505	3 102	75-125	(0		
Magnesium	10.65	0.20	10	0.643	32 100	75-125	(0		
Manganese	0.09753	0.0050	0.1	0.00001	3 97.5	75-125	(C		
Potassium	13.46	0.20	10	3.32	27 101	75-125	(C		
Selenium	0.1159	0.0050	0.1	0.00830	108	75-125	(0		
Sodium	11.55	0.20	10	1.71	1 98.4	75-125	(C		
Thallium	0.09602	0.0050	0.1	0.0002	95.8	75-125	(0		

MS	Sample ID: 21020221-05	Sample ID: 21020221-05CMS						Analysis Date: 2/10/2021 07:59 PM			
Client ID:		Run ID:	ICPMS3	_210210B		SeqNo: 713	3914	Prep Date: 2/9/	/2021	DF: 10	
Analyte	Ā	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Boron		11.73	0.20	0.5	11.6	63 19.6	75-125	0)		SO
Calcium	:	259.6	5.0	10	267	.5 -78.8	75-125	0)		SO
Molybdenum	8	8.941	0.050	0.1	9.4	13 -489	75-125	0)		SO

Batch ID: 171827

Instrument ID ICPMS3

Method: SW6020B

(Dissolve)

MSD	Sample ID: 21020221-05CMSD				Units: mg/	L	Analysis	Date: 2/9/2	2021 04:45 PM	
Client ID:	Run I	D: ICPMS	3_210209A		SeqNo: 713 ′	1182	Prep Date: 2/9/2	2021	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Antimony	0.1081	0.0050	0.1	0.004695	5 103	75-125	0.1073	0.729	20	
Arsenic	0.1257	0.0050	0.1	0.02734	4 98.4	75-125	0.1256	0.0827	20	
Barium	0.1991	0.0050	0.1	0.09727	7 102	75-125	0.1975	0.83	20	
Beryllium	0.1025	0.0020	0.1	0.000004	4 102	75-125	0.102	0.478	20	
Cadmium	0.1032	0.0020	0.1	0.000858	3 102	75-125	0.1033	0.0814	20	
Calcium	253.8	0.50	10	245.8	8 80.1	75-125	251.3	0.993	20	EC
Chromium	0.09319	0.0050	0.1	-0.000101	1 93.3	75-125	0.09276	0.457	20	
Cobalt	0.093	0.0050	0.1	0.000074	4 92.9	75-125	0.0935	0.533	20	
ron	9.524	0.080	10	-0.000258	3 95.2	75-125	9.544	0.211	20	
_ead	0.09986	0.0050	0.1	-0.00002	2 99.9	75-125	0.09906	0.802	20	
_ithium	0.1074	0.010	0.1	0.005053	3 102	75-125	0.1067	0.669	20	
Magnesium	10.69	0.20	10	0.6432	2 100	75-125	10.65	0.396	20	
Vanganese	0.09729	0.0050	0.1	0.000013	3 97.3	75-125	0.09753	0.248	20	
Potassium	13.49	0.20	10	3.327	7 102	75-125	13.46	0.238	20	
Selenium	0.1103	0.0050	0.1	0.008307	7 102	75-125	0.1159	5	20	
Sodium	11.5	0.20	10	1.71 <i>°</i>	1 97.9	75-125	11.55	0.459	20	
Thallium	0.09707	0.0050	0.1	0.00022	2 96.9	75-125	0.09602	1.09	20	
MSD	Sample ID: 21020221-05CMSD				Units: mg/	L	Analysis	Date: 2/10	/2021 08:	00 PN
Client ID:	Run I	D: ICPMS	3_210210B		SeqNo: 713:	3915	Prep Date: 2/9/2	2021	DF: 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qu
Boron	11.81	0.20	0.5	11.63	3 35.2	75-125	11.73	0.664	20	SC
Calcium	266.8	5.0	10	267.5		75-125	259.6	2.73	20	SC
Molybdenum	9.188	0.050	0.1	9.43	3 -242	75-125	8.941	2.73	20	SC

The following samples were analyzed in this batch:

21020218-01C 21020218-02C

21020218-03C

Batch ID: 171837

Instrument ID ICPMS3

Method: SW6020B

MBLK	Sample ID: MBLK-171837-1718	37			Units: mg/l	L	Analysi	s Date: 2/9	/2021 05:2	20 PM
Client ID:	Run I	D: ICPMS	3_210209A		SeqNo: 7131	1221	Prep Date: 2/9	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Antimony	ND	0.0050								
Arsenic	ND	0.0050								
Barium	ND	0.0050								
Beryllium	ND	0.0020								
Cadmium	ND	0.0020								
Calcium	ND	0.50								
Chromium	ND	0.0050								
Cobalt	ND	0.0050								
Iron	ND	0.080								
Lead	ND	0.0050								
Lithium	ND	0.010								
Magnesium	ND	0.20								
Manganese	ND	0.0050								
Potassium	ND	0.20								
Selenium	ND	0.0050								
Sodium	ND	0.20								
Thallium	ND	0.0050								
MBLK	Sample ID: MBLK-171837-1718	37			Units: mg/l	L	Analysi	is Date: 2/1	0/2021 08	:10 PM
Client ID:	Run I	D: ICPMS	3_210210B		SeqNo: 7133	3921	Prep Date: 2/9	/2021	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Boron	ND	0.020								
Molybdenum	ND	0.0050								

QC BATCH REPORT

Batch ID: 171837

Instrument ID ICPMS3 M

Method: SW6020B

LCS	Sample ID: LCS-171837-171837	,			ι	Jnits: mg/	L	Analysi	s Date: 2/9	/2021 05:2 [,]	1 PM
Client ID:	Run	D: ICPMS	3_210209A		Se	qNo: 713 ′	223	Prep Date: 2/9/	/2021	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.0943	0.0050	0.1		0	94.3	80-120	C)		
Arsenic	0.1004	0.0050	0.1		0	100	80-120	C)		
Barium	0.09716	0.0050	0.1		0	97.2	80-120	0)		
Beryllium	0.09892	0.0020	0.1		0	98.9	80-120	C)		
Boron	0.4506	0.020	0.5		0	90.1	80-120	C)		
Cadmium	0.1018	0.0020	0.1		0	102	80-120	C)		
Calcium	9.911	0.50	10		0	99.1	80-120	0)		
Chromium	0.1011	0.0050	0.1		0	101	80-120	C)		
Cobalt	0.1005	0.0050	0.1		0	101	80-120	C)		
Iron	10	0.080	10		0	100	80-120	C)		
Lead	0.09736	0.0050	0.1		0	97.4	80-120	C)		
Lithium	0.09537	0.010	0.1		0	95.4	80-120	C)		
Magnesium	10.02	0.20	10		0	100	80-120	C)		
Manganese	0.09892	0.0050	0.1		0	98.9	80-120	C)		
Molybdenum	0.09561	0.0050	0.1		0	95.6	80-120	C)		
Potassium	9.937	0.20	10		0	99.4	80-120	C)		
Selenium	0.101	0.0050	0.1		0	101	80-120	C			
Sodium	9.964	0.20	10		0	99.6	80-120	C)		
Thallium	0.09287	0.0050	0.1		0	92.9	80-120	C)		

Project: DTE- Belle River (GLP-8017)

Batch ID: 171837

Instrument ID ICPMS3

Method: SW6020B

MS Sample ID: 2102	20218-01AMS				Units: ma/	L	Analysis Date:	2/9/2021 05:	28 PM
Client ID: BAB-North		D: ICPMS3	3 210209A		SeqNo: 713		Prep Date: 2/9/2021	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value %RF	RPD D Limit	Qual
Antimony	0.09531	0.0050	0.1	0.000535	5 94.8	75-125	0		
Arsenic	0.106	0.0050	0.1	0.004913	3 101	75-125	0		
Barium	0.5807	0.0050	0.1	0.4786	6 102	75-125	0		0
Beryllium	0.1008	0.0020	0.1	0.000005	5 101	75-125	0		
Boron	0.6679	0.020	0.5	0.1696	6 99.7	75-125	0		
Cadmium	0.09992	0.0020	0.1	0.000028	99.9	75-125	0		
Calcium	50.88	0.50	10	41.71	91.7	75-125	0		0
Chromium	0.1048	0.0050	0.1	0.004783	3 100	75-125	0		
Cobalt	0.1001	0.0050	0.1	0.000044	100	75-125	0		
Iron	9.992	0.080	10	0.03947	99.5	75-125	0		
Lead	0.09806	0.0050	0.1	0.000997	' 97.1	75-125	0		
Lithium	0.1171	0.010	0.1	0.0174	99.7	75-125	0		
Magnesium	17.93	0.20	10	8.149	97.8	75-125	0		
Manganese	0.09893	0.0050	0.1	0.00235	96.6	75-125	0		
Molybdenum	0.1154	0.0050	0.1	0.01656	98.8	75-125	0		
Potassium	12.76	0.20	10	3.009	97.6	75-125	0		
Selenium	0.09775	0.0050	0.1	0.000816	96.9	75-125	0		
Sodium	37.41	0.20	10	28.03	93.8	75-125	0		
Thallium	0.0931	0.0050	0.1	0.000099	93	75-125	0		

Batch ID: 171837

Instrument ID ICPMS3

Method: SW6020B

MSD	Sample ID: 21020218-01AMS	D			Units: mg/	L	Analysis	Date: 2/9/	2021 05:2	9 PM
Client ID: BAB-North	Ru	n ID: ICPI	MS3_210209A		SeqNo: 713	1233	Prep Date: 2/9/2	2021	DF: 1	
Analyte	Resul	t PG	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Antimony	0.09562	2 0.005	50 0.1	0.00053	5 95.1	75-125	0.09531	0.325	20	
Arsenic	0.1066	6 0.005	50 0.1	0.00491	3 102	75-125	0.106	0.583	20	
Barium	0.578	7 0.005	50 0.1	0.478	5 100	75-125	0.5807	0.339	20	0
Beryllium	0.09986	6 0.002	.1	0.00000	5 99.9	75-125	0.1008	0.892	20	
Boron	0.6702	2 0.02	20 0.5	0.169	5 100	75-125	0.6679	0.348	20	
Cadmium	0.100	0.002	.0 0.1	0.000028	3 100	75-125	0.09992	0.211	20	
Calcium	51.0 ⁻	1 0.5	50 10	41.7	1 93	75-125	50.88	0.261	20	0
Chromium	0.1046	6 0.005	50 0.1	0.004783	3 99.8	75-125	0.1048	0.244	20	
Cobalt	0.1003	3 0.005	50 0.1	0.000044	4 100	75-125	0.1001	0.188	20	
Iron	10.02	2 0.08	30 10	0.0394	7 99.8	75-125	9.992	0.277	20	
Lead	0.09843	0.005	50 0.1	0.000997	7 97.4	75-125	0.09806	0.379	20	
Lithium	0.1162	2 0.01	0 0.1	0.0174	4 98.8	75-125	0.1171	0.735	20	
Magnesium	17.7 ⁻	1 0.2	20 10	8.14	9 95.7	75-125	17.93	1.2	20	
Manganese	0.09947	0.005	50 0.1	0.0023	5 97.1	75-125	0.09893	0.552	20	
Molybdenum	0.1174	4 0.005	50 0.1	0.0165	5 101	75-125	0.1154	1.73	20	
Potassium	12.83	3 0.2	20 10	3.00	9 98.2	75-125	12.76	0.546	20	
Selenium	0.09486	6 0.005	50 0.1	0.000816	6 94	75-125	0.09775	2.99	20	
Sodium	37.4	4 0.2	20 10	28.03	3 93.8	75-125	37.41	0.0176	20	
Thallium	0.09346	6 0.005	50 0.1	0.000099	9 93.4	75-125	0.0931	0.388	20	
The following sampl	es were analyzed in this batc	h:	21020218-01	A 210	20218-02A	21	020218-03A			

Project: DTE- Belle River (GLP-8017)

Batch ID: 171610 Instrument ID TDS Method: A2540 C-11

MBLK	Sample ID: MBLK-171	610-171610				ι	Jnits: mg/l	L	Analysis	Bate: 2/9/	2021 02:4	5 PM
Client ID:		Run ID:	TDS_2	0209A		Se	qNo: 7130)209	Prep Date: 2/7/	2021	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Total Dissolved Solids	S	ND	30									
LCS	Sample ID: LCS-17161	0-171610				ι	Jnits: mg/l	L	Analysis	s Date: 2/9/	2021 02:4	5 PM
Client ID:		Run ID:	TDS_21	0209A		Se	qNo: 7130	208	Prep Date: 2/7/	2021	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Total Dissolved Solids	S	464	30	495		0	93.7	85-109	0			
DUP	Sample ID: 21020092-	I3A DUP				ι	Jnits: mg/l	L	Analysis	B Date: 2/9/	2021 02:4	5 PM
Client ID:		Run ID:	TDS_2	0209A		Se	qNo: 7130)187	Prep Date: 2/7/	2021	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Total Dissolved Solids	S	1520	300	0		0	0	0-0	1500	1.32	10	
DUP	Sample ID: 21020221-0	1B DUP				ι	Jnits: mg/l	L	Analysis	a Date: 2/9/	2021 02:4	5 PM
Client ID:		Run ID:	TDS_2	0209A		Se	qNo: 7130)203	Prep Date: 2/7/	2021	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Total Dissolved Solids	S	600	100	0		0	0	0-0	593.3	1.12	10	н
The following samp	es were analyzed in th	is batch:	21	020218-01	B 2'	1020	218-02B	21	020218-03B			

 The following samples were analyzed in this batch:
 21020218-01B
 21020218-02B
 21020218-03B

Project: DTE- Belle River (GLP-8017)

Batch ID: R309401 Instrument ID IC3

Method: SW9056A

MBLK	Sample ID: MBLK-R309	9401				Units: mg/	L	Analys	is Date: 2/5/	/2021 02:5	0 PM
Client ID:		Run ID	: IC3_21	0205A		SeqNo: 712	4881	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		ND	1.0								
Fluoride		ND	0.10								
Sulfate		ND	1.0								

LCS	Sample ID: LCS-R30940	1				ι	Units: mg/L	-	Analy	sis Date: 2/5/	2021 03:1	D PM
Client ID:		Run ID:	IC3_210	205A		Se	eqNo: 7124	882	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		9.483	1.0	10		0	94.8	88-110		0		
Fluoride		1.989	0.10	2		0	99.5	82-116		0		
Sulfate		9.754	1.0	10		0	97.5	90-110		0		

MS	Sample ID: 21020375-0	3A MS				U	nits: mg/l	-	Analy	sis Date: 2/5/	2021 05:2	4 PM
Client ID:		Run ID:	IC3_210	205A		Sec	qNo: 7124	889	Prep Date:		DF: 40	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		761.2	40	400	366	6.7	98.6	88-110		0		
Sulfate		399	40	400	22.	67	94.1	90-110		0		

MSD	Sample ID: 21020375-03A	MSD				Units: mg	/L	Analysis	Date: 2/5/2	2021 05:4	4 PM
Client ID:		Run ID: I	C3_210	205A		SeqNo: 712	4890	Prep Date:		DF: 40	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride	7	61.5	40	400	366	.7 98.7	88-110	761.2	0.0436	20	
Sulfate	3	97.8	40	400	22.	67 93.8	90-110	399	0.305	20	
The following san	he following samples were analyzed in this batch:		21	020218-01B	3 21	020218-02B	21	020218-03B			

Batch ID: R309522

Instrument ID Titrator 1

Method: A2320 B-11

MBLK	Sample ID: MB-R30	9522-R309522	1			Units: mg/	L	Analys	is Date: 2/9/	/2021 12:4	9 PM
Client ID:		Run ID:	TITRAT	OR 1_2102	09A	SeqNo: 7129	9322	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicar	bonate (as CaCO3)	ND	10								
Alkalinity, Carb	onate (as CaCO3)	ND	10								
Alkalinity, Hydro	oxide (as CaCO3)	ND	10								
Alkalinity, Phen	olphthalein (as CaCO3	ND	10								
Alkalinity, Total	(as CaCO3)	ND	10								

LCS	Sample ID: LCS-R3095	22-R30952	2			U	Inits: mg/l	-	Analy	sis Date: 2/9/	2021 12:49	9 PM
Client ID:		Run ID:	TITRAT	OR 1_2102	09A	Se	qNo: 7129	323	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Carbonate	(as CaCO3)	894.2	10	925		0	96.7	88-110		0		

DUP	Sample ID: 210202	18-01B DUP				ι	Jnits: mg/	L	Analysis	s Date: 2/9/	2021 12:4	9 PM
Client ID: BAB-N	lorth	Run ID:	TITRAT	OR 1_2102	09A	Se	qNo: 712	9326	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicarbo	onate (as CaCO3)	83.06	10	0		0	0	0-0	87.95	5.72	10	
Alkalinity, Carbon	nate (as CaCO3)	ND	10	0		0	0	0-0	0	0	10	
Alkalinity, Hydrox	(ide (as CaCO3)	ND	10	0		0	0	0-0	0	0	10	
Alkalinity, Phenol	Iphthalein (as CaCO3	ND	10	0		0	0	0-0	0	0	10	
Alkalinity, Total (a	kalinity, Total (as CaCO3) 83.06			0		0	0	0-0	87.95	5.72	10	
DUP	Sample ID: 210203	53-01H DUP				ι	Jnits: mg/	L	Analysis	s Date: 2/9/	2021 12:4	9 PM
Client ID:		Run ID:	TITRAT	OR 1_2102	09A	Se	qNo: 712	9337	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Total (a	as CaCO3)	767.6	10	0		0	0	0-0	778.2	1.37	10	
The following sa	he following samples were analyzed in this batch:		21	020218-01E	3 2'	1020	218-02B	21	020218-03B			

Batch ID: R309524 Instrument ID Titrator 1 Method: A4500-H B-11

LCS	Sample ID: LCS-R30952	4-R309524	4			U	Inits: s.u.		Analysis	Date: 2/9/2	2021 12:4	9 PM
Client ID:		Run ID:	TITRAT	TOR 1_2102	09B	See	qNo: 712	346	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.99	0.10	4		0	99.8	92-108	0			
LCS	Sample ID: LCS-R30952	4-R309524	4			U	Inits: s.u.		Analysis	Date: 2/9/2	2021 12:4	9 PM
Client ID:		Run ID:	TITRA	TOR 1_2102	09B	See	qNo: 712 9	9349	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.99	0.10	4		0	99.8	92-108	0			
DUP	Sample ID: 21020240-01						Inits: s.u.		Analysis	Date: 2/9/2	2021 12:4	9 PM
Client ID:		Run ID: TITRATOR 1_210209B				See	qNo: 712 9	348	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		7.63	0.10	0		0	0	0-0	7.87	3.1	5	н
Temperature		20.95	0.10	0		0	0	0-0	21.12	0.808		Н
DUP	Sample ID: 21020218-01	B DUP				U	Inits: s.u.		Analysis	Date: 2/9/2	2021 12:4	9 PM
Client ID: BAB-North		Run ID:	TITRAT	TOR 1_2102	09B	See	qNo: 7129	9351	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
pH (laboratory)		7.85	0.10	0		0	0	0-0	7.87	0.254	5	Н
Temperature		20.03	0.10	0		0	0		20.3	1.34		Н
	es were analyzed in this	hotoh	2	1020218-01E	, o,	1000	218-02B	21	020218-03B			

	$\mathbf{\Lambda}$	Cincinnati, OH +1 513 733 5336	Fort Coli +1 970 4	lins, CO 190 1511	C	Chain	of Cus	tody F	orm	Ì		ton, TX 31 530 5		Spr +1	ring City, 610 948	РА 4903		uth Char 304 356	leston, WV 5 3168
l		Everett, WA +1 425 356 2600	Holland, +1 616 3			k	geof		A			letown, 7 944 5			t Lake Cit 801 266	7700	+1	rk, PA 717 505	
	~~							23526	_l							,		02	
			······					t Manager:	Ļ			L			Order			24	
	Customer Information]		Project	Informa		n						thod I	Reques	st for /	Analys	sis	·····
Purchase Order			Project N	Name	07	EÉ	selle le	liver	A			ikalinit							
Work Order			Project Nu	mber	GI	P - 5	3017		В			FI, SC) مُنْ						
Company Name	Geosyntec Consultants	4	Bill To Com	npany	Geosyi	ntec Consi	ultants		C	Metal	is (Toti	81)							
Send Report To	Michael Coram		Invoice	e Attn	Michae	el Coram			D	Metal	is (Disi	solved)	Lab Fl	ltered					
	2100 Commonwealth E	3ivd.			2100 C	Commonwi	ealth Bivd.		Е						*				
Address	Suite 100		Ado	dress	Suite 1	00			F										
City/State/Zip	Arin Arbor, MI 48105		City/Stat	e/Zip	Ann Ar	bor, MI 4	8105		G										
Phone	(734) 794-1547		P	hone	(734) 7	94-1547			н										
Fax	(734) 332-3063			Fax	(734) 3	32-8063			Ĩ										
e-Mail Address	**************************************		e-Mail Add	dress					J										
No.	Sample Description		Date	Т	me	Matrix	Pres.	# Bottles	A	В	С	D	E	F	G	H	I	J	Hold
1 BAB	-North		1/29	12	:35	GW	2	3	X	К	x	x							
2 RAB.	-South		1/29	12	:15	1)]	ĸ	K	х	X	-						
3 DB			129		:20	V	1	V	v	×	1	4	+		+				
4			161	10			¥	v	<u> </u>		- /	1			++				
5																			
6															-				
7										1			+						
8	· · · · ·																		
9															++				
10 Sampler(s) Please I	Print & Sian	101	Shipme	ent Meti	nod	Re	ouired Turna	round Time: (Check	Box)					B	esults C	Due Da	te:	
0	na	[1. he Com	an F	Ed	EX		· .	VK Days [Oays		ver VK Days		24 Hou					
Relinquished by:	a	Date: 24/ Tin	^{ne:} 1400		red by:				Notes	DTe	2	Me	+Al-	سر ک	7 14	(I)	F. 1	401	
Relinquished by		Date: /2 L Tin	ne: {{00	Receiv	red by (Lab	oratory):	-7,		Co	oler ID		oler Tem	p. QC		je: (Checi				
Logged by (Laborator	wey	-/2/2	<u>1200</u> ne:	Check	ed by (Lab	oratory):	H.				$\frac{1}{2}$	800			al II Stol Q al III Stol Q				CheckList Level IV
	MJG	43/2010	1:15									TN1	· · · · · · · · · · · · · · · · · · ·	Lerve	el IV SW8			۳/۱۷/۲ ل	5.97 40 139
Preservative Key:	1-HCI 2-HNO ₃ 3-	H ₂ SO ₄ 4-NaOH	1 5-Na ₂ S ₂ (0 ₃ 6	NaHSO,	/7-0th	er 8-4°C	9 -5035			1	124] (Uhre	×				

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental. 2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse. 3. The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

Sample Receipt Checklist

Client Name: GEOSYNTEC - AA		Date/Time I	Received:	03-Feb-21	09:00
Work Order: 21020218		Received by	y:	<u>MJG</u>	
Checklist completed by Matthew Gaylord	03-Feb-21	Reviewed by:	Chad W	/helton	03-Feb-21
eSignature Matrices: <u>Groundwater</u> Carrier name: <u>FedEx</u>	Date		eSignature		Date
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Pres	ent	
Custody seals intact on shipping container/cooler?	Yes 🔽	No 🗌	Not Pres	ent 🗌	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Pres	ent 🗹	
Chain of custody present?	Yes 🖌	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🖌	No 🗌			
Chain of custody agrees with sample labels?	Yes 🖌	No 🗌			
Samples in proper container/bottle?	Yes 🔽	No 🗌			
Sample containers intact?	Yes 🔽	No 🗌			
Sufficient sample volume for indicated test?	Yes 🔽	No 🗌			
All samples received within holding time?	Yes 🔽	No 🗌			
Container/Temp Blank temperature in compliance?	Yes 🔽	No 🗌			
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes ⊻ 0.8/0.8C	No 🗌	IR	<u>1</u>	
Cooler(s)/Kit(s):					
Date/Time sample(s) sent to storage:	2/3/2021	2:16:54 PM			_
Water - VOA vials have zero headspace?	Yes	No	No VOA vials	s submitted	\checkmark
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌	N/A		
pH adjusted? pH adjusted by:	Yes	No 🗹	N/A		

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:	
Contacted By:	Regarding:		
Comments:			
CorrectiveAction:			
			SF
			-

Eurofins Environmental Testing

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080 Generated 1/4/2023 7:30:32 PM

JOB DESCRIPTION

CCR DTE Belle River Power-Aquifer

JOB NUMBER

240-178276-1

Eurofins Canton 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Canton

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Sroohs

Authorized for release by Kris Brooks, Project Manager II <u>Kris.Brooks@et.eurofinsus.com</u> (330)966-9790

Generated 1/4/2023 7:30:32 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	11
QC Sample Results	15
QC Association Summary	18
Lab Chronicle	20
Certification Summary	22
Chain of Custody	23

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer Job ID: 240-178276-1

Qualifiers

qualifiero		3
Metals		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
General Che	mistry	5
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	6
U	Indicates the analyte was analyzed for but not detected.	
Glossary		— 7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	Q
CFL	Contains Free Liquid	3
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	13
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

ML Minimum Level (Dioxin)

MPNMost Probable NumberMQLMethod Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

QC Quality Control RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 240-178276-1

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-178276-1

Receipt

The samples were received on 12/20/2022 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method Summary

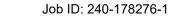
Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	EET CAN
6020	Metals (ICP/MS)	SW846	EET CAN
2320B-1997	Alkalinity, Total	SM	EET CAN
9056A	Anions, Ion Chromatography	SW846	EET CAN
9060A	Organic Carbon, Total (TOC)	SW846	EET CAN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CAN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.


Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary Client: TRC Environmental Corporation.

	-
Project/Site: CCR DTE E	Belle River Power-Aquifer

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-178276-1	NORTH BAB	Water	12/14/22 15:28	12/20/22 10:00
240-178276-2	DB-01	Water	12/16/22 14:40	12/20/22 10:00
240-178276-3	SC-01	Water	12/16/22 15:49	12/20/22 10:00
240-178276-4	DUP-01	Water	12/14/22 00:00	12/20/22 10:00

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer

Client Sample ID: NORTH BAB

		10 170070 1	
	Job ID: 24	40-178276-1	
Lab San	nple ID: 240	-178276-1	
	-		
Dil Fac D	Method	Prep Type	
1	6010B	Total	
		Recoverable	
1	6020	Total	5
		Recoverable	
1	6020	Total	
		Recoverable	
1	6020	Total	
		Recoverable	7
1	6020	Total	
		Recoverable	8
1	6020	Total	
		Recoverable	
1	6020	Total	9
		Recoverable	
1	6020	Total	
		Recoverable	
1	6020	Total	
		Recoverable	
1	2320B-1997	Total/NA	
1	2320B-1997	Total/NA	
1	2320B-1997	Total/NA	
1	00564	Total/NIA	

• • •								
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Boron	190		100	57	ug/L	1	6010B	Total
								Recoverable
Barium	270		5.0	5.0	ug/L	1	6020	Total
								Recoverable
Calcium	49000		1000	1000	ug/L	1	6020	Total
								Recoverable
Magnesium	8200		1000	1000	ug/L	1	6020	Total
								Recoverable
Potassium	3200		1000	1000	ug/L	1	6020	Total
								Recoverable
Molybdenum	23		5.0	5.0	ug/L	1	6020	Total
								Recoverable
Strontium	2000		10	10	ug/L	1	6020	Total
								Recoverable
Sodium	49000		1000	1000	ug/L	1	6020	Total
								Recoverable
Lithium	26		8.0	8.0	ug/L	1	6020	Total
A 11 - 11 - 14 -							00000 4007	Recoverable
Alkalinity	97		5.0		mg/L	1	2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	50		5.0		mg/L	1	2320B-1997	Total/NA
Carbonate Alkalinity as CaCO3	47		5.0	2.6	mg/L	1	2320B-1997	Total/NA
Chloride	8.2		1.0	1.0	mg/L	1	9056A	Total/NA
Fluoride	0.099		0.050	0.050	mg/L	1	9056A	Total/NA
Sulfate	150		1.0	1.0	mg/L	1	9056A	Total/NA

1.0

1.0

1.0

1.0

1.0

1.1

1.1

1.1

1.1

1.1

0.35 mg/L

0.35 mg/L

0.35 mg/L

0.35 mg/L

0.35 mg/L

Client Sample ID: DB-01

Total Organic Carbon

TOC Result 1

TOC Result 2

TOC Result 3

TOC Result 4

Lab Sample ID: 240-178276-2

9060A

9060A

9060A

9060A

9060A

1

1

1

1

1

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	7300		100	57	ug/L	1		6010B	Total
									Recoverable
Barium	290		5.0	5.0	ug/L	1		6020	Total
									Recoverable
Calcium	110000		1000	1000	ug/L	1		6020	Total
									Recoverable
Magnesium	15000		1000	1000	ug/L	1		6020	Total
									Recoverable
Potassium	13000		1000	1000	ug/L	1		6020	Total
									Recoverable
Molybdenum	240		5.0	5.0	ug/L	1		6020	Total
									Recoverable
Strontium	2300		10	10	ug/L	1		6020	Total
	400000		1000	4000				0000	Recoverable
Sodium	460000		1000	1000	ug/L	1		6020	Total
Lithium	83		8.0	0.0	ug/L	1		6020	Recoverable Total
Ennam	03		0.0	0.0	ug/L	I		0020	Recoverable
Alkalinity	150		5.0	26	mg/L	1		2320B-1997	Total/NA
•	120				-	1		2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3			5.0		mg/L	1			
Carbonate Alkalinity as CaCO3	27		5.0		mg/L	1		2320B-1997	Total/NA
Chloride	46		1.0		mg/L	1		9056A	Total/NA
Fluoride	0.26		0.050	0.050	mg/L	1		9056A	Total/NA

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer

Client Sample ID: DB-01 (Continued)

Lab Sample ID: 240-178276-2

Lab Sample ID: 240-178276-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Sulfate	1100	10	10	mg/L	10	9056A	Total/NA
Total Organic Carbon	3.7	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 1	3.7	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 2	3.7	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 3	3.7	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 4	3.7	1.0	0.35	mg/L	1	9060A	Total/NA

Client Sample ID: SC-01

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Туре
Barium	13		5.0	5.0	ug/L	1	6020	Total
								Recoverable
Calcium	25000		1000	1000	ug/L	1	6020	Total
								Recoverable
Magnesium	7600		1000	1000	ug/L	1	6020	Total
								Recoverable
Potassium	1100		1000	1000	ug/L	1	6020	Total
Strontium	00		10	10		4	6020	Recoverable
Suonuum	86		10	10	ug/L	1	6020	Total
Sodium	5900		1000	1000	ua/l	1	6020	Recoverable Total
Couldin	5500		1000	1000	ug/L	I	0020	Recoverable
Alkalinity	81		5.0	2.6	mg/L	1	2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	81		5.0	2.6	mg/L	1	2320B-1997	Total/NA
Chloride	9.6		1.0	1.0	mg/L	1	9056A	Total/NA
Fluoride	0.080		0.050	0.050	mg/L	1	9056A	Total/NA
Sulfate	15		1.0	1.0	mg/L	1	9056A	Total/NA
Total Organic Carbon	1.9		1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 1	1.9		1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 2	1.9		1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 3	1.9		1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 4	1.9		1.0	0.35	mg/L	1	9060A	Total/NA

Client Sample ID: DUP-01

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1100	100	57	ug/L	1	_	6010B	Total
								Recoverable
Barium	310	5.0	5.0	ug/L	1		6020	Total
								Recoverable
Calcium	33000	1000	1000	ug/L	1		6020	Total
								Recoverable
Magnesium	11000	1000	1000	ug/L	1		6020	Total
								Recoverable
Potassium	2700	1000	1000	ug/L	1		6020	Total
								Recoverable
Molybdenum	85	5.0	5.0	ug/L	1		6020	Total
								Recoverable
Strontium	920	10	10	ug/L	1		6020	Total
								Recoverable
Sodium	340000	1000	1000	ug/L	1		6020	Total
	10							Recoverable
Lithium	19	8.0	8.0	ug/L	1		6020	Total
								Recoverable
Alkalinity	150	5.0		mg/L	1		2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	150	5.0	2.6	mg/L	1		2320B-1997	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: DUP-01 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	550		10	10	mg/L	10	9056A	Total/NA
Fluoride	1.8		0.050	0.050	mg/L	1	9056A	Total/NA
Total Organic Carbon	0.70	J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 1	0.70	J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 2	0.69	J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 3	0.70	J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 4	0.72	J	1.0	0.35	mg/L	1	9060A	Total/NA

Lab Sample ID: 240-178276-4

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer Job ID: 240-178276-1

Lab Sample ID: 240-178276-1

Matrix: Water

Client Sample ID: NORTH BAB Date Collected: 12/14/22 15:28 Date Received: 12/20/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Boron	190		100	57	ug/L		12/27/22 12:00	12/28/22 15:18	
Method: SW846 6020 - Metals ((ICP/MS) -	Total Recov	erable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Barium	270		5.0	5.0	ug/L		12/27/22 12:00	12/28/22 16:01	
Calcium	49000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:01	
Magnesium	8200		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:01	
Potassium	3200		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:01	
Molybdenum	23		5.0	5.0	ug/L		12/27/22 12:00	12/28/22 16:01	
Strontium	2000		10	10	ug/L		12/27/22 12:00	12/28/22 16:01	
Sodium	49000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:01	
Lithium	26		8.0	8.0	ug/L		12/27/22 12:00	12/28/22 16:01	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Alkalinity (SM 2320B-1997)	97		5.0	2.6	mg/L			12/21/22 22:20	
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	50		5.0	2.6	mg/L			12/21/22 22:20	
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	47		5.0	2.6	mg/L			12/21/22 22:20	
Chloride (SW846 9056A)	8.2		1.0	1.0	mg/L			12/31/22 21:00	
Fluoride (SW846 9056A)	0.099		0.050	0.050	mg/L			12/31/22 21:00	
Sulfate (SW846 9056A)	150		1.0	1.0	mg/L			12/31/22 21:00	
Total Organic Carbon (SW846 9060A)	1.1		1.0	0.35	mg/L			12/29/22 07:07	
TOC Result 1 (SW846 9060A)	1.1		1.0	0.35	mg/L			12/29/22 07:07	
TOC Result 2 (SW846 9060A)	1.1		1.0	0.35	mg/L			12/29/22 07:07	
								10/00/00 07 07	
TOC Result 3 (SW846 9060A)	1.1		1.0	0.35	mg/L			12/29/22 07:07	

8

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer Job ID: 240-178276-1

Lab Sample ID: 240-178276-2

Matrix: Water

5 6

8 9

Client Sample ID: DB-01 Date Collected: 12/16/22 14:40 Date Received: 12/20/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	7300		100	57	ug/L		12/27/22 12:00	12/28/22 15:22	1
Method: SW846 6020 - Metals ((ICP/MS) - ⁻	Total Recov	erable						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	290		5.0	5.0	ug/L		12/27/22 12:00	12/28/22 16:12	1
Calcium	110000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:12	1
Magnesium	15000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:12	1
Potassium	13000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:12	1
Molybdenum	240		5.0	5.0	ug/L		12/27/22 12:00	12/28/22 16:12	1
Strontium	2300		10	10	ug/L		12/27/22 12:00	12/28/22 16:12	1
Sodium	460000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:12	1
Lithium	83		8.0	8.0	ug/L		12/27/22 12:00	12/28/22 16:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	150		5.0	2.6	mg/L			12/21/22 22:24	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	120		5.0	2.6	mg/L			12/21/22 22:24	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	27		5.0	2.6	mg/L			12/21/22 22:24	
Chloride (SW846 9056A)	46		1.0	1.0	mg/L			12/31/22 21:21	• • • • • •
Fluoride (SW846 9056A)	0.26		0.050	0.050	mg/L			12/31/22 21:21	1
Sulfate (SW846 9056A)	1100		10	10	mg/L			12/31/22 21:43	10
Total Organic Carbon (SW846 9060A)	3.7		1.0	0.35	mg/L			12/29/22 08:01	
TOC Result 1 (SW846 9060A)	3.7		1.0	0.35	mg/L			12/29/22 08:01	
TOC Result 2 (SW846 9060A)	3.7		1.0	0.35	mg/L			12/29/22 08:01	1
TOC Result 3 (SW846 9060A)	3.7		1.0	0.35	mg/L			12/29/22 08:01	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer Job ID: 240-178276-1

5 6

Lab Sample ID: 240-178276-3 Matrix: Water

Date Collected: 12/16/22 15:49 Date Received: 12/20/22 10:00

Client Sample ID: SC-01

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	100	U	100	57	ug/L		12/27/22 12:00	12/28/22 15:26	1
Method: SW846 6020 - Metals (I	CP/MS) - ⁻	Total Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	13		5.0	5.0	ug/L		12/27/22 12:00	12/28/22 16:14	1
Calcium	25000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:14	1
Magnesium	7600		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:14	1
Potassium	1100		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:14	1
Molybdenum	5.0	U	5.0	5.0	ug/L		12/27/22 12:00	12/28/22 16:14	1
Strontium	86		10	10	ug/L		12/27/22 12:00	12/28/22 16:14	1
Sodium	5900		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:14	1
_ithium	8.0	U	8.0	8.0	ug/L		12/27/22 12:00	12/28/22 16:14	1
General Chemistry	Image: Non-system No-system Non-system N								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	81		5.0					12/21/22 22:28	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	81		5.0		-			12/21/22 22:28	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 22:28	1
Chloride (SW846 9056A)	9.6		1.0	1.0	mg/L			12/31/22 22:05	1
Fluoride (SW846 9056A)	0.080		0.050	0.050	mg/L			12/31/22 22:05	1
Sulfate (SW846 9056A)	15		1.0	1.0	mg/L			12/31/22 22:05	1
Total Organic Carbon (SW846 9060A)	1.9		1.0	0.35	mg/L			12/29/22 08:37	1
TOC Result 1 (SW846 9060A)	1.9		1.0	0.35	mg/L			12/29/22 08:37	1
FOC Result 2 (SW846 9060A)	1.9		1.0	0.35	mg/L			12/29/22 08:37	1
FOC Result 3 (SW846 9060A)	1.9		1.0	0.35	mg/L			12/29/22 08:37	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer Job ID: 240-178276-1

Lab Sample ID: 240-178276-4

Matrix: Water

5 6 7

Date Collected: 12/14/22 00:00 Date Received: 12/20/22 10:00

Г

Client Sample ID: DUP-01

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100		100	57	ug/L		12/27/22 12:00	12/28/22 15:31	1
Method: SW846 6020 - Metals	(ICP/MS) -	Total Recov	erable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	310		5.0	5.0	ug/L		12/27/22 12:00	12/28/22 16:17	1
Calcium	33000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:17	1
Magnesium	11000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:17	1
Potassium	2700		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:17	1
Molybdenum	85		5.0	5.0	ug/L		12/27/22 12:00	12/28/22 16:17	1
Strontium	920		10	10	ug/L		12/27/22 12:00	12/28/22 16:17	1
Sodium	340000		1000	1000	ug/L		12/27/22 12:00	12/28/22 16:17	1
Lithium	19		8.0	8.0	ug/L		12/27/22 12:00	12/28/22 16:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	150		5.0	2.6	mg/L			12/21/22 22:32	1
Bicarbonate Alkalinity as CaCO3 SM 2320B-1997)	150		5.0	2.6	mg/L			12/21/22 22:32	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 22:32	1
Chloride (SW846 9056A)	550		10	10	mg/L			12/31/22 22:48	10
Fluoride (SW846 9056A)	1.8		0.050	0.050	mg/L			12/31/22 22:27	1
Sulfate (SW846 9056A)	1.0	U	1.0	1.0	mg/L			12/31/22 22:27	1
Fotal Organic Carbon (SW846 9060A)	0.70	J	1.0	0.35	mg/L			12/29/22 09:12	1
TOC Result 1 (SW846 9060A)	0.70	J	1.0	0.35	mg/L			12/29/22 09:12	1
TOC Result 2 (SW846 9060A)	0.69	J	1.0	0.35	mg/L			12/29/22 09:12	1
FOC Result 3 (SW846 9060A)	0.70	J	1.0	0.35	mg/L			12/29/22 09:12	1

QC Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 240-55719 Matrix: Water Analysis Batch: 557398		МВ						•		rep Type	le ID: Methoo e: Total Reco Prep Batch:	verable
Analyte		Qualifier		RL		MDL Un	it	D	Pi	repared	Analyzed	Dil Fac
Boron	100			100		57 ug/	-			7/22 12:00	12/28/22 14:02	1
Lab Sample ID: LCS 240-5571	192/2-A						c	Client	Sar	nple ID:	Lab Control	Sample
Matrix: Water											e: Total Reco	
Analysis Batch: 557398											Prep Batch:	557192
			Spike		LCS	LCS					%Rec	
Analyte			Added	R	Result	Qualifie	r Unit		D	%Rec	Limits	
Boron			1000		1010		ug/L		_	101	80 - 120	

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 240-557192/1-A Matrix: Water Analysis Batch: 557451

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	5.0	U	5.0	5.0	ug/L		12/27/22 12:00	12/28/22 15:42	1
Calcium	1000	U	1000	1000	ug/L		12/27/22 12:00	12/28/22 15:42	1
Magnesium	1000	U	1000	1000	ug/L		12/27/22 12:00	12/28/22 15:42	1
Potassium	1000	U	1000	1000	ug/L		12/27/22 12:00	12/28/22 15:42	1
Molybdenum	5.0	U	5.0	5.0	ug/L		12/27/22 12:00	12/28/22 15:42	1
Strontium	10	U	10	10	ug/L		12/27/22 12:00	12/28/22 15:42	1
Sodium	1000	U	1000	1000	ug/L		12/27/22 12:00	12/28/22 15:42	1
Lithium	8.0	U	8.0	8.0	ug/L		12/27/22 12:00	12/28/22 15:42	1

Lab Sample ID: LCS 240-557192/3-A Matrix: Water Analysis Batch: 557451

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 557192

Client Sample ID: Method Blank

Prep Type: Total/NA

	0	1.00					% D
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Barium	1000	938		ug/L		94	80 - 120
Calcium	25000	24500		ug/L		98	80 - 120
Magnesium	25000	24500		ug/L		98	80 - 120
Potassium	25000	24500		ug/L		98	80 - 120
Molybdenum	500	465		ug/L		93	80 - 120
Strontium	500	469		ug/L		94	80 - 120
Sodium	25000	24500		ug/L		98	80 - 120
Lithium	500	483		ug/L		97	80 - 120

Method: 2320B-1997 - Alkalinity, Total

Lab Sample ID: MB 240-557050/30 Matrix: Water Analysis Batch: 557050

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	5.0	U	5.0	2.6	mg/L			12/21/22 20:50	1
Bicarbonate Alkalinity as CaCO3	5.0	U	5.0	2.6	mg/L			12/21/22 20:50	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	2.6	mg/L			12/21/22 20:50	1

Eurofins Canton

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 557192

Method: 2320B-1997 - Alkalinity, Total (Continued)

5 6

Lab Sample ID: MB 240-557050/4 Matrix: Water Analysis Batch: 557050										Clie	ent Sam	ple ID: Method Prep Type: To	
Analysis Batch. 337030	МВ	мв											
Analyte	Result	Qualifier		RL	1	MDL	Unit		D	P	repared	Analyzed	Dil Fac
Alkalinity	5.0	U		5.0		2.6	mg/L		_		•	12/21/22 18:59	1
Bicarbonate Alkalinity as CaCO3	5.0	U		5.0			mg/L					12/21/22 18:59	1
arbonate Alkalinity as CaCO3	5.0	U		5.0		2.6	mg/L					12/21/22 18:59	1
_ab Sample ID: LCS 240-557050/29								Cli	ent	Sar	nple ID:	: Lab Control S	Sample
Matrix: Water											- C	Prep Type: To	
Analysis Batch: 557050													
-			Spike		LCS	LCS	5					%Rec	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Alkalinity			146		140			mg/L		_	96	86 - 123	
Analysis Batch: 557649		МВ											
) notife	Result	Qualifier		RL			Unit		D	P	repared	Analyzed	Dil Fac
-													
Chloride	1.0			1.0		1.0	-					12/31/22 07:59	
Chloride	0.050	U		0.050	0	.050	mg/L					12/31/22 07:59	1
Chloride		U			0	.050	-						1 1 1
Chloride Fluoride Sulfate	0.050	U		0.050	0	.050	mg/L	Cli	ent	Sar	nple ID:	12/31/22 07:59	1
Chloride Fluoride Sulfate Lab Sample ID: LCS 240-557649/4	0.050	U		0.050	0	.050	mg/L	Cli	ent	Sar	nple ID:	12/31/22 07:59 12/31/22 07:59	1 1 Sample
Chloride Fluoride Sulfate Lab Sample ID: LCS 240-557649/4 Matrix: Water	0.050	U		0.050	0	.050	mg/L	Cli	ent	Sar	nple ID	12/31/22 07:59 12/31/22 07:59 : Lab Control S	1 1 Sample
Chloride Fluoride Sulfate Lab Sample ID: LCS 240-557649/4 Matrix: Water	0.050	U	Spike	0.050	0 LCS	.050 1.0	mg/L mg/L	Cli	ent	Sar	nple ID:	12/31/22 07:59 12/31/22 07:59 : Lab Control S	Sample
Chloride Fluoride Sulfate Lab Sample ID: LCS 240-557649/4 Matrix: Water Analysis Batch: 557649	0.050	U	Spike Added	0.050		.050 1.0	mg/L mg/L	Cli Unit	ent	Sar	nple ID: %Rec	12/31/22 07:59 12/31/22 07:59 : Lab Control S Prep Type: To	1 1 Sample
Chloride Fluoride Sulfate Lab Sample ID: LCS 240-557649/4 Matrix: Water Analysis Batch: 557649 Analyte	0.050	U	-	0.050	LCS	.050 1.0	mg/L mg/L		ent			12/31/22 07:59 12/31/22 07:59 : Lab Control S Prep Type: To %Rec	Sample
Chloride Fluoride Sulfate Lab Sample ID: LCS 240-557649/4 Matrix: Water Analysis Batch: 557649 Analyte Chloride	0.050	U	Added	0.050	LCS Result	.050 1.0	mg/L mg/L	Unit	ent		%Rec	12/31/22 07:59 12/31/22 07:59 : Lab Control S Prep Type: To %Rec Limits	1 1 Sample
Chloride Fluoride Sulfate Lab Sample ID: LCS 240-557649/4 Matrix: Water Analysis Batch: 557649 Analyte Chloride Fluoride	0.050	U	Added 50.0	0.050	LCS Result 48.9	.050 1.0	mg/L mg/L	Unit mg/L	ent		% Rec	12/31/22 07:59 12/31/22 07:59 : Lab Control S Prep Type: To %Rec Limits 90 - 110	Sample
Analyte Chloride Fluoride Sulfate Lab Sample ID: LCS 240-557649/4 Matrix: Water Analysis Batch: 557649 Analyte Chloride Fluoride Sulfate Iethod: 9060A - Organic Carb	0.050	U U	Added 50.0 2.50 50.0	0.050	LCS Result 48.9 2.65	.050 1.0	mg/L mg/L	Unit mg/L mg/L	ent		%Rec 98 106	12/31/22 07:59 12/31/22 07:59 : Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110	1 1 Sample

Prep	Type:	Total/NA

Analysis Batch: 557515 MB MB Analyte **Result Qualifier** RL MDL Unit D Dil Fac Prepared Analyzed 1.0 U Total Organic Carbon 1.0 0.35 mg/L 12/29/22 06:09 1 0.35 mg/L TOC Result 1 1.0 U 1.0 12/29/22 06:09 1 Lab Sample ID: MB 240-557515/4 **Client Sample ID: Method Blank**

Matrix: Water Prep Type: Total/NA Analysis Batch: 557515 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 1.0 Total Organic Carbon 1.0 U 0.35 mg/L 12/28/22 16:49 1 TOC Result 1 1.0 U 1.0 0.35 mg/L 12/28/22 16:49 1

Method: 9060A - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: LCS 240-557515/35 Matrix: Water Analysis Batch: 557515				Clie	nt Sai	mple ID	: Lab Control Sample Prep Type: Total/NA
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Organic Carbon	18.3	18.3		mg/L		100	85 - 115
TOC Result 1	18.3	18.3		mg/L		100	85 - 115
Lab Sample ID: LCS 240-557515/5				Clie	nt Sai	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 557515							
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Organic Carbon	18.3	18.3		mg/L		100	85 - 115
TOC Result 1	18.3	18.3		mg/L		100	85 - 115

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer Job ID: 240-178276-1

10 11

12

Prep Batch: 557192

Metals

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-178276-1	NORTH BAB	Total Recoverable	Water	3005A	
240-178276-2	DB-01	Total Recoverable	Water	3005A	
240-178276-3	SC-01	Total Recoverable	Water	3005A	
240-178276-4	DUP-01	Total Recoverable	Water	3005A	
MB 240-557192/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-557192/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCS 240-557192/3-A	Lab Control Sample	Total Recoverable	Water	3005A	
Analysis Batch: 557	398				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-178276-1	NORTH BAB	Total Recoverable	Water	6010B	557192
240-178276-2	DB-01	Total Recoverable	Water	6010B	557192
240-178276-3	SC-01	Total Recoverable	Water	6010B	557192
240-178276-4	DUP-01	Total Recoverable	Water	6010B	557192
MB 240-557192/1-A	Method Blank	Total Recoverable	Water	6010B	557192
LCS 240-557192/2-A	Lab Control Sample	Total Recoverable	Water	6010B	557192
Analysis Batch: 557	451				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-178276-1		Total Recoverable	Water	6020	557102

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method F	Prep Batch
240-178276-1	NORTH BAB	Total Recoverable	Water	6020	557192
240-178276-2	DB-01	Total Recoverable	Water	6020	557192
240-178276-3	SC-01	Total Recoverable	Water	6020	557192
240-178276-4	DUP-01	Total Recoverable	Water	6020	557192
MB 240-557192/1-A	Method Blank	Total Recoverable	Water	6020	557192
LCS 240-557192/3-A	Lab Control Sample	Total Recoverable	Water	6020	557192

General Chemistry

Analysis Batch: 557050

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-178276-1	NORTH BAB	Total/NA	Water	2320B-1997	
240-178276-2	DB-01	Total/NA	Water	2320B-1997	
240-178276-3	SC-01	Total/NA	Water	2320B-1997	
240-178276-4	DUP-01	Total/NA	Water	2320B-1997	
MB 240-557050/30	Method Blank	Total/NA	Water	2320B-1997	
MB 240-557050/4	Method Blank	Total/NA	Water	2320B-1997	
LCS 240-557050/29	Lab Control Sample	Total/NA	Water	2320B-1997	

Analysis Batch: 557515

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-178276-1	NORTH BAB	Total/NA	Water	9060A	
240-178276-2	DB-01	Total/NA	Water	9060A	
240-178276-3	SC-01	Total/NA	Water	9060A	
240-178276-4	DUP-01	Total/NA	Water	9060A	
MB 240-557515/34	Method Blank	Total/NA	Water	9060A	
MB 240-557515/4	Method Blank	Total/NA	Water	9060A	
LCS 240-557515/35	Lab Control Sample	Total/NA	Water	9060A	
LCS 240-557515/5	Lab Control Sample	Total/NA	Water	9060A	

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer

General Chemistry

Analysis Batch: 557649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-178276-1	NORTH BAB	Total/NA	Water	9056A	
240-178276-2	DB-01	Total/NA	Water	9056A	
240-178276-2	DB-01	Total/NA	Water	9056A	
240-178276-3	SC-01	Total/NA	Water	9056A	
240-178276-4	DUP-01	Total/NA	Water	9056A	
240-178276-4	DUP-01	Total/NA	Water	9056A	
MB 240-557649/3	Method Blank	Total/NA	Water	9056A	
LCS 240-557649/4	Lab Control Sample	Total/NA	Water	9056A	

Job ID: 240-178276-1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer

Client Sample ID: NORTH BAB Date Collected: 12/14/22 15:28 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			557192	SHB	EET CAN	12/27/22 12:00
Total Recoverable	Analysis	6010B		1	557398	RKT	EET CAN	12/28/22 15:18
Total Recoverable	Prep	3005A			557192	SHB	EET CAN	12/27/22 12:00
Total Recoverable	Analysis	6020		1	557451	DSH	EET CAN	12/28/22 16:01
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 22:20
Total/NA	Analysis	9056A		1	557649	JMB	EET CAN	12/31/22 21:00
Total/NA	Analysis	9060A		1	557515	MMS	EET CAN	12/29/22 07:07

Client Sample ID: DB-01 Date Collected: 12/16/22 14:40 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			557192	SHB	EET CAN	12/27/22 12:00
Total Recoverable	Analysis	6010B		1	557398	RKT	EET CAN	12/28/22 15:22
Total Recoverable	Prep	3005A			557192	SHB	EET CAN	12/27/22 12:00
Total Recoverable	Analysis	6020		1	557451	DSH	EET CAN	12/28/22 16:12
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 22:24
Total/NA	Analysis	9056A		1	557649	JMB	EET CAN	12/31/22 21:21
Total/NA	Analysis	9056A		10	557649	JMB	EET CAN	12/31/22 21:43
lotal/NA	Analysis	9060A		1	557515	MMS	EET CAN	12/29/22 08:01

Client Sample ID: SC-01 Date Collected: 12/16/22 15:49 Date Received: 12/20/22 10:00

Lab Sample ID: 240-178276-3 Matrix: Water

Lab Sample ID: 240-178276-4

Matrix: N	Water
-----------	-------

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			557192	SHB	EET CAN	12/27/22 12:00
Total Recoverable	Analysis	6010B		1	557398	RKT	EET CAN	12/28/22 15:26
Total Recoverable	Prep	3005A			557192	SHB	EET CAN	12/27/22 12:00
Total Recoverable	Analysis	6020		1	557451	DSH	EET CAN	12/28/22 16:14
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 22:28
Total/NA	Analysis	9056A		1	557649	JMB	EET CAN	12/31/22 22:05
Total/NA	Analysis	9060A		1	557515	MMS	EET CAN	12/29/22 08:37

Client Sample ID: DUP-01 Date Collected: 12/14/22 00:00 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			557192	SHB	EET CAN	12/27/22 12:00
Total Recoverable	Analysis	6010B		1	557398	RKT	EET CAN	12/28/22 15:31
Total Recoverable	Prep	3005A			557192	SHB	EET CAN	12/27/22 12:00
Total Recoverable	Analysis	6020		1	557451	DSH	EET CAN	12/28/22 16:17

Eurofins Canton

Matrix: Water

Job ID: 240-178276-1

Matrix: Water

Matrix: Water

Lab Sample ID: 240-178276-1

Lab Sample ID: 240-178276-2

Matrix: Water

Lab Sample ID: 240-178276-4

Client Sample ID: DUP-01 Date Collected: 12/14/22 00:00 Date Received: 12/20/22 10:00

Prep Type Total/NA	Batch Type Analysis	Batch Method 2320B-1997	Run	Dilution Factor	Batch Number 557050	Analyst JWW	Lab EET CAN	Prepared or Analyzed 12/21/22 22:32
Total/NA	Analysis	9056A		1	557649	JMB	EET CAN	12/31/22 22:27
Total/NA	Analysis	9056A		10	557649	JMB	EET CAN	12/31/22 22:48
Total/NA	Analysis	9060A		1	557515	MMS	EET CAN	12/29/22 09:12

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power-Aquifer Job ID: 240-178276-1

12

Laboratory: Eurofins Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-23
Connecticut	State	PH-0590	12-31-23
Iorida	NELAP	E87225	06-30-23
Seorgia	State	4062	02-27-23
linois	NELAP	200004	07-31-23
owa	State	421	06-01-23
(entucky (UST)	State	112225	02-27-23
Centucky (WW)	State	KY98016	12-31-22
lichigan	State	9135	02-27-23
linnesota	NELAP	039-999-348	12-31-23
innesota (Petrofund)	State	3506	08-01-23
ew Jersey	NELAP	OH001	06-30-23
ew York	NELAP	10975	04-01-23
hio	State	8303	02-27-23
hio VAP	State	CL0024	02-27-23
regon	NELAP	4062	02-27-23
ennsylvania	NELAP	68-00340	08-31-23
exas	NELAP	T104704517-22-17	08-31-23
rginia	NELAP	460175	09-14-23
/ashington	State	C971	01-12-23
est Virginia DEP	State	210	12-31-22

🐝 eurofins	COC No. 240-102238-37085,5	Page: Page 5 of 7	Job #	Preservation Codes:			F - MeOH S - H2SO4 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate	I - Ice J - DI Water	L EDA Y - Trizma C L EDA Z - other (Specify)	Other:	redmuM lesc	F Special Instructions/Note:	7	2	7	4								Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)			DateTime. 12-11-22/0850 Company	LIIIN IDYU COMPANY	Day The Company	1	Aer. (16:08:2021 Aer. (16:08:2021 6 7
3.23.0	Carrier Tracking No(s):	State of Origin:	vsis Requested																		ustody			may be assessed if samples a	equirements:	Method of Shipment.	Strong C 12-		Coco Date/Ime		8 9 10 11
Record	Lab PM: Brooks, Kris M	E-Mail: Kris.Brooks@et.eurofinsus.com	Analysis		(15)	9'ow	- Ajiu	Vo) Alkali e	l 10 28 IstoT å Jefluð	SD (Yo iCarb 8 iloride,	1000 millitered 1000 - Carb. B 1000 - Carb. B 1000 millitered 1000 millitered		X X X NM	× × × × III	XXXX	N X X X N					240-178276 Chain of Custody			Sample Disposal (A fee	Special Instructions/QC Requirements	ime:	Received by:	Received by:	Proceybatty	Cooler Temperature(s) [*] C and Other Remarks	12 13
in of Custody Record	<u>8</u>	- 26 OL	PWSID	-		Yes A No	1352	-			Sample Type (C=comp,	Preservation Code:	C Water	C Water	G Water	- G Water	Water	Water	Water	Water	Water	Water	Water	Radiological			0550 Company	1039 Company	inu contr		
Cha	Sampler: J. Kren 2	1h		Due Date Requested:	TAT Requested (days):	Compliance Project: A Ye	71 2022	1 TRACE	Project #: 8.40.40.403	#MOSS	0)	Sample Date	8ES1 EE-41-E1	12-16-22 1440	12-16-24 1549	12-14-21								son B Unknown		Date:	1 22		Date/Time:		
Eurofins Canton 180 S. Van Buren Avenue Barberton. OH 44203 Phone: 330-497-9396 Fax: 330-497-0772	Client Information	Client Contact: Jacob Krenz	Company. TRC Environmental Corporation.	Address 1540 Eisenhower Place	City Ann Arbor	State. Zip: MI, 48108-7080	Phone: 313-971-7080(Tel) 313-971-9022(Fax)	Email. JKrenz@trccompanies.com	Project Name CCR DTE Belle River Power-Aquifer	Site: Michigan	e de la companya de l		North 3,4B	D8-01	SC-01	10-00 pob- 01								Possible Hazard Identification	Other (specify)	Empty Kit Relinquished by:	and	Preversion to Stray Mont Francy	12	Custody Seals/Intect: Custody Seal No	

Eurofins - Canton Samp	le Receipt Form/Narra	tive	Login # :	17827	6
Barberton Facility					
Client TMC	S	ite Name		Cooler unp	
		Dened on 12-20-1		(ho	Mek
	JPS FAS Clipper Cl		Courier Othe	r	
Receipt After-hours: Drop			age Location		
Eurofins Cooler #		ent Cooler Box	Other		
Packing material used COOLANT:		n Hastic Bag None Dry Ice Water None			
1. Cooler temperature up	on receipt	See !	Multiple Cooler Form		
IR GUN # IR-13 (CF			rrected Cooler Te		°C
IR GUN # IR-16 (CF			rrected Cooler To		°C
IR GUN # IR-17 (CF	-0.3°C) Observed Coc	oler Temp°C Co	rrected Cooler To	emp	°C
2. Were tamper/custody s	eals on the outside of the	cooler(s)? If Yes Quantit	y Pes	No	
	e outside of the cooler(s)			No NA	Tests that are not checked for pH by
-Were tamper/custod	y seals on the bottle(s) or	bottle kits (LLHg/MeHg)	? Yes	0	Receiving:
-Were tamper/custod	y seals intact and uncomp	promised?		No NA	
3. Shippers' packing slip a	ttached to the cooler(s)?			No	VOAs
4. Did custody papers acc	ompany the sample(s)?		-	No	Oil and Grease
5. Were the custody paper		n the appropriate place?		No	TOC
6. Was/were the person(s)				No	
7. Did all bottles arrive in	-	-	0	No	
8. Could all bottle labels (ID/Date/Time) be reconci	iled with the COC?	Y	No	
9. For each sample, does t	he COC specify preservat	tives (N), # of container	rs 🕅/N), and sam	nple type of g	rab/comp (N)?
10. Were correct bottle(s) u	used for the test(s) indicate	ed?	Yes	No	
11. Sufficient quantity rece	ived to perform indicated	analyses?	Yes	No	
12. Are these work share sa	imples and all listed on th	e COC?	\checkmark	(1)	
If yes, Questions 13-17	have been checked at the	e originating laboratory.		<u> </u>	
13. Were all preserved sam	ple(s) at the correct pH up	oon receipt?	W s	No NA pl	H Strip Lot# HC291590
14. Were VOAs on the CC	C?		Y@s	No	
15. Were air bubbles >6 m		Larger than this.		NA NA	
16. Was a VOA trip blank		Trip Blank Lot #		1 Co	
17. Was a LL Hg or Me H	g trip blank present?		Yes	NO	
Contacted PM	Date	by	_ via Verbal Vo	ice Mail Oth	er
Concerning					
Concerning					
18. CHAIN OF CUSTOR	Y & SAMPLE DISCRI	EPANCIES addition	al next page	Samples pro	cessed by:
			L		
-					
	<u> </u>	<u></u>			
19. SAMPLE CONDITIO		1.0.1			
Sample(s)					
Sample(s)			were received i		
Sample(s)		were received with b	oubble >6 mm in	diameter. (N	otify PM)
20. SAMPLE PRESERV.	ATION				
Sample(s)			were furth	ner preserved	in the laboratory
Sample(s) Time preserved:	Preservative(s) adde	d/Lot number(s):	were furt	preserved	the aboratory.
VOA Sample Preservation	- Date/Time VOAs Froze	en:			

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080 Generated 1/5/2023 7:14:50 PM

JOB DESCRIPTION

CCR DTE Belle River Power - Aquifer

JOB NUMBER

240-178297-1

Eurofins Canton 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Canton

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Sroohs

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790

Generated 1/5/2023 7:14:50 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	15
QC Sample Results	26
QC Association Summary	29
Lab Chronicle	32
Certification Summary	36
Chain of Custody	37

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

3

Qualifiers

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary

4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	5
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
General Che	mistry	•
Qualifier	Qualifier Description	7
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	Q
Glossary		0
		9
Abbreviation ¤	These commonly used abbreviations may or may not be present in this report.	
	Listed under the "D" column to designate that the result is reported on a dry weight basis	10
%R	Percent Recovery	
CFL	Contains Free Liquid	44
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	40
DER	Duplicate Error Ratio (normalized absolute difference)	12
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	13
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 240-178297-1

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-178297-1

Receipt

The samples were received on 12/20/2022 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 9056A_28D: The following samples were diluted due to the nature of the sample matrix: MW-16-08 (240-178297-8), MW-16-11A (240-178297-11) and (240-178344-J-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	EET CAN
6020	Metals (ICP/MS)	SW846	EET CAN
2320B-1997	Alkalinity, Total	SM	EET CAN
9056A	Anions, Ion Chromatography	SW846	EET CAN
9060A	Organic Carbon, Total (TOC)	SW846	EET CAN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CAN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-178297-1	MW-16-01	Water	12/14/22 10:33	12/20/22 10:00
240-178297-2	MW-16-02	Water	12/14/22 12:13	12/20/22 10:00
240-178297-3	MW-16-03	Water	12/14/22 13:46	12/20/22 10:00
240-178297-4	MW-16-04	Water	12/15/22 13:34	12/20/22 10:00
240-178297-5	MW-16-05	Water	12/15/22 09:24	12/20/22 10:00
240-178297-6	MW-16-06	Water	12/15/22 10:55	12/20/22 10:00
240-178297-7	MW-16-07	Water	12/15/22 12:28	12/20/22 10:00
240-178297-8	MW-16-08	Water	12/16/22 12:33	12/20/22 10:00
240-178297-9	MW-16-09	Water	12/16/22 13:34	12/20/22 10:00
240-178297-10	MW-16-10	Water	12/16/22 09:20	12/20/22 10:00
240-178297-11	MW-16-11A	Water	12/16/22 11:05	12/20/22 10:00

Job ID: 240-178297-1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Client Sample ID: MW-16-01

-	
-	
	5
	7
	8
	9
	13

Lab Sample ID: 240-178297-1

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1000		100	57	ug/L	1	_	6010B	Total
									Recoverable
Barium	220 F	F1	5.0	5.0	ug/L	1		6020	Total
									Recoverable
Calcium	42000		1000	1000	ug/L	1		6020	Total
									Recoverable
Magnesium	14000		1000	1000	ug/L	1		6020	Total
									Recoverable
Potassium	2700		1000	1000	ug/L	1		6020	Total
	74		5.0	F 0		4		c000	Recoverable
Molybdenum	71		5.0	5.0	ug/L	1		6020	Total
Strontium	1200		10	10	ug/L			6020	Recoverable Total
Suonuum	1200		10	10	ug/L	I		0020	Recoverable
Sodium	300000		1000	1000	ua/l	1		6020	Total
Couldin	000000		1000	1000	ug/L	I		0020	Recoverable
Lithium	15		8.0	8.0	ug/L	1		6020	Total
			0.0	0.0	9/ -			0020	Recoverable
Alkalinity	170		5.0	2.6	mg/L	1		2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	170		5.0	2.6	mg/L	1		2320B-1997	Total/NA
Chloride	450		5.0		mg/L	5		9056A	Total/NA
Fluoride	1.8		0.050	0.050		1		9056A	Total/NA
Sulfate	9.0		1.0		mg/L	1		9056A	Total/NA
Total Organic Carbon	0.79 J	J	1.0		mg/L	1		9060A	Total/NA
TOC Result 1	0.77 J	J	1.0		mg/L	1		9060A	Total/NA
TOC Result 2	0.79 J	J	1.0		mg/L	1		9060A	Total/NA
TOC Result 3	0.79 J	J	1.0		mg/L	1		9060A	Total/NA
TOC Result 4	0.80		1.0		mg/L			9060A	Total/NA

Client Sample ID: MW-16-02

Lab Sample ID: 240-178297-2

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1100	100	57	ug/L	1	_	6010B	Total
								Recoverable
Barium	250	5.0	5.0	ug/L	1		6020	Total
								Recoverable
Calcium	54000	1000	1000	ug/L	1		6020	Total
	40000	4000	4000					Recoverable
Magnesium	16000	1000	1000	ug/L	1		6020	Total
Potassium	3400	1000	1000	ug/L	1		6020	Recoverable Total
Polassium	3400	1000	1000	ug/L	1		0020	Recoverable
Molybdenum	25	5.0	5.0	ug/L	1		6020	Total
morysuonam	20	0.0	0.0	ug/L	•		0020	Recoverable
Strontium	1500	10	10	ug/L	1		6020	Total
				0				Recoverable
Sodium	190000	1000	1000	ug/L	1		6020	Total
								Recoverable
Lithium	15	8.0	8.0	ug/L	1		6020	Total
								Recoverable
Alkalinity	150	5.0		mg/L	1		2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	150	5.0	2.6	mg/L	1		2320B-1997	Total/NA
Chloride	350	5.0	5.0	mg/L	5		9056A	Total/NA
Fluoride	1.2	0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	9.1	1.0	1.0	mg/L	1		9056A	Total/NA
Total Organic Carbon	0.72	J 1.0	0.35	mg/L	1		9060A	Total/NA

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Client Sample ID: MW-16-02 (Continued)

5 6 7

Lab Sample ID: 240-178297-2

Lab Sample ID: 240-178297-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
TOC Result 1	0.71	J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 2	0.71	J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 3	0.71	J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 4	0.74	J	1.0	0.35	mg/L	1	9060A	Total/NA

Client Sample ID: MW-16-03

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	990		100	57	ug/L	1	_	6010B	Total
									Recoverable
Barium	320		5.0	5.0	ug/L	1		6020	Total
									Recoverable
Calcium	34000		1000	1000	ug/L	1		6020	Total
									Recoverable
Magnesium	11000		1000	1000	ug/L	1		6020	Total
									Recoverable
Potassium	2800		1000	1000	ug/L	1		6020	Total
									Recoverable
Molybdenum	87		5.0	5.0	ug/L	1		6020	Total
									Recoverable
Strontium	960		10	10	ug/L	1		6020	Total
Sodium	250000		1000	1000		4		6020	Recoverable
Sodum	350000		1000	1000	ug/L	1		0020	Total Recoverable
Lithium	20		8.0	8.0	ug/L	1		6020	Total
Ethidin	20		0.0	0.0	ug/L	I		0020	Recoverable
Alkalinity	160		5.0	26	mg/L	1		2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	160		5.0		mg/L	1		2320B-1997	Total/NA
Chloride	550		10		mg/L	10		9056A	Total/NA
Fluoride	1.8		0.050	0.050				9056A	Total/NA
Total Organic Carbon	0.73 J	I	1.0		mg/L	1		9060A	Total/NA
TOC Result 1	0.73 J		1.0			1		9060A	Total/NA
					mg/L				
TOC Result 2	0.74 J		1.0		mg/L	1		9060A	Total/NA
TOC Result 3	0.73 J		1.0		mg/L	1		9060A	Total/NA
TOC Result 4	0.72 J	l	1.0	0.35	mg/L	1		9060A	Total/NA

Client Sample ID: MW-16-04

Lab Sample ID: 240-178297-4

Analyte	Result	Qualifier	RL M	DL	Unit	Dil Fac	D	Method	Prep Type
Boron	1000	1	00	57	ug/L	1	_	6010B	Total
									Recoverable
Barium	290	ł	.0	5.0	ug/L	1		6020	Total
									Recoverable
Calcium	46000	10	00 10	00	ug/L	1		6020	Total
									Recoverable
Magnesium	15000	10	00 10	00	ug/L	1		6020	Total
									Recoverable
Potassium	3000	10	00 10	00	ug/L	1		6020	Total
									Recoverable
Molybdenum	68	Ę	.0	5.0	ug/L	1		6020	Total
									Recoverable
Strontium	1200		10	10	ug/L	1		6020	Total
									Recoverable
Sodium	300000	10	00 10	00	ug/L	1		6020	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-16-04 (Continued)

Lab Sample ID: 240-178297-4

Analyte	Result Qu	ualifier RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lithium	19	8.0	8.0	ug/L	1	6020	Total
							Recoverable
Alkalinity	160	5.0	2.6	mg/L	1	2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	160	5.0	2.6	mg/L	1	2320B-1997	Total/NA
Chloride	470	5.0	5.0	mg/L	5	9056A	Total/NA
Fluoride	1.8	0.050	0.050	mg/L	1	9056A	Total/NA
Sulfate	16	1.0	1.0	mg/L	1	9056A	Total/NA
Total Organic Carbon	0.75 J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 1	0.74 J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 2	0.74 J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 3	0.77 J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 4	0.76 J	1.0	0.35	mg/L	1	9060A	Total/NA

Client Sample ID: MW-16-05

Lab Sample ID: 240-178297-5

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	DM	ethod	Prep Type
Boron	1600	100	57	ug/L	1	60)10B	Total
								Recoverable
Barium	240	5.0	5.0	ug/L	1	60	020	Total
								Recoverable
Calcium	33000	1000	1000	ug/L	1	60)20	Total
								Recoverable
Magnesium	11000	1000	1000	ug/L	1	60)20	Total
	4400	1000	4000					Recoverable
Potassium	4100	1000	1000	ug/L	1	60)20	Total
Malukalanum	11	F 0	F 0		1	60	200	Recoverable
Molybdenum	11	5.0	5.0	ug/L	1	60)20	Total Recoverable
Strontium	810	10	10	ug/L	1	60)20	Total
oronian	010	10	10	ug/L		00	20	Recoverable
Sodium	870000	1000	1000	ua/L	1	60	020	Total
				5				Recoverable
Lithium	47	8.0	8.0	ug/L	1	60)20	Total
				•				Recoverable
Alkalinity	190	5.0	2.6	mg/L	1	23	320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	190	5.0	2.6	mg/L	1	23	320B-1997	Total/NA
Chloride	1400	20		mg/L	20	90)56A	Total/NA
Fluoride	1.2	0.10	0.10	mg/L	2	90)56A	Total/NA
Sulfate	6.1	2.0	2.0	mg/L	2	90)56A	Total/NA
Total Organic Carbon	1.8	1.0	0.35	mg/L	1	90)60A	Total/NA
TOC Result 1	1.8	1.0		mg/L	1	90)60A	Total/NA
TOC Result 2	1.8	1.0		mg/L	1	90	060A	Total/NA
TOC Result 3	1.8	1.0		mg/L	1	90)60A	Total/NA
TOC Result 4	1.8	1.0		mg/L	1)60A	Total/NA

Client Sample ID: MW-16-06

Analyte **Result Qualifier** RL MDL Unit Dil Fac D Method Prep Type Boron 1800 100 57 ug/L 1 6010B Total Recoverable Barium 250 5.0 5.0 ug/L 1 6020 Total Recoverable Calcium 38000 1000 1000 ug/L 1 6020 Total Recoverable

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 240-178297-6

RL

1000

1000

5.0

10

1000

8.0

5.0

5.0

20

0.10

2.0

1.0

1.0

1.0

1.0

1.0

MDL Unit

1000 ug/L

1000 ug/L

5.0 ug/L

10 ug/L

1000 ug/L

8.0 ug/L

2.6 mg/L

2.6 mg/L

2.0 mg/L

0.35 mg/L

0.35 mg/L

0.35 mg/L

0.35 mg/L

mg/L

mg/L

20 mg/L

0.10

0.35

Result Qualifier

12000

4300

14

1000

45

180

180

1600

1.2

4.4

0.68 J

0.68 J

0.67 J

0.68 J

0.68 J

960000

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Analyte

Magnesium

Potassium

Strontium

Sodium

Lithium

Alkalinity

Chloride

Fluoride

Sulfate

TOC Result 1

TOC Result 2

TOC Result 3

TOC Result 4

Total Organic Carbon

Bicarbonate Alkalinity as CaCO3

Client Sample ID: MW-16-07

Molybdenum

Client Sample ID: MW-16-06 (Continued)

Total/NA

1

9060A

	Job ID: 2	240-178297-1	2
Lab Sa	mple ID: 24	0-178297-6	
Dil Fac	D Method	Prep Type	
1	6020	Total Recoverable	4
1	6020	Total Recoverable	5
1	6020	Total Recoverable	6
1	6020	Total	7
1	6020	Recoverable Total	1
1	6020	Recoverable Total Recoverable	8
1	2320B-1997	Total/NA	9
1	2320B-1997	Total/NA	
20	9056A	Total/NA	
2	9056A	Total/NA	
2	9056A	Total/NA	
1	9060A	Total/NA	13

Lab Sample ID: 240-178297-7

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1800		100	57	ug/L	1	_	6010B	Total
									Recoverable
Barium	220		5.0	5.0	ug/L	1		6020	Total
									Recoverable
Calcium	35000		1000	1000	ug/L	1		6020	Total
									Recoverable
Magnesium	11000		1000	1000	ug/L	1		6020	Total
D. t i	1700		4000	4000		4			Recoverable
Potassium	4700		1000	1000	ug/L	1		6020	Total
Molybdenum	7.4		5.0	5.0		1		6020	Recoverable Total
Morybaenam	7.4		5.0	5.0	ug/L	I		0020	Recoverable
Strontium	1200		10	10	ug/L			6020	Total
Clondan	1200		10	10	ug/L			0020	Recoverable
Sodium	1100000		1000	1000	ug/L	1		6020	Total
					•				Recoverable
Lithium	53		8.0	8.0	ug/L	1		6020	Total
									Recoverable
Alkalinity	230		5.0	2.6	mg/L	1		2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	230		5.0	2.6	mg/L	1		2320B-1997	Total/NA
Chloride	1700		20	20	mg/L	20		9056A	Total/NA
Fluoride	1.2		0.10	0.10	mg/L	2		9056A	Total/NA
Sulfate	30		2.0		mg/L	2		9056A	Total/NA
Total Organic Carbon	5.0		1.0	0.35	mg/L	1		9060A	Total/NA
TOC Result 1	5.0		1.0		mg/L			9060A	Total/NA
TOC Result 2	5.0		1.0		mg/L	1		9060A	Total/NA
TOC Result 3	4.9		1.0		mg/L	1		9060A	Total/NA
TOC Result 4	5.0		1.0		mg/L			9060A	Total/NA
	5.0		1.0	0.55	iiig/L	I		30007	TOtal/INA

This Detection Summary does not include radiochemical test results.

RL

MDL Unit

Result Qualifier

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Client Sample ID: MW-16-08

Analyte

	Job ID: 24	40-178297-1	
Lab Sam	nple ID: 240	-178297-8	
Dil Fac D	Method	Prep Type	
1	6010B	Total	
		Recoverable	
1	6020	Total	5
		Recoverable	
1	6020	Total	
		Recoverable	
1	6020	Total	
		Recoverable	7
1	6020	Total	
		Recoverable	8
1	6020	Total	
		Recoverable	0
1	6020	Total	3
		Recoverable	
1	6020	Total	
1	6020	Recoverable	
I	6020	Total Recoverable	
	2320B-1997	Total/NA	
1			
•	2320B-1997	Total/NA	
20	9056A	Total/NA	
2	9056A	Total/NA	13

		=		•			
Boron	1800	100	57	ug/L	1	6010B	Total
							Recoverable
Barium	300	5.0	5.0	ug/L	1	6020	Total
							Recoverable
Calcium	40000	1000	1000	ug/L	1	6020	Total
							Recoverable
Magnesium	13000	1000	1000	ug/L	1	6020	Total
							Recoverable
Potassium	4700	1000	1000	ug/L	1	6020	Total
	10						Recoverable
Molybdenum	16	5.0	5.0	ug/L	1	6020	Total
Strontium	1200	10	10			6020	Recoverable
Suonuum	1200	10	10	ug/L	1	6020	Total Recoverable
Sodium	1100000	1000	1000	ua/l	1	6020	Total
oodium	1100000	1000	1000	ug/L	1	0020	Recoverable
Lithium	57	8.0	8.0	ug/L	1	6020	Total
Lithan		0.0	0.0	ug/L	·	0020	Recoverable
Alkalinity	170	5.0	2.6	mg/L	1	2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	170	5.0		mg/L	1	2320B-1997	Total/NA
Chloride	1800	20		mg/L	20	9056A	Total/NA
Fluoride	1.2	0.10		mg/L	2	9056A	Total/NA
Total Organic Carbon	0.62 J	1.0		mg/L	- 1	9060A	Total/NA
•				Ũ	1		
TOC Result 1	0.61 J	1.0		mg/L	1	9060A	Total/NA
TOC Result 2	0.64 J	1.0		mg/L	1	9060A	Total/NA
TOC Result 3	0.62 J	1.0		mg/L	1	9060A	Total/NA
TOC Result 4	0.62 J	1.0	0.35	mg/L	1	9060A	Total/NA

Client Sample ID: MW-16-09

Lab Sample ID: 240-178297-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1400		100	57	ug/L	1	_	6010B	Total
									Recoverable
Barium	220		5.0	5.0	ug/L	1		6020	Total
									Recoverable
Calcium	31000		1000	1000	ug/L	1		6020	Total
									Recoverable
Magnesium	9600		1000	1000	ug/L	1		6020	Total
			(Recoverable
Potassium	2700		1000	1000	ug/L	1		6020	Total
	25		5.0	5.0		4		<u></u>	Recoverable
Molybdenum	35		5.0	5.0	ug/L	1		6020	Total
Strontium	840		10	10	ug/L			6020	Recoverable Total
Stontum	040		10	10	ug/L	1		0020	Recoverable
Sodium	580000		1000	1000	ua/l	1		6020	Total
	000000		1000	1000	ug/L			0020	Recoverable
Lithium	25		8.0	8.0	ug/L	1		6020	Total
					3				Recoverable
Alkalinity	200		5.0	2.6	mg/L	1		2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	200		5.0		mg/L	1		2320B-1997	Total/NA
Chloride	930		10		mg/L	10		9056A	Total/NA
Fluoride	1.5		0.050	0.050		1		9056A	Total/NA
Sulfate	13		1.0		mg/L	1		9056A	Total/NA
	2.5		1.0		mg/L	1		9060A	Total/NA
Total Organic Carbon									
TOC Result 1	2.5		1.0	0.35	mg/L	1		9060A	Total/NA

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Client Sample ID: MW-16-09 (Continued)

Job	ID: 240-17829	97-1

Lab Sample ID: 240-178297-9

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Р гер Туре
TOC Result 2	2.5	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 3	2.5	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 4	2.5	1.0	0.35	mg/L	1	9060A	Total/NA

Client Sample ID: MW-16-10

Lab Sample ID: 240-178297-10

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1900		100	57	ug/L	1	_	6010B	Total
									Recoverable
Barium	67		5.0	5.0	ug/L	1		6020	Total
									Recoverable
Calcium	26000		1000	1000	ug/L	1		6020	Total
									Recoverable
Magnesium	9000		1000	1000	ug/L	1		6020	Total
	(Recoverable
Potassium	4600		1000	1000	ug/L	1		6020	Total
			5.0	5.0		4			Recoverable
Molybdenum	11		5.0	5.0	ug/L	1		6020	Total
Strontium	540		10	10	ua/l			6020	Recoverable Total
Suonaam	540		10	10	ug/L	I		0020	Recoverable
Sodium	980000		1000	1000	ua/l	1		6020	Total
Sodidin	300000		1000	1000	ug/L	1		0020	Recoverable
Lithium	67		8.0	8.0	ug/L	1		6020	Total
Litilian	01		0.0	0.0	ug/L			0020	Recoverable
Alkalinity	210		5.0	2.6	mg/L	1		2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	210		5.0		mg/L	1		2320B-1997	Total/NA
Chloride	1500		20	20	mg/L	20		9056A	Total/NA
Fluoride	1.2		0.10	0.10	mg/L	2		9056A	Total/NA
Sulfate	60		2.0	2.0	mg/L	2		9056A	Total/NA
Total Organic Carbon	0.53 J	I	1.0	0.35	mg/L	1		9060A	Total/NA
TOC Result 1	0.52 J		1.0	0.35	mg/L	1		9060A	Total/NA
TOC Result 2	0.53 J	l	1.0	0.35	mg/L	1		9060A	Total/NA
TOC Result 3	0.54 J	l	1.0	0.35	mg/L	1		9060A	Total/NA
TOC Result 4	0.54 J		1.0	0.35	mg/L	1		9060A	Total/NA

Client Sample ID: MW-16-11A

Lab Sample ID: 240-178297-11

Analyte	Result	Qualifier R	_ MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1800	10	57	ug/L	1	_	6010B	Total
								Recoverable
Barium	270	5.	5.0	ug/L	1		6020	Total
								Recoverable
Calcium	38000	100	0 1000	ug/L	1		6020	Total
								Recoverable
Magnesium	12000	100	0 1000	ug/L	1		6020	Total
								Recoverable
Potassium	4800	100	0 1000	ug/L	1		6020	Total
								Recoverable
Molybdenum	12	5.	5.0	ug/L	1		6020	Total
								Recoverable
Strontium	1000	1) 10	ug/L	1		6020	Total
								Recoverable
Sodium	1000000	100	0 1000	ug/L	1		6020	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-16-11A (Continued)

Lab Sample ID: 240-178297-11

Analyte	Result Qu	ualifier RL	MDL	Unit	Dil Fac D	Method	Ргер Туре
Lithium	57	8.0	8.0	ug/L	1	6020	Total
							Recoverable
Alkalinity	170	5.0	2.6	mg/L	1	2320B-1997	Total/NA
Bicarbonate Alkalinity as CaCO3	170	5.0	2.6	mg/L	1	2320B-1997	Total/NA
Chloride	1700	20	20	mg/L	20	9056A	Total/NA
Fluoride	1.1	0.10	0.10	mg/L	2	9056A	Total/NA
Total Organic Carbon	0.49 J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 1	0.51 J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 2	0.49 J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 3	0.49 J	1.0	0.35	mg/L	1	9060A	Total/NA
TOC Result 4	0.49 J	1.0	0.35	mg/L	1	9060A	Total/NA

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-1

Matrix: Water

5 6 7

Client Sample ID: MW-16-01 Date Collected: 12/14/22 10:33 Date Received: 12/20/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1000		100	57	ug/L		12/21/22 12:00	12/23/22 03:28	1
Method: SW846 6020 - Metals	(ICP/MS) - ⁻	Total Recov	erable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	220	F1	5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:09	1
Calcium	42000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:09	1
Magnesium	14000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:09	1
Potassium	2700		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:09	1
Molybdenum	71		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:09	1
Strontium	1200		10	10	ug/L		12/21/22 12:00	12/22/22 16:09	1
Sodium	300000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:09	1
Lithium	15		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	170		5.0	2.6	mg/L			12/21/22 21:26	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	170		5.0	2.6	mg/L			12/21/22 21:26	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 21:26	1
Chloride (SW846 9056A)	450		5.0	5.0	mg/L			01/03/23 16:27	5
Fluoride (SW846 9056A)	1.8		0.050	0.050	mg/L			01/03/23 16:05	1
Sulfate (SW846 9056A)	9.0		1.0	1.0	mg/L			01/03/23 16:05	1
Total Organic Carbon (SW846 9060A)	0.79	J	1.0	0.35	mg/L			12/29/22 14:35	1
TOC Result 1 (SW846 9060A)	0.77	J	1.0	0.35	mg/L			12/29/22 14:35	1
TOC Result 2 (SW846 9060A)	0.79	J	1.0	0.35	mg/L			12/29/22 14:35	1
· · · · · · · · · · · · · · · · · · ·	0.70	· · · · · · · · · · · · · · · ·	1.0	0.35	mg/L			12/29/22 14:35	1
TOC Result 3 (SW846 9060A)	0.79	J	1.0	0.55	mg/∟			12/23/22 14.33	

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-2

Matrix: Water

Date Collected: 12/14/22 12:13 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-02

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100		100	57	ug/L		12/21/22 12:00	12/23/22 03:44	1
Method: SW846 6020 - Metals	(ICP/MS) - ⁻	Total Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	250		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:21	1
Calcium	54000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:21	1
Magnesium	16000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:21	1
Potassium	3400		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:21	1
Molybdenum	25		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:21	1
Strontium	1500		10	10	ug/L		12/21/22 12:00	12/22/22 16:21	1
Sodium	190000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:21	1
Lithium	15		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	150		5.0	2.6	mg/L			12/21/22 21:30	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	150		5.0		mg/L			12/21/22 21:30	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 21:30	1
Chloride (SW846 9056A)	350		5.0	5.0	mg/L			01/03/23 17:53	5
Fluoride (SW846 9056A)	1.2		0.050	0.050	mg/L			01/03/23 16:48	1
Sulfate (SW846 9056A)	9.1		1.0	1.0	mg/L			01/03/23 16:48	1
Total Organic Carbon (SW846 9060A)	0.72	J	1.0	0.35	mg/L			12/29/22 15:10	1
TOC Result 1 (SW846 9060A)	0.71	J	1.0	0.35	mg/L			12/29/22 15:10	1
TOC Result 2 (SW846 9060A)	0.71	J	1.0	0.35	mg/L			12/29/22 15:10	1
	0.74	• • • • • • • • • • • • • • •	1.0	0 35	mg/L			12/29/22 15:10	1
TOC Result 3 (SW846 9060A)	0.71	J	1.0	0.55	mg/∟			12/23/22 13.10	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-3

Matrix: Water

Date Collected: 12/14/22 13:46 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-03

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	990		100	57	ug/L		12/21/22 12:00	12/23/22 03:49	1
Method: SW846 6020 - Metals	(ICP/MS) -	Total Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	320		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:24	1
Calcium	34000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:24	1
Magnesium	11000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:24	1
Potassium	2800		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:24	1
Molybdenum	87		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:24	1
Strontium	960		10	10	ug/L		12/21/22 12:00	12/22/22 16:24	1
Sodium	350000		1000	1000			12/21/22 12:00	12/22/22 16:24	1
Lithium	20		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:24	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	160		5.0	2.6	mg/L			12/21/22 21:35	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	160		5.0	2.6	mg/L			12/21/22 21:35	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 21:35	1
Chloride (SW846 9056A)	550		10	10	mg/L			01/03/23 18:37	10
Fluoride (SW846 9056A)	1.8		0.050	0.050	mg/L			01/03/23 18:15	1
Sulfate (SW846 9056A)	1.0	U	1.0	1.0	mg/L			01/03/23 18:15	1
Total Organic Carbon (SW846 9060A)	0.73	J	1.0	0.35	mg/L			12/29/22 15:45	1
TOC Result 1 (SW846 9060A)	0.73	J	1.0	0.35	mg/L			12/29/22 15:45	1
TOC Result 2 (SW846 9060A)	0.74	J	1.0	0.35	mg/L			12/29/22 15:45	1
			1.0		mg/L			12/29/22 15:45	
TOC Result 3 (SW846 9060A)	0.73	J	1.0	0.55	IIIg/L			12/23/22 13.43	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-4

Matrix: Water

Date Collected: 12/15/22 13:34 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-04

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1000		100	57	ug/L		12/21/22 12:00	12/23/22 03:53	1
Method: SW846 6020 - Metals	(ICP/MS) - ⁻	Total Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	290		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:26	1
Calcium	46000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:26	1
Magnesium	15000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:26	1
Potassium	3000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:26	1
Molybdenum	68		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:26	1
Strontium	1200		10	10	ug/L		12/21/22 12:00	12/22/22 16:26	1
Sodium	300000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:26	1
_ithium	19		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	160		5.0	2.6	mg/L			12/21/22 21:39	1
Bicarbonate Alkalinity as CaCO3 SM 2320B-1997)	160		5.0	2.6	mg/L			12/21/22 21:39	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 21:39	1
Chloride (SW846 9056A)	470		5.0	5.0	mg/L			01/03/23 19:20	5
Fluoride (SW846 9056A)	1.8		0.050	0.050	mg/L			01/03/23 18:59	1
Sulfate (SW846 9056A)	16		1.0	1.0	mg/L			01/03/23 18:59	1
Total Organic Carbon (SW846 9060A)	0.75	J	1.0	0.35	mg/L			12/29/22 16:20	1
FOC Result 1 (SW846 9060A)	0.74	J	1.0	0.35	mg/L			12/29/22 16:20	1
	0.74	J	1.0	0.35	mg/L			12/29/22 16:20	1
106 Result 2 (SW040 9000A)					-				
TOC Result 2 (SW846 9060A) TOC Result 3 (SW846 9060A)	0.77	J	1.0	0.35	mg/L			12/29/22 16:20	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-5 Matrix: Water

Date Collected: 12/15/22 09:24 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1600		100	57	ug/L		12/21/22 12:00	12/23/22 04:06	1
Method: SW846 6020 - Metals	(ICP/MS) - ⁻	Total Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	240		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:34	1
Calcium	33000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:34	1
Magnesium	11000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:34	1
Potassium	4100		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:34	1
Molybdenum	11		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:34	1
Strontium	810		10	10	ug/L		12/21/22 12:00	12/22/22 16:34	1
Sodium	870000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:34	1
Lithium	47		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:34	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	190		5.0	2.6	mg/L			12/21/22 21:43	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	190		5.0	2.6	mg/L			12/21/22 21:43	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 21:43	1
Chloride (SW846 9056A)	1400		20	20	mg/L			01/03/23 20:04	20
Fluoride (SW846 9056A)	1.2		0.10	0.10	mg/L			01/03/23 19:42	2
Sulfate (SW846 9056A)	6.1		2.0	2.0	mg/L			01/03/23 19:42	2
Total Organic Carbon (SW846 9060A)	1.8		1.0	0.35	mg/L			12/29/22 16:56	1
TOC Result 1 (SW846 9060A)	1.8		1.0	0.35	mg/L			12/29/22 16:56	1
TOC Result 2 (SW846 9060A)	1.8		1.0	0.35	mg/L			12/29/22 16:56	1
TOC Result 3 (SW846 9060A)	1.8		1.0	0.35	mg/L			12/29/22 16:56	1
TOC Result 4 (SW846 9060A)	1.8		1.0		mg/L			12/29/22 16:56	1

Eurofins Canton

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-6

Matrix: Water

Date Collected: 12/15/22 10:55 Date Received: 12/20/22 10:00

Г

Client Sample ID: MW-16-06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1800		100	57	ug/L		12/21/22 12:00	12/23/22 04:10	
Method: SW846 6020 - Metals	(ICP/MS) - ⁻	Total Recove	erable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	250		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:36	
Calcium	38000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:36	
Magnesium	12000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:36	
Potassium	4300		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:36	
Molybdenum	14		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:36	
Strontium	1000		10	10	ug/L		12/21/22 12:00	12/22/22 16:36	
Sodium	960000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:36	
Lithium	45		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:36	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Alkalinity (SM 2320B-1997)	180		5.0	2.6	mg/L			12/21/22 21:47	
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	180		5.0	2.6	mg/L			12/21/22 21:47	
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 21:47	
Chloride (SW846 9056A)	1600		20	20	mg/L			01/03/23 20:47	2
Fluoride (SW846 9056A)	1.2		0.10	0.10	mg/L			01/03/23 20:25	
Sulfate (SW846 9056A)	4.4		2.0	2.0	mg/L			01/03/23 20:25	
Total Organic Carbon (SW846 9060A)	0.68	J	1.0	0.35	mg/L			12/29/22 17:32	
TOC Result 1 (SW846 9060A)	0.68	J	1.0	0.35	mg/L			12/29/22 17:32	
TOC Result 2 (SW846 9060A)	0.67	J	1.0	0.35	mg/L			12/29/22 17:32	
TOC Result 3 (SW846 9060A)	0.68	J	1.0	0.35	mg/L			12/29/22 17:32	
TOC Result 4 (SW846 9060A)	0.68		1.0		mg/L			12/29/22 17:32	

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-7

Matrix: Water

5 6 7

Date Collected: 12/15/22 12:28 Date Received: 12/20/22 10:00

Г

Client Sample ID: MW-16-07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1800		100	57	ug/L		12/21/22 12:00	12/23/22 04:14	1
Method: SW846 6020 - Metals	(ICP/MS) -	Total Recove	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	220		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:39	1
Calcium	35000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:39	1
Magnesium	11000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:39	1
Potassium	4700		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:39	1
Molybdenum	7.4		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:39	1
Strontium	1200		10	10	ug/L		12/21/22 12:00	12/22/22 16:39	1
Sodium	1100000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:39	1
Lithium	53		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	230		5.0	2.6	mg/L			12/21/22 21:52	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	230		5.0	2.6	mg/L			12/21/22 21:52	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 21:52	1
Chloride (SW846 9056A)	1700		20	20	mg/L			01/03/23 22:14	20
Fluoride (SW846 9056A)	1.2		0.10	0.10	mg/L			01/03/23 21:09	2
Sulfate (SW846 9056A)	30		2.0	2.0	mg/L			01/03/23 21:09	2
Total Organic Carbon (SW846 9060A)	5.0		1.0	0.35	mg/L			12/29/22 18:08	
TOC Result 1 (SW846 9060A)	5.0		1.0	0.35	mg/L			12/29/22 18:08	
TOC Result 2 (SW846 9060A)	5.0		1.0		mg/L			12/29/22 18:08	1
TOC Result 3 (SW846 9060A)	4.9		1.0		mg/L			12/29/22 18:08	• • • • •
					mg/L				

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-8

Matrix: Water

5

8

Date Collected: 12/16/22 12:33 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1800		100	57	ug/L		12/21/22 12:00	12/23/22 04:19	1
Method: SW846 6020 - Metals	(ICP/MS) -	Total Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	300		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:41	1
Calcium	40000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:41	1
Magnesium	13000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:41	1
Potassium	4700		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:41	1
Molybdenum	16		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:41	1
Strontium	1200		10	10	ug/L		12/21/22 12:00	12/22/22 16:41	1
Sodium	1100000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:41	1
Lithium	57		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	170		5.0	2.6	mg/L			12/21/22 21:58	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	170		5.0	2.6	mg/L			12/21/22 21:58	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 21:58	1
Chloride (SW846 9056A)	1800		20	20	mg/L			01/03/23 22:57	20
Fluoride (SW846 9056A)	1.2		0.10	0.10	mg/L			01/03/23 22:35	2
Sulfate (SW846 9056A)	2.0	U	2.0	2.0	mg/L			01/03/23 22:35	2
Total Organic Carbon (SW846 9060A)	0.62	J	1.0	0.35	mg/L			12/29/22 18:45	1
TOC Result 1 (SW846 9060A)	0.61	J	1.0	0.35	mg/L			12/29/22 18:45	1
TOC Result 2 (SW846 9060A)	0.64	J	1.0	0.35	mg/L			12/29/22 18:45	1
TOC Result 3 (SW846 9060A)	0.62	J	1.0	0.35	mg/L			12/29/22 18:45	1
· · · · · · · · · · · · · · · · · · ·		J	1.0		mg/L			12/29/22 18:45	

1/5/2023

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-9

Matrix: Water

Date Collected: 12/16/22 13:34 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1400		100	57	ug/L		12/21/22 12:00	12/23/22 04:23	1
Method: SW846 6020 - Metals	(ICP/MS) -	Total Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	220		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:44	1
Calcium	31000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:44	1
Magnesium	9600		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:44	1
Potassium	2700		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:44	1
Molybdenum	35		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:44	1
Strontium	840		10	10	ug/L		12/21/22 12:00	12/22/22 16:44	1
Sodium	580000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:44	1
Lithium	25		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	200		5.0	2.6	mg/L			12/21/22 22:07	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	200		5.0	2.6	mg/L			12/21/22 22:07	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 22:07	1
Chloride (SW846 9056A)	930		10	10	mg/L			01/03/23 23:40	10
Fluoride (SW846 9056A)	1.5		0.050	0.050	mg/L			01/03/23 23:19	1
Sulfate (SW846 9056A)	13		1.0		mg/L			01/03/23 23:19	1
Total Organic Carbon (SW846 9060A)	2.5		1.0		mg/L			12/29/22 19:39	1
TOC Result 1 (SW846 9060A)	2.5		1.0	0.35	mg/L			12/29/22 19:39	1
TOC Result 2 (SW846 9060A)	2.5		1.0	0.35	mg/L			12/29/22 19:39	1
			1.0		mg/L			12/29/22 19:39	
TOC Result 3 (SW846 9060A)	2.5		1.0	0.35	mg/L			12/29/22 19.39	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-10

Matrix: Water

Date Collected: 12/16/22 09:20 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1900		100	57	ug/L		12/21/22 12:00	12/23/22 04:28	1
Method: SW846 6020 - Metals	(ICP/MS) - 1	Total Recove	erable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	67		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:46	1
Calcium	26000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:46	1
Magnesium	9000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:46	1
Potassium	4600		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:46	1
Molybdenum	11		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:46	1
Strontium	540		10	10	ug/L		12/21/22 12:00	12/22/22 16:46	1
Sodium	980000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:46	1
Lithium	67		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:46	1
Concercl Chamisters									
General Chemistry	Decult	Qualifier	ы	MD	11	P	Dronorod	Analyzad	
Analyte		Qualifier	RL 5.0	MDL		D	Prepared	Analyzed 12/21/22 22:11	Dil Fac
Alkalinity (SM 2320B-1997)	210				mg/L				1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	210		5.0	2.6	mg/L			12/21/22 22:11	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 22:11	1
Chloride (SW846 9056A)	1500		20	20	mg/L			01/04/23 00:24	20
Fluoride (SW846 9056A)	1.2		0.10	0.10	mg/L			01/04/23 00:02	2
Sulfate (SW846 9056A)	60		2.0	2.0	mg/L			01/04/23 00:02	2
Total Organic Carbon (SW846 9060A)	0.53	J	1.0	0.35	mg/L			12/29/22 20:14	1
TOC Result 1 (SW846 9060A)	0.52	J	1.0	0.35	mg/L			12/29/22 20:14	1
TOC Result 2 (SW846 9060A)	0.53	J	1.0	0.35	mg/L			12/29/22 20:14	1
								· · · · · · · · · · · · · · · · · · ·	
TOC Result 3 (SW846 9060A)	0.54	J	1.0	0.35	mg/L			12/29/22 20:14	1

5 6

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Lab Sample ID: 240-178297-11 Matrix: Water

Date Collected: 12/16/22 11:05 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-11A

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1800		100	57	ug/L		12/21/22 12:00	12/23/22 04:32	1
Method: SW846 6020 - Metals	(ICP/MS) -	Total Recov	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	270		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:49	1
Calcium	38000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:49	1
Magnesium	12000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:49	1
Potassium	4800		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:49	1
Molybdenum	12		5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:49	1
Strontium	1000		10	10	ug/L		12/21/22 12:00	12/22/22 16:49	1
Sodium	1000000		1000	1000	ug/L		12/21/22 12:00	12/22/22 16:49	1
Lithium	57		8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:49	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity (SM 2320B-1997)	170		5.0	2.6	mg/L			12/21/22 22:16	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-1997)	170		5.0	2.6	mg/L			12/21/22 22:16	1
Carbonate Alkalinity as CaCO3 (SM 2320B-1997)	5.0	U	5.0	2.6	mg/L			12/21/22 22:16	1
Chloride (SW846 9056A)	1700		20	20	mg/L			01/04/23 01:07	20
Fluoride (SW846 9056A)	1.1		0.10	0.10	mg/L			01/04/23 00:46	2
Sulfate (SW846 9056A)	2.0	U	2.0	2.0	mg/L			01/04/23 00:46	2
Total Organic Carbon (SW846 9060A)	0.49	J	1.0	0.35	mg/L			12/29/22 20:49	1
TOC Result 1 (SW846 9060A)	0.51	J	1.0	0.35	mg/L			12/29/22 20:49	1
TOC Result 2 (SW846 9060A)	0.49	J	1.0		mg/L			12/29/22 20:49	1
TOC Result 3 (SW846 9060A)	0.49	J	1.0	0.35	mg/L			12/29/22 20:49	1
TOC Result 4 (SW846 9060A)	0.49		1.0		mg/L			12/29/22 20:49	

> 7 8 9

QC Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

9

Method: 6010B - Metals (ICP) Lab Sample ID: MB 240-556847/1-A **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total Recoverable Analysis Batch: 557096 Prep Batch: 556847 MB MB Analyte **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac D 100 12/21/22 12:00 12/23/22 03:19 Boron 100 U 57 ug/L 1 Lab Sample ID: LCS 240-556847/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 557096 Prep Batch: 556847 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 1000 80 - 120 Boron 979 ug/L 98 Lab Sample ID: 240-178297-1 MS Client Sample ID: MW-16-01 Matrix: Water **Prep Type: Total Recoverable** Analysis Batch: 557096 Prep Batch: 556847 Sample Sample Spike MS MS %Rec **Result Qualifier** Added Result Qualifier Limits Analyte Unit D %Rec Boron 1000 1000 2030 100 75 - 125 ug/L Lab Sample ID: 240-178297-1 MSD Client Sample ID: MW-16-01 Matrix: Water **Prep Type: Total Recoverable** Analysis Batch: 557096 Prep Batch: 556847 Spike MSD MSD %Rec RPD Sample Sample Analyte **Result Qualifier** Added **Result Qualifier** Unit %Rec Limits RPD Limit D 1000 1000 1970 75 - 125 Boron ug/L 94 3 20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 240-556847/1-A Matrix: Water Analysis Batch: 557119

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 556847

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 556847

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	5.0	U	5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:05	1
Calcium	1000	U	1000	1000	ug/L		12/21/22 12:00	12/22/22 16:05	1
Magnesium	1000	U	1000	1000	ug/L		12/21/22 12:00	12/22/22 16:05	1
Potassium	1000	U	1000	1000	ug/L		12/21/22 12:00	12/22/22 16:05	1
Molybdenum	5.0	U	5.0	5.0	ug/L		12/21/22 12:00	12/22/22 16:05	1
Strontium	10	U	10	10	ug/L		12/21/22 12:00	12/22/22 16:05	1
Sodium	1000	U	1000	1000	ug/L		12/21/22 12:00	12/22/22 16:05	1
Lithium	8.0	U	8.0	8.0	ug/L		12/21/22 12:00	12/22/22 16:05	1

Lab Sample ID: LCS 240-556847/3-A Matrix: Water Analysis Batch: 557119

Analysis Baton. oor no	Spike	LCS	LCS				%Rec	
Analyte	Added	-	Qualifier	Unit	D	%Rec	Limits	
Barium	1000	1010		ug/L		101	80 - 120	
Calcium	25000	24200		ug/L		97	80 - 120	
Magnesium	25000	23700		ug/L		95	80 - 120	
Potassium	25000	24300		ug/L		97	80 - 120	
Molybdenum	500	458		ug/L		92	80 - 120	
Strontium	500	470		ug/L		94	80 - 120	

Lab Sample ID: LCS 240-556847/3-A

Matrix: Water

Analyte

Sodium

Lithium

Analysis Batch: 557119

Method: 6020 - Metals (ICP/MS) (Continued)

QC Sample Results

Spike

Added

25000

500

LCS LCS

23900

482

Result Qualifier

Unit

ug/L

ug/L

96 80 - 120

Client Sample ID: MW-16-01

Prep Type: Total Recoverable

Client Sample ID: MW-16-01
Prep Type: Total Recoverable
Prep Batch: 556847

%Rec

Limits

80 - 120

D %Rec

95

Lab Sample ID: 240-178297-1 MS **Matrix: Water** Analysis Batch: 557119

Andiysis Datch. 557 115	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Barium	220	F1	1000	1560	F1	ug/L		134	75 - 125
Calcium	42000		25000	63200		ug/L		84	75 - 125
Magnesium	14000		25000	37500		ug/L		94	75 - 125
Potassium	2700		25000	26800		ug/L		96	75 - 125
Molybdenum	71		500	582		ug/L		102	75 - 125
Strontium	1200		500	1620		ug/L		86	75 - 125
Sodium	300000		25000	315000	4	ug/L		48	75 - 125
Lithium	15		500	514		ug/L		100	75 - 125

Lab Sample ID: 240-178297-1 MSD Matrix: Water Analysis Batch: 557119

Analysis Batch: 557119									Prep Ba	atch: 5	56847
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Barium	220	F1	1000	1550	F1	ug/L		133	75 - 125	0	20
Calcium	42000		25000	62900		ug/L		83	75 - 125	0	20
Magnesium	14000		25000	36700		ug/L		91	75 - 125	2	20
Potassium	2700		25000	26500		ug/L		95	75 - 125	1	20
Molybdenum	71		500	569		ug/L		100	75 - 125	2	20
Strontium	1200		500	1620		ug/L		85	75 - 125	0	20
Sodium	300000		25000	313000	4	ug/L		40	75 - 125	1	20
Lithium	15		500	502		ug/L		97	75 - 125	2	20

Method: 2320B-1997 - Alkalinity, Total

Lab Sample ID: MB 240-557050/30 Matrix: Water Analysis Batch: 557050						•	Client Sam	ole ID: Method Prep Type: To	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	5.0	U	5.0	2.6	mg/L			12/21/22 20:50	1
Bicarbonate Alkalinity as CaCO3	5.0	U	5.0	2.6	mg/L			12/21/22 20:50	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	2.6	mg/L			12/21/22 20:50	1

Lab Sample ID: MB 240-557050/4 **Matrix: Water**

Analysis Batch: 557050

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	5.0	U	5.0	2.6	mg/L			12/21/22 18:59	1
Bicarbonate Alkalinity as CaCO3	5.0	U	5.0	2.6	mg/L			12/21/22 18:59	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	2.6	mg/L			12/21/22 18:59	1

Eurofins Canton

Prep Type: Total/NA

Client Sample ID: Method Blank

QC Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

2 3 4 5 6 7

Method: 2320B-1997 - Alkalinity, Total

Lab Sample ID: LCS 240-55 Matrix: Water Analysis Batch: 557050	7050/29					Clie	nt Sai	mple ID	: Lab Control Sa Prep Type: Tot	
Analysis Baton: oor ooo			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity			146	140		mg/L		96	86 - 123	
Lab Sample ID: 240-178297 Matrix: Water	-8 DU							Client	Sample ID: MW- Prep Type: Tot	
Analysis Batch: 557050										
· ·····,	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Alkalinity	170			165		mg/L			2	20
Bicarbonate Alkalinity as CaCO3	170			165		mg/L			2	20
Carbonate Alkalinity as CaCO3	5.0	U		5.0	U	mg/L			NC	20

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-557809/3
Matrix: Water
Analysis Batch: 557809

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.0	U	1.0	1.0	mg/L			01/03/23 13:33	1
Fluoride	0.050	U	0.050	0.050	mg/L			01/03/23 13:33	1
Sulfate	1.0	U	1.0	1.0	mg/L			01/03/23 13:33	1

Lab Sample ID: LCS 240-557809/4

Matrix: Water

Matrix: Water

Analysis Batch: 557809	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	49.2		mg/L		98	90 - 110	
Fluoride	2.50	2.61		mg/L		104	90 - 110	
Sulfate	50.0	50.6		mg/L		101	90 - 110	

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 240-557788/3 Matrix: Water Analysis Batch: 557788							Client Sam	ple ID: Method Prep Type: To	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.0	U	1.0	0.35	mg/L			12/29/22 14:16	1
TOC Result 1	1.0	U	1.0	0.35	mg/L			12/29/22 14:16	1
Lab Sample ID: LCS 240-557788/4	L .					Client	Sample ID:	: Lab Control S	Sample

Prep Type: Total/NA

Analysis Batch: 557788								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	 18.3	18.0		mg/L		98	85 - 115	
TOC Result 1	18.3	18.0		mg/L		98	85 - 115	

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer Job ID: 240-178297-1

Metals

Prep Batch: 556847

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-178297-1	MW-16-01	Total Recoverable	Water	3005A	
240-178297-2	MW-16-02	Total Recoverable	Water	3005A	
240-178297-3	MW-16-03	Total Recoverable	Water	3005A	
240-178297-4	MW-16-04	Total Recoverable	Water	3005A	
240-178297-5	MW-16-05	Total Recoverable	Water	3005A	
240-178297-6	MW-16-06	Total Recoverable	Water	3005A	
240-178297-7	MW-16-07	Total Recoverable	Water	3005A	
240-178297-8	MW-16-08	Total Recoverable	Water	3005A	
240-178297-9	MW-16-09	Total Recoverable	Water	3005A	
240-178297-10	MW-16-10	Total Recoverable	Water	3005A	
240-178297-11	MW-16-11A	Total Recoverable	Water	3005A	
MB 240-556847/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-556847/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCS 240-556847/3-A	Lab Control Sample	Total Recoverable	Water	3005A	
240-178297-1 MS	MW-16-01	Total Recoverable	Water	3005A	
240-178297-1 MS	MW-16-01	Total Recoverable	Water	3005A	
240-178297-1 MSD	MW-16-01	Total Recoverable	Water	3005A	
240-178297-1 MSD	MW-16-01	Total Recoverable	Water	3005A	
Analysis Batch: 5570	96				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-178297-1	MW-16-01	Total Recoverable	Water	6010B	556847
240-178297-2	MW-16-02	Total Recoverable	Water	6010B	556847
240-178297-3	MW-16-03	Total Recoverable	Water	6010B	556847
240-178297-4	MW-16-04	Total Recoverable	Water	6010B	556847
240-178297-5	MW-16-05	Total Recoverable	Water	6010B	556847
240-178297-6	MW-16-06	Total Recoverable	Water	6010B	556847
240-178297-7	MW-16-07	Total Recoverable	Water	6010B	556847
240-178297-8	MW-16-08	Total Recoverable	Water	6010B	556847
240-178297-9	MW-16-09	Total Recoverable	Water	6010B	556847
240-178297-10	MW-16-10	Total Recoverable	Water	6010B	556847
040 470007 44		Total Recoverable	Water	6010B	556847
240-178297-11	MW-16-11A		(Tato)		
240-178297-11 MB 240-556847/1-A	MW-16-11A Method Blank	Total Recoverable	Water	6010B	556847
					556847 556847
MB 240-556847/1-A	Method Blank	Total Recoverable	Water	6010B	

Analysis Batch: 557119

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-178297-1	MW-16-01	Total Recoverable	Water	6020	556847
240-178297-2	MW-16-02	Total Recoverable	Water	6020	556847
240-178297-3	MW-16-03	Total Recoverable	Water	6020	556847
240-178297-4	MW-16-04	Total Recoverable	Water	6020	556847
240-178297-5	MW-16-05	Total Recoverable	Water	6020	556847
240-178297-6	MW-16-06	Total Recoverable	Water	6020	556847
240-178297-7	MW-16-07	Total Recoverable	Water	6020	556847
240-178297-8	MW-16-08	Total Recoverable	Water	6020	556847
240-178297-9	MW-16-09	Total Recoverable	Water	6020	556847
240-178297-10	MW-16-10	Total Recoverable	Water	6020	556847
240-178297-11	MW-16-11A	Total Recoverable	Water	6020	556847
MB 240-556847/1-A	Method Blank	Total Recoverable	Water	6020	556847

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Metals (Continued)

Analysis Batch: 557119 (Continued)

Lab Sample ID LCS 240-556847/3-A	Client Sample ID Lab Control Sample	Prep Type Total Recoverable	Matrix Water	Method 6020	Prep Batch 556847
240-178297-1 MS	MW-16-01	Total Recoverable	Water	6020	556847
240-178297-1 MSD	MW-16-01	Total Recoverable	Water	6020	556847

General Chemistry

Analysis Batch: 557050

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-178297-1	MW-16-01	Total/NA	Water	2320B-1997	
240-178297-2	MW-16-02	Total/NA	Water	2320B-1997	
240-178297-3	MW-16-03	Total/NA	Water	2320B-1997	
240-178297-4	MW-16-04	Total/NA	Water	2320B-1997	
240-178297-5	MW-16-05	Total/NA	Water	2320B-1997	
240-178297-6	MW-16-06	Total/NA	Water	2320B-1997	
240-178297-7	MW-16-07	Total/NA	Water	2320B-1997	
240-178297-8	MW-16-08	Total/NA	Water	2320B-1997	
240-178297-9	MW-16-09	Total/NA	Water	2320B-1997	
240-178297-10	MW-16-10	Total/NA	Water	2320B-1997	
240-178297-11	MW-16-11A	Total/NA	Water	2320B-1997	
MB 240-557050/30	Method Blank	Total/NA	Water	2320B-1997	
MB 240-557050/4	Method Blank	Total/NA	Water	2320B-1997	
LCS 240-557050/29	Lab Control Sample	Total/NA	Water	2320B-1997	
240-178297-8 DU	MW-16-08	Total/NA	Water	2320B-1997	

Analysis Batch: 557788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-178297-1	MW-16-01	Total/NA	Water	9060A	
240-178297-2	MW-16-02	Total/NA	Water	9060A	
240-178297-3	MW-16-03	Total/NA	Water	9060A	
240-178297-4	MW-16-04	Total/NA	Water	9060A	
240-178297-5	MW-16-05	Total/NA	Water	9060A	
240-178297-6	MW-16-06	Total/NA	Water	9060A	
240-178297-7	MW-16-07	Total/NA	Water	9060A	
240-178297-8	MW-16-08	Total/NA	Water	9060A	
240-178297-9	MW-16-09	Total/NA	Water	9060A	
240-178297-10	MW-16-10	Total/NA	Water	9060A	
240-178297-11	MW-16-11A	Total/NA	Water	9060A	
MB 240-557788/3	Method Blank	Total/NA	Water	9060A	
LCS 240-557788/4	Lab Control Sample	Total/NA	Water	9060A	

Analysis Batch: 557809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-178297-1	MW-16-01	Total/NA	Water	9056A	
240-178297-1	MW-16-01	Total/NA	Water	9056A	
240-178297-2	MW-16-02	Total/NA	Water	9056A	
240-178297-2	MW-16-02	Total/NA	Water	9056A	
240-178297-3	MW-16-03	Total/NA	Water	9056A	
240-178297-3	MW-16-03	Total/NA	Water	9056A	
240-178297-4	MW-16-04	Total/NA	Water	9056A	
240-178297-4	MW-16-04	Total/NA	Water	9056A	
240-178297-5	MW-16-05	Total/NA	Water	9056A	

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

General Chemistry (Continued)

Analysis Batch: 557809 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-178297-5	MW-16-05	Total/NA	Water	9056A	
240-178297-6	MW-16-06	Total/NA	Water	9056A	
240-178297-6	MW-16-06	Total/NA	Water	9056A	
240-178297-7	MW-16-07	Total/NA	Water	9056A	
240-178297-7	MW-16-07	Total/NA	Water	9056A	
240-178297-8	MW-16-08	Total/NA	Water	9056A	
240-178297-8	MW-16-08	Total/NA	Water	9056A	
240-178297-9	MW-16-09	Total/NA	Water	9056A	
240-178297-9	MW-16-09	Total/NA	Water	9056A	
240-178297-10	MW-16-10	Total/NA	Water	9056A	
240-178297-10	MW-16-10	Total/NA	Water	9056A	
240-178297-11	MW-16-11A	Total/NA	Water	9056A	
240-178297-11	MW-16-11A	Total/NA	Water	9056A	
MB 240-557809/3	Method Blank	Total/NA	Water	9056A	
LCS 240-557809/4	Lab Control Sample	Total/NA	Water	9056A	

Job ID: 240-178297-1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Lab Sample ID: 240-178297-1 Matrix: Water

Date Collected: 12/14/22 10:33 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-01

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
lotal Recoverable	Analysis	6010B		1	557096	RKT	EET CAN	12/23/22 03:28
lotal Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
lotal Recoverable	Analysis	6020		1	557119	AJC	EET CAN	12/22/22 16:09
lotal/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 21:26
īotal/NA	Analysis	9056A		1	557809	JMB	EET CAN	01/03/23 16:05
ſotal/NA	Analysis	9056A		5	557809	JMB	EET CAN	01/03/23 16:27
lotal/NA	Analysis	9060A		1	557788	MMS	EET CAN	12/29/22 14:35

Client Sample ID: MW-16-02

Date Collected: 12/14/22 12:13 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6010B		1	557096	RKT	EET CAN	12/23/22 03:44
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6020		1	557119	AJC	EET CAN	12/22/22 16:21
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 21:30
Total/NA	Analysis	9056A		1	557809	JMB	EET CAN	01/03/23 16:48
Total/NA	Analysis	9056A		5	557809	JMB	EET CAN	01/03/23 17:53
Total/NA	Analysis	9060A		1	557788	MMS	EET CAN	12/29/22 15:10

Client Sample ID: MW-16-03 Date Collected: 12/14/22 13:46 Date Received: 12/20/22 10:00

Batch Batch Dilution Batch Prepared Prep Type Method Run Number Analyst or Analyzed Туре Factor Lab 12/21/22 12:00 3005A EET CAN Total Recoverable Prep 556847 SHB **Total Recoverable** Analysis 6010B 1 557096 RKT EET CAN 12/23/22 03:49 3005A **Total Recoverable** 556847 SHB EET CAN 12/21/22 12:00 Prep **Total Recoverable** 6020 557119 AJC EET CAN 12/22/22 16:24 Analysis 1 Total/NA 2320B-1997 557050 JWW EET CAN 12/21/22 21:35 Analysis 1 Total/NA Analysis 9056A 557809 JMB EET CAN 01/03/23 18:15 1 Total/NA 01/03/23 18:37 Analysis 9056A 557809 JMB EET CAN 10 Total/NA 9060A EET CAN 12/29/22 15:45 Analysis 1 557788 MMS

Client Sample ID: MW-16-04 Date Collected: 12/15/22 13:34 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6010B		1	557096	RKT	EET CAN	12/23/22 03:53

Lab Sample ID: 240-178297-2

Matrix: Water 11

Lab Sample ID: 240-178297-3

Matrix: Water

Lab Sample ID: 240-178297-4 Matrix: Water

5

11

Lab Sample ID: 240-178297-4 **Matrix: Water**

Date Collected: 12/15/22 13:34 Date Received: 12/20/22 10:00

Client Sample ID: MW-16-04

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6020		1	557119	AJC	EET CAN	12/22/22 16:26
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 21:39
Total/NA	Analysis	9056A		1	557809	JMB	EET CAN	01/03/23 18:59
Total/NA	Analysis	9056A		5	557809	JMB	EET CAN	01/03/23 19:20
Total/NA	Analysis	9060A		1	557788	MMS	EET CAN	12/29/22 16:20

Client Sample ID: MW-16-05 Date Collected: 12/15/22 09:24

Date Received: 12/20/22 10:00

_	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6010B		1	557096	RKT	EET CAN	12/23/22 04:06
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6020		1	557119	AJC	EET CAN	12/22/22 16:34
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 21:43
Total/NA	Analysis	9056A		2	557809	JMB	EET CAN	01/03/23 19:42
Total/NA	Analysis	9056A		20	557809	JMB	EET CAN	01/03/23 20:04
Total/NA	Analysis	9060A		1	557788	MMS	EET CAN	12/29/22 16:56

Client Sample ID: MW-16-06

Date Collected: 12/15/22 10:55 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6010B		1	557096	RKT	EET CAN	12/23/22 04:10
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6020		1	557119	AJC	EET CAN	12/22/22 16:36
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 21:47
Total/NA	Analysis	9056A		2	557809	JMB	EET CAN	01/03/23 20:25
Total/NA	Analysis	9056A		20	557809	JMB	EET CAN	01/03/23 20:47
Total/NA	Analysis	9060A		1	557788	MMS	EET CAN	12/29/22 17:32

Client Sample ID: MW-16-07 Date Collected: 12/15/22 12:28 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6010B		1	557096	RKT	EET CAN	12/23/22 04:14
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020		1	556847 557119		EET CAN EET CAN	12/21/22 12:00 12/22/22 16:39

Lab Sample ID: 240-178297-6

Matrix: Water

Matrix: Water

Lab Sample ID: 240-178297-7 **Matrix: Water**

Dilution

Factor

1

2

20

1

Run

Batch

557050

557809

557809

557788 MMS

Number Analyst

JWW

JMB

JMB

Lab

EET CAN

EET CAN

EET CAN

EET CAN

Batch

9056A

9056A

9060A

Method

2320B-1997

Client Sample ID: MW-16-07 Date Collected: 12/15/22 12:28

Batch

Type

Analysis

Analysis

Analysis

Analysis

Client Sample ID: MW-16-08

Date Received: 12/20/22 10:00

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 240-178297-7 Matrix: Water

Prepared

or Analyzed

12/21/22 21:52

01/03/23 21:09

01/03/23 22:14

12/29/22 18:08

Lab Sample ID: 240-178297-8

Lab Sample ID: 240-178297-9

Lab Sample ID: 240-178297-10

Matrix: Water

Date Collected: 12/16/22 12:33 Matrix: Water Date Received: 12/20/22 10:00 Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed 3005A EET CAN 12/21/22 12:00 Total Recoverable Prep 556847 SHB **Total Recoverable** 6010B 557096 RKT EET CAN 12/23/22 04:19 Analysis 1 Total Recoverable Prep 3005A 556847 SHB EET CAN 12/21/22 12:00 **Total Recoverable** 6020 Analysis 1 557119 AJC EET CAN 12/22/22 16:41 Total/NA Analysis 2320B-1997 557050 JWW EET CAN 12/21/22 21:58 1 Total/NA Analysis 9056A 2 557809 JMB EET CAN 01/03/23 22:35 Total/NA 9056A 20 EET CAN 01/03/23 22:57 Analysis 557809 JMB EET CAN Total/NA Analysis 9060A 1 557788 MMS 12/29/22 18:45

Client Sample ID: MW-16-09

Date Collected: 12/16/22 13:34 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6010B		1	557096	RKT	EET CAN	12/23/22 04:23
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6020		1	557119	AJC	EET CAN	12/22/22 16:44
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 22:07
Total/NA	Analysis	9056A		1	557809	JMB	EET CAN	01/03/23 23:19
Total/NA	Analysis	9056A		10	557809	JMB	EET CAN	01/03/23 23:40
Total/NA	Analysis	9060A		1	557788	MMS	EET CAN	12/29/22 19:39

Client Sample ID: MW-16-10 Date Collected: 12/16/22 09:20 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6010B		1	557096	RKT	EET CAN	12/23/22 04:28
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6020		1	557119	AJC	EET CAN	12/22/22 16:46
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 22:11
Total/NA	Analysis	9056A		2	557809	JMB	EET CAN	01/04/23 00:02

Eurofins Canton

Matrix: Water

Lab Sample ID: 240-178297-10 **Matrix: Water**

Lab Sample ID: 240-178297-11

5 9 10 11 12

Client Sample ID: MW-16-10 Date Collected: 12/16/22 09:20 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		20	557809	JMB	EET CAN	01/04/23 00:24
Total/NA	Analysis	9060A		1	557788	MMS	EET CAN	12/29/22 20:14

Client Sample ID: MW-16-11A Date Collected: 12/16/22 11:05 Date Received: 12/20/22 10:00

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6010B		1	557096	RKT	EET CAN	12/23/22 04:32
Total Recoverable	Prep	3005A			556847	SHB	EET CAN	12/21/22 12:00
Total Recoverable	Analysis	6020		1	557119	AJC	EET CAN	12/22/22 16:49
Total/NA	Analysis	2320B-1997		1	557050	JWW	EET CAN	12/21/22 22:16
Total/NA	Analysis	9056A		2	557809	JMB	EET CAN	01/04/23 00:46
Total/NA	Analysis	9056A		20	557809	JMB	EET CAN	01/04/23 01:07
Total/NA	Analysis	9060A		1	557788	MMS	EET CAN	12/29/22 20:49

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power - Aquifer

Job ID: 240-178297-1

12

Laboratory: Eurofins Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-23
Connecticut	State	PH-0590	12-31-23
Iorida	NELAP	E87225	06-30-23
Georgia	State	4062	02-27-23
llinois	NELAP	200004	07-31-23
owa	State	421	06-01-23
entucky (UST)	State	112225	02-27-23
entucky (WW)	State	KY98016	12-31-22 *
lichigan	State	9135	02-27-23
nnesota	NELAP	039-999-348	12-31-23
nnesota (Petrofund)	State	3506	08-01-23
ew Jersey	NELAP	OH001	06-30-23
ew York	NELAP	10975	04-01-23
nio	State	8303	02-27-23
hio VAP	State	CL0024	02-27-23
egon	NELAP	4062	02-27-23
ennsylvania	NELAP	68-00340	08-31-23
xas	NELAP	T104704517-22-17	08-31-23
ginia	NELAP	460175	09-14-23
ashington	State	C971	01-12-23
est Virginia DEP	State	210	12-31-22 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

රා වී දේශ eurofins	cking No(s): COC No: 240-102238-37085.4		Job #	n Code	A - HCL N - PRARIE B - NaOH N - None C - 27 Acetale O - AsNaO2		Acid	I - Ice J - DI Water		Other:	real Number		7	7	2	7	H .	7	3	4	7	2	Т	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By LabArchive ForMonths		Method of Shipment:	Date/Time. 12/19/22/0850 Company	1	2		Ver: 06/08/2021
	Lab PM Carrier Tracking No(s) Brooks, Kris M	E-Mail: Kris: Brooks@et.eurofinsus.com	Analvsis Requested		221, 1	1810	nity	(OV) Alkalia 9	l 10 29 IstoT Å Jefluð	X) OS iCarb 8 iloride, etals - e tetals - e	Defendence Manuality	XXN N D A	X X X X	Water X X X X	Water X X X	Water	Water X X X	water X X X X	Water X X X	Water X X X X	Water X X X X	Water X X X X	water VXXXX	Sample Disposal (A fee may be assessed if san Return To Client Disposal By Lab	C Requireme	Time: Metho	RC	Company Received by.	company. Received are	Cooler Temperature(s) [°] C and Other Remarks:	
Cha	Sampler: J. Krenz	Phone: 734-745 - 4204	PWSID:	Due Date Requested:	TAT Requested (days):	Compliance Project: A Yes A No	11 - 2029		Project # 24016468	SSOW#:	Sample Type Sample C=comp. Sample Date Time G=crab.	Preserva	12-14-23 1033 6	13-14-22 1313 G	12-14-22 1346 6	12-15-22 1334 6	12-15-72 0924 G	12-15-22 1055 6	12-15-22 1228 6	12-16-22 1233 6	12-16-22 1334 G	12-16-72 0920 G	12-16-24 1105 6	Doison B Duhnown Radiological		Date:	0580 / 12-	(1039	Date/Time:		
Eurofins Canton 180 S. Van Buren Avenue Barberton. OH 44203 Phone: 330-497-9396 Fax: 330-497-0772	Client Information	Clear Contact: Jacob Krenz	Company: TRC Environmental Corporation.	Address 1540 Eisenhower Place	City Ann Arbor	State. Zip: MI, 48108-7080	Phone: 313-971-7080(Tel) 313-971-9022(Fax)	Email: JKrenz@trccompanies.com	Project Name CCR DTE Belle River Power-Aquifer	Site. Michigan	Sample Identification		MW-16-01	mu-16-02	Mw-16-03	mu-16-04	20-91-MM	17W-16-06	Mw- 16-07	inu- 16-08	MW- 16-09	MW -16-10	MW-16-119	ant [Deliverable Requested: I, II, III, IV. Other (specify)	Empty Kit Relinquished by:	Relinquisted by	Reinorgane Streph Vant & Row	2	Custody Seals Mačt: Custody Seal No.: A Yes A No	

5

13

Furofins - Canton Sa	mple Receipt Form/Na	rrative	Login # :	17876	17
Barberton Facility	inpic receipt i or in real	Trative	Login # .		<u> </u>
Client THC	,	Site Name		Cooler un	packed by:
Cooler Received on	12-20-22	Opened on VL	11-0	(1)00	MACK
FedEx: 1st Grd Kx	UPS FAS Clipper		rofins Courier Ot	her	
Receipt After-hours: D			Storage Location		
		Client Cooler Box			
4			None Other		
COOLANT:	Vet lee Blue Ice	Dry Ice Water	None		
1. Cooler temperature IR GUN # IR-13 (CF -0 2 °C) Observed (Cooler Temp. 3.2	See Multiple Cooler Fo	Temp 3.0	°C
IR GUN # IR-16 ($CF - 0.1^{\circ}C$ Observed (Cooler Temp	C Corrected Cooler	Temp.	-°C
IR GUN # IR-17 (CF -0.3°C) Observed (Cooler Temp.	C Corrected Cooler	Temp	_°C
2. Were tamper/custod	dy seals on the outside of t	he cooler(s)? If Yes (uantity R	s No	
	n the outside of the cooler			3 No NA	Tests that are not checked for pH by
	stody seals on the bottle(s)		leHg)? Ye	s 🚯	Receiving:
-	stody seals intact and unco	-	Ye		
	ip attached to the cooler(s		Ye		VOAs Oil and Grease
	accompany the sample(s)?		Ye		TOC
	pers relinquished & signe n(s) who collected the sam				
	e in good condition (Unbro		on the COC? Ye		
	els (ID/Date/Time) be reco		2	No	
	es the COC specify preser				grab/comp (YN)?
	s) used for the test(s) indic		Ya		
11. Sufficient quantity r	eceived to perform indicat	ed analyses?	ĕ) No	
	e samples and all listed on		Ye	s 🕅	
	3-17 have been checked at				
13. Were all preserved s 14. Were VOAs on the	sample(s) at the correct pH	l upon receipt?	5	-	H Strip Lot# HC291590
	6 mm in any VOA vials?	Larger than	this Ve	s No s Rog NA	
	ank present in the cooler(s)			\sim	
	e Hg trip blank present?				
Contacted PM	Date	by	via Verbal V	Voice Mail Ot	her
		0y		voice Man Ou	
Concerning		······································			
				+	
18. CHAIN OF CUST	ODY & SAMPLE DISC	REPANCIES a	lditional next page	Samples pro	cessed by:
19. SAMPLE CONDI					
Sample(s)		were received after th	e recommended hold	ling time had e	xpired.
Sample(s)			were received	d in a broken c	ontainer.
Sample(s)		were received	with bubble >6 mm	in diameter. (N	lotify PM)
20. SAMPLE PRESE	RVATION				
Sample(s)			were fu	rther preserved	l in the laboratory
Time preserved:	Preservative(s) ad	Ided/Lot number(s):			
	on - Date/Time VOAs Fro				

Login Container Summary Report

240-178297

Temperature readings: _____

			Container	Preservative	
Client Sample ID	Lab ID	Container Type	<u>pH</u> <u>Temp</u>	Added (mls) Lot #	
MW-16-01	240-178297-D-1	Plastic 500ml - with Nitric Acid			- 5
MW-16-02	240-178297-D-2	Plastic 500ml - with Nitric Acid			-
MW-16-03	240-178297-D-3	Plastic 500ml - with Nitric Acid			6
MW-16-04	240-178297-D-4	Plastic 500ml - with Nitric Acid			
MW-16-05	240-178297-D-5	Plastic 500ml - with Nitric Acid			-
MW-16-06	240-178297-D-6	Plastic 500ml - with Nitric Acid			8
MW-16-07	240-178297-D-7	Plastic 500ml - with Nitric Acid			. 9
MW-16-08	240-178297-D-8	Plastic 500ml - with Nitric Acid			-
MW-16-09	240-178297-D-9	Plastic 500ml - with Nitric Acid			1
MW-16-10	240-178297-D-10	Plastic 500ml - with Nitric Acid			. 1
MW-16-11A	240-178297-D-11	Plastic 500ml - with Nitric Acid			- 4

ALS Scandinavia

ANALYSIS REPORT

Issued by: Client: Date of receipt: Date of analysis: Order number(our): Your reference: Our reference:	ALS Scandinavia Lul TRC 2022-12-22 2023-01-12 LE2216210 Vincent Buening Ilia Rodushkin	leå, Aurorum 1	0, SE-977 75	LULEÅ, Swed	en		
		δ11B, ‰	2SD, ‰	δ ⁷ Li, ‰	2SD, ‰	⁸⁷ Sr/ ⁸⁶ Sr	2 SD
Lab number(our)	Sample name						
LE2216210-001	MW-16-01	39.26		31.21	0.72	0.709290	0.000029
LE2216210-002	MW-16-02	39.32	0.84	30.67	0.77	0.709517	0.000016
LE2216210-003	MW-16-03	39.49	0.56	29.15	0.82	0.709430	0.000065
LE2216210-004	MW-16-04	40.63	0.62	28.75	0.92	0.709343	0.000012
LE2216210-005	MW-16-05	45.84	0.62	27.83	0.73	0.709407	0.00008
LE2216210-006	MW-16-06	46.46	0.60	31.52	0.78	0.709327	0.000026
LE2216210-007	MW-16-07	45.94	0.85	28.44	0.73	0.709541	0.000013
LE2216210-008	MW-16-08	46.31	0.65	23.69	0.79	0.709581	0.000016
LE2216210-009	MW-16-09	43.49	0.71	29.89	1.04	0.709459	0.000030
LE2216210-009	MW-16-09, r.2	44.18	0.67	30.51	0.88	0.709448	0.000039
LE2216210-010	MW-16-10	46.72	0.79	21.88	0.67	0.709502	0.000020
LE2216210-011	MW-16-11A	46.11	0.64	22.89	0.74	0.709443	0.000040
LE2216210-012	North BAB	-0.81	0.78	-0.13	0.66	0.708901	0.000014
LE2216210-013	DB-01	-5.01	0.63	11.48	0.63	0.709354	0.00008
LE2216210-014	SC-01	-4.82	0.62	20.80	0.65	0.709999	0.000013
LE2216210-014	SC-01, r.2	-5.07	0.68	21.14	0.71	0.710000	0.000009
LE2216210-015	DUP-01	40.29	0.68	28.79	0.84	0.709390	0.000024

Comments

The analysis is carried out by MC-ICP-MS (NEPTUNE Plus) using internal standartization

and external calibration with bracketing isotope SRMs

Analysis is carried out after ion exchange separation

Li delta value calculated against LSVEC NIST 8545 RM

Boron delta values calculated to NIST SRM 951 RM

SD calculated from two independent consequintive measurements

The Lodente Signature

Ilia Rodushkin Associate Professor LABORATORY MANAGER ALS Scandinavia AB

Waterloo EIL

Project: BRPP BABs DB

ISO# 2022714 Location: C2 15 for 18O, 2H

#	Sample	Date	Lab#	$\delta^{18}O$	Result	Repeat	$\delta^2 H$	Result	Repeat		pН
				H_2O	VSMOW	/ ±0.2‰	H_2O	VSMOW	± 0.8‰		
1	MW-16-01	2022-12-14	495331	Х	-14.96	-15.02	Х	-103.94	-104.60	250ml	7.75
2	MW-16-02	2022-12-14	495332	Х	-15.04		Х	-104.86		250ml	7.57
3	MW-16-03	2022-12-14	495333	Х	-14.68		Х	-102.29		250ml	7.92
4	MW-16-04	2022-12-15	495334	Х	-14.67		Х	-102.68		250ml	7.84
5	MW-16-05	2022-12-15	495335	Х	-16.73	-16.61	Х	-118.71	-118.73	250ml	8.05
6	MW-16-06	2022-12-15	495336	Х	-16.61		Х	-118.39		250ml	8.12
7	MW-16-07	2022-12-15	495337	Х	-16.39		Х	-116.78		250ml	7.98
8	MW-16-08	2022-12-16	495338	Х	-16.35		Х	-116.98		250ml	8.12
9	MW-16-09	2022-12-16	495339	Х	-15.80		Х	-112.02		250ml	7.76
10	MW-16-10	2022-12-16	495340	Х	-16.42	-16.43	Х	-116.12	-116.35	250ml	8.08
11	MW-16-11A	2022-12-16	495341	Х	-16.75		Х	-118.91		250ml	8.08
12	North BAB	2022-12-14	495342	Х	-7.44		Х	-54.32		250ml	9.28
13	DB-01	2022-12-16	495343	Х	-7.06		Х	-53.02		250ml	8.9
14	SC-01	2022-12-16	495344	Х	-7.36		Х	-53.70		250ml	8.33
15	DUP-01	2022-12-14	495345	Х	-14.92	-14.92	Х	-102.52	-101.84	250ml	7.92

Project: BRPP BABs DB

EC	AZD
uS/cm	
1,371	
1,085	
1,615	
1,498	
3,497	
4,022	
4,492	
4,622	
2,527	
3,853	
4,198	
411	
1,827	
149	
1,615	

Miami Tritium Laboratory

UNIVERSITY OF MIAMI

Rosenstiel School of Marine, Atmospheric, and Earth Science Tritium Laboratory

4600 Rickenbacker Causeway Miami, FL 33149-1031 P: 305-421-4100 F: 305-421-4112 tritium@miami.edu

March 13, 2023

TRITIUM LABORATORY

Data Release #23-013 Job # 4256

> TRC Companies TRITIUM SAMPLES

> > Dr. James D. Happell Associate Research Professor

Distribution: Vince Buening 1540 Eisenhower Place Ann Arbor, MI 48108 vbuening@trccompanies.com

Tritium Scale New Half-life

Tritium concentrations are normally expressed in TU, where 1 TU indicates a T/H abundance ratio of 10^{-18} . The values refer to the tritium scale recommended by U.S. National Institute of Science and Technology (NIST, formerly NBS), and International Atomic Energy Agency (IAEA). The TU-numbers are based on the NIST tritium water standard #4926E. Age corrections and conversions are made using the recommended half-life of **12.32** years, i.e., a decay rate of $\lambda = 5.626$ % year⁻¹. In this scale, 1 TU is equivalent to 7.151 dpm/kg H₂O, or 3.222 pCi/kg H₂O, (equivalent to pCi/L in freshwater) or 0.1192 Bq/kg H₂O (Bq = disint/sec). We can also express tritium concentrations in pCi/L upon client request.

Tritium concentrations in TU or pCi/L are calculated for date of sample collection, REFDATE in the table, as provided by the submitter. If no such date is available, date of sample arrival at our laboratory is used.

The stated errors, eTU or err, are one standard deviation (1 sigma) including all conceivable contributions. In the table, QUANT is quantity of sample received, and ELYS is the amount of water taken for electrolytic enrichment. DIR means direct run (no enrichment).

Very low tritium values

In some cases, negative tritium values are listed. Such numbers can occur because the net tritium count rate is, in principle the difference between the count rate of the sample and that of a tritium-free sample (background count or blank sample). Given a set of "unknown" samples with no tritium, the distribution of net results should become symmetrical around 0 TU or pCi/L. The negative values are reported as such for the benefit of allowing the user unbiased statistical treatment of sets of the data. For other applications, 0 TU or pCi/L should be used.

Additional information

Refer to Services Rendered (Tritium), Section II.8, in the "Tritium Laboratory Price Schedule; Procedures and Standards; Advice on Sampling", and our Web-site www.rsmas.miami.edu/groups/tritium.

Tritium efficiencies and background values are somewhat different in each of the nine counters and values are corrected for cosmic intensity, gas pressure and other parameters. For tritium, the efficiency is typically 1.00 cpm per 100 TU (direct counting). At 50× enrichment, the efficiency is equivalent to 1.00 cpm per 2.4 TU. The background is typically 0.3 cpm, known to about ± 0.02 cpm. Our reported results include not only the Poisson statistics, but also other experimental uncertainties such as enrichment error, etc.

Client: TRC COMPANIES Recvd : 22/12/21 Job# : 4256 Final : 23/03/09	vbuening@trccom BRPP BABs &	se Order: ing 734-90 Eisenhower Arbor, MI	4-3302 Place			
Cust LABEL INFO	JOB.SX	REFDATE	QUANT	ELYS	TU	eTU
 MW-16-01	4256.01	221214	1000	275	0.02	0.09
MW-16-02	4256.02	221214	1000	275	0.03	0.09
MW-16-03	4256.03	221214	1000	275	0.00	0.09
MW-16-04	4256.04	221215	1000	275	-0.12	0.09
MW-16-05	4256.05	221215	1000	275	0.11	0.09
MW-16-06	4256.06	221215	1000	275	-0.01	0.09
MW-16-07	4256.07	221215	1000	275	0.37	0.09
MW-16-08	4256.08	221216	1000	275	0.03	0.09
MW-16-09	4256.09	221216	1000	275	0.18	0.09
MW-16-10	4256.10	221216	1000	275	0.27	0.09
MW-16-11A	4256.11	221216	1000	275	0.05	0.09
NORTH BAB	4256.12	221214	1000	275	26.4	0.9
DB-01	4256.13	221216	1000	275	22.4	0.7
SC-01	4256.14	221216	1000	275	23.9	0.8
DUP-01		221214	1000	275	0.05*	0.09
* December of devilents						

* Average of duplicate runs

Appendix B Laboratory Analytical

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080 Generated 6/21/2023 4:40:02 PM

JOB DESCRIPTION

CCR DTE Belle River Power

JOB NUMBER

240-184643-2

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Sroohs

Generated 6/21/2023 4:40:02 PM

Authorized for release by Kris Brooks, Project Manager II <u>Kris.Brooks@et.eurofinsus.com</u> (330)966-9790

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	16
QC Association Summary	19
Lab Chronicle	21
Certification Summary	23
Chain of Custody	24

Definitions/Glossary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Minimum Detectable Activity (Radiochemistry)

Job ID: 240-184643-2

Qualifiers

LOD

LOQ

MCL

MDA

MDC

MDL

MPN

MQL

NC

ND

NEG POS

PQL PRES

QC

RL RPD

TEF

TEQ

TNTC

RER

ML

Quaimers		
Metals Qualifier		
B	Qualifier Description	
В	Compound was found in the blank and sample. Result is less than the PL but greater than or equal to the MDL and the concentration is an approximate value.	
J 	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
U	Indicates the analyte was analyzed for but not detected.	
General Cher	<i>i</i> mistry	
Qualifier	Qualifier Description	
F3	Duplicate RPD exceeds the control limit	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	

Job ID: 240-184643-2

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-184643-2

Comments

No additional comments.

Receipt

The samples were received on 5/4/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4° C, 1.8° C, 2.4° C and 2.6° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method SM 2540C: The matrix spike / matrix spike duplicate (MS/MSD) precision for analytical batch 240-572272 was outside control limits. Sample matrix interference is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET CLE
6020B	Metals (ICP/MS)	SW846	EET CLE
9056A	Anions, Ion Chromatography	SW846	EET CLE
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CLE
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CLE

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Job ID: 240-184643-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-184643-9	MW-16-01	Ground Water	04/28/23 09:55	05/04/23 08:00
240-184643-10	MW-16-02	Ground Water	04/28/23 11:25	05/04/23 08:00
240-184643-11	MW-16-03	Ground Water	04/28/23 12:09	05/04/23 08:00
240-184643-12	MW-16-04	Ground Water	04/28/23 14:11	05/04/23 08:00
240-184643-13	MW-16-09	Ground Water	04/28/23 13:13	05/04/23 08:00
240-184643-14	DUP-02	Ground Water	04/28/23 00:00	05/04/23 08:00

Client Sample ID: MW-16-01

Lab Sample ID: 240-184643-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Boron	1100	В	100	57	ug/L	1	_	6010D	Total
									Recoverable
Calcium	39000		1000	250	ug/L	1		6020B	Total
									Recoverable
Iron	740		100	47	ug/L	1		6020B	Total
									Recoverable
Chloride	450		5.0	5.0	mg/L	5		9056A	Total/NA
Fluoride	1.7		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	13		1.0	1.0	mg/L	1		9056A	Total/NA
Total Dissolved Solids	860		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-02

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1200	B	100	57	ug/L	1	_	6010D	Total
									Recoverable
Calcium	51000		1000	250	ug/L	1		6020B	Total
									Recoverable
Iron	790		100	47	ug/L	1		6020B	Total
									Recoverable
Chloride	350		5.0	5.0	mg/L	5		9056A	Total/NA
Fluoride	1.2		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	9.2		1.0	1.0	mg/L	1		9056A	Total/NA
Total Dissolved Solids	700		10	10	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-03

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1100	В	100	57	ug/L	1	_	6010D	Total
									Recoverable
Calcium	32000		1000	250	ug/L	1		6020B	Total
									Recoverable
Iron	580		100	47	ug/L	1		6020B	Total
									Recoverable
Chloride	550		5.0	5.0	mg/L	5		9056A	Total/NA
Fluoride	1.7		0.050	0.050	mg/L	1		9056A	Total/NA
Total Dissolved Solids	960		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-04

Lab Sample ID: 240-184643-12

Lab Sample ID: 240-184643-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1000	B	100	57	ug/L	1	_	6010D	Total
									Recoverable
Calcium	41000		1000	250	ug/L	1		6020B	Total
									Recoverable
Iron	2000		100	47	ug/L	1		6020B	Total
									Recoverable
Chloride	470		5.0	5.0	mg/L	5		9056A	Total/NA
Fluoride	1.7		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	9.0		1.0	1.0	mg/L	1		9056A	Total/NA
Total Dissolved Solids	880		20	20	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-16-09

Lab Sample ID: 240-184643-13

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	DI	Method	Prep Type
Boron	1500 E	B	100	57	ug/L	1	- 6	6010D	Total
									Recoverable
Calcium	67000		1000	250	ug/L	1	6	6020B	Total
									Recoverable
Iron	16000		100	47	ug/L	1	6	6020B	Total
									Recoverable
Chloride	940		20	20	mg/L	20	ę	9056A	Total/NA
Fluoride	1.4		0.10	0.10	mg/L	2	ę	9056A	Total/NA
Sulfate	9.6		2.0	2.0	mg/L	2	ç	9056A	Total/NA
Total Dissolved Solids	1700		40	40	mg/L	1	5	SM 2540C	Total/NA

Client Sample ID: DUP-02

Lab Sample ID: 240-184643-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Boron	1100	В	100	57	ug/L	1	6010D	Total
								Recoverable
Calcium	39000		1000	250	ug/L	1	6020B	Total
								Recoverable
Iron	750		100	47	ug/L	1	6020B	Total
								Recoverable
Chloride	450		5.0	5.0	mg/L	5	9056A	Total/NA
Fluoride	1.7		0.050	0.050	mg/L	1	9056A	Total/NA
Sulfate	13		1.0	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	1500		50	50	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Job ID: 240-184643-2

5 6

8 9

Lab Sample ID: 240-184643-9 Matrix: Ground Water

Date Collected: 04/28/23 09:55 Date Received: 05/04/23 08:00

Client Sample ID: MW-16-01

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100	В	100	57	ug/L		05/05/23 14:00	05/10/23 05:03	1
Method: SW846 6020B - Metals (ICP/MS)	- Total Reco	verable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	39000		1000	250	ug/L		05/05/23 14:00	05/08/23 18:46	1
Iron	740		100	47	ug/L		05/05/23 14:00	05/08/23 18:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	450		5.0	5.0	mg/L			05/18/23 08:26	5
Fluoride (SW846 9056A)	1.7		0.050	0.050	mg/L			05/18/23 07:21	1
Sulfate (SW846 9056A)	13		1.0	1.0	mg/L			05/18/23 07:21	1
Total Dissolved Solids (SM 2540C)	860		20	20	mg/L			05/05/23 11:41	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Client Sample ID: MW-16-02 Date Collected: 04/28/23 11:25 Date Received: 05/04/23 08:00

Lab Sample ID: 240-184643-10
Matrix: Ground Water

Job ID: 240-184643-2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1200	В	100	57	ug/L		05/05/23 14:00	05/10/23 05:07	1
Method: SW846 6020B - Metals (ICP/MS)	- Total Reco	verable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	51000		1000	250	ug/L		05/05/23 14:00	05/08/23 18:49	1
Iron	790		100	47	ug/L		05/05/23 14:00	05/08/23 18:49	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	350		5.0	5.0	mg/L			05/20/23 09:38	5
Fluoride (SW846 9056A)	1.2		0.050	0.050	mg/L			05/18/23 08:47	1
Sulfate (SW846 9056A)	9.2		1.0	1.0	mg/L			05/18/23 08:47	1
Total Dissolved Solids (SM 2540C)	700		10	10	mg/L			05/05/23 11:41	1

RL

100

MDL Unit

57 ug/L

D

Prepared

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Client Sample ID: MW-16-03 Date Collected: 04/28/23 12:09 Date Received: 05/04/23 08:00

Analyte

Boron

6/21/2023

Analyzed Dil Fac 05/05/23 14:00 05/10/23 05:12 1 Dil Fac Analyzed 08/23 18:51 1 08/23 18:51 1 8 nalyzed Dil Fac

5

1

1

1

Lab Sample ID: 240-184643-11 **Matrix: Ground Water**

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
32000		1000	250	ug/L		05/05/23 14:00	05/08/23 18:51
580		100	47	ug/L		05/05/23 14:00	05/08/23 18:51
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
550		5.0	5.0	mg/L			05/19/23 03:50
1.7		0.050	0.050	mg/L			05/19/23 03:28
1.0	U	1.0	1.0	mg/L			05/19/23 03:28
960		20	20	mg/L			05/05/23 11:41
	32000 580 Result 550 1.7 1.0	580 Result Qualifier 550	32000 1000 580 100 Result Qualifier RL 550 5.0 1.7 0.050 1.0 1.0	32000 1000 250 580 100 47 Result Qualifier RL MDL 550 5.0 5.0 1.7 0.050 0.050 1.0 1.0 1.0	32000 1000 250 ug/L 580 100 47 ug/L Result Qualifier RL MDL Unit 550 5.0 5.0 5.0 mg/L 1.7 0.050 0.050 mg/L 1.0 U 1.0 1.0 mg/L	32000 1000 250 ug/L 580 100 47 ug/L Result Qualifier RL MDL Unit D 550 5.0 5.0 5.0 mg/L D 1.7 0.050 0.050 mg/L D 1.0 U 1.0 1.0 mg/L	32000 1000 250 ug/L 05/05/23 14:00 580 100 47 ug/L 05/05/23 14:00 Result Qualifier RL MDL Unit D Prepared 550 5.0 5.0 5.0 mg/L 1.7 0.050 0.050 mg/L 1.0 U 1.0 1.0 mg/L 1.0 1.0 1.0 mg/L 1.0 1.0 1.0 mg/L 1.0

Method: SW846 6010D - Metals (ICP) - Total Recoverable

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable

Result Qualifier

1100 B

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Job ID: 240-184643-2

5

Lab Sample ID: 240-184643-12 Matrix: Ground Water

Date Collected: 04/28/23 14:11 Date Received: 05/04/23 08:00

_

Client Sample ID: MW-16-04

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1000	В	100	57	ug/L		05/05/23 14:00	05/10/23 05:16	1
Method: SW846 6020B - Metals (ICP/MS)	- Total Reco	verable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	41000		1000	250	ug/L		05/05/23 14:00	05/08/23 18:54	1
Iron	2000		100	47	ug/L		05/05/23 14:00	05/08/23 18:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	470		5.0	5.0	mg/L			05/18/23 13:30	5
Fluoride (SW846 9056A)	1.7		0.050	0.050	mg/L			05/18/23 13:09	1
Sulfate (SW846 9056A)	9.0		1.0	1.0	mg/L			05/18/23 13:09	1
Total Dissolved Solids (SM 2540C)	880		20	20	mg/L			05/05/23 11:41	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Job ID: 240-184643-2

5 6

Lab Sample ID: 240-184643-13 Matrix: Ground Water

Date Collected: 04/28/23 13:13 Date Received: 05/04/23 08:00

_

Client Sample ID: MW-16-09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1500	В	100	57	ug/L		05/05/23 14:00	05/10/23 05:21	1
Method: SW846 6020B - Metals (ICP/MS)	- Total Reco	verable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	67000		1000	250	ug/L		05/05/23 14:00	05/08/23 18:57	1
Iron	16000		100	47	ug/L		05/05/23 14:00	05/08/23 18:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	940		20	20	mg/L			05/18/23 14:14	20
Fluoride (SW846 9056A)	1.4		0.10	0.10	mg/L			05/18/23 13:52	2
Sulfate (SW846 9056A)	9.6		2.0	2.0	mg/L			05/18/23 13:52	2
Total Dissolved Solids (SM 2540C)	1700		40	40	mg/L			05/05/23 11:41	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power Job ID: 240-184643-2

5

Lab Sample ID: 240-184643-14

Date Collected: 04/28/23 00:00 Date Received: 05/04/23 08:00

Client Sample ID: DUP-02

ampio	10.44	0 1040	
	Matrix:	Ground	Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100	В	100	57	ug/L		05/05/23 14:00	05/10/23 05:25	1
Method: SW846 6020B - Metals (ICP/MS)	- Total Reco	verable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	39000		1000	250	ug/L		05/05/23 14:00	05/08/23 18:59	1
Iron	750		100	47	ug/L		05/05/23 14:00	05/08/23 18:59	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	450		5.0	5.0	mg/L			05/18/23 09:53	5
Fluoride (SW846 9056A)	1.7		0.050	0.050	mg/L			05/18/23 09:31	1
Sulfate (SW846 9056A)	13		1.0	1.0	mg/L			05/18/23 09:31	1
Total Dissolved Solids (SM 2540C)	1500		50	50	mg/L			05/05/23 11:41	1

Job ID: 240-184643-2

Analysis Batch: 572766 Prep Batch: 57227 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa	Lab Sample ID: MB 240-572275/1-A											ole ID: Method	
ME ME ME Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Soron 69.1 J 100 57 ug/L D Prepared OS/05/23 14:00 05/10/23 03:45 Dil Fa Lab Sample ID: LCS 240-572275/2-A Client Sample ID: Lab Control Sampl Prep Type: Total Recoverabl Prep Batch: 57227 Analyte Added Result Qualifier Unit D %Rec Imits Soron 1000 1000 1010 Unit D %Rec Imits Boron 1000 1000 1010 Unit D %Rec Imits Soron 1000 1000 1010 Unit D %Rec Imits Iethod: 6020B - Metals (ICP/MS) Client Sample ID: Method Blan Prep Type: Total Recoverabl Lab Sample ID: LCS 240-572275/1-A Client Sample ID: Method Blan Prep Batch: 57226 Analyte Result Qualifier RL MDL Unit D Prepared OS/05/23 14:00 OS/06/23 17:56 Lab Sample ID: LCS 240-572275/3-A Client Sample ID: Lab Control Sampl Prep Type: Total Recoverabl Prep Batch: 57227 An	Matrix: Water										Prep Typ		
Analyte BoronResultQualifier 069.1 JRL 100MDLUnit 57D yugLPrepared 05/05/23 14:00Analyzed 	Analysis Batch: 5/2/66											Prep Batch:	5/22/
Beron 69.1 J 100 57 ug/L 05/05/23 14:00 05/10/23 03:45 Lab Sample ID: LCS 240-572275/2-A Matrix: Water Spike LCS LCS LCS Lab Control Sample Prep Type: Total Recoverable Prep Batch: 57227 Analysis Batch: 572766 Spike LCS LCS <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th>										_			
Lab Sample ID: LCS 240-572275/2-A Matrix: Water Client Sample ID: Lab Control Sampl Prep Type: Total Recoverabl Prep Batch: 57276 Analyte Added Result 1000 Qualifier Unit ug/L D %Rec %Rec Limits Matrix: Analyte Added Result 1000 Qualifier Unit ug/L D %Rec 										D	· ·		
Matrix: Water Analysis Batch: 572766 Prep Type: Total Recoverable Prep Batch: 57277 Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit D %Rec Limits Boron 1000 1010 ug/L D %Rec Limits	Boron	69.1	J		100		57	ug/L			05/05/23 14:00	05/10/23 03:45	
Matrix: Water Analysis Batch: 572766 Prep Type: Total Recoverable Prep Batch: 57277 Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit D %Rec Limits Boron 1000 1010 ug/L D %Rec Limits	Lab Sample ID: LCS 240-572275/2-/	4							Clie	ent	Sample ID:	Lab Control	Sampl
Analysis Batch: 572766 Prep Batch: 57276 Analyte Added Result Qualifier Unit D %Rec Limits Boron 1000 1010 1010 1011 0 %Rec Limits 80.120 Iethod: 6020B - Metals (ICP/MS) Lab Sample ID: MB 240-572275/1-A MB MB Prep Type: Total Recoverable Prep Batch: 57256 Prep Batch: 57257 Prep Type: Total Recoverable Prep Batch: 57257 Analyte Result Qualifier Result Qualifier Result Qualifier Prep Type: Total Recoverable Prep Batch: 57257 Lab Sample ID: LCS 240-572275/3-A Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 57256 Prep Type: Total Recoverable Prep Batch: 57257 Analyte Added Result Qualifier Unit D %Rec Imitis Client Sample ID: LCS 240-572275/3-A Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Type: Total Recoverable Prep Batch: 57227 %Rec Imitis Imitis Imitis Imitis Im	•												
Spike Analyte Spike Added LCS Result LCS Qualifier ug/L Unit Ug/L D %Rec 101 %Rec Limits 00.120 Iethod: 6020B - Metals (ICP/MS) Iothor													
AnalyteAddedResultQualifierUnitD%RecLimitsBoron10101010ug/L10110110%RecLimitsIethod: 6020B - Metals (ICP/MS)Lab Sample ID: MB 240-572275/1-AClient Sample ID: MB 240-572275/1-AMatrix: WaterResultQualifierRLMDLUnitDPrep Type: Total RecoverablAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FaCalcium1000U100047ug/LDPreparedAnalyzedDil FaCalcium1000U10047ug/LDStotk/23 14:0005/08/23 17:58Dil FaLab Sample ID: LCS 240-572275/3-AClient Sample ID: Lab Control SampleMatrix: WaterAnalyseAddedResultQualifierUnitD%RecLimitsAnalyteAdded2500023600ug/L980.120Prep Batch: 57227Calcium50004890ug/L980.120Prep Type: Total RecoverablPrep Batch: 572569SpikeLCSLCSLCSLCSLCSLCSNon50004890ug/L980.120Prep Batch: 57227Iethod: 9056A - Anions, Ion ChromatographyLab Sample ID: Method Blan Prep Type: Total/NPrep Type: Total/NAnalyteResultQualifier1.01.0mg/LDPreparedAnalyzedAnalyteResult				Spike		LCS	LCS						
Boron 1000 1010 ug/L 101 80.120 Iethod: 6020B - Metals (ICP/MS) Lab Sample ID: MB 240-572275/1-A Matrix: Water Client Sample ID: Method Blan Prep Type: Total Recoverabl Prep Batch: 57272 Analysis Batch: 572569 MB MB Prep Batch: 57272 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Calcium 1000 U 1000 U 1000 250 ug/L D O5/05/23 14:00 05/08/23 17:58 Lab Sample ID: LCS 240-572275/3-A Spike LCS LCS LS LS D Prep Type: Total Recoverabl Analyte Added Spike LCS LCS LS LS LS LS D %Rec MRec Prep Type: Total Recoverabl Analyte 25000 23000 ug/L D %Rec Limits	Analyte			•					Unit		D %Rec		
Itethod: 6020B - Metals (ICP/MS) Lab Sample ID: MB 240-572275/1-A Client Sample ID: MB 240-572275/1-A Matrix: Water Analysis Batch: 572569 MB MB MB MB Client Sample ID: Method Blan Prep Type: Total Recoverable Client Sample ID: LCS 240-572275/3-A Matrix: Water Analyte Client Sample ID: LCS 240-572275/3-A Analyte Client Sample ID: Lab Control Sample Analyte Method: 8000 % Spike LCS LCS CS Analyte Client Sample ID: Lab Control Sample Client Sample ID: Method Blan Prep Batch: 57227 Analyte <td></td>													
Lab Sample ID: MB 240-572275/1-A Matrix: Water Analyte <u>Result</u> <u>Qualifier</u> <u>RL</u> <u>MDL</u> <u>Unit</u> <u>D</u> <u>Prepared</u> <u>Analyzed</u> <u>Dil Fe</u> Calcium 1000 U 100 47 ug/L 05/05/23 14:00 05/08/23 17:58 Lab Sample ID: LCS 240-572275/3-A Matrix: Water Analyte <u>Analyte</u> <u>Analyte</u> <u>Spike</u> <u>LCS LCS</u> <u>CS</u> <u>Client Sample ID: Lab Control Sample</u> Prep Batch: 572569 <u>Analyte</u> <u>Analyte</u> <u>Added</u> <u>Spike</u> <u>LCS LCS</u> <u>CS</u> <u>Ug/L</u> <u>05/05/23 14:00</u> 05/08/23 17:58 <u>Client Sample ID: Lab Control Sample</u> Prep Batch: 57277 <u>KRec</u> <u>Limits</u> <u>7%Rec</u> <u>1%Rec</u>													
Matrix: Water Analysis Batch: 572569 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Calcium 1000 U 1000 47 ug/L D Prepared Analyzed Dil Fa Calcium 1000 U 1000 47 ug/L D Prepared Analyzed Dil Fa Calcium 1000 U 1000 47 ug/L D Stotics/23 14:00 05/08/23 17:58 Lab Sample ID: LCS 240-572275/3-A Client Sample ID: Lab Control Sample Prep Batch: 57277 Prep Batch: 57277 Analyte Added Result Qualifier Unit D %Rec Limits Calcium 25000 23600 ug/L 9 80 - 120 Prep Batch: 57277 Analyte Added 25000 23600 ug/L 98 80 - 120 Icon 5000 4890 ug/L 98 80 - 120 Iethod: 9056A - Anions, Ion Chromatography Client Sample ID: Method Blan Prep Type: Total/N Matrix: Water Analysis Batch: 573779 MB MB Analyte Result Qualifier RL MDL Unit <td< td=""><td>lethod: 6020B - Metals (ICP/M</td><td>IS)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	lethod: 6020B - Metals (ICP/M	IS)											
Matrix: Water Analysis Batch: 572569 MB MB Prep Type: Total Recoverable Prep Batch: 57227 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Calcium 1000 U 1000 U 1000 250 ug/L D Prepared Analyzed Dil Fa Calcium 1000 U 1000 U 1000 47 ug/L D Operated Analyzed Dil Fa Lab Sample ID: LCS 240-572275/3-A Spike LCS LCS LCS MD Unit D %Rec Limits Prep Batch: 57227 Analyte Added Result Qualifier Unit U 0 %Rec Limits D %Rec Limits D %Rec Analyte Added Result Qualifier Unit U %%Rec Limits D %Rec Limits D MB MB MD Maintix: Water MD MB MB MB MB MB MB MB MB MD M	Lab Sample ID: MB 240-572275/1-A										Client Sam	ole ID: Method	d Blan
Analysis Batch: 572569 MB MB MB MD Virtual (MDL) Unit D Prep Batch: 57227 Analyzed DI Factor Calcium 1000 U 1000 U 1000 250 ug/L 05/05/23 14:00 05/08/23 17:58 DI Factor Lab Sample ID: LCS 240-572275/3-A Client Sample ID: LCS 240-572275/3-A Client Sample ID: Lab Control Sample Matrix: Water Analyte Added Result Qualifier Unit D %Rec Prep Batch: 57227 Analyte Added Spike LCS LCS LCS WRec Limits Calcium 25000 23600 ug/L 95 80-120 Prep Batch: 57227 ron 5000 4890 ug/L 98 80-120 Prep Batch: 57227 Setter Sette													
MB MB Qualifier RL MDL Unit D Prepared Analyzed Dil Fz Calcium 1000 U 1000 U 1000 250 ug/L 05/05/23 14:00 05/08/23 17:58 Dil Fz Lab Sample ID: LCS 240-572275/3-A Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 57257 Analyte Added Added Result Qualifier Unit D %Rec Wrep Batch: 57227 Analyte Added 25000 23600 ug/L D %Rec Limits Sinte Sample ID: Lab Control Sample Calcium 25000 25000 23600 ug/L D %Rec Limits Sinte Sample ID: Method Blan Prep Batch: 57257 %Rec Limits Sinte Sample ID: Method Blan Prep Type: Total/N Prep Type: Total/N Matrix: Water MB MB MB Prep Type: Total/N Prep Type: Total/N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Calcium 1000 U 1000 250 ug/L 05/05/23 14:00 05/08/23 17:58 ron 100 U 100 47 ug/L 05/05/23 14:00 05/08/23 17:58 Lab Sample ID: LCS 240-572275/3-A Client Sample ID: Lab Control Sample ID: Sample ID: Lab Control Sample ID: Sample ID: Sample ID: Sample ID: Sample ID: Sample ID: Method Blam Prep Type: Total Recoverable Result Ug/L 98 80 - 120 Lab Sample ID: MB 240-573779/3 Client Sample ID: Method Blam Prep Type: Total/N Matrix: Water MB MB Analyte Result Qualifier Result Qualifier Analyte Result Qualifier Result Qualifier MDL Unit D Prepared Analyzed Dil Fe Chloride 1.0 0.050 0.050 0.050 0.051/17/23 23:43 Dil Fe		МВ	МВ										
Calcium 1000 U 1000 250 ug/L 05/05/23 14:00 05/08/23 17:58 ron 100 U 100 47 ug/L 05/05/23 14:00 05/08/23 17:58 Lab Sample ID: LCS 240-572275/3-A Client Sample ID: Lab Control Sample ID: Sample ID: Lab Control Sample ID: Sample ID: Sample ID: Sample ID: Sample ID: Sample ID: Method Blam Prep Type: Total Recoverable Result Ug/L 98 80 - 120 Lab Sample ID: MB 240-573779/3 Client Sample ID: Method Blam Prep Type: Total/N Matrix: Water MB MB Analyte Result Qualifier Result Qualifier Analyte Result Qualifier Result Qualifier MDL Unit D Prepared Analyzed Dil Fe Chloride 1.0 0.050 0.050 0.050 0.051/17/23 23:43 Dil Fe	Analvte	Result	Qualifier		RL		MDL	Unit		D	Prepared	Analyzed	Dil Fa
Iron 100 U 100 47 ug/L 05/05/23 14:00 05/08/23 17:58 Lab Sample ID: LCS 240-572275/3-A Matrix: Water Analysis Batch: 572569 Client Sample ID: Lab Control Sample Prep Batch: 57227 Analyte Calcium ron Spike Added 25000 LCS 23600 LCS ug/L D %Rec %Rec Limits 80 - 120 Limits 80 - 120 Iethod: 9056A - Anions, Ion Chromatography Lab Sample ID: MB 240-573779/3 Matrix: Water Analysis Batch: 573779 MB MB MB Analyte Chloride Result 1.0 Qualifier 2.000 MDL mg/L Unit mg/L D Prepared 95 Analyzed Analyzed 80 - 120 Analyte Chloride Result 1.0 Qualifier 2.000 RL mg/L MDL mg/L D Prepared 0.05/17/23 23:43 Dil Fa										_			
Matrix: Water Prep Type: Total Recoverable Analysis Batch: 572569 Spike LCS LCS Prep Batch: 57227 %Rec Analyte Added Result Qualifier Unit D %Rec Limits Calcium 25000 23600 ug/L 95 80 - 120 Iron 5000 4890 ug/L 98 80 - 120 Itom 5000 4890 ug/L 98 80 - 120 Itom 5000 4890 ug/L 98 80 - 120								-					
Matrix: Water Analysis Batch: 572569 Prep Type: Total Recoverable Prep Batch: 57227 %Rec Analyte Added Result Qualifier Unit D %Rec Calcium 25000 23600 ug/L 95 80 - 120 Iron 5000 4890 ug/L 98 80 - 120 Itethod: 9056A - Anions, lon Chromatography Client Sample ID: MB 240-573779/3 Matrix: Water Analysis Batch: 573779 Client Sample ID: Method Blan Prep Type: Total/N. MB MB MB Chloride 1.0 U 1.0 Unit D Prep Type: Total Recoverable Fluoride 0.050 0.050 0.050 mg/L 0 98 80 - 120									0		0		
Analysis Batch: 572569Spike AddedLCS ResultLCS QualifierD yg/LPrep Batch: 57227 %RecAnalyteAddedAddedResultQualifierUnit ug/LD 95%RecLimitsCalcium2500023600ug/L9880 - 120Iron50004890ug/L9880 - 120Iethod: 9056A - Anions, Ion ChromatographyLab Sample ID: MB 240-573779/3 Matrix: Water Analysis Batch: 573779MB MBMB QualifierClient Sample ID: Method Blan Prep Type: Total/NAnalyteResult 1.0QualifierRL 1.0MDL 1.0Unit mg/LD mg/LPrepared 05/17/23 23:43Fluoride0.0500.0500.0500.0500.0500/5/17/23 23:43		4							Clie	ent			
Spike LCS LCS LCS MRec Analyte Added Result Qualifier Unit D %Rec Limits											Prep Typ		
Analyte Added Result Qualifier Unit D %Rec Limits Calcium 25000 23600 ug/L 95 80 - 120 Itron 5000 4890 ug/L 98 80 - 120 Itethod: 9056A - Anions, Ion Chromatography 80 - 120 98 80 - 120 Itethod: 9056A - Anions, Ion Chromatography Client Sample ID: Method Blan Prep Type: Total/N Matrix: Water MB MB Prep Type: Total/N Prepared Analyzed Dil Fa Chloride 1.0 U 1.0 1.0 mg/L 05/17/23 23:43 Dil Fa Fluoride 0.050 U 0.050 0.050 mg/L 05/17/23 23:43 05/17/23 23:43	Analysis Batch: 572569												57227
Calcium 25000 23600 ug/L 95 80 - 120 Iron 5000 4890 ug/L 98 80 - 120 Iethod: 9056A - Anions, Ion Chromatography Client Sample ID: MB 240-573779/3 Client Sample ID: Method Blan Matrix: Water Prep Type: Total/N Prep Type: Total/N Analysis Batch: 573779 MB MB MB MDL Unit D Prepared Analyzed Dil Fa Chloride 1.0 0.050 0.050 0.050 mg/L 05/17/23 23:43 05/17/23 23:43				Spike		LCS	LCS	i				%Rec	
Iron 5000 4890 ug/L 98 80-120 Iethod: 9056A - Anions, Ion Chromatography Lab Sample ID: MB 240-573779/3 Matrix: Water Analysis Batch: 573779 MB MB Analyte Result Qualifier Result Qualifier 1.0 U 1.0 mg/L 0.050 mg/L 05/17/23 23:43 Dil Fa	Analyte					Result	Qua	lifier	Unit		D %Rec		
Aethod: 9056A - Anions, Ion Chromatography Lab Sample ID: MB 240-573779/3 Client Sample ID: Method Blan Matrix: Water Prep Type: Total/N. Analysis Batch: 573779 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Chloride 1.0 U 1.0 0.050 0.050 mg/L D Prepared Analyzed Dil Fa Fluoride 0.050 U 0.050 0.050 mg/L D Of/17/23 23:43	Calcium			25000		23600			ug/L		95	80 - 120	
Lab Sample ID: MB 240-573779/3 Matrix: Water Analysis Batch: 573779 MB MB Analyte Result Qualifier Result Qualifier N. Unit D. Unit D. Prepared Analyzed Di Fa Chloride 1.0 U 1.0 1.0 mg/L D. Prepared Analyzed Di Fa 05/17/23 23:43	Iron			5000		4890			ug/L		98	80 - 120	
Matrix: Water Analysis Batch: 573779Prep Type: Total/N.MBMBMBAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FaChloride1.0U1.01.0ing/L05/17/23 23:43Dil FaFluoride0.050U0.0500.050mg/L05/17/23 23:43	lethod: 9056A - Anions, Ion C	hrom	natogra	phy									
Matrix: Water Analysis Batch: 573779Prep Type: Total/NMBMBAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FaChloride1.0U1.01.0ing/L05/17/23 23:43Dil FaFluoride0.050U0.0500.050mg/L05/17/23 23:43	ab Sample ID: MR 240-573779/3										Client Sam	olo ID: Mothor	l Blan
Malysis Batch: 573779 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Chloride 1.0 U 1.0 1.0 mg/L 05/17/23 23:43 Dil Fa Fluoride 0.050 U 0.050 mg/L 05/17/23 23:43 Dil Fa											Sherit Salli		
MBMBAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FaChloride1.00.0501.01.01.0mg/LD05/17/23 23:43Dil FaFluoride0.050U0.0500.050mg/L05/17/23 23:43Dil Fa												Fiep Type. I	
AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FaChloride1.00.0501.01.01.0mg/L0.05005/17/23 23:43Dil FaFluoride0.050U0.0500.050mg/L05/17/23 23:4305/17/23 23:43	Analysis Dalch. 3/3/18	MD	MD										
Chloride 1.0 U 1.0 1.0 mg/L 05/17/23 23:43 Fluoride 0.050 U 0.050 mg/L 05/17/23 23:43	Analyte				RI	1	мпі	Unit		п	Prepared	Analyzod	Dil Fa
Fluoride 0.050 U 0.050 mg/L 05/17/23 23:43										2	Fiehaled		01170
······································						~							
	Eluorido	0 0 5 0	11										

Lab Sample ID: LCS 240-573779/4 Matrix: Water

Matrix: Water							Prep Type: Total/NA
Analysis Batch: 573779							
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	50.0	50.1		mg/L		100	90 - 110
Fluoride	2.50	2.63		mg/L		105	90 - 110
Sulfate	50.0	51.8		mg/L		104	90 - 110

Project/Site: CCR DTE Belle River Power

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 240-573940/3 Matrix: Water									С	lient S	Sam	ple ID: Methoo Prep Type: To	
Analysis Batch: 573940													
-	МВ	МВ											
Analyte	Result	Qualifier		RL	r	MDL	Unit		D	Prepa	red	Analyzed	Dil F
Chloride	1.0	U		1.0		1.0	mg/L					05/18/23 16:03	
Fluoride	0.050	U	0	0.050	0	.050	mg/L					05/18/23 16:03	
Sulfate	1.0	U		1.0		1.0	mg/L					05/18/23 16:03	
_ab Sample ID: LCS 240-573940/4								Clie	ent S	ample	e ID:	Lab Control S	Samp
Matrix: Water												Prep Type: To	otal/N
Analysis Batch: 573940													
			Spike		LCS	LCS						%Rec	
nalyte			Added		Result	Qua	lifier	Unit		D %R	ec	Limits	_
Chloride			50.0		50.0			mg/L		1	00	90 - 110	
luoride			2.50		2.60			mg/L		1	04	90 - 110	
Sulfate			50.0		51.6			mg/L		1	03	90 - 110	
ab Sample ID: MB 240-574096/3									С	lient S	Sam	ple ID: Method	
Matrix: Water												Prep Type: To	otal/N
Analysis Batch: 574096													
and the		MB					1114		_			A	D '' F
nalyte	1.0	Qualifier		RL	r		Unit		<u>D</u>	Prepa	rea	Analyzed	Dil F
Chloride				1.0			mg/L					05/19/23 22:44	
luoride	0.050		0	0.050	0		mg/L					05/19/23 22:44	
Sulfate	1.0	U		1.0		1.0	mg/L					05/19/23 22:44	
Lab Sample ID: LCS 240-574096/4								Clie	ent S	ample	e ID:	Lab Control S	
Matrix: Water												Prep Type: To	otal/r
Analysis Batch: 574096			Calka		LCS	1.00						%Rec	
an ale da			Spike					11					
			Added		Result	Qua	litier	Unit		<u>D</u> %R		Limits	
Chloride			50.0		50.1			mg/L			00	90 - 110	
Fluoride			2.50		2.63			mg/L			05	90 - 110	
Sulfate			50.0		51.7			mg/L		1	03	90 - 110	
ethod: SM 2540C - Solids, To	otal D	issolve	d (TDS	5)									
_ab Sample ID: MB 240-572272/1									С	lient S	Sam	ple ID: Method	
Matrix: Water												Prep Type: To	otal/N
Analysis Batch: 572272													
		MB											
nalyte		Qualifier		RL			Unit		D	Prepa	red	Analyzed	Dil F
otal Dissolved Solids	10	U		10	_	10	mg/L	_	_	_	_	05/05/23 11:41	_
_ab Sample ID: LCS 240-572272/2								Clie	ent S	ample	e ID:	Lab Control	
Matrix: Water												Prep Type: To	otal/N
Analysis Batch: 572272													
			0		1.00	1.00						%Rec	
			Spike		LCS	LCS	1					/orec	
Analyte			Added 580		Result			Unit	I	D_%R	ec	Limits	

9

Page 17 of 30

QC Sample Results

Job ID: 240-184643-2

9

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 240-18464 Matrix: Ground Water Analysis Batch: 572272	43-9 DU					Clie	ent Sample ID: MW Prep Type: To	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	860		 1380	F3	mg/L		47	20

Prep Type

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Prep Type

Matrix

Ground Water

Ground Water

Ground Water

Ground Water

Ground Water

Ground Water

Water

Water

Water

Matrix

Ground Water

Ground Water

Ground Water

Ground Water

Ground Water

Ground Water

Water

Water

Client Sample ID

MW-16-01

MW-16-02

MW-16-03

MW-16-04

MW-16-09

Method Blank

Lab Control Sample

Lab Control Sample

Client Sample ID

MW-16-01

MW-16-02

MW-16-03

MW-16-04

MW-16-09

Method Blank

Lab Control Sample

DUP-02

DUP-02

Metals

Prep Batch: 572275

Lab Sample ID

240-184643-9

240-184643-10

240-184643-11

240-184643-12

240-184643-13

240-184643-14

Lab Sample ID

240-184643-10

240-184643-11

240-184643-12

240-184643-13

240-184643-14

MB 240-572275/1-A

LCS 240-572275/3-A

240-184643-9

MB 240-572275/1-A

LCS 240-572275/2-A

LCS 240-572275/3-A

Analysis Batch: 572569

Prep Batch

Prep Batch

572275

572275

572275

572275

572275

572275

572275

572275

Method

3005A

3005A

3005A

3005A

3005A

3005A

3005A

3005A

3005A

Method

6020B

6020B

6020B

6020B

6020B

6020B

6020B

6020B

	9
1	0

Analysis Batch: 572766

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-184643-9	MW-16-01	Total Recoverable	Ground Water	6010D	572275
240-184643-10	MW-16-02	Total Recoverable	Ground Water	6010D	572275
240-184643-11	MW-16-03	Total Recoverable	Ground Water	6010D	572275
240-184643-12	MW-16-04	Total Recoverable	Ground Water	6010D	572275
240-184643-13	MW-16-09	Total Recoverable	Ground Water	6010D	572275
240-184643-14	DUP-02	Total Recoverable	Ground Water	6010D	572275
MB 240-572275/1-A	Method Blank	Total Recoverable	Water	6010D	572275
LCS 240-572275/2-A	Lab Control Sample	Total Recoverable	Water	6010D	572275

General Chemistry

Analysis Batch: 572272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184643-9	MW-16-01	Total/NA	Ground Water	SM 2540C	
240-184643-10	MW-16-02	Total/NA	Ground Water	SM 2540C	
240-184643-11	MW-16-03	Total/NA	Ground Water	SM 2540C	
240-184643-12	MW-16-04	Total/NA	Ground Water	SM 2540C	
240-184643-13	MW-16-09	Total/NA	Ground Water	SM 2540C	
240-184643-14	DUP-02	Total/NA	Ground Water	SM 2540C	
MB 240-572272/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-572272/2	Lab Control Sample	Total/NA	Water	SM 2540C	
240-184643-9 DU	MW-16-01	Total/NA	Ground Water	SM 2540C	

Analysis Batch: 573779

Lab Sample ID 240-184643-9	Client Sample ID MW-16-01	Prep Type Total/NA	Ground Water	Method 9056A	Prep Batch
240-184643-9	MW-16-01	Total/NA	Ground Water	9056A	
240-184643-10	MW-16-02	Total/NA	Ground Water	9056A	

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

General Chemistry (Continued)

Analysis Batch: 573779 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
240-184643-12	MW-16-04	Total/NA	Ground Water	9056A	
240-184643-12	MW-16-04	Total/NA	Ground Water	9056A	
240-184643-13	MW-16-09	Total/NA	Ground Water	9056A	
240-184643-13	MW-16-09	Total/NA	Ground Water	9056A	
240-184643-14	DUP-02	Total/NA	Ground Water	9056A	
240-184643-14	DUP-02	Total/NA	Ground Water	9056A	
MB 240-573779/3	Method Blank	Total/NA	Water	9056A	
LCS 240-573779/4	Lab Control Sample	Total/NA	Water	9056A	

Analysis Batch: 573940

Lab Sample ID 240-184643-11	Client Sample ID MW-16-03	Prep Type Total/NA	Matrix Ground Water	Method 9056A	Prep Batch
240-184643-11	MW-16-03	Total/NA	Ground Water	9056A	
MB 240-573940/3	Method Blank	Total/NA	Water	9056A	
LCS 240-573940/4	Lab Control Sample	Total/NA	Water	9056A	

Analysis Batch: 574096

Lab Sample ID 240-184643-10	Client Sample ID MW-16-02	Prep Type Total/NA	Matrix Ground Water	Method 9056A	Prep Batch	
MB 240-574096/3	Method Blank	Total/NA	Water	9056A		
LCS 240-574096/4	Lab Control Sample	Total/NA	Water	9056A		

Job ID: 240-184643-2

Dilution

Factor

1

1

1

5

1

Run

Batch

Type

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Batch

Method

3005A

6010D

3005A

6020B

9056A

9056A

SM 2540C

Client Sample ID: MW-16-01 Date Collected: 04/28/23 09:55 Date Received: 05/04/23 08:00

Prep Type

Total/NA

Total/NA

Total/NA

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Lab Sample ID: 240-184643-9 **Matrix: Ground Water**

Prepared

or Analyzed

05/05/23 14:00

05/10/23 05:03

05/05/23 14:00

05/08/23 18:46

05/18/23 07:21

05/18/23 08:26

05/05/23 11:41

Lab Sample ID: 240-184643-10

Lab Sample ID: 240-184643-11

Lab Sample ID: 240-184643-12

Matrix: Ground Water

Matrix: Ground Water

Matrix: Ground Water

5 11

Client Sample ID: MW-16-02 Date Collected: 04/28/23 11:25

Date Received: 05/04/23 08:00

_	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6010D		1	572766	KLC	EET CLE	05/10/23 05:07
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 18:49
Total/NA	Analysis	9056A		1	573779	JWW	EET CLE	05/18/23 08:47
Total/NA	Analysis	9056A		5	574096	JWW	EET CLE	05/20/23 09:38
Total/NA	Analysis	SM 2540C		1	572272	MS	EET CLE	05/05/23 11:41

Client Sample ID: MW-16-03 Date Collected: 04/28/23 12:09 Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6010D		1	572766	KLC	EET CLE	05/10/23 05:12
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 18:51
Total/NA	Analysis	9056A		1	573940	JWW	EET CLE	05/19/23 03:28
Total/NA	Analysis	9056A		5	573940	JWW	EET CLE	05/19/23 03:50
Total/NA	Analysis	SM 2540C		1	572272	MS	EET CLE	05/05/23 11:41

Client Sample ID: MW-16-04 Date Collected: 04/28/23 14:11 Date Received: 05/04/23 08:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6010D		1	572766	KLC	EET CLE	05/10/23 05:16
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 18:54
Total/NA	Analysis	9056A		1	573779	JWW	EET CLE	05/18/23 13:09

Eurofins Cleveland

Batch

Number Analyst

572275 MRL

572766 KLC

572275 MRL

572569 DSH

573779 JWW

573779 JWW

572272 MS

Lab

EET CLE

Client Sample ID: MW-16-04 Date Collected: 04/28/23 14:11 Date Received: 05/04/23 08:00

Prep Type	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	573779	JWW	EET CLE	05/18/23 13:30
Total/NA	Analysis	SM 2540C		1	572272	MS	EET CLE	05/05/23 11:41

Client Sample ID: MW-16-09 Date Collected: 04/28/23 13:13 Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6010D		1	572766	KLC	EET CLE	05/10/23 05:21
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 18:57
Total/NA	Analysis	9056A		2	573779	JWW	EET CLE	05/18/23 13:52
Total/NA	Analysis	9056A		20	573779	JWW	EET CLE	05/18/23 14:14
Total/NA	Analysis	SM 2540C		1	572272	MS	EET CLE	05/05/23 11:41

Client Sample ID: DUP-02 Date Collected: 04/28/23 00:00 Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6010D		1	572766	KLC	EET CLE	05/10/23 05:25
Total Recoverable	Prep	3005A			572275	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 18:59
Total/NA	Analysis	9056A		1	573779	JWW	EET CLE	05/18/23 09:31
Total/NA	Analysis	9056A		5	573779	JWW	EET CLE	05/18/23 09:53
Total/NA	Analysis	SM 2540C		1	572272	MS	EET CLE	05/05/23 11:41

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Job ID: 240-184643-2

Lab Sample ID: 240-184643-12 Matrix: Ground Water

Lab Sample ID: 240-184643-13

Matrix: Ground Water

Matrix: Ground Water

Lab Sample ID: 240-184643-14 Matrix: Ground Water

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

12

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-24
Connecticut	State	PH-0590	06-29-23
Florida	NELAP	E87225	05-24-23
Georgia	State	4062	02-28-24
Illinois	NELAP	200004	07-31-23
lowa	State	421	05-31-23
Kentucky (UST)	State	112225	02-28-24
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	02-27-24
Minnesota	NELAP	039-999-348	12-31-23
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-23
New York	NELAP	10975	06-12-23
Ohio	State	8303	02-27-24
Ohio VAP	State	ORELAP 4062	02-27-24
Oregon	NELAP	4062	05-24-23
Pennsylvania	NELAP	68-00340	06-13-23
Texas	NELAP	T104704517-22-17	08-31-23
Virginia	NELAP	460175	09-14-23
West Virginia DEP	State	210	12-31-23

Eurofins Canton MICHIGAN 180.S. Van Buren Avenue 1900		Chain c	of Cus	in of Custody Record	ecorc	_	TICH	HIGAN	🐝 eurofins	
Barberton, UH 44.203 Phone: 330-497-9396 Fax: 330-497-0772							T	n.		Environment Testing
Client Information	Sampler. Julie	c Krenz	2	Lab F Broc	Lab PM Brooks, Kris M			Carrier Tracking No(s):	COC No: 240-106108-33142	-33142.1
Client Contact Jacob Krenz	Phone 734-39	1 in	- 9804	E-Ma Kris.	Brooks@e	E-Mail: Kris.Brooks@et.eurofinsus.com		State of Origin:	Page 1 of 2	
Company TRC Environmental Corporation.			DISMA				Ivsis	Requested	# qof	
Address 1540 Eisenhower Place	Due Date Requested:	ÿ							Preservation Codes	Codes: M - Hexane
City Ann Arbor	TAT Requested (days):	iys):							A - HCL B - NaOH C - Zn Acetate	zòd
State, Zip: MI, 48108-7080	Compliance Project: A	Xes	A No			91			D - Nitric Acid E - NaHSO4	
Phone 313-971-7080(Tel) 313-971-9022(Fax)	PO Requested				(0	sa Muz			F - MeOH G - Amchlor	S - H2SO4 T - TSP Dodecahydrate
Emeit JKrenz@trccompanies.com	WO # 518728.0003.0000	0			N JO I	pue ep			I - Ice J - DI Water	
Project Name CCR DTE Belle River Power	Project # 24016463				e (Xea	Fluori		_	K - EDA L - EDA	Y - Trizma Z - other (specify)
Site Michigan	SSOW#					ioride	24		of cor	
		Sample	Sample Type (C=comp,	Matrix (www.	i Filtered : PoC_Calcd - 1	269 380 - CH 108' 6050	0-184643 (tedmuN lst	
Sample Identification	Sample Date	Time	G=grab)	BT-TISSER, A-AF		5	Chai			Special Instructions/Note:
MM.16.01		\langle	LICOLING	rieservation coue.		N S N	n of		X	
MM 16.02							Cus			
John				water	1		tody			
.MW-16-03				Water	+				14.22	
MW. 16 64				Water	1					
MW-16-05	4-21-23	1423	0	Water	NNX	××			3	
MW-16-06	4-27-23	[313	0	Water	NN X	×		 	3	
MW-16-07	4-27-23	1320	0	Water	2	××		+	3	
MW-16-08	4-27-23	1021	0	Water	2	-				
MW 16.00				Water						
MW-16-10	52-12-4	1003	0	Water	NNX	××				
MW-16-11A	4-27-27	5030	ى	Water	N W X	X X			2	
Possible Hazard Identification	son B Unknown	U	Radiological			le Disposal (A I Return To Client	(A fee may be as: lient	e assessed if samples Disposal By Lab	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To ClientDisposal By LabArchive For Mont	an 1 month) Months
, III, IV. Other (specify)					Specia	Instruction	Special Instructions/QC Requirements	10		
Kit Relinquished by:		Date:			Time:			Method of Shipment	ž	
They	Date/Time 5-1-23	16600		Company	Rec	Received by: T.X.C.	5/0045	Date/Time	1-23/0600	Company
Herrington During	5/3/33	Shi/	hh	Company) 8	Received by:	Culy NI	Date/Time	5223	Company
Custody Seals Intact Custody Seal No	S International S	5 93		A JUL		You by	M. Smit	A C	24-23	800 CEPETINC
Δ Yes Δ No					5	Her Feltipeta	cooler remperature(s) 'C and Other Kemarks	larks.		
										Ver: 06/08/2021

- 14

anton MICHIGAN A venue 1420 396 Fax: 330-487-0772 Sade Fax: 330-487-0772 Environment Testing Environment Testing Environment Testing Environment Testing Environment Testing Environment Testing Environment Testing	Sampler Juke Kune	Phone フ3リーフ9万- うぞのり E-Mail State of Ongin State of Ongin	PWSID Analysis Requested	Due Date Requested:		D - Nitric Acid	PO#	WO # 00 # 00 000 000 00 00 00 00 00 00 00	C4016463	ool cool	Sample Sample Sample Sample Comp Comp Comp Comp Comp Comp Comp Comp	Preservation Code: XX N D N	NN X X	Water	4-26-23 1530 G Water N/N X X X 3	Water				r Client Seeses of the may be assessed if samples are retained longer than 1 month)	Other (specify) Special Instructions/QC Requirements:	Date: Time: Method of	23 /0600 Company Received by Starge	Received by:	TWW MIC Deserving 13/37 Company Received by Mr. Mr. Hr. 201-03 800	Custood Seal No.: Custood Seal No.:	Ver: 06/08/2021
Eurofins Canton 180 S. Van Buren Avenue Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772	Client Information	Client Contact. Jacob Krenz	Company: TRC Environmental Corporation.	Address 1540 Eisenhower Place	City Ann Arbor	State, Zip: MI, 48108-7080	Phone 313-971-7080(Tel) 313-971-9022(Fax)	Email: JKrenz@trccompanies.com	Project Name CCR DTE Belle River Power	Site Michigan	Commission International Commission		DUP-01	BUP 82	EB-01				Precible Versed Identification	Non-Hazard Chammable	ō	Empty Kit Relinquished by:	Relinquished by	Relinduished by New		Custody Seals Intact: Custody Seal	

Information Same for the formation Same for the formation Same for the formation main 714-755-9201 Ease 10006, Kit M Anabysis For main 714-755-9201 Ease 10006, Kit M Anabysis For main 714-755-9201 Ease 10006, Kit M Anabysis For main 714-755-9201 Ease 10006 Anabysis For main 105-1000 Anabysis For Anabysis For main 105-1000 Ease 1000 Ease 1000 Ease 1000 105-1000 Ease 1000 Ease 1000 Ease 1000 Ease 1000 Ease 1000 105-1000 Ease 1000 Ease 10000	180.5. Van Buren Avenue Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772		ha	of Cus	in of Custody Record	scord			190		ns Environment Testing
	Client Information	Sampler			Lab PM Brook	s, Kris M			Carrier Tracking No(s)	COC No 240-106108-	333142.1
Internet of Copyone Analysis Requested Analys	Client Contact Jacob Krenz	Phone 734-	345-9	304	E-Mail Kris.B	rooks@et	eurofina	tus.com	State of Origin	Page Page 1 of 2	
Elementer Place Care in Answerster Care in An	Company TRC Environmental Corporation.			:DISMd				Analysis Ro	aquested	# qor	
	Address 1540 Eisenhower Place	Due Date Requeste								Preservation	
Office Operation of the contract of th	City. Ann Arbor	TAT Requested (da	(8):							B - NaOH C - Zn Acetate	
P.: Torol (Tel) Differential Differential Differential Differential Officerroperine con Stration (Stration (Stratio	State, Zp. MI, 48108-7080	Compliance Project	⊲	NO			e)		-	D - Nitric Acid E - NeHSO4	
Normal Norma Norma Norma <td>Phone 313-971-7080(Tel) 313-971-9022(Fax)</td> <td>PO# PO Requested</td> <td></td> <td></td> <td></td> <td>(0</td> <td>BRUS D</td> <td></td> <td></td> <td>F - MBUH G - AmcNor H - Ascorbic Ac</td> <td></td>	Phone 313-971-7080(Tel) 313-971-9022(Fax)	PO# PO Requested				(0	BRUS D			F - MBUH G - AmcNor H - Ascorbic Ac	
Properties Properis Properis Properies </td <td>Email. JKrenz@trccompanies.com</td> <td>WO #: 518728.0003.000</td> <td>8</td> <td></td> <td></td> <td></td> <td>ide ani</td> <td></td> <td></td> <td></td> <td></td>	Email. JKrenz@trccompanies.com	WO #: 518728.0003.000	8				ide ani				
Input Store Mathematication Store Mathematication </td <td>Project Name CCR DTE Belle River Power</td> <td>Project # 24016463</td> <td></td> <td></td> <td></td> <td></td> <td>Poul 7 .</td> <td></td> <td></td> <td></td> <td>Y - Trizma Z - other (specify)</td>	Project Name CCR DTE Belle River Power	Project # 24016463					Poul 7 .				Y - Trizma Z - other (specify)
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Site Michigan	SSOW#:				A) asi	epholr				
H-18-23 Conservation core No N	Sample Identification	8ample Date	Sample Time	Sample Type (C=comp, G=grab)		W/SW W					al Instructions/Note:
H-26-21 0.42/6-21 0.43/6 C Water I X X I I H-26-21 20-01 C Water I X X I I X H-26-21 20-01 C Water I X X I I I H-26-21 20-01 C Water V X I I I H-27-23 1/11 C Water V X I I I H-27-23 1/11 C Water V X I I I H-27-23 1/11 C Water V X I I I Matter V X I I I V I I Matter V X I I I I I Matter Vater I VA I I I		K	X	Preserva		Ż					
4-33-35 [125 6 Water 1 X X N 14-37-31 13-05 6 Water V X N N 14-37-37 11-10 6 Water V X N N 14-37-37 11-11 6 Water V X N N 14-37-37 11-11 6 Water N N N 14 Name Name N N N N 14 Name Name N N N N 14 Name Name Name N N N 14 Name Name Name N N N 14 Name Name Name N N N 15 Name Name Name N N N 14 Name Name N N N N 15 Name Name N N N N 14 Name Name N N N N 14 Name Name Name Name Name 14 Namo	MW-16-01		0955	C							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW-16-02	4-23-23	1125	0	Water	X					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW-16-03		200	C	Water	×					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW-16-04		111	0		2	×				
Mater Mater Mater Mater Mater 1 1313 C Water N/X × × I 1 123-13 1313 C Water N/X × × 1 123-13 1313 C Water N/X × × 1 Nater N/X × × I I I 1 Valer Nater N/X × × I I 1 Nater Nater I I I 1 Posonal B I I I I 1 Posonal B I <td>MW 16.05</td> <td></td> <td></td> <td></td> <td>Water</td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td>	MW 16.05				Water					4	
Image: National State Water Water Water Water M K × × H-28-31 1313 G Water N K × × H Mater N K × × H H H Mater N K × × H H H Mater N K × H H H Mater Mater N K H H Mater Mater Secial Instructions/GC Requirements Months Secial Instructions/GC Requirements Metor of Shipment Months Mater Data Metor of Shipment Months Mater N K N K N K N K Mater Mater Mater Metor of Shipment Mater Mater	MW 16.06				Water			-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW-16-07				Water					yr.	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW 16.08				Water						
Mater Water Water Water Water Water Water Mater Water Mater Mater Mater Mater In Poison B Unknown Redum To Client Disposal By Lab Archive For Months Secial Instructions/OC Requirements: Becial Instructions/OC Requirements: Method of Shipment Months Date: Disposal By Lab Onemy Received by: No rough Company Date: Disposal By Lab Onemy Received by: No rough Company Date: Disposal By Lab Onemy Received by: No rough Company Disposal By Lab Company Received by: No rough Disposal By Lab Company Disposal By Lab Disposal By Lab Disposal By Lab Disposal By Lab Company For 21-13 / O GO Company Received by: No rough Disposal By Lab Company Disposal By Lab Company Received by: No rough Disposal By Lab Company Disposal By Lab Company Received by: No rough Disposal By Lab Company Disposal By Lab Company Received by: No rough Disposal By Lab Company Disposal By Lab	MW-16-09	4-23-23	-	0			X				
Image: Second B Water Water Water Water Water Water Water Water Water Mathematication Image: Second B Unknown Radiological Return To Client Disposal By Lab Archive For Months Image: Second B Months Image: Second B Months Image: Second B Image: Secon	MW-16-10				Water			-		4	
Image: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Image: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Image: Special Instructions/GC Requirements: Date: Image: Date Time:	MW 16-11A				Water						
Special Instructions/OC Requirements: Date:: Date:: Date:: Time: Notice Company DataTime: Pate/Time: Pate/Time: Pate/Time: Pate/Time: Pate/Time: Pate/Time: Pate/Time: Pate/Time: Pate/Time:	ant			adiological		Sample	Dispo: eturn To	al (A fee may be	assessed if sample Disposal Bv Lab	is are retained longer th	an 1 month) Months
Date: Time: Time: Detroid of Shipment Image: Company Detailine 25-1-23 / 0.6.00 Company Received by T/A Detailine: 7.2.3 / 0.6.00 Company Image: Company Detailine Detailine: 5.1-33 / 0.6.00 Company Company Image: Company N N N Detailine: 5.3 / 5 Company Image: Company N N N Detailine: 5.3 / 5 Company Image: Company N N N Detailine: 5/3 / 5 Company Image: Company Company N N N Detailine: 5/3 / 5 Company Image: Company Company N N N Detailine: 5/3 / 5 Company Image: Company Company N N N Detailine: 5/3 / 5 Company Image: Company Company N N N Detailine: 5/3 / 5 Company Image: Company Company N N N N Company Company Image: Company Company Company Company Company Company Company Image: Company Compan	-					Special	Instruct	ions/QC Requirem	ients:		
W Description Company Received by Aloc Description Company M M M Description 23/3/3 1< 50.0	Empty Kit Relinquished by:		Date:						Method of Shipr	ent:	
Matrix Letter Determine 2/3/3/3 1: 5 profession of M. M. Determine 5/3/3 Company had by M. M. H. Determine 5/3/35 Company M. M. H. Determine 5/3/35 Company ody Seals Intact: Clistody Seal No.: Yes a No	Relinquisheddy	Date/Time: 5-1-23/	0000		Company	Rec	ived by:	RC Sto		-1-23/	6
WW NV Detertime f 3 3 3 Concert A Received by M. An H Detertime 05-04-23 800 Concertants	Reinquighting Le	Delatine 08	a:/	54	Company		ived by	(Why M			1
Custody Seal No.:	(L	Date/Time	33		COTPEND A		yd by	M. Smit	E Dete	08 80	0 COMPANY
	1.4.1				-		er Tempe	rature(s) °C and Other			
							3		8 9 1 ()	5 6 7	

Eurofins Canton 180 S. Van Buren Avenue Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772	Cha	MICH	🔅 eurofins	Environment Testing
Client Information	Sampler		Carrier Tracking No(s) COC No: 240-106108-33142.2	12.2
Client Contact Jacob Krenz	Phone	E-Mail Kris. Brooks@et. eurofinsus.com	State of Origin Page 2 of 2	
Company: TRC Environmental Corporation.	PWSID	Analysis Requested		
Address 1540 Eisenhower Place	Due Date Requested:		Preservation Coc	s: M - Hexane
City Ann Arbor	TAT Requested (days):		A - HCL B - NaOH C - Zh Acetate	
State: 4.0 MI, 48108-7080	Compliance Project; A Yes A No	pite		Q - Na2SO3 R - Na2S2O3
Phone: 313-971-7080(Tel) 313-971-9022(Fax)	PO Requested	100		S - H2SO4 T - TSP Dodecahydrate
Emeił: J.Krenz@trccompanies.com	WO#: 518728.0003.0000	(ON	I - Ice J - Di Water	U - Acetone V - MCAA W - pH 4-5
	Project # 24016463	98 OL	K - EDTA L - EDA	Y - Trizma Z - other (specify)
	*MOSS	sa.	of coi	
	Sample Type Sample (C=comp,	010B, 6020 010B, 6020 010B, 6020 010B, 6020 010B, 6020 010B, 6020 010B, 6020	otal Number	
				Special Instructions/Note:
BUP-01		Water		
DUP-02	4-28-23 - 6	Water WWXXXX		
EB-01		Water		
		Water		
			2	
Possible Hazard Identification	L L L L L L L L L L L L L L L L L L L	Sample Disposal (A fee may be ass Carl Return To Client	I I <td>month) Months</td>	month) Months
/, Other (specify)		Requirer		
Empty Kit Relinquished by:	Date:	Time:		
Reinquisted by: Dataments of by:	0		-23 /0600	Company RC
Menudusho y Auro	3/23 1:45PM		303	Company
Cutebrow Scale Intract Cutebrow Scala No.	5/3/03	We to by Jean M. Smith	008 2- HO-SQ	CENT TNC
		COORT LEMPERALITE(S) C and CITHER KEINERKS		
			>	Ver: 06/08/2021

e				1cu + 12-
Eurofins - Canton San Barberton Facility	ple Receipt Form/Nar	rative	Login # :	189692
Client TRC Environme	ntal Corporation	Site Name		Cooler unpacked by:
Cooler Received on 05.		Opened on 05-04-	23	Feah M. Muth
FedEx: 1 st Grd Exp		Client Drop Off Eurofins		
Receipt After-hours: Dr			age Location	
Eurofins Cooler $\# EC$	Foam Box (Other	
Packing material use	ed: Bubble Wrap Fo	oam Plastic Bag None	Other	
	Wet Ice Blue Ice	-		
1. Cooler temperature u			fultiple Cooler Form	
IR GUN # 22	(CF <u>+0.0</u> °C)) Observed Cooler Temp	°C Com	ected Cooler Temp°C
2. Were tamper/custody	v seals on the outside of the	he cooler(s)? If Yes Quantit	y des h	No I
	the outside of the cooler(In NA Tests that are not
		or bottle kits (LLHg/MeHg)	\sim	Checked for pH by Receiving:
	dy seals intact and uncon			IO (NA)
3. Shippers' packing slip	attached to the cooler(s)	?	Yes 📢	VOAs
4. Did custody papers ac	company the sample(s)?		(100 N	NO Oil and Grease
		d in the appropriate place?		10
		ples clearly identified on the	COC?	10
7. Did all bottles arrive i			X)	ło
8. Could all bottle labels	(ID/Date/Time) be record	nciled with the COC?	G Ves N	
		vatives (Y/N), # of container		
10. Were correct bottle(s)			Yes N	
11. Sufficient quantity red	-	-	- ^	Le contraction de la contracti
12. Are these work share	-		Yes (N	
13. Were all preserved sa		the originating laboratory.		Io NA pH Strip Lot# HC208070
14. Were VOAs on the C		upon receipt?	Yes a	
15. Were air bubbles >6		Larger than this.		To CA
	÷	? Trip Blank Lot #		-
17. Was a LL Hg or Me		• • • • • • • • • • • • • • • • • • •	Yes 🔿	
Contacted PM	Date	by	via Verbal Voic	e Mail Other
Concorning			_	. A
Concerning				
				P
18. CHAIN OF CUSTO	DY & SAMPLE DISCH	REPANCIES L addition	al next page S	amples processed by:
			5 m L	
			2.	······
<u> </u>				
			N	
19. SAMPLE CONDIT	ION			
Sample(s)		were received after the recor	nmended holding	time had expired.
Sample(s)				a broken container.
		were received with b		
			4	
20. SAMPLE PRESERV	ATION		1	
Comula(-)			i a la	
Sample(s)	Preservative(s) add	ded/Lat number(a):	were further	r preserved in the laboratory.
Time preserved:				ρ
VOA Sample Preservation	n - Date/Time VOAs Fro	zen:		A197

Login # :	184	
-----------	-----	--

		Sample Receipt Mu	Itiple Cooler Form	
Cooler Description	IR Gun #	Observed	Corrected	Coolant
(Circle)	(Circle)	Temp °C	Temp °C	(Circle)
EC Client Box Other		1.8	1.8.	Wet ice Blue ice Dry ic Water None
EC Client Box Other		2.4	2.4	Wet loe' Blue Ice Dry Ic Water None
EC Client Box Other	IR GUN #: _22	1.4	<u></u>	Wet Ice Blue Ice Dry Ic
EC Client Box Other	IR GUN #: 22	2.6	26	Wet ice Blue ice Dry ice
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:	_		Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Box Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
			See Tem	perature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

Login Container Summary Report

Temperature readings: _____

			Con	<u>tainer</u>	Preservative	3
Client Sample ID	<u>Lab ID</u>	Container Type	<u>pH</u>	<u>Temp</u>	Added (mls) Lot #	4
MW-16-05	240-184643-C-1	Plastic 500ml - with Nitric Acid	<2			5
MW-16-06	240-184643-C-2	Plastic 500ml - with Nitric Acid	<2			0
MW-16-07	240-184643-C-3	Plastic 500ml - with Nitric Acid	<2			6
MW-16-08	240-184643-C-4	Plastic 500ml - with Nitric Acid	<2			7
MW-16-10	240-184643-C-5	Plastic 500ml - with Nitric Acid	<2			_
MW-16-11A	240-184643-C-6	Plastic 500ml - with Nitric Acid	<2			8
DUP-01	240-184643-C-7	Plastic 500ml - with Nitric Acid	<2			9
EB-01	240-184643-C-8	Plastic 500ml - with Nitric Acid	<2			
MW-16-01	240-184643-C-9	Plastic 500ml - with Nitric Acid	<2			10
MW-16-02	240-184643-C-10	Plastic 500ml - with Nitric Acid	<2			11
MW-16-03	240-184643-C-11	Plastic 500ml - with Nitric Acid	<2			4.0
MW-16-04	240-184643-C-12	Plastic 500ml - with Nitric Acid	<2			12
MW-16-09	240-184643-C-13	Plastic 500ml - with Nitric Acid	<2		·	13
DUP-02	240-184643-C-14	Plastic 500ml - with Nitric Acid	<2			

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080 Generated 10/23/2023 3:04:11 PM

JOB DESCRIPTION

CCR DTE Belle River Power

JOB NUMBER

240-193581-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Sroohs

Authorized for release by Kris Brooks, Project Manager II <u>Kris.Brooks@et.eurofinsus.com</u> (330)966-9790

Generated 10/23/2023 3:04:11 PM

1

Eurofins Cleveland is a laboratory within Eurofins Environment Testing North Central, LLC, a company within Eurofins Environment Testing Group of Companies

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	16
QC Association Summary	19
Lab Chronicle	21
Certification Summary	23
Chain of Custody	24

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Qualifiers

Qualifiers		3
Metals		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
General Chen	nistry	5
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	8
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	13
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count

5

Job ID: 240-193581-1

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-193581-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/13/2023 6:37 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 0.3°C, 0.6°C and 1.1°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

ethod	Method Description	Protocol	Laboratory
010D	Metals (ICP)	SW846	EET CLE
020B	Metals (ICP/MS)	SW846	EET CLE
)56A	Anions, Ion Chromatography	SW846	EET CLE
A 2540C	Solids, Total Dissolved (TDS)	SM	EET CLE
005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CLE

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Job ID: 240-193581-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-193581-1	MW-16-01	Water	10/09/23 12:50	10/13/23 18:37
240-193581-2	MW-16-02	Water	10/09/23 13:35	10/13/23 18:37
240-193581-3	MW-16-03	Water	10/09/23 14:40	10/13/23 18:37
240-193581-4	MW-16-04	Water	10/09/23 15:40	10/13/23 18:37
240-193581-5	MW-16-09	Water	10/10/23 09:19	10/13/23 18:37
240-193581-6	DUP-01	Water	10/09/23 00:00	10/13/23 18:37

RL

100

1000

100

5.0

1.0

40

0.050

MDL Unit

250 ug/L

47 ug/L

5.0 mg/L

1.0 mg/L

40 mg/L

0.050 mg/L

57

ug/L

Result Qualifier

1000

38000

630

470

1.8

6.8

900

910

Client Sample ID: MW-16-01

Analyte

Calcium

Chloride

Fluoride

Sulfate

Total Dissolved Solids

Iron

Boron

Prep Type

Total

Total

Total/NA

Dil Fac D Method

1

1

1

5

1

1

1

6010D

6020B

6020B

9056A

9056A

9056A

SM 2540C

Lab Sample ID: 240-193581-2

Lab Sample ID: 240-193581-3

Recoverable Total Recoverable Total/NA Total/NA Total/NA

Client Sample ID: MW-16-02

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1100		100	57	ug/L	1	_	6010D	Total
									Recoverable
Calcium	52000		1000	250	ug/L	1		6020B	Total
									Recoverable
Iron	880		100	47	ug/L	1		6020B	Total
									Recoverable
Chloride	360		5.0	5.0	mg/L	5		9056A	Total/NA
Fluoride	1.2		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	17		1.0	1.0	mg/L	1		9056A	Total/NA
Total Dissolved Solids	740		10	10	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-03

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1100		100	57	ug/L	1	_	6010D	Total
									Recoverable
Calcium	33000		1000	250	ug/L	1		6020B	Total
									Recoverable
Iron	610		100	47	ug/L	1		6020B	Total
									Recoverable
Chloride	570		5.0	5.0	mg/L	5		9056A	Total/NA
Fluoride	1.8		0.050	0.050	mg/L	1		9056A	Total/NA
Total Dissolved Solids	1000		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-04

Total Dissolved Solids

Client Sample ID: MW-16-04				Lab Sample ID: 240-193581-4					
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Boron	940		100	57	ug/L	1	_	6010D	Total
									Recoverable
Calcium	39000		1000	250	ug/L	1		6020B	Total
									Recoverable
Iron	1400		100	47	ug/L	1		6020B	Total
									Recoverable
Chloride	500		5.0	5.0	mg/L	5		9056A	Total/NA
Fluoride	1.8		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	13		1.0	1.0	mg/L	1		9056A	Total/NA

20

20 mg/L

This Detection Summary does not include radiochemical test results.

Eurofins Cleveland

Total/NA

SM 2540C

Client Sample ID: MW-16-09

Lab Sample ID: 240-193581-6

Lab Sample ID: 240-193581-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Boron	1500		100	57	ug/L	1	6010D	Total
								Recoverable
Calcium	110000		1000	250	ug/L	1	6020B	Total
								Recoverable
Iron	22000		100	47	ug/L	1	6020B	Total
								Recoverable
Chloride	960		10	10	mg/L	10	9056A	Total/NA
Fluoride	1.5		0.10	0.10	mg/L	2	9056A	Total/NA
Sulfate	5.9		2.0	2.0	mg/L	2	9056A	Total/NA
Total Dissolved Solids	1600		40	40	mg/L	1	SM 2540C	Total/NA

Client Sample ID: DUP-01

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1100		100	57	ug/L	1	_	6010D	Total
									Recoverable
Calcium	32000		1000	250	ug/L	1		6020B	Total
									Recoverable
Iron	590		100	47	ug/L	1		6020B	Total
									Recoverable
Chloride	560		10	10	mg/L	10		9056A	Total/NA
Fluoride	1.8		0.050	0.050	mg/L	1		9056A	Total/NA
Total Dissolved Solids	1000		20	20	mg/L	1		SM 2540C	Total/NA

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Client Sample ID: MW-16-01 Date Collected: 10/09/23 12:50

Date Received: 10/13/23 18:37

Method: SW846 6010D - Metals (IC	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1000		100	57	ug/L		10/16/23 14:00	10/18/23 01:03	1
_ Method: SW846 6020B - Metals (IC	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	38000		1000	250	ug/L		10/16/23 14:00	10/18/23 15:45	1
Iron	630		100	47	ug/L		10/16/23 14:00	10/18/23 15:45	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	470		5.0	5.0	mg/L			10/19/23 14:02	5
Fluoride (SW846 9056A)	1.8		0.050	0.050	mg/L			10/19/23 13:02	1
Sulfate (SW846 9056A)	6.8		1.0	1.0	mg/L			10/19/23 13:02	1
Total Dissolved Solids (SM 2540C)	900		40	40	mg/L			10/16/23 14:12	1

5

8 9

Lab Sample ID: 240-193581-1 Matrix: Water

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Client Sample ID: MW-16-02 Date Collected: 10/09/23 13:35

Date Received: 10/13/23 18:37

Method: SW846 6010D - Metals (IC	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100		100	57	ug/L		10/16/23 14:00	10/18/23 01:07	1
– Method: SW846 6020B - Metals (IC	P/MS) - Total	Recoverable)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	52000		1000	250	ug/L		10/16/23 14:00	10/18/23 15:47	1
Iron	880		100	47	ug/L		10/16/23 14:00	10/18/23 15:47	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	360		5.0	5.0	mg/L			10/19/23 05:59	5
Fluoride (SW846 9056A)	1.2		0.050	0.050	mg/L			10/19/23 05:39	1
Sulfate (SW846 9056A)	17		1.0	1.0	mg/L			10/19/23 05:39	1
Total Dissolved Solids (SM 2540C)	740		10	10	mg/L			10/16/23 14:12	1

Job ID: 240-193581-1

Matrix: Water

Lab Sample ID: 240-193581-2

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Client Sample ID: MW-16-03 Date Collected: 10/09/23 14:40

Date Received: 10/13/23 18:37

Method: SW846 6010D - Metals (ICI Analyte	·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100		100				10/16/23 14:00	10/18/23 01:12	1
	1100		100	57	ug/L		10/10/23 14:00	10/10/23 01.12	
Method: SW846 6020B - Metals (IC	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	33000		1000	250	ug/L		10/16/23 14:00	10/18/23 15:50	1
Iron	610		100	47	ug/L		10/16/23 14:00	10/18/23 15:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	570		5.0	5.0	mg/L			10/19/23 06:39	5
Fluoride (SW846 9056A)	1.8		0.050	0.050	mg/L			10/19/23 06:19	1
Sulfate (SW846 9056A)	1.0	U	1.0	1.0	mg/L			10/19/23 06:19	1
Total Dissolved Solids (SM 2540C)	1000		20	20	mg/L			10/16/23 14:12	1

Lab Sample ID: 240-193581-3 Matrix: Water

4 5 6

Client Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Client Sample ID: MW-16-04 Date Collected: 10/09/23 15:40

Date Received: 10/13/23 18:37

Method: SW846 6010D - Metals (IC	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	940		100	57	ug/L		10/16/23 14:00	10/18/23 01:16	1
– Method: SW846 6020B - Metals (IC	P/MS) - Total	Recoverable)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	39000		1000	250	ug/L		10/16/23 14:00	10/18/23 15:52	1
Iron	1400		100	47	ug/L		10/16/23 14:00	10/18/23 15:52	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	500		5.0	5.0	mg/L			10/19/23 08:00	5
Fluoride (SW846 9056A)	1.8		0.050	0.050	mg/L			10/19/23 06:59	1
Sulfate (SW846 9056A)	13		1.0	1.0	mg/L			10/19/23 06:59	1
Total Dissolved Solids (SM 2540C)	910		20	20	mg/L			10/16/23 14:12	1

Job ID: 240-193581-1

Matrix: Water

5 6

Lab Sample ID: 240-193581-4

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Client Sample ID: MW-16-09 Date Collected: 10/10/23 09:19

Date Received: 10/13/23 18:37

Method: SW846 6010D - Metals (IG	CP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1500		100	57	ug/L		10/16/23 14:00	10/18/23 01:21	1
Method: SW846 6020B - Metals (IG	CP/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	110000		1000	250	ug/L		10/16/23 14:00	10/18/23 15:54	1
Iron	22000		100	47	ug/L		10/16/23 14:00	10/18/23 15:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	960		10	10	mg/L			10/19/23 08:40	10
Fluoride (SW846 9056A)	1.5		0.10	0.10	mg/L			10/19/23 08:20	2
Sulfate (SW846 9056A)	5.9		2.0	2.0	mg/L			10/19/23 08:20	2
Total Dissolved Solids (SM 2540C)	1600		40	40	mg/L			10/16/23 14:12	1

10/23/2023

Job ID: 240-193581-1

Matrix: Water

Lab Sample ID: 240-193581-5

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Client Sample ID: DUP-01 Date Collected: 10/09/23 00:00

Date Received: 10/13/23 18:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100		100	57	ug/L		10/16/23 14:00	10/18/23 01:34	1
- Method: SW846 6020B - Metals (ICI	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	32000		1000	250	ug/L		10/16/23 14:00	10/18/23 15:57	1
Iron	590		100	47	ug/L		10/16/23 14:00	10/18/23 15:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	560		10	10	mg/L			10/19/23 09:20	10
Fluoride (SW846 9056A)	1.8		0.050	0.050	mg/L			10/19/23 09:00	1
Sulfate (SW846 9056A)	1.0	U	1.0	1.0	mg/L			10/19/23 09:00	1
Total Dissolved Solids (SM 2540C)	1000		20	20	mg/L			10/16/23 14:12	

10/23/2023

Job ID: 240-193581-1

Matrix: Water

Lab Sample ID: 240-193581-6

RL

100

Spike

Added

1000

MDL Unit

LCS LCS

1030

Result Qualifier

57 ug/L

D

Unit

ug/L

Prepared

10/16/23 14:00

%Rec

D

MB MB

100 U

Result Qualifier

Method: 6010D - Metals (ICP)

Matrix: Water

Matrix: Water

Matrix: Water

Analyte

Analyte

Boron

Boron

Analysis Batch: 591127

Analysis Batch: 591127

Analysis Batch: 591232

Lab Sample ID: MB 240-590940/1-A

Lab Sample ID: LCS 240-590940/2-A

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 240-590940/1-A

Job	ID: 2	240-1	93581-1	
000	10.4	- 10 1	00001 1	

Prep Batch: 590940

Prep Batch: 590940

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Analyzed

Prep Type: Total Recoverable

10/17/23 23:19

Client Sample ID: Lab Control Sample

%Rec

Limits

9

Dil Fac

1

103 80 - 120	
Client Sample ID: Method Blank Prep Type: Total Recoverable	
The Type. Total Necoverable	

Dress	Detek	. 500040
Prep	Datch	: 590940

	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	1000	U	1000	250	ug/L		10/16/23 14:00	10/17/23 20:40	1
Iron	100	U	100	47	ug/L		10/16/23 14:00	10/17/23 20:40	1

Lab Sample ID: LCS 240- Matrix: Water	590940/3-A				Client			control Sample al Recoverable	
Analysis Batch: 591232								Prep	Batch: 590940
		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium		25000	23000		ug/L		92	80 - 120	
Iron		5000	4810		ug/L		96	80 - 120	

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-591317/3 Matrix: Water Analysis Batch: 591317							Client Sa	ample ID: Metho Prep Type: ⁻	
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.0	U	1.0	1.0	mg/L			10/19/23 03:58	1
Fluoride	0.050	U	0.050	0.050	mg/L			10/19/23 03:58	1
Sulfate	1.0	U	1.0	1.0	mg/L			10/19/23 03:58	1

Lab Sample ID: LCS 240-591317/4 Matrix: Water

Analy	sis B	atch:	59131	7

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits	
Chloride	50.0	52.4	m	g/L	105	90 - 110	 -
Fluoride	2.50	2.74	m	g/L	109	90 - 110	
Sulfate	50.0	54.0	m	g/L	108	90 - 110	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Total Dissolved Solids

7 8 9

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: 240-193581-1 MS									Cli	ent Sample		
Matrix: Water										Prep 1	Гуре: То	tal/NA
Analysis Batch: 591317												
	Sample	Sample	Spike	MS	MS					%Rec		
Analyte	Result	Qualifier	Added	Result	Qual	ifier	Unit		%Rec	Limits		
Fluoride	1.8		2.50	4.63			mg/L		113	80 - 120		
Sulfate	6.8		50.0	62.7			mg/L		112	80 - 120		
Lab Sample ID: 240-193581-1 MS									Cli	ent Sample	ID: MW	-16-01
Matrix: Water										Prep 1	Type: To	tal/NA
Analysis Batch: 591317												
	-	Sample	Spike		MS					%Rec		
Analyte		Qualifier	Added		Qual	ifier	Unit	[%Rec	Limits		
Chloride	470		250	694			mg/L		89	80 - 120		
Fluoride	1.8		12.5	15.4			mg/L		109	80 - 120		
Sulfate	7.4		250	266			mg/L		104	80 - 120		
Lab Sample ID: 240-193581-1 MSD									Cli	ent Sample	ID: MW	-16-01
Matrix: Water										Prep 1	Type: To	tal/NA
Analysis Batch: 591317												
	Sample	Sample	Spike	MSD	MSD					%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Quali	ifier	Unit		%Rec	Limits	RPD	Limi
Fluoride	1.8		2.50	4.52			mg/L		108	80 - 120	3	15
Sulfate	6.8		50.0	60.5			mg/L		107	80 - 120	4	15
Lab Sample ID: 240-193581-1 MSD									Cli	ent Sample	ID: MW	-16-01
Matrix: Water											Type: To	
Analysis Batch: 591317												
	Sample	Sample	Spike	MSD	MSD					%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Quali	ifier	Unit		%Rec	Limits	RPD	Limit
Chloride	470		250	696			mg/L		90	80 - 120	0	15
Fluoride	1.8		12.5	15.5			mg/L		109	80 - 120	1	15
Sulfate	7.4		250	269	1		mg/L		105	80 - 120	1	15
₋ ∕lethod: SM 2540C - Solids, To	tal Dis	solved (TDS	S)									
Lab Sample ID: MR 240 500094/4									Client	Somela ID:	Mathad	Blank
Lab Sample ID: MB 240-590981/1 Matrix: Water									Client	Sample ID:		
										Prep	Type: To	
Analysis Batch: 590981												
	_	MB MB						_				
Analyte	R	esult Qualifier		RL	MDL			D	Prepared	Analyz		Dil Fac
Total Dissolved Solids		10 U		10	10	mg/L				10/16/23	14:12	1
Lab Sample ID: LCS 240-590981/2								Clie	nt Sampl	e ID: Lab C	ontrol Sa	ample
Matrix: Water										Prep 1	Type: To	tal/NA
Analysia Rataby 500094												
Analysis Batch: 590981												
Analysis Batch. 590901			Spike	LCS	LCS					%Rec		

336

317

mg/L

94

80 - 120

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 240-193581-2 Matrix: Water Analysis Batch: 590981	DU						Client Sample ID: MW Prep Type: To	
Analysis Batom sourcer	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	740		 730		mg/L			20

Metals

Prep Batch: 590940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193581-1	MW-16-01	Total Recoverable	Water	3005A	
240-193581-2	MW-16-02	Total Recoverable	Water	3005A	
240-193581-3	MW-16-03	Total Recoverable	Water	3005A	
240-193581-4	MW-16-04	Total Recoverable	Water	3005A	
240-193581-5	MW-16-09	Total Recoverable	Water	3005A	
240-193581-6	DUP-01	Total Recoverable	Water	3005A	
MB 240-590940/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-590940/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCS 240-590940/3-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 591127

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-193581-1	MW-16-01	Total Recoverable	Water	6010D	590940
240-193581-2	MW-16-02	Total Recoverable	Water	6010D	590940
240-193581-3	MW-16-03	Total Recoverable	Water	6010D	590940
240-193581-4	MW-16-04	Total Recoverable	Water	6010D	590940
240-193581-5	MW-16-09	Total Recoverable	Water	6010D	590940
240-193581-6	DUP-01	Total Recoverable	Water	6010D	590940
MB 240-590940/1-A	Method Blank	Total Recoverable	Water	6010D	590940
LCS 240-590940/2-A	Lab Control Sample	Total Recoverable	Water	6010D	590940

Analysis Batch: 591232

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 240-590940/1-A	Method Blank	Total Recoverable	Water	6020B	590940
LCS 240-590940/3-A	Lab Control Sample	Total Recoverable	Water	6020B	590940

Analysis Batch: 591382

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-193581-1	MW-16-01	Total Recoverable	Water	6020B	590940
240-193581-2	MW-16-02	Total Recoverable	Water	6020B	590940
240-193581-3	MW-16-03	Total Recoverable	Water	6020B	590940
240-193581-4	MW-16-04	Total Recoverable	Water	6020B	590940
240-193581-5	MW-16-09	Total Recoverable	Water	6020B	590940
240-193581-6	DUP-01	Total Recoverable	Water	6020B	590940

General Chemistry

Analysis Batch: 590981

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-193581-1	MW-16-01	Total/NA	Water	SM 2540C	
240-193581-2	MW-16-02	Total/NA	Water	SM 2540C	
240-193581-3	MW-16-03	Total/NA	Water	SM 2540C	
240-193581-4	MW-16-04	Total/NA	Water	SM 2540C	
240-193581-5	MW-16-09	Total/NA	Water	SM 2540C	
240-193581-6	DUP-01	Total/NA	Water	SM 2540C	
MB 240-590981/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-590981/2	Lab Control Sample	Total/NA	Water	SM 2540C	
240-193581-2 DU	MW-16-02	Total/NA	Water	SM 2540C	

General Chemistry

Analysis Batch: 591317

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
240-193581-1	MW-16-01	Total/NA	Water	9056A	
240-193581-1	MW-16-01	Total/NA	Water	9056A	
240-193581-2	MW-16-02	Total/NA	Water	9056A	
240-193581-2	MW-16-02	Total/NA	Water	9056A	
240-193581-3	MW-16-03	Total/NA	Water	9056A	
240-193581-3	MW-16-03	Total/NA	Water	9056A	
240-193581-4	MW-16-04	Total/NA	Water	9056A	
240-193581-4	MW-16-04	Total/NA	Water	9056A	
240-193581-5	MW-16-09	Total/NA	Water	9056A	
240-193581-5	MW-16-09	Total/NA	Water	9056A	
240-193581-6	DUP-01	Total/NA	Water	9056A	
240-193581-6	DUP-01	Total/NA	Water	9056A	
MB 240-591317/3	Method Blank	Total/NA	Water	9056A	
LCS 240-591317/4	Lab Control Sample	Total/NA	Water	9056A	
240-193581-1 MS	MW-16-01	Total/NA	Water	9056A	
240-193581-1 MS	MW-16-01	Total/NA	Water	9056A	
240-193581-1 MSD	MW-16-01	Total/NA	Water	9056A	
240-193581-1 MSD	MW-16-01	Total/NA	Water	9056A	

Client Sample ID: MW-16-01 Date Collected: 10/09/23 12:50 Date Received: 10/13/23 18:37

_	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 01:03
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 15:45
Total/NA	Analysis	9056A		1	591317	JWW	EET CLE	10/19/23 13:02
Total/NA	Analysis	9056A		5	591317	JWW	EET CLE	10/19/23 14:02
Total/NA	Analysis	SM 2540C		1	590981	QUY8	EET CLE	10/16/23 14:12

Client Sample ID: MW-16-02

Date Collected: 10/09/23 13:35 Date Received: 10/13/23 18:37

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 01:07
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 15:47
Total/NA	Analysis	9056A		1	591317	JWW	EET CLE	10/19/23 05:39
Total/NA	Analysis	9056A		5	591317	JWW	EET CLE	10/19/23 05:59
Total/NA	Analysis	SM 2540C		1	590981	QUY8	EET CLE	10/16/23 14:12

Client Sample ID: MW-16-03

Date Collected: 10/09/23 14:40 Date Received: 10/13/23 18:37

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
otal Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
fotal Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 01:12
otal Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
otal Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 15:50
īotal/NA	Analysis	9056A		1	591317	JWW	EET CLE	10/19/23 06:19
īotal/NA	Analysis	9056A		5	591317	JWW	EET CLE	10/19/23 06:39
otal/NA	Analysis	SM 2540C		1	590981	QUY8	EET CLE	10/16/23 14:12

Client Sample ID: MW-16-04

Date Collected: 10/09/23 15:40 Date Received: 10/13/23 18:37

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 01:16
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 15:52
Total/NA	Analysis	9056A		1	591317	JWW	EET CLE	10/19/23 06:59

Lab Sample ID: 240-193581-1

Matrix: Water

Lab Sample ID: 240-193581-2

Matrix: Water

Lab Sample ID: 240-193581-3

Matrix: Water

Lab Sample ID: 240-193581-4

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	591317	JWW	EET CLE	10/19/23 08:00
Total/NA	Analysis	SM 2540C		1	590981	QUY8	EET CLE	10/16/23 14:12

Client Sample ID: MW-16-09 Date Collected: 10/10/23 09:19 Date Received: 10/13/23 18:37

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 01:21
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 15:54
Total/NA	Analysis	9056A		2	591317	JWW	EET CLE	10/19/23 08:20
Total/NA	Analysis	9056A		10	591317	JWW	EET CLE	10/19/23 08:40
Total/NA	Analysis	SM 2540C		1	590981	QUY8	EET CLE	10/16/23 14:12

Client Sample ID: DUP-01 Date Collected: 10/09/23 00:00

Date Received: 10/13/23 18:37

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 01:34
Total Recoverable	Prep	3005A			590940	BN	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 15:57
Total/NA	Analysis	9056A		1	591317	JWW	EET CLE	10/19/23 09:00
Total/NA	Analysis	9056A		10	591317	JWW	EET CLE	10/19/23 09:20
Total/NA	Analysis	SM 2540C		1	590981	QUY8	EET CLE	10/16/23 14:12

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Lab Sample ID: 240-193581-4

Lab Sample ID: 240-193581-5

Matrix: Water

Matrix: Water

Lab Sample ID: 240-193581-6

Matrix: Water

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Power

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-27-24	
Georgia	State	4062	02-27-24	
Illinois	NELAP	200004	07-31-24	
lowa	State	421	06-01-25	
Kentucky (UST)	State	112225	02-28-24	
Kentucky (WW)	State	KY98016	12-31-23	
Michigan	State	9135	02-27-24	
Minnesota	NELAP	039-999-348	12-31-23	
Minnesota (Petrofund)	State	3506	08-01-23 *	
New Jersey	NELAP	OH001	07-01-24	
New York	NELAP	10975	04-02-24	
Ohio	State	8303	02-27-24	
Ohio VAP	State	ORELAP 4062	02-27-24	
Oregon	NELAP	4062	02-27-24	
Pennsylvania	NELAP	68-00340	08-31-24	
Texas	NELAP	T104704517-22-19	08-31-24	
Virginia	NELAP	460175	09-14-24	
West Virginia DEP	State	210	12-31-23	

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins Cleveland 180 S. Van Buren Avenue Barberton, OH 44203 Phone (330) 497-9366 Phone (330) 497-0772		thain c	of Cust	Chain of Custody Record	eord	-\	a).)	0.5	\tilde{o}/\tilde{o}). g 0.6 🔅 eurofins	ية أس	รับเร _{ิส} ัง เรเกง
Client Information	Sampler A 1	ulbale.		Lab PM Brook	Lab PM Brooks Kris M			Car	Carner Tracking No(s)	o(s)	COC No	COC No 240 112842 40151 4	1
Client Contact Jacob Krenz	Phone 734	1	928-		E-Mail Kris.Brooks@et.eurofinsus.com	eurofins	us com	Sta	State of Origin	1 10	Page Darie 1 of	1.10104-40101.1	
Company TRC Environmental Corporation.			PWSID]			Analvsis	sis Requested		-	age # dol	-	
Address 1540 Eisenhower Place	Due Date Requested:										Preser		
City Ann Arbor	TAT Requested (days):	/s):			- A						A - HCL B - NaC	A - HCL MI - HE B - NaOH N - No C - Zn Actata	m - Hexane N - None O - AsNaO2
State, Zip MI, 48108-7080	Compliance Project	ect: A Yes A	No		+						D - Nith		04S 1503
Phone 313-971-7080(Tel) 313-971-9022(Fax)	PO# 199489					ətetlu2					E - MeC		04 Dodecahydrate
Email JKrenz@trccompanies.com	W0# 518728.0003					bns ət							tone
Project Name CCR DTE Belle River Power	Project # 24016463					Fluoric					tainer L - EDA L - EDA		t-5 ma fr (specify)
Site Michigan	\$SOW#				v) as						other:		
		Sample		1	eld Filtered S arform MS/M 40C_Calcd - T	108 Bo, 6020					tal Number o		
	Sample Date	Ime	G=grab) BT=Tissue, A=A Procentration Code	3)a)							Special Instructions/Note:	ons/Note:
MW-16-01	14/2X	1250	5		XXX	$\frac{1}{2} \times$		_					
MW-16-02		1725	9	Water	XNN	X					r		
MW-16-03		NUO	C	Water	-	\mathbf{x}					12		
MW-16-04	~	1540	9	Water		x					5		10101101
MW-16-09	~	0319	0	Water	XNN	X) ~		
DUP-01	1		9	Water	N N N	××					~~		ojsna
				Water							>) jo r
													isd)
													18556
													51-072
Possible Hazard Identification	ison B Unknown		Radiological	1	Sample	l le Disposal (A i Retring To Client	Sample Disposal (A fee may be assessed if samples are retained longer truen	nay be asse	Ssed if san	nples are re	tained long	Ê	
I, III, IV, Other (specify) 772	9		100 Boom		Special	Instructi	Special Instructions/QC Requirements	quirements:	ents:			IMO	Months
slinquished by:		Date:			Time:				Method of Shipment	hipment			
Relinquished by	Date/Time レーレーン	2023 1"	8	Company	Rece	Received by	PMM-	Mrz			123	Company	
Relinquished by CMP M M	0	cdci	1370	Company	Rece	Received by	1924	hut		Date/Time			
Custody Saals Intact Custody Scal Na.				Juli pari y		iveguy				Date/Time		Company	'n
					Cool	er Temper	Cooler Temperature(s) °C and Other Remarks	l Other Remar	S				

10/23/2023

5 6

13

Ver 01/16/2019

Barberton Facility	
Chent She Name	ooler unpacked by:
Cooler Received on 10/12/23 Opened on 10/13/23	Osbarne
FedEx: 1st Grd Exp UPS FAS Waypoint) Client Drop Off Eurofins Courier Other	0300110
Receipt After-hours: Drop-off Date/Time Storage Location	
Eurofins Cooler # Foam Box Client Cooler Box Other	
Packing material used: Bubble Wrap Foam Plastic Bag None Other	
COOLANT: Wet Ice Blue Ice Dry Ice Water None	
1. Cooler temperature upon receipt See Multiple Cooler Form	
IR GUN # 2 (CF $-O.2$ °C) Observed Cooler Temp. °C Correct	ed Cooler Temp °C
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Yes No	Tests that are not
-Were the seals on the outside of the cooler(s) signed & dated?	NA checked for pH by
-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes No	Receiving:
-Were tamper/custody seals intact and uncompromised? (Yes) No	
3. Shippers' packing slip attached to the cooler(s)? Yes No	VOAs Oil and Grease
4. Did custody papers accompany the sample(s)? (Yes) No	TOC
5. Were the custody papers relinquished & signed in the appropriate place?	
6. Was/were the person(s) who collected the samples clearly identified on the COC? Yes? No	
7. Did all bottles arrive in good condition (Unbroken)?	
8. Could all bottle labels (ID/Date/Time) be reconciled with the COC?	
9. For each sample, does the COC specify preservatives (Y/N), # of containers (Y/N), and sample t	ype of grab/comp(Y/N)?
10. Were correct bottle(s) used for the test(s) indicated?	
11. Sufficient quantity received to perform indicated analyses?	
12. Are these work share samples and all listed on the COC? Yes No	
If yes, Questions 13-17 have been checked at the originating laboratory. 13. Were all preserved sample(s) at the correct pH upon receipt?	NA pH Strip Lot# HC316719
14. Were VOAs on the COC?	NA pH Strip Lot# HC310/19
15. Were air bubbles >6 mm in any VOA vials?	NA
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes No	
17. Was a LL Hg or Me Hg trip blank present? Yes (No)	
Contacted PM Date by via Verbal Voice M	ail Other
Concerning	
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 🛛 additional next page Samp	les processed by:
	1
19. SAMPLE CONDITION	had avaired
Sample(s) were received after the recommended holding time	
Sample(s)	oken container.
Sample(s) were received after the recommended holding time	oken container.
Sample(s) were received after the recommended holding time Sample(s) were received in a browner received in a browne	oken container.
Sample(s) were received after the recommended holding time Sample(s) were received in a brown of the second se	oken container. ter. (Notify PM)
Sample(s)	oken container. ter. (Notify PM)
Sample(s)	oken container. ter. (Notify PM)

Login # : ___

	Eurofins - Canto	n Sample Receipt I	Multiple Cooler Form	
Cooler Description		Observed	Corrected	Coolant
(Circle)	(Circle)	Témp °C	Temp °C	(Circle)
EC client Box Othe	1. IR GUN #:	1.3	1.1	Wetice Blue ice Dry ice Nater None
EC Client Box Othe	IR GUN #:	Ð.S	0.3	Wetice Blue ice Dry ice Water None
EC Client Box Othe	IR GUN #:	0.8	0.10	Wet Ice Blue Ice Dry Ice Water None
EC Client Box Othe	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Othe	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Othe	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Box Othe	IR GUN #:			Wet ice Blue ice Dry ice
EC Client Box Othe	IR GUN #:			Water None Wet ice Blue ice Dry ice
EC Client Box Office	IR GUN #:			Water None Wet ice Blue ice Dry ice
EC Client Box Othe	IR GUN #:			Water None Wet ice Blue ice Dry ice
EC Client Box Othe	IR GUN #			Water None Wet Ice Blue Ice Dry Ice
EC Client Box Othe	IR GUN #			Water None Wet ice Blue ice Dry ice Water None
EC Client Box Othe	IR GUN 4:		1	Wet ice Sive ice Dry ice
EC Client Box Othe	IR GUN 4:			Water None Wet ice Sive ice Dry ice
EC Client Box Othe	IR GUN #:			Water None Wet ice Sive ice Dry ice Water None
EC Client Box Othe				Water None Wet ice Stue ice Dry ice Water None
EC Client Box Othe	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Othe	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:		4	Wet ice Sive ice Dry ice Water None
EC Client Box Othe	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:	· · · · · · · · · · · · · · · · · · ·	2	Wet ice Sive ice Dry ice Water 1/1 None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:		۰ ان ب	
EC Client Box Other	IR GUN #:		,	Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:	ų.		Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:		<u>)</u>	Wet ice Sive ice Dry ice Water None
EC Client Box Other	IR GUN #:		j ^e ty:	Wet ice Sive ice Dry ice Water None
EC Client Box Other	IR GUN #:		n del 19 Sectorio de la 1927 de Calendario de Calendario	Wet ice Sive ice Dry ice Water None
EC Client Box Other	' IR GUN #:		¢.	Wet ice Sive ice Dry ice Water ^{dic} None
EC Client Box Other	IR GUN #:			Wet ice Bive ice Dry ice Water None
EC Client Box Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Box Other	IR GUN #:		in an	Wet ice Blue ice Dry ice
EC Client Box Other	IR GUN #:			Water None Wet Ice Sive Ice Dry Ice
			See Temi	water None

W1-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

1

Login Container Summary Report

Temperature readings: _____

Client Sample ID	Lab ID	Container Type	<u>Container</u> <u>Preservative</u> pH Temp <u>Added (mls)</u> Lot #
MW-16-01	240-193581-C-1	Plastic 500ml - with Nitric Acid	<2
MW-16-02	240-193581-C-2	Plastic 500ml - with Nitric Acid	<2
MW-16-03	240-193581-C-3	Plastic 500ml - with Nitric Acid	<2
MW-16-04	240-193581-C-4	Plastic 500ml - with Nitric Acid	<2
MW-16-09	240-193581-C-5	Plastic 500ml - with Nitric Acid	<2
DUP-01	240-193581-C-6	Plastic 500ml - with Nitric Acid	<2

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080 Generated 12/28/2023 6:53:04 PM

JOB DESCRIPTION

CCR DTE Belle River Bottom Ash Basins

JOB NUMBER

240-196739-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Sroohs

Kris.Brooks@et.eurofinsus.com

(330)966-9790

Authorized for release by Kris Brooks, Project Manager II

Generated 12/28/2023 6:53:04 PM

1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	11
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Chain of Custody	15

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Bottom Ash Basins

3

Qualifiers

General Chemistry

Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 240-196739-1

Eurofins Cleveland

Job Narrative 240-196739-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/9/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.2°C

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Bottom Ash Basins

5

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Bottom Ash Basins

Job ID: 240-196739-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-196739-1	MW-16-02	Water	12/06/23 14:33	12/09/23 08:00
240-196739-2	DUP-01	Water	12/06/23 14:33	12/09/23 08:00

Detection Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Bottom Ash Basins

Job ID: 240-196739-1

Client Sample ID: MW-16-02					Lab Sample ID: 240-196739-1			
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type	
Sulfate	2.7		1.0	mg/L	1	9056A	Total/NA	
Client Sample ID: DUP-01					Lab	Sample ID:	: 240-196739-2	
– Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Ргер Туре	
Sulfate	3.0		1.0	mg/L	1	9056A	Total/NA	

Client Sample Results

Job ID: 240-196739-1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Bottom Ash Basins

Client Sample ID: MW-16-02						Lab Sam	ole ID: 240-19	6739-1
Date Collected: 12/06/23 14:33							Matrix	x: Water
Date Received: 12/09/23 08:00								
– General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (SW846 9056A)	2.7		1.0	mg/L			12/27/23 18:17	1

Client Sample Results

Job ID: 240-196739-1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Bottom Ash Basins

Client Sample ID: DUP-01						Lab Sam	ole ID: 240-19	6739-2
Date Collected: 12/06/23 14:33							Matrix	x: Water
Date Received: 12/09/23 08:00								
_ General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (SW846 9056A)	3.0		1.0	mg/L			12/27/23 18:38	1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-598683/3 Matrix: Water Analysis Batch: 598683								Client S	ample ID: Metho Prep Type: ⁻	
	MB	MB								
Analyte	Result	Qualifier		RL	Unit		D	Prepared	Analyzed	Dil Fac
Sulfate	1.0	U		1.0	mg/l	-			12/27/23 11:25	1
Lab Sample ID: LCS 240-598683/4 Matrix: Water							Clie	ent Sample	ID: Lab Control Prep Type:	
Analysis Batch: 598683			Spike		S LCS				%Rec	
Analyte			Added		t Qualifier	Unit		D %Rec	%Rec Limits	
Analyte			50.0	50.		mg/L	L	101	90 - 110	

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Bottom Ash Basins Job ID: 240-196739-1

10

General Chemistry

Analysis Batch: 598683

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-196739-1	MW-16-02	Total/NA	Water	9056A	
240-196739-2	DUP-01	Total/NA	Water	9056A	
MB 240-598683/3	Method Blank	Total/NA	Water	9056A	
LCS 240-598683/4	Lab Control Sample	Total/NA	Water	9056A	

Lab Sample ID: 240-196739-1

Client Sample ID: MW-16-02 Date Collected: 12/06/23 14:33

	: 12/06/23 14:3 : 12/09/23 08:0	-							Matrix: Water
_	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	9056A		1	598683	JWW	EET CLE	12/27/23 18:17	
Client Samp	le ID: DUP-0	1					-	Lab Sample ID	: 240-196739-2
	: 12/06/23 14:3								Matrix: Water
Date Received	: 12/09/23 08:0	0							
_	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	9056A			598683	JWW	EET CLE	12/27/23 18:38	

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Belle River Bottom Ash Basins

	veland	ions/certifications are applicable to this report		
		ions/certifications are applicable to this report		
Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-27-24	
Georgia	State	4062	02-27-24	
Illinois	NELAP	200004	07-31-24	
lowa	State	421	06-01-25	
Kentucky (UST)	State	112225	02-28-24	
Kentucky (WW)	State	KY98016	12-31-23	
Michigan	State	9135	02-27-24	
Minnesota	NELAP	039-999-348	12-31-23	
Minnesota (Petrofund)	State	3506	08-01-23 *	
New Jersey	NELAP	OH001	07-01-24	
New York	NELAP	10975	04-02-24	
Ohio	State	8303	02-27-24	
Ohio VAP	State	ORELAP 4062	02-27-24	
Oregon	NELAP	4062	02-27-24	
Pennsylvania	NELAP	68-00340	08-31-24	
Texas	NELAP	T104704517-22-19	08-31-24	
∕irginia	NELAP	460175	09-14-24	
West Virginia DEP	State	210	12-31-23	

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins Cleveland 180 S. Van Buren Avenue Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772 Phone: 330-497-976 Client Union Elevicion	MICE Sampler:	of Custod	n of Custody Record 2.1 3. MICHIGAN 190 Enoks, Kris M E.Mai: State of Origin:	CELIGAN 190 Carrier Tracking No(s): State of Origin:	Coc No: 240-114843-40724.1 Page:
Company: Company: TRC Environmental Corporation.	-	PWSID:	Kris Brooks@et.eurofinsus.com Analvsis Requested	uested	Page 1 of 1 Job#
Address: 1540 Eisenhower Place	Due Date Requested:				õ
City. Ann Arbor State, Zip:	TAT Requested (days):				A - HCL N- Notane B - NaOH N - None C - Zn Acetate P - Na204S
MI, 48108-7080	Compliance Project: Δ Yes	Δ No			
rhone: 313-971-7080(Tel) 313-971-9022(Fax)	PO #: 199489		(0		τ
Email: vbuening@trccompanies.com	WO #: 518728.0003		*54000, VCC VC		I - Ice J - DI Water
Project Name: CCR DTE Belle River Bottom Ash Basins	Project #: 24016463		-100 C 100 30		K - EDTA L - EDA
Site: Michigan	:#MOSS		er) as		Other:
Sample Identification	Sample Date Time	Sample Ma Type (w=v (C=comp, 0=w=v	Matrix Matrix Serolds Serolds MRAM MRAM MRAM MRAM MAtrix Matrix MRAM MRAM MRAM MRAM MRAM MRAM MRAM MRA		otal Number d
	1	Preservation Code;			F Special Instructions/Note:
Mw-16-02	12-6-23 1433	C Ma	S		
10-9201	12-6-33 -	C We	water NN R		
					MICL JAN
			240-196/39 Chain of Custody		
Possible Hazard Identification	Poison B Unknown	☐ Radiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are reta Disposal By Lab	stained longer than 1 month) Archive For Months
Deliverable Requested: 1, II, II, IV, Other (specify)			Special Instructions/QC Requirements:		
Empty Kit Relinquished by:	Date:		Time:	Method of Shipment:	
Reinduished by Reinduished by	-23/0	927 Company	<u>"</u>	Date/Time;	23 9130 COMPANY
Reimquished by:	12/6/23 9 DateTime:	135 Company	12-1A Tearved Nr. Lan	Date/Time:	DE Company Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) ^o C and Other Remarks:	marks:	
					Ver: 06/08/2021

ķ

Barberton Facility	and Sample Receipt Form	m/Narrative	Log	gin # :	
	<u> </u>	04.31		Cooler unpack	red by:
Client TKC	\square	Site Name	000		
Cooler Received on		Opened on	1.23	Y Y)	SOL
FedEx: 1 st Grd Ex		Client Drop Off	Eurofins Courier	Other	
	s: Drop-off Date/Time		Storage Location	0	•
Eurofins Cooler #		Client Cooler Be	ox Other		
		Foam Plastic Bag	None Other		
	Weilce Blue Ice	Dry lce Water	None		
1. Cooler temperatu	re upon receipt		See Multiple Cooler i	Form	20
IR GUN # C	(CF) / °C	C) Observed Cooler	Temp. () °C	Corrected Cooler Ter	mp <u>C</u> C
2. Were tamper/cus	tody seals on the outside of	the enclose (a)?			
· •	on the outside of the cooler				ts that are pot
	sustody seals on the bottle(s)				cked for pH by
•	ustody seals intact and unco	· · •			eiving:
-	slip attached to the cooler(s	=		No NA	
	supervision to the sample(s)				and Grease
	papers relinquished & signe			NO TOC	
	on(s) who collected the sam				ليستعمد
-	ve in good condition (Unbro		· · ·	p No	
	bels (ID/Date/Time) be recon	•		no No	
	loes the COC specify preserve				
	e(s) used for the test(s) indic			• •• •	
	received to perform indicate		5	No	
	re samples and all listed on	•		NO	
	3-17 have been checked at t				1
• • •	sample(s) at the correct pH		•	No NA pH Strip 1	ot# HC316719
Were VOAs on the			Yes		
	6 mm in any VOA vials?	Larger than t		No NA	
	ank present in the cooler(s)?				1
	e Hg trip blank present?		Yes		,
ntacted PM	Date	by	via Verbal Voi	ice Mail Other	
oncerning	. /			,	
		"			
CHAIN OF CUST	ODY & SAMPLE DISCRI		tional next page S	Samples processed by	:
			L		
SAMPLE CONDIT					
SAMPLE CONDIT	We	are received after the re-	commended holding to	ime had expired.	
SAMPLE CONDIT	We	re received after the re		ime had expired. broken container.	
SAMPLE CONDIT ple(s) ple(s)	We			broken container.	
SAMPLE CONDIT ple(s) ple(s) ple(s)	* we		were received in a	broken container.	
SAMPLE CONDIT ple(s) ple(s) ple(s) SAMPLE PRESERV	we	were received with	were received in a bubble >6 mm in dia	broken container. meter. (Notify PM)	
SAMPLE CONDIT ple(s) ple(s) ple(s) SAMPLE PRESERV	we	were received with	were received in a bubble >6 mm in dia	broken container.	ratory.
SAMPLE CONDIT ple(s) ple(s) ple(s) SAMPLE PRESERV	* we	were received with	were received in a bubble >6 mm in dia	broken container. meter. (Notify PM)	retory.
SAMPLE CONDIT ple(s) ple(s) SAMPLE PRESER ple(s) preserved:	we	were received with	were received in a bubble >6 mm in dia	broken container. meter. (Notify PM)	retory.

.

i

Appendix C Data Quality Reviews

Laboratory Data Quality Review Groundwater Monitoring Event April 2023 (Detection Monitoring) DTE Electric Company Belle River Power Plant (DTE BRPP)

Groundwater samples were collected by TRC for the April 2023 sampling event for the Bottom Ash Basins at the DTE BRPP. Samples were analyzed for anions, total metals, and total dissolved solids by Eurofins-Test America Laboratories, Inc. (Eurofins-TA), located in Barberton, Ohio. The laboratory analytical results are reported in laboratory report 240-184643-1.

During the April 2023 sampling event, a groundwater sample was collected from each of the following wells:

Bottom Ash Basins:

MW-16-01

MW-16-02

MW-16-03

MW-16-04 MW-16-09

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A
Total Boron	SW846 3005A/6010D
Total Calcium and Iron	SW846 3005A/6020B
Total Dissolved Solids (TDS)	SM 2540C

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;

- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III constituents will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- An equipment blank was not collected with this data set.
- Boron was detected in the method blank at 61.9 J µg/L. There is no adverse impact on the data usability due to this issue since boron concentrations were > 10x the method blank concentration in all groundwater samples in this data set.
- LCS recoveries for all target analytes were within laboratory control limits.
- MS/MSD analyses were not performed on a sample in this data set.
- Laboratory duplicate analysis was performed for TDS on sample MW-16-01. The relative percent difference (RPD) for TDS (47%) was above the acceptance criteria (20%); thus the positive results for TDS should be considered estimated in all groundwater samples in this data set, as summarized in the attached table, Attachment A.
- Field duplicate DUP-2 corresponds with MW-16-01; RPDs between the parent and field duplicate sample were within the QC limits with the following exception.
 - The RPD for TDS (54.2%) was >30. Therefore, the positive results for TDS should be considered estimated in all groundwater samples in this data set, as summarized in the attached table, Attachment A.

Attachment A Summary of Data Non-Conformances for Groundwater Analytical Data Belle River Power Plant CCR Bottom Ash Basins China Township, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue				
MW-16-01	4/28/2023						
MW-16-02	4/28/2023						
MW-16-03	4/28/2023	Total Dissolved Solids	Field duplicate variability & laboratory duplicate variability (relative percent difference above criteria); potential				
MW-16-04	4/28/2023		uncertainty exists.				
MW-16-09	4/28/2023						
DUP-02	4/28/2023						

Laboratory Data Quality Review Groundwater Monitoring Event October 2023 (Detection Monitoring) DTE Electric Company Belle River Power Plant (DTE BRPP)

Groundwater samples were collected by TRC for the October 2023 sampling event for the Bottom Ash Basins at the DTE BRPP. Samples were analyzed for anions, total metals, and total dissolved solids by Eurofins Environment Testing, located in Barberton, Ohio. The laboratory analytical results are reported in laboratory report 240-193581-1 (Revision 1).

During the October 2023 sampling event, a groundwater sample was collected from each of the following wells:

Bottom Ash Basins:

MW-16-01

MW-16-02

MW-16-03

MW-16-04 MW-16-09

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A
Total Boron	SW846 3005A/6010D
Total Calcium and Iron	SW846 3005A/6020B
Total Dissolved Solids (TDS)	SM 2540C

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;

- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III constituents will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- A field blank and equipment blank were not collected with this data set.
- No analytes were detected in the associated method blanks.
- LCS recoveries for all target analytes were within laboratory control limits.
- MS/MSD analyses were performed on a sample MW-16-01 for anions. All criteria were met.
- Laboratory duplicate analysis was performed on sample MW-16-02 for TDS. All criteria were met.
- Samples DUP-1 and MW-16-03 were submitted as the field duplicate pair with this data set. All criteria were met.

Laboratory Data Quality Review Groundwater Monitoring Event December 2023 (Detection Monitoring Verification) DTE Electric Company Belle River Power Plant (DTE BRPP)

A groundwater sample was collected by TRC for the December 2023 sampling event for the Bottom Ash Basins at the DTE BRPP. The sample was analyzed for sulfate by Eurofins Environment Testing, located in Barberton, Ohio. The laboratory analytical results are reported in laboratory report 240-196739-1

During the December 2023 verification sampling event, a groundwater sample was collected from the following well:

Bottom Ash Basins:

MW-16-02

The sample was analyzed for the following constituent:

Analyte Group	Method
Sulfate	SW846 9056A

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, when collected. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;

- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- The reviewed Appendix III constituent will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- A field blank and equipment blank were not collected with this data set.
- Sulfate was not detected in the associated method blank.
- The LCS recovery for sulfate was within laboratory control limits.
- MS/MSD and laboratory duplicate analyses were not performed on a sample from this data set.
- Samples DUP-1 and MW-16-02 were submitted as the field duplicate pair with this data set. All criteria were met.