

2023 Annual Groundwater Monitoring Report

St. Clair Power Plant Former Bottom Ash Basins 4901 Pointe Drive East China Township, Michigan

January 2024

Vincent E. Buening, C.P.G. Senior Project Manager

Sarah B. Holmstrom, P.G. Senior Hydrogeologist **Prepared For:**

DTE Electric Company

Prepared By:

TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

David B. McKenzie, P.E. Senior Project Engineer

TABLE OF CONTENTS

Exe	cutive	Summary	iii
1.0	Intro	oduction	1
	1.1	Program Summary	1
	1.2	Site Overview	
	1.3	Geology/Hydrogeology	
2.0	Grou	undwater Monitoring	4
	2.1	Monitoring Well Network	4
	2.2	Semiannual Groundwater Monitoring	4
		2.2.1 Data Summary	4
		2.2.2 Data Quality Review	5
		2.2.3 Groundwater Flow Rate and Direction	5
3.0	Stati	istical Evaluation	6
	3.1	Establishing Background Limits	6
	3.2	Data Comparison to Background Limits – First Semiannual Event (April 2023)	6
	3.3	Verification Resampling for the First 2023 Semiannual Event	6
	3.4	Data Comparison to Background Limits – Second Semiannual Event (October 20	23)
			7
	3.5	Verification Resampling for the Second Semiannual Event	7
4.0	Clos	sure Activities	8
	4.1	Establishing Groundwater Protection Standards	8
	4.2	Data Comparison to Groundwater Protection Standards	
5.0	Con	clusions and Recommendations	9
6.0	Grou	undwater Monitoring Report Certification	.10
7.0	Refe	erences	.11

TABLES

Table 1	Groundwater Elevation Summary – April to October 2023
Table 2	Summary of Field Data – April to December 2023
Table 3	Comparison of Appendix III Parameter Results to Background Limits – April and June 2023
Table 4	Comparison of Appendix III Parameter Results to Background Limits – October and December 2023
Table 5	Comparison of Appendix IV Parameter Results to Groundwater Protection Standards – April 2023
Table 6	Comparison of Appendix IV Parameter Results to Groundwater Protection Standards – October 2023

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan

Figure 3 Groundwater Potentiometric Surface Map – April 2023 Figure 4 Groundwater Potentiometric Surface Map – October 2023

APPENDICES

Appendix A	Laboratory Analytical Reports	

Appendix B Data Quality Reviews

Appendix C Groundwater Protection Standards Calculation and Comparison

Executive Summary

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended, which applies to the DTE Electric Company (DTE Electric) St. Clair Power Plant (SCPP) Bottom Ash Basins (BABs¹) CCR unit. Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e). On behalf of DTE Electric, TRC Engineers Michigan, Inc., the engineering entity of TRC, has prepared this Annual Groundwater Monitoring Report for the calendar year 2023 activities at the BABs.

The BABs operated under the detection monitoring program at the start of the 2023 annual reporting period and remained in the detection monitoring program through the end of the 2023 annual reporting period. The semiannual detection monitoring events for 2023 were completed in April and October 2023 and included sampling and analyzing groundwater within the groundwater monitoring system for the indicator parameters listed in Appendix III to the CCR Rule. As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify statistically significant increases (SSIs) in Appendix III parameters to determine if concentrations in groundwater exceed prediction limits. All the monitoring data that has been collected and evaluated under §257.90 through §257.98 in 2023 are presented in this report.

No SSIs over prediction limits were noted for the Appendix III constituents in the downgradient wells during the 2023 monitoring period. A potential SSI outside prediction limits was noted for total dissolved solids in one monitoring well during the April 2023 monitoring event and pH and chloride in one monitoring well in the October 2023 monitoring event. These potential SSIs were not statistically significant (i.e. verification resampling did not confirm the exceedances). In addition, based on the hydrogeology at the Site, with the presence of the vertically and horizontally extensive clay-rich confining till beneath the BABs, there is no reasonable probability for the uppermost aquifer to have been affected by CCR from operations.

In addition, DTE Electric has completed CCR removal activities at the SCPP BABs CCR unit while remaining in detection monitoring. Closure by removal activities related to the BABs began on August 15, 2022, and the removal of CCR from the BABs was completed in February 2023, including the concrete-lined canal connecting the East and West BABs. The BABs were backfilled following CCR removal with topsoil and seeding cover placement complete by May 19, 2023.

Finally, Appendix IV parameters were analyzed in the April and October 2023 monitoring events to demonstrate that the Groundwater Protection Standards (GWPS) are met subsequent to CCR removal in accordance with §257.102(c). No exceedances of GWPS were detected for

iii

¹ For consistency throughout this document, the SCPP Bottom Ash Basins are referred to as the "BABs" even though CCR removal and closure by removal activities were completed in May 2023 and the former BABs are now backfilled.

the Appendix IV parameters in either monitoring events during the 2023 monitoring period. Therefore, in accordance with §257.102(h), a completion of closure notification will be completed by March 1, 2024, documenting that closure has been completed in accordance with the closure plan and in compliance with §257.102(c).

iν

1.0 Introduction

1.1 Program Summary

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended, which applies to the DTE Electric Company (DTE Electric) St. Clair Power Plant (SCPP) Bottom Ash Basins (BABs). Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e). On behalf of DTE Electric, TRC Engineers Michigan, Inc., the engineering entity of TRC, has prepared this Annual Groundwater Monitoring Report for calendar year 2023 activities at the BABs (2023 Annual Report).

In the 2022 Annual Groundwater Monitoring Report for the St. Clair Power Plant Bottom Ash Basins CCR Unit (2022 Annual Report) (TRC, January 2023), DTE Electric reported no concentrations over the background limits for any of the Appendix III indicator parameters. Therefore, DTE Electric continued detection monitoring at the SCPP BABs CCR unit in 2023 pursuant to §257.94 of the CCR Rule. This 2023 Annual Report presents the monitoring results and the statistical evaluation of the detection monitoring parameters (Appendix III to Part 257 of the CCR Rule) for the April and October 2023 semiannual groundwater monitoring events for the BABs. Detection monitoring for these events continued to be performed in accordance with the CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company St. Clair Power Plant Bottom Ash Basins (QAPP) (TRC, July 2016; revised August 2017) and statistically evaluated per the Groundwater Statistical Evaluation Plan – St. Clair Power Plant Coal Combustion Residual Bottom Ash Basins (Stats Plan) (TRC, October 2017). As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify statistically significant increases (SSIs) of detection monitoring parameters compared to background levels.

In addition, DTE Electric has completed CCR removal activities at the BABs while remaining in detection monitoring. Appendix IV parameters were analyzed at the BABs monitoring network in April and October 2023 to demonstrate that the Groundwater Protection Standards (GWPS) are met subsequent to CCR removal in accordance with §257.102(c). The establishment of the GWPS and the Appendix IV results are presented in Section 4 of this Report.

1.2 Site Overview

The SCPP BABs CCR unit is located in Section 19, Township 4 North, Range 17 East, at 4901 Pointe Drive, East China Township in St. Clair County, Michigan. The SCPP including the east BAB was constructed in the early 1950s and the west BAB was constructed in 1996, just south of the DTE Electric SCPP main building. The power plant is located approximately three miles south of St. Clair, Michigan immediately to the west of the St. Clair River.

The property had been used continuously as a coal fired power plant since Detroit Edison Company (now DTE Electric) began power plant operations at SCPP in 1953 and is constructed

over a natural continuous clay-rich soil base as shown in historical soil borings performed at the SCPP property. DTE Electric ceased operation of the coal-fired boilers at the SCPP on May 31, 2022, completed washdowns of CCR containing equipment on August 12, 2022, and commenced physical isolation of the BABs from power plant infrastructure on September 1, 2022, and thus has permanently ceased receipt of CCR and non-CCR waste streams at the BABs and has initiated closure as described in 40 C.F.R. § 257.102(c).

Closure by removal activities related to the BABs began on August 15, 2022 and the removal of CCR from the BABs was completed in February 2023. The BABs were backfilled following CCR removal with topsoil and seeding cover placement complete by May 19, 2023 (Barr, June 2023).

1.3 Geology/Hydrogeology

The former SCPP BABs CCR unit is located immediately adjacent to the west edge of the St. Clair River. The SCPP CCR unit is underlain by glacial silty-clay till, with a few isolated sand lenses, and a silt and clay-rich hardpan base directly overlying the shale bedrock (likely the Bedford Shale). The shale bedrock lower confining unit is generally encountered at depths greater than 130 ft bgs. No significant soil or gravel intervals were encountered at any of the groundwater monitoring system well locations. However, during soil boring advancement for the groundwater monitoring system well locations, some signs of saturation were observed throughout a 5-foot interval along the interface between the overlying till/hardpan and the underlying shale bedrock. The underlying shale does not yield groundwater, rather it is an aquiclude that prevents groundwater flow (i.e., is not an aquifer).

Although the encountered zone of saturation along the interface did not yield significant groundwater, it was conservatively interpreted as the first underlying saturated zone that would presumably become affected with CCR constituents, since it was saturated, and although the hydraulic conductivity was low, exhibited a much higher conductivity than the clay-rich soils between the bottom of the basin and the monitored zone. Therefore, the potential uppermost aquifer as described above was present beneath at least 120 feet of vertically contiguous silty clay-rich till that serves as a natural confining hydraulic barrier that isolates the underlying uppermost potential aquifer. The first underlying saturated zone (the potential uppermost aquifer) that would presumably become affected with CCR constituents is located at the silty clay hardpan/shale bedrock interface (130.5 to 132 ft bgs) and is limited to no more than 4 feet thick.

A definitive groundwater flow direction to the east-southeast with a mean gradient of approximately 0.004 to 0.005 feet/feet within the uppermost aquifer is evident around the BABs, however potential groundwater flow within this uppermost aquifer is very low (less than 0.06 feet per year).

In addition, the elevation of CCR-affected water maintained within the BABs was very similar to the potentiometric surface elevations in the uppermost aquifer at the BABs CCR unit area. This suggests that if the CCR affected surface water in the BABs was able to penetrate the silty clayrich underlying confining unit, the head on that release likely would travel radially away from the BABs within the uppermost aquifer. However, with the very thick continuous silty clay-rich

confining unit beneath the SCPP, there is no reasonable probability for the uppermost aquifer to have been affected by CCR from SCPP operations that began in the 1950s.

2.0 Groundwater Monitoring

2.1 Monitoring Well Network

A groundwater monitoring system has been established for the SCPP BABs CCR unit as detailed in the *Groundwater Monitoring System Summary Report – DTE Electric Company St. Clair Power Plant Bottom Ash Basins Coal Combustion Residual Unit* (GWMS Report) (TRC, October 2017). The detection monitoring well network for the BABs currently consists of four monitoring wells that are screened in the uppermost aquifer. Monitoring wells MW-16-01 through MW-16-04 are located around the east and west perimeter of the former BABs and provide data on both background and downgradient groundwater quality that has not been affected by the BABs (total of four background/downgradient monitoring wells). The monitoring well locations are shown on Figure 2.

2.2 Semiannual Groundwater Monitoring

The semiannual monitoring parameters for the detection groundwater monitoring program were selected per the CCR Rule's Appendix III to Part 257 – Constituents for Detection Monitoring. The Appendix III indicator parameters consist of boron, calcium, chloride, fluoride, pH (field reading), sulfate, total dissolved solids (TDS) and were analyzed in accordance with the sampling and analysis plan included within the QAPP. In addition to pH, the collected field parameters included dissolved oxygen, oxidation reduction potential, specific conductivity, temperature, and turbidity.

2.2.1 Data Summary

The first semiannual groundwater monitoring event for 2023 was performed on April 27 and 28, 2023 by TRC personnel and samples were analyzed by Eurofins Environment Testing America (Eurofins) in accordance with the QAPP. Static water elevation data were collected at all four monitoring well locations and surface water measuring point MP-01. Groundwater samples were collected from the four detection monitoring wells for the Appendix III indicator parameters and field parameters. A summary of the groundwater data collected during the April 2023 event is provided in Table 1 (static groundwater elevation data), Table 2 (field data), and Table 3 (analytical results).

The second semiannual groundwater monitoring event for 2023 was performed on October 11 and 12, 2023 by TRC personnel and samples were analyzed by Eurofins in accordance with the QAPP. Static water elevation data were collected at all four monitoring well locations and surface water measuring point MP-01. Groundwater samples were collected from the four detection monitoring wells for the Appendix III indicator parameters and field parameters. A summary of the groundwater data collected during the October 2023 event is provided in Table 1 (static groundwater elevation data), Table 2 (field data), and Table 4 (analytical results). The laboratory analytical reports are included in Appendix A.

2.2.2 Data Quality Review

Data from each round were evaluated for completeness, overall quality and usability, methodspecified sample holding times, precision and accuracy, and potential sample contamination. The data were found to be complete and usable for the purposes of the CCR monitoring program. Data quality reviews are summarized in Appendix B.

2.2.3 Groundwater Flow Rate and Direction

Groundwater elevation data collected during the April and October 2023 sampling events show that groundwater within the uppermost aquifer generally flows to the east-southeast across the SCPP BABs CCR unit. Groundwater potentiometric surface elevations measured across the SCPP BABs CCR unit during the April and October 2023 sampling events are provided in Table 1 and were used to construct the groundwater potentiometric surface maps shown on Figure 3 and Figure 4, respectively. The groundwater flow rate and direction is consistent with previous monitoring events. The average hydraulic gradients throughout the SCPP BABs were 0.0030 feet/feet during the first semiannual 2023 monitoring event and 0.0024 ft/ft during the second semiannual 2023 monitoring event, resulting in estimated average seepage velocities of approximately 0.00098 ft/day or 0.036 ft/year (approximately 0.43 inches/year) and 0.000078 ft/day or 0.028 ft/year (approximately 0.34 inches/year), respectively, using the average hydraulic conductivity of 0.013 ft/day (TRC, 2017) and an assumed effective porosity of 0.4.

As presented in the GWMS Report, there is a horizontally expansive clay with substantial vertical thickness that isolates the uppermost aquifer from the SCPP BABs CCR unit. The general flow rate and direction in the uppermost aquifer from both events are similar to that identified in previous monitoring rounds and continues to demonstrate that groundwater flows at a low rate and the compliance wells are appropriately positioned to detect the presence of Appendix III parameters that could potentially migrate from the SCPP BABs CCR unit.

3.0 Statistical Evaluation

3.1 Establishing Background Limits

As discussed in the Stats Plan, intrawell statistical methods for the BABs CCR unit were selected based on the geology and hydrogeology at the Site (primarily the presence of clay/hydraulic barrier, the relatively small footprint of the BABs, and the low vertical and horizontal groundwater flow velocity), in addition to other supporting lines of evidence that the aquifer is unaffected by the CCR unit (such as the consistency in concentrations of water quality data). An intrawell statistical approach requires that each of the downgradient wells doubles as a background and compliance well, where data from each individual well during a detection monitoring event is compared to a statistical limit developed using the background dataset from that same well.

Per the Stats Plan, background limits were established for the Appendix III indicator parameters following the collection of at least eight background monitoring events using data collected from each of the four established detection monitoring wells (MW-16-01 through MW-16-04). The statistical evaluation of the background data is presented in the 2017 Annual Report. The Appendix III background limits for each monitoring well will be used throughout the detection monitoring period to determine whether groundwater has been impacted from the SCPP BABs CCR unit by comparing concentrations in the detection monitoring wells to their respective background limits for each Appendix III indicator parameter.

3.2 Data Comparison to Background Limits – First Semiannual Event (April 2023)

The concentrations of the indicator parameters in each of the detection monitoring wells (MW-16-01 through MW-16-04) were compared to their respective statistical background limits calculated from the background data collected from each individual well (i.e., monitoring data from MW-16-01 is compared to the background limit developed using the background dataset from MW-16-01, and so forth).

The comparisons of the April 2023 monitoring event data to background limits are presented in Table 3. The statistical evaluation of the April 2023 detection monitoring indicator parameters showed a potential initial SSI over background for:

Total dissolved solids (TDS) at MW-16-03.

There were no potential SSIs over background for boron, calcium, chloride, fluoride, pH, or sulfate.

3.3 Verification Resampling for the First 2023 Semiannual Event

Verification resampling is performed per the Stats Plan and the *USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* (Unified Guidance, USEPA, 2009) to achieve performance standards as specified by §257.93(g) in the CCR Rule. Per the Stats Plan, if there is an exceedance of a prediction limit for one or more of the parameters, the well(s) of concern will be resampled within 30 days of the completion of the initial statistical

analysis. Only constituents that initially exceed their statistical limit (i.e., have no previously recorded SSIs) will be analyzed for verification purposes.

Verification resampling for the April 2023 event was conducted on June 14 and 16, 2023 by TRC personnel. Groundwater samples were collected for TDS at MW-16-03 in accordance with the QAPP. A summary of the analytical results collected during the resampling event is provided on Table 3. The associated data quality review is included in Appendix B.

The verification sampling results for TDS at MW-16-03, are below their respective prediction limits. Consequently, no SSIs will be recorded from the April 2023 detection monitoring event in accordance with the Stats Plan and the Unified Guidance.

3.4 Data Comparison to Background Limits – Second Semiannual Event (October 2023)

The concentrations of the indicator parameters in each of the detection monitoring wells (MW-16-01 through MW-16-04) were compared to their respective statistical background limits calculated from the background data collected from each individual well (i.e., monitoring data from MW-16-01 is compared to the background limit developed using the background dataset from MW-16-01, and so forth). The comparisons of the October 2023 monitoring event are presented on Table 4. The statistical evaluation of the October 2023 Appendix III indicator parameters showed a potential initial SSI over background for:

- pH at MW-16-02; and
- Chloride at MW-16-01

There were no potential SSIs over background for boron, calcium, fluoride, sulfate, or TDS.

3.5 Verification Resampling for the Second Semiannual Event

Verification resampling for the October 2023 event was conducted on October 27 (pH) and December 7 (chloride), 2023 by TRC personnel. Field readings were collected for pH at MW-16-02 and a groundwater sample was collected for chloride analysis from MW-16-01 in accordance with the QAPP. A summary of the analytical results collected during the resampling event is provided on Table 4. The associated data quality review is included in Appendix B.

The verification sampling results for pH at MW-16-02 and chloride at MW-16-01 are below their respective prediction limits. Consequently, the initial potential SSIs for pH and chloride from the October 2023 event are not confirmed. Therefore, in accordance with the Stats Plan and the Unified Guidance, the initial exceedance is not statistically significant, and no SSI will be recorded for pH or chloride for the October 2023 detection monitoring event.

4.0 Closure Activities

DTE Electric is in the process of pursuing closure for the SCPP BABs CCR unit while remaining in detection monitoring. Closure by removal activities related to the BABs began on August 15, 2022 and the removal of CCR from the BABs was completed in February 2023, including the concrete-lined canal connecting the East and West BABs (Barr, June 2023). The BABs were backfilled following CCR removal with topsoil and seeding cover placement complete by May 19, 2023. In support of closure of the SCPP BABs CCR unit, two rounds of closure sampling (April and October 2023) for the Appendix IV parameters were completed at the BABs monitoring network to demonstrate that the GWPS are met subsequent to the closure of the BABs by removal in accordance with §257.102(c).

4.1 Establishing Groundwater Protection Standards

In accordance with §257.102(c) DTE Electric must demonstrate that groundwater concentrations do not exceed the GWPS established under §257.95(h) for Appendix IV constituents. TRC calculated background statistical limits and developed GWPS for the Appendix IV parameters for the SCPP BABs CCR unit in accordance with §257.95(h) as presented in Appendix C.

4.2 Data Comparison to Groundwater Protection Standards

The Appendix IV groundwater data collected in April and October 2023 were compared to the calculated GWPSs for each individual well (i.e., monitoring data from MW-16-01 is compared to the GWPS developed using the background dataset from MW-16-01, and so forth). As shown in Appendix C, the Appendix IV groundwater results were all below their respective GWPSs for the first and second semiannual closure monitoring events conducted consecutively in April and October 2023.

5.0 Conclusions and Recommendations

No SSIs over prediction limits or post-CCR removal GWPS exceedances were recorded for the Appendix III and Appendix IV constituents in the compliance wells during the 2023 monitoring period. As discussed above, and in the GWMS Report, with the very thick continuous silty clayrich confining unit beneath the SCPP BABs CCR unit, there is no reasonable probability for the uppermost aquifer to have been affected by CCR from SCPP operations. No corrective actions were performed in 2023.

As no exceedances of GWPS were noted for the Appendix IV parameters for two consecutive closure monitoring events during the 2023 monitoring period a completion of closure notification will be completed by March 1, 2024, documenting that closure has been completed in accordance with the closure plan and in compliance with §257.102(c). Therefore, detection and closure monitoring at the SCPP BABs CCR unit will be discontinued in 2024 and upon Michigan Department of Environment, Great Lakes and Energy approval the monitoring well network will be properly decommissioned.

6.0 Groundwater Monitoring Report Certification

The U.S. EPA's Disposal of Coal Combustion Residuals from Electric Utilities Final Rule Title 40 CFR Part 257 §257.90(e) requires that the owner or operator of an existing CCR unit prepare an annual groundwater monitoring and corrective action report.

Annual Groundwater Monitoring Report Certification St. Clair Power Plant Bottom Ash Basins East China Township, Michigan

CERTIFICATION

I hereby certify that the annual groundwater monitoring and corrective action report presented within this document for the SCPP BABs CCR unit has been prepared to meet the requirements of Title 40 CFR §257.90(e) of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.90(e).

		OF WO
Name:	Expiration Date:	DAVID B
David B. McKenzie, P.E.	December 17, 2025	MCKENZIE * BNGINEER No. 6201042332
Company:	Date:	POFFSSIONAL
TRC Engineers Michigan, Inc.	January 31, 2024	J. Commission
		January 31, 2024

7.0 References

- Barr Engineering Company (Barr). June 27, 2023. Construction Documentation Report, St. Clair Power Plant Bottom Ash Basin, Coal Combustion Residual Closure. Prepared for DTE Electric Company.
- TRC. July 2016; Revised March and August. CCR Groundwater Monitoring and Quality Assurance Project Plan DTE Electric Company St. Clair Power Plant Bottom Ash Basins, 4901 Pointe Drive, East China Township, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017. Groundwater Monitoring System Summary Report DTE Electric Company St. Clair Power Plant Bottom Ash Basins Coal Combustion Residual Unit, 4901 Pointe Drive, East China Township, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017. Groundwater Statistical Evaluation Plan DTE Electric Company St. Clair Power Plant Coal Combustion Residual Bottom Ash Basins, 4901 Pointe Drive, East China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2018. Annual Groundwater Monitoring Report DTE Electric Company St. Clair Power Plant Coal Combustion Residual Bottom Ash Basins, 4901 Pointe Drive, East China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2023. 2022 Annual Groundwater Monitoring Report DTE Electric Company St. Clair Power Plant Coal Combustion Residual Bottom Ash Basins, 4901 Pointe Drive, East China Township, Michigan. Prepared for DTE Electric Company.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.
- USEPA. April 2015. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. 80 Federal Register 74 (April 17, 2015), pp. 21301-21501 (80 FR 21301).
- USEPA. July 2018. 40 CFR Part 257. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One); Final Rule. 83 Federal Register 146 (July 30, 2018), pp. 36435-36456 (83 FR 36435).
- USEPA. April 2018. Barnes Johnson (Office of Resource Conservation and Recovery) to James Roewer (c/o Edison Electric Institute) and Douglas Green, Margaret Fawal (Venable LLP). Re: Coal Combustion Residuals Rule Groundwater Monitoring Requirements. April 30, 2018. United States Environmental Protection Agency, Washington, D.C. 20460. Office of Solid Waste and Emergency Response, now the Office of Land and Emergency Management.

Tables

Table 1

Groundwater Elevation Summary - April to October 2023 St. Clair Power Plant Bottom Ash Basins - RCRA CCR Monitoring Program East China Township, Michigan

	MF	P-01	MW-	MW-16-01		MW-16-02		16-03	MW-16-04	
Date Installed	3/23/2016		3/31/2016		3/29/2016		3/25/2016		3/23/2016	
TOC Elevation	580	.84 ⁽¹⁾	584.74		581.43		581.39		580.95	
Geologic Unit of Screened Interval		IA	Silty Clay Silty Cla Shale Interface Shale Inter			•		/Hardpan nterface	Silty Clay/Hardpan Shale Interface	
Screened Interval Elevation	I NA		458.1 to 453.1		456.2 to 451.2		455.1 to 450.1		455.0 to 450.0	
Unit	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft
	Depth to	GW	Depth to	GW	Depth to	GW	Depth to	GW	Depth to	GW
Measurement Date	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation
04/27/2023	4.24	576.60	3.11	581.63	1.32	580.11	1.30	580.09	0.90	580.05
10/11/2023	5.80	575.04	3.33	581.41	1.30	580.13	1.05	580.34	0.80	580.15

Notes:

Elevations are reported in feet relative to the North American Vertical Datum of 1988.

ft BTOC - feet below top of casing

NA - not applicable

NM - not measured.

1) Elevation represents the point of reference used to collect surface water level measurements.

Table 2

Summary of Field Data – April to December 2023 St.Clair Power Plant Bottom Ash Basins – RCRA CCR Monitoring Program East China Township, Michigan

Sample Location	Sample Date	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)	pH (SU)	Specific Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)
	4/28/2023	1.00	-61.3	8.2	3,352	12.40	10.72
MW-16-01	10/12/2023	2.80	19.9	7.5	2,928	13.70	3.90
	12/7/2023 ⁽³⁾	1.49	-37.5	7.8	2,901	11.90	9.52
	4/28/2023	0.90	-140.9	8.0	4,729	11.80	16.60
MW-16-02	10/12/2023	2.50	40.0	7.3	6,346	14.60	10.00
	10/27/2023 ⁽²⁾	0.18	-52.0	7.6	6,820	15.80	10.00
	4/28/2023	0.90	-114.2	7.9	5,221	12.60	3.61
MW-16-03	6/15/2023 ⁽¹⁾	0.11	-219.3	7.7	6,425	14.60	18.00
	10/12/2023	2.20	-3.0	7.5	4,667	14.50	4.00
MW-16-04	4/28/2023	0.90	-41.1	7.9	5,977	10.80	15.00
10100-16-04	10/12/2023	2.20	-15.2	7.6	5,825	16.30	47.00

Notes:

mg/L -Milligrams per Liter.

mV - Millivolts.

SU - Standard Units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celsius.

NTU - Nephelometric Turbidity Unit

- (1) Results shown for verification sampling performed on 6/15/2023.
- (2) Results shown for verification sampling performed on 10/27/2023.
- (3) Results shown for verification sampling performed on 12/7/2023.

Table 3

Comparison of Appendix III Parameter Results to Background Limits – April and June 2023 St. Clair Power Plant Former Bottom Ash Basins – RCRA CCR Monitoring Program East China Township, Michigan

Sample Location:		MW-16-01		MW-1	MW-16-02		MW-16-03	MW-16-04			
Sa	Sample Date:		PL	4/28/2023	PL	4/28/2023	6/15/2023 ⁽¹⁾	PL	4/28/2023	PL	
Constituent	Unit	Data	ГЬ	Data	FL	D	Data		Data	FL	
Appendix III											
Boron	ug/L	2,200	2,600	2,100	2,400	2,100		2,300	2,500	2,600	
Calcium	ug/L	19,000	24,000	37,000	69,000	46,000		61,000	37,000	57,000	
Chloride	mg/L	1,200	1,400	2,000	2,100	2,200		2,200	2,600	2,800	
Fluoride	mg/L	1.9	2.1	1.4	1.6	1.3		1.6	1.4	1.7	
pH, Field	su	8.2	7.2 - 8.6	8.0	7.5 - 8.3	7.9		7.3 - 8.5	7.9	7.3 - 8.4	
Sulfate	mg/L	< 2.0	62	< 5.0	25	< 2.0		25	< 5.0	25	
Total Dissolved Solids	mg/L	2,100	2,500	3,300	3,600	5,100	3,400	4,000	4,200	4,400	

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

All metals were analyzed as total unless otherwise specified.

-- not analyzed during verification event

(1) - Results shown for verification sampling performed on 6/15/2023.

Bold font indicates an exceedance of the Prediction Limit (PL).

Table 4

Comparison of Appendix III Parameter Results to Background Limits – October and December 2023 St. Clair Power Plant Bottom Ash Basins – RCRA CCR Monitoring Program East China Township, Michigan

Sam	Sample Location: MW-16-01				MW-16-02			MW-	16-03	MW-16-04	
8	Sample Date:	10/12/2023	12/7/2023 ⁽²⁾	PL	10/12/2023	10/27/2023 ⁽¹⁾	PL	10/12/2023	PL	10/12/2023	PL
Constituent Unit		Da	ata		D	ata		Data		Data	
Appendix III											
Boron	ug/L	2,200		2,600	2,100		2,400	2,100	2,300	2,500	2,600
Calcium	ug/L	20,000		24,000	38,000		69,000	48,000	61,000	38,000	57,000
Chloride	mg/L	1,500	1,200	1,400	2,100		2,100	2,200	2,200	2,700	2,800
Fluoride	mg/L	2.0		2.1	1.6		1.6	1.4	1.6	1.7	1.7
pH, Field	su	7.5		7.2 - 8.6	7.3	7.6	7.5 - 8.3	7.5	7.3 - 8.5	7.6	7.3 - 8.4
Sulfate	mg/L	< 2		62	< 2		25	< 5	25	< 5	25
Total Dissolved Solids	mg/L	2,000		2,500	2,900		3,600	3,200	4,000	3,800	4,400

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

- (1) Results shown for verification sampling performed on 10/27/2023.
 (2) Results shown for verification sampling performed on 12/7/2023.

Table 5

Comparison of Appendix IV Parameter Results to Groundwater Protection Standards - April 2023 St. Clair Power Plant Bottom Ash Basins - RCRA CCR Monitoring Program East China Township, Michigan

		Intrawell									
Constituent	Unit	MW-16-01		MW-	16-02	MW-	16-03	MW-	16-04		
		GWPS	4/28/2023	GWPS	4/28/2023	GWPS	4/28/2023	GWPS	4/28/2023		
Antimony	ug/L	6.0	< 2	6.0	< 2	6.0	< 2	6.0	< 2		
Arsenic	ug/L	10	< 5	12	< 5	10	< 5	10	< 5		
Barium	ug/L	2,000	220	2,000	400	2,000	450	2,000	670		
Beryllium	ug/L	4.0	< 1	4.0	< 1	4.0	< 1	4.0	< 1		
Cadmium	ug/L	5.0	< 1	5.0	< 1	5.0	< 1	5.0	< 1		
Chromium	ug/L	100	< 2	100	2.3	100	2.1	100	< 2		
Cobalt	ug/L	6.0	1.0	9.5	< 1	6.0	< 1	16	< 1		
Fluoride	mg/L	4.0	1.9	4.0	1.5	4.0	1.3	4.0	1.5		
Lead	ug/L	15	< 1	15	< 1	15	< 1	15	< 1		
Lithium	ug/L	66	53	92	66	77	68	150	98		
Mercury	ug/L	2.0	< 0.2	2.0	< 0.2	2.0	< 0.2	2.0	< 0.2		
Molybdenum	ug/L	100	25	100	25	100	22	100	17		
Radium-226/228	pCi/L	5.00	1.43	5.00	2.31	5.00	2.96	6.97	4.83		
Selenium	ug/L	50	< 5	50	< 5	50	< 5	50	< 5		
Thallium	ug/L	2.0	< 1	2.0	< 1	2.0	< 1	2.0	< 1		

Notes:

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

ug/L = micrograms per liter

mg/L = milligrams per liter

pCi/L = picocuries per liter

Table 6

Comparison of Appendix IV Parameter Results to Groundwater Protection Standards - October 2023 St. Clair Power Plant Bottom Ash Basins - RCRA CCR Monitoring Program East China Township, Michigan

		Intrawell								
Constituent	Unit	MW-16-01		MW-	-16-02	MW-	-16-03	MW-16-04		
		GWPS	10/12/2023	GWPS	10/12/2023	GWPS	10/12/2023	GWPS	10/12/2023	
Antimony	ug/L	6.0	< 2	6.0	< 2	6.0	< 2	6.0	< 2	
Arsenic	ug/L	10	< 5	12	< 5	10	< 5	10	< 5	
Barium	ug/L	2,000	220	2,000	410	2,000	450	2,000	650	
Beryllium	ug/L	4.0	< 1	4.0	< 1	4.0	< 1	4.0	< 1	
Cadmium	ug/L	5.0	< 1	5.0	< 1	5.0	< 1	5.0	< 1	
Chromium	ug/L	100	< 2	100	2.0	100	< 2	100	3.1	
Cobalt	ug/L	6.0	< 1	9.5	< 1	6.0	< 1	16	1.3	
Fluoride	mg/L	4.0	2.0	4.0	1.6	4.0	1.4	4.0	1.7	
Lead	ug/L	15	< 1	15	< 1	15	< 1	15	1.8	
Lithium	ug/L	66	52	92	62	77	64	150	96	
Mercury	ug/L	2.0	< 0.2	2.0	< 0.2	2.0	< 0.2	2.0	< 0.2	
Molybdenum	ug/L	100	25	100	25	100	22	100	17	
Radium-226/228	pci/L	5.00	1.60	5.00	4.73	5.00	4.95	6.97	5.40	
Selenium	ug/L	50	< 5	50	< 5	50	< 5	50	< 5	
Thallium	ug/L	2.0	< 1	2.0	< 1	2.0	< 1	2.0	< 1	

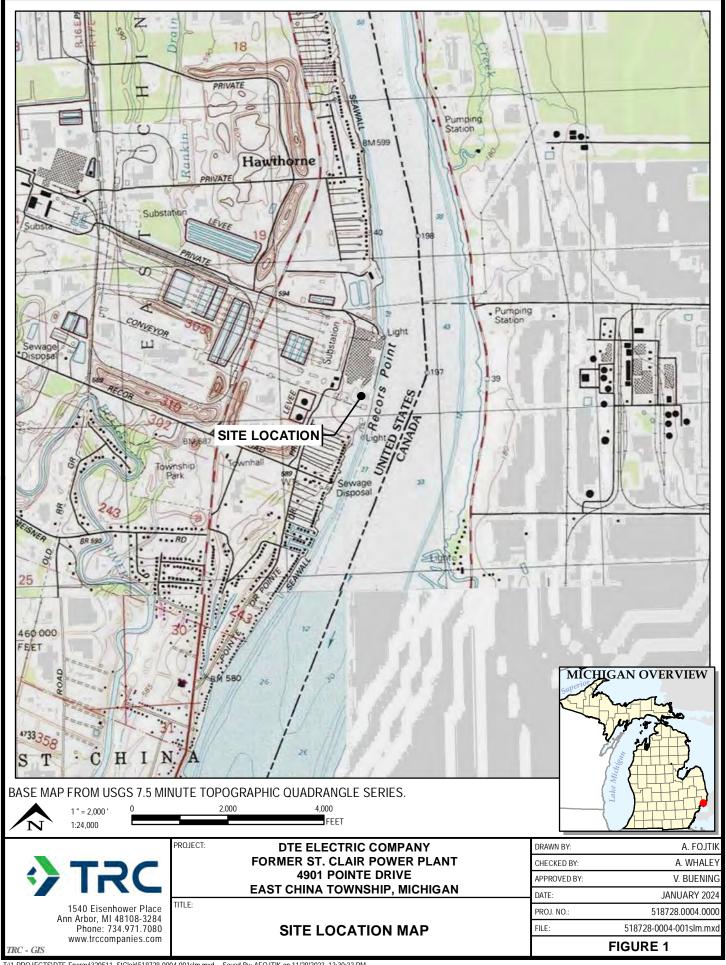
Notes:

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.


ug/L = micrograms per liter

mg/L = milligrams per liter

pCi/L = picocuries per liter

Figures

518728.0004.0000

518728-0004-004.mxd

Appendix A Laboratory Analytical Reports

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 1/18/2024 4:52:34 PM Revision 2

JOB DESCRIPTION

CCR DTE St. Clair Power

JOB NUMBER

240-184674-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 1/18/2024 4:52:34 PM Revision 2

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	16
QC Association Summary	18
Lab Chronicle	20
Certification Summary	22
Chain of Custody	23

2

4

5

6

8

46

11

12

Definitions/Glossary

Client: TRC Environmental Corporation.

Job ID: 240-184674-1

Project/Site: CCR DTE St. Clair Power

Qualifiers

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

E

__

7

0

10

11

12

Case Narrative

Client: TRC Environmental Corporation. Project: CCR DTE St. Clair Power

Job ID: 240-184674-1 Eurofins Cleveland

Job Narrative 240-184674-1

REVISION

The report being provided is a revision of the original report sent on 5/19/2023. The report (revision 2) is being revised due to to lower the reprting limit for chromium.

Report revision history

Revision 1 - 6/7/2023 - Reason - Client would like the results reported to the RL only...

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/4/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4°C, 1.8°C, 2.4°C and 2.6°C

Metals

Method 6020B: Some requested practical quantitation limits (PQLs) on the following samples fall below the laboratory's verified standard quantitation limit: MW-16-01 (240-184674-1), MW-16-02 (240-184674-2), MW-16-03 (240-184674-3), MW-16-04 (240-184674-4), DUP-01 (240-184674-5) and EB-01 (240-184674-6). The continuing calibration blanks and method blanks may not support the lower PQL.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

2

Job ID: 240-184674-1

3

4

7

8

11

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Method 6020B 7470A 9056A	Method Description Metals (ICP/MS) Mercury (CVAA) Anions, Ion Chromatography	Protocol SW846 SW846 SW846	Laboratory EET CLE EET CLE EET CLE
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CLE
7470A	Preparation, Mercury	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

9

4

0

7

8

9

11

12

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-184674-1	MW-16-01	Ground Water	04/28/23 14:53	05/04/23 08:00
240-184674-2	MW-16-02	Ground Water	04/28/23 13:01	05/04/23 08:00
240-184674-3	MW-16-03	Ground Water	04/28/23 11:35	05/04/23 08:00
240-184674-4	MW-16-04	Ground Water	04/28/23 10:15	05/04/23 08:00
240-184674-5	DUP-01	Ground Water	04/28/23 00:00	05/04/23 08:00
240-184674-6	EB-01	Water	04/28/23 15:00	05/04/23 08:00

6

a

10

11

12

Client: TRC Environmental Corporation.

Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Client Sample ID: MW-16-01

Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	220		5.0	ug/L		6020B	Total
							Recoverable
Molybdenum	25		5.0	ug/L	1	6020B	Total
							Recoverable
Lithium	53		8.0	ug/L	1	6020B	Total
Electric de la constant de la consta						00504	Recoverable
Fluoride 	1.9		0.25	mg/L	5	9056A	Total/NA
Client Sample ID: MW-16-0	2				Lab San	iple ID: 2	40-184674-2
 Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	400		5.0	ug/L		6020B	Total
				-			Recoverable
Chromium	2.3		2.0	ug/L	1	6020B	Total
							Recoverable
Molybdenum	25		5.0	ug/L	1	6020B	Total
							Recoverable
Lithium	66		8.0	ug/L	1	6020B	Total
					_		Recoverable
Fluoride -	1.5		0.25	mg/L	5	9056A	Total/NA
Client Sample ID: MW-16-0	3				Lab San	nple ID: 2	40-184674-3
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	450	<u> </u>	5.0	ug/L		6020B	Total
				3			Recoverable
Chromium	2.1		2.0	ug/L	1	6020B	Total
				· ·			Recoverable
Molybdenum	22		5.0	ug/L	1	6020B	Total
							Recoverable
Lithium	68		8.0	ug/L	1	6020B	Total
							Recoverable
Fluoride -	1.3		0.25	mg/L	5	9056A	Total/NA
Client Sample ID: MW-16-0	4				Lab San	nple ID: 2	40-184674-4
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	670		5.0	ug/L		6020B	Total
				J			Recoverable
Molybdenum	17		5.0	ug/L	1	6020B	Total
•							Recoverable
Lithium	98		8.0	ug/L	1	6020B	Total
							Recoverable
Fluoride	1.5		0.25	mg/L	5	9056A	Total/NA
Client Sample ID: DUP-01					Lab San	nple ID: 2	40-184674-5
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	470		5.0	ug/L		6020B	Total
	770		0.0	<i>49,</i> ∟	•	30200	Recoverable
Chromium	2.6		2.0	ug/L	1	6020B	Total
	2.0		2.0	~9, ∟	•	30235	Recoverable
Molybdenum	23		5.0	ug/L	1	6020B	Total
•			- · -	- J. –	•		Recoverable
							recoverable
Lithium	70		8.0	ug/L	1	6020B	Total

This Detection Summary does not include radiochemical test results.

1.3

Fluoride

Eurofins Cleveland

Total/NA

9056A

Lab Sample ID: 240-184674-1

0.25

mg/L

Detection Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Lab Sample ID: 240-184674-6

Client Sample ID: EB-01

 \boldsymbol{A}

No Detections.

4

5

10

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-01 Date Collected: 04/28/23 14:53

Date Received: 05/04/23 08:00

Lab Sample ID: 240-184674-1

Matrix: Ground Water

Job ID: 240-184674-1

Method: SW846 6020B - Method: Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0		2.0	ug/L	<u>-</u>	05/05/23 14:00	05/08/23 21:43	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Barium	220		5.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Chromium	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Molybdenum	25		5.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Lithium	53		8.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Method: SW846 7470A - Mei	curv (CVAA)							
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:03	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.9		0.25	mg/L			05/18/23 08:30	5

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-184674-2

Matrix: Ground Water

Job ID: 240-184674-1

Client Sample ID: MW-16-02
Date Collected: 04/28/23 13:01
Date Received: 05/04/23 08:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Barium	400		5.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Chromium	2.3		2.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Molybdenum	25		5.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Lithium	66		8.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Method: SW846 7470A - Me	rcury (CVAA)							
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:10	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.5		0.25	mg/L			05/18/23 08:50	5

1/18/2024 (Rev. 2)

2

5

7

0

10

11

12

Client: TRC Environmental Corporation.
Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-184674-3

Matrix: Ground Water

Job ID: 240-184674-1

Date Collected: 04/28/23 11:35 Date Received: 05/04/23 08:00

Client Sample ID: MW-16-03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Barium	450		5.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Chromium	2.1		2.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Molybdenum	22		5.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Lithium	68		8.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Method: SW846 7470A - Me	cury (CVAA)							
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:12	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.3		0.25	mg/L			05/18/23 09:10	

4

5

8

9

10

46

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-04

Lab Sample ID: 240-184674-4

Matrix: Ground Water

Job ID: 240-184674-1

Date Collected: 04/28/23 10:15 Date Received: 05/04/23 08:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Barium	670		5.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Chromium	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Molybdenum	17		5.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Lithium	98		8.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
- Method: SW846 7470A - Mei	cury (CVAA)							
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:14	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.5		0.25	mg/L			05/18/23 09:30	5

Client: TRC Environmental Corporation. Job ID: 240-184674-1 Project/Site: CCR DTE St. Clair Power

Client Sample ID: DUP-01 Lab Sample ID: 240-184674-5

Date Collected: 04/28/23 00:00 **Matrix: Ground Water** Date Received: 05/04/23 08:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Barium	470		5.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Chromium	2.6		2.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Molybdenum	23		5.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Lithium	70		8.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Method: SW846 7470A - Me	rcury (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:16	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.3		0.25	mg/L			05/18/23 10:31	5

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: EB-01 Date Collected: 04/28/23 15:00

Date Received: 05/04/23 08:00

Analyte

Fluoride (SW846 9056A)

Lab Sample ID: 240-184674-6

Matrice Matrice

Analyzed

05/18/23 07:09

Job ID: 240-184674-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Barium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Chromium	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Molybdenum	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Lithium	8.0	U	8.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Method: SW846 7470A -	Mercury (CVAA)							
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:19	1

RL

0.050

Unit

mg/L

Prepared

Result Qualifier

0.050 U

Eurofins Cleveland

3

4

O

0

10

11

12

13

Dil Fac

Client: TRC Environmental Corporation. Job ID: 240-184674-1

Project/Site: CCR DTE St. Clair Power

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 240-572237/1-A

Matrix: Water

Analysis Batch: 572569

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 572237

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Barium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Chromium	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Molybdenum	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Lithium	8.0	U	8.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
		-		3				

Lab Sample ID: LCS 240-572237/2-A

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

0	1.00	1.00				Prep Batch: 572237
•				_		%Rec
Added	Result	Qualifier	Unit	D	%Rec	Limits
100	103		ug/L		103	80 - 120
1000	947		ug/L		95	80 - 120
1000	964		ug/L		96	80 - 120
500	441		ug/L		88	80 - 120
500	478		ug/L		96	80 - 120
500	483		ug/L		97	80 - 120
500	482		ug/L		96	80 - 120
500	470		ug/L		94	80 - 120
500	446		ug/L		89	80 - 120
1000	944		ug/L		94	80 - 120
1000	916		ug/L		92	80 - 120
500	490		ug/L		98	80 - 120
	1000 1000 500 500 500 500 500 500 1000	Added Result 100 103 1000 947 1000 964 500 441 500 478 500 483 500 482 500 470 500 446 1000 944 1000 916	Added Result Qualifier 100 103 1000 947 1000 964 500 441 500 478 500 483 500 482 500 470 500 446 1000 944 1000 916	Added Result Qualifier Unit 100 103 ug/L 1000 947 ug/L 1000 964 ug/L 500 441 ug/L 500 478 ug/L 500 483 ug/L 500 482 ug/L 500 470 ug/L 500 446 ug/L 1000 944 ug/L 1000 916 ug/L	Added Result Qualifier Unit D 100 103 ug/L ug/L 1000 947 ug/L ug/L 1000 964 ug/L ug/L 500 441 ug/L ug/L 500 478 ug/L ug/L 500 483 ug/L ug/L 500 470 ug/L ug/L 1000 944 ug/L ug/L 1000 916 ug/L ug/L	Added Result Qualifier Unit D %Rec 100 103 ug/L 103 1000 947 ug/L 95 1000 964 ug/L 96 500 441 ug/L 96 500 478 ug/L 96 500 483 ug/L 97 500 482 ug/L 96 500 470 ug/L 94 500 446 ug/L 89 1000 944 ug/L 94 1000 916 ug/L 92

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-572242/1-A

Matrix: Water

Analysis Batch: 572543

Client Sample	D: Met	thod Bl	ank
Pre	p Type	e: Total	/NA

Client Sample ID: Lab Control Sample

Prep Batch: 572242

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 18:20	1

Lab Sample ID: LCS 240-572242/2-A

Matrix: Water

Analyte Mercury

Analysis Batch: 572543

							Prep Ba	itch: 5722	42
	Spike	LCS	LCS				%Rec		
	Added	Result	Qualifier	Unit	D	%Rec	Limits		
_	5.00	4.84		ug/L		97	80 - 120		

Eurofins Cleveland

QC Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Prep Type: Total/NA

Client Sample ID: EB-01

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-573780/3

Lab Sample ID: LCS 240-573780/4

Matrix: Water

Analysis Batch: 573780

MB MB

Analyte Result Qualifier RL Unit Analyzed Dil Fac **Prepared** Fluoride 0.050 05/18/23 06:29 0.050 U mg/L

> **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 573780

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 2.50 90 - 110 Fluoride 2.67 mg/L 107

Lab Sample ID: 240-184674-6 MS Client Sample ID: EB-01 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 573780

Sample Sample Spike MS MS %Rec **Analyte** Result Qualifier Added Result Qualifier Limits Unit %Rec Fluoride 0.050 U 2.50 2.81 112 mg/L

Lab Sample ID: 240-184674-6 MSD

Matrix: Water

Analysis Batch: 573780

Spike MSD MSD %Rec **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Fluoride 0.050 U 2.50 2.69 108 80 - 120 mg/L

Eurofins Cleveland

QC Association Summary

Client: TRC Environmental Corporation.

Job ID: 240-184674-1

Project/Site: CCR DTE St. Clair Power

Metals

Prep Batch: 572237

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total Recoverable	Ground Water	3005A	
240-184674-2	MW-16-02	Total Recoverable	Ground Water	3005A	
240-184674-3	MW-16-03	Total Recoverable	Ground Water	3005A	
240-184674-4	MW-16-04	Total Recoverable	Ground Water	3005A	
240-184674-5	DUP-01	Total Recoverable	Ground Water	3005A	
240-184674-6	EB-01	Total Recoverable	Water	3005A	
MB 240-572237/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-572237/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 572242

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total/NA	Ground Water	7470A	_
240-184674-2	MW-16-02	Total/NA	Ground Water	7470A	
240-184674-3	MW-16-03	Total/NA	Ground Water	7470A	
240-184674-4	MW-16-04	Total/NA	Ground Water	7470A	
240-184674-5	DUP-01	Total/NA	Ground Water	7470A	
240-184674-6	EB-01	Total/NA	Water	7470A	
MB 240-572242/1-A	Method Blank	Total/NA	Water	7470A	
LCS 240-572242/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 572543

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total/NA	Ground Water	7470A	572242
240-184674-2	MW-16-02	Total/NA	Ground Water	7470A	572242
240-184674-3	MW-16-03	Total/NA	Ground Water	7470A	572242
240-184674-4	MW-16-04	Total/NA	Ground Water	7470A	572242
240-184674-5	DUP-01	Total/NA	Ground Water	7470A	572242
240-184674-6	EB-01	Total/NA	Water	7470A	572242
MB 240-572242/1-A	Method Blank	Total/NA	Water	7470A	572242
LCS 240-572242/2-A	Lab Control Sample	Total/NA	Water	7470A	572242

Analysis Batch: 572569

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total Recoverable	Ground Water	6020B	572237
240-184674-2	MW-16-02	Total Recoverable	Ground Water	6020B	572237
240-184674-3	MW-16-03	Total Recoverable	Ground Water	6020B	572237
240-184674-4	MW-16-04	Total Recoverable	Ground Water	6020B	572237
240-184674-5	DUP-01	Total Recoverable	Ground Water	6020B	572237
240-184674-6	EB-01	Total Recoverable	Water	6020B	572237
MB 240-572237/1-A	Method Blank	Total Recoverable	Water	6020B	572237
LCS 240-572237/2-A	Lab Control Sample	Total Recoverable	Water	6020B	572237

General Chemistry

Analysis Batch: 573780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total/NA	Ground Water	9056A	
240-184674-2	MW-16-02	Total/NA	Ground Water	9056A	
240-184674-3	MW-16-03	Total/NA	Ground Water	9056A	
240-184674-4	MW-16-04	Total/NA	Ground Water	9056A	
240-184674-5	DUP-01	Total/NA	Ground Water	9056A	

Eurofins Cleveland

Page 18 of 26

2

6

8

40

11

12

1.

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

General Chemistry (Continued)

Analysis Batch: 573780 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-6	EB-01	Total/NA	Water	9056A	
MB 240-573780/3	Method Blank	Total/NA	Water	9056A	
LCS 240-573780/4	Lab Control Sample	Total/NA	Water	9056A	
240-184674-6 MS	EB-01	Total/NA	Water	9056A	
240-184674-6 MSD	EB-01	Total/NA	Water	9056A	

3

4

5

0

10

11

12

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-01

Date Collected: 04/28/23 14:53 Date Received: 05/04/23 08:00

Total/NA

Analysis

9056A

Lab Sample ID: 240-184674-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:43
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:03
Total/NA	Analysis	9056A		5	573780	JWW	EET CLE	05/18/23 08:30

Client Sample ID: MW-16-02 Lab Sample ID: 240-184674-2

Date Collected: 04/28/23 13:01 **Matrix: Ground Water** Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:45
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:10
Total/NA	Analysis	9056A		5	573780	JWW	EET CLE	05/18/23 08:50

Lab Sample ID: 240-184674-3 **Client Sample ID: MW-16-03**

Date Collected: 04/28/23 11:35 **Matrix: Ground Water** Date Received: 05/04/23 08:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:53
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:12

Client Sample ID: MW-16-04 Lab Sample ID: 240-184674-4

573780 JWW

EET CLE

05/18/23 09:10

Date Collected: 04/28/23 10:15 **Matrix: Ground Water** Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:56
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:14
Total/NA	Analysis	9056A		5	573780	JWW	EET CLE	05/18/23 09:30

Lab Chronicle

Client: TRC Environmental Corporation.

Job ID: 240-184674-1

Project/Site: CCR DTE St. Clair Power

Client Sample ID: DUP-01

Lab Sample ID: 240-184674-5

Matrix: Ground Water

Date Collected: 04/28/23 00:00 Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:59
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:16
Total/NA	Analysis	9056A		5	573780	JWW	EET CLE	05/18/23 10:31

Client Sample ID: EB-01 Lab Sample ID: 240-184674-6

Date Collected: 04/28/23 15:00 Matrix: Water Date Received: 05/04/23 08:00

-	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A	-		572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 22:01
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:19
Total/NA	Analysis	9056A		1	573780	JWW	EET CLE	05/18/23 07:09

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

2

3

4

5

9

-

12

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	07-05-23
Connecticut	State	PH-0590	06-29-23
Florida	NELAP	E87225	05-24-23
Georgia	State	4062	06-27-23
Illinois	NELAP	200004	07-24-23
Iowa	State	421	05-31-23
Kentucky (UST)	State	112225	02-28-24
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	07-17-23
Minnesota	NELAP	039-999-348	12-28-23
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-23
New York	NELAP	10975	06-12-23
Ohio	State	8303	06-27-23
Ohio VAP	State	ORELAP 4062	06-27-23
Oregon	NELAP	4062	05-24-23
Pennsylvania	NELAP	68-00340	06-13-23
Texas	NELAP	T104704517-22-19	08-31-23
Virginia	NELAP	460175	08-03-23
West Virginia DEP	State	210	12-19-23

4

5

7

0

10

11

12

Eurofins - Canton Sample Receipt Form/Narrative Login # : 18701
Barberton Facility Client TR C For manufal Ground Site Name Cooler unpacked by:
Chem The Environmental (bipolation) She Hame
Cooler Received on 05-04-23 Opened on 05-04-23 Jeah M. Smull FedEx: 1st Grd Exp UPS FAS (Clipper) Client Drop Off Eurofins Courier Other
Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # F C Foam Box Client Cooler Box Other
Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wellice Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler Form IR GUN # 22 (CF 10.0 °C) Observed Cooler Temp. °C Corrected Cooler Temp. °C
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels (ID/Date/Time) be reconciled with the COC? 9. For each sample, does the COC specify preservatives (Y/N), # of containers (Y/N), and sample type of grab/comp(Y/N)? 10. Were correct bottle(s) used for the test(s) indicated? 11. Sufficient quantity received to perform indicated analyses? 12. Are these work share samples and all listed on the COC? If yes, Questions 13-17 have been checked at the originating laboratory. 13. Were all preserved sample(s) at the correct pH upon receipt? 14. Were VOAs on the COC? 15. Were air bubbles >6 mm in any VOA vials? 16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # 17. Was a LL Hg or Me Hg trip blank present? 18. Were the seals on the oblete of the cooler (s)? Trip Blank Lot # Yes No NA Tests that are not checked for pH by Receiving: Yes No NA NO VOAs Oil and Grease TOC NO NO Yos NO NO NO NO NO NO NO NO NO N
Contacted PM Date by via Verbal Voice Mail Other
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
None of the 250 mlp's have labels
19. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) were received with bubble >6 mm in diameter. (Notify PM)
20. SAMPLE PRESERVATION
Sample(s) were further preserved in the laboratory.
Time preserved: Preservative(s) added/Lot number(s):
VOA Sample Preservation - Date/Time VOAs Frozen:
1

Login #: 184674

		Eurofins - Canto	n Sample Receipt Mu	Iltiple Cooler Form	
Cooler Desc	ription	IR Gun#	Observed	Corrected	Coolant
(Circle		(Circle)	Temp °C	Temp °C	(Circle)
	ox Other	IR GUN #:	1.8	1.8.	Wet ice Blue Ice Dry ice Water None
(EC Client Bo	x Other	IR GUN #: 22	2.4	2.4. (Wet loe Blue Ice Dry Ice Water None
(EC) Client Bo	x Other	IR GUN #: 22	1.4	7.4	Wet ice Blue ice Dry ice
EC Client Bo	x Other	IR GUN#: 20	2.6	26	Wet ice Blue ice Dry ice
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Sive Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wel ice Blue Ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wat ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Stue Ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Öther	IR GUN #:			Wet ice Blue Ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client 8c	ox Other	IR GUN #:			Wet Ice Slue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
				☐ See Temp	erature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

Login Container Summary Report

240-184674

Temperature readings: Container Preservative Client Sample 1D Lab ID Container Type Temp Added (mls) Lot # pΗ Plastic 250ml - with Nitric Acid MW-16-01 240-184674-B-1 Plastic 1 liter - Nitric Acid MW-16-01 240-184674-C-1 <2 MW-16-01 240-184674-D-1 Plastic 1 liter - Nitric Acid <2 Plastic 250ml - with Nitric Acid MW-16-02 240-184674-B-2 <2 Plastic 1 liter - Nitric Acid MW-16-02 240-184674-C-2 <2 MW-16-02 240-184674-D-2 Plastic 1 liter - Nitric Acid <2 MW-16-03 240-184674-B-3 Plastic 250ml - with Nitric Acid <2 MW-16-03 240-184674-C-3 Plastic 1 liter - Nitric Acid <2 MW-16-03 240-184674-D-3 Plastic 1 liter - Nitric Acid <2 Plastic 250ml - with Nitric Acid MW-16-04 240-184674-B-4 <2 Plastic 1 liter - Nitric Acid MW-16-04 240-184674-C-4 <2 MW-16-04 240-184674-D-4 Plastic 1 liter - Nitric Acid <2 DUP-01 240-184674-B-5 Plastic 250ml - with Nitric Acid <2 DUP-01 Plastic 1 liter - Nitric Acid 240-184674-C-5 <2 DUP-01 240-184674-D-5 Plastic 1 liter - Nitric Acid <2 EB-01 Plastic 250ml - with Nitric Acid 240-184674-B-6 <2 EB-01 Plastic 1 liter - Nitric Acid 240-184674-C-6 <2

Plastic 1 liter - Nitric Acid

<2

240-184674-D-6

Page 1 of 1

EB-01

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 6/21/2023 7:52:59 PM

JOB DESCRIPTION

CCR DTE SCPP 1AS23 Verification

JOB NUMBER

240-187144-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 6/21/2023 7:52:59 PM

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790

Eurofins Canton is a laboratory within Eurofins Environment Testing North Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 17

6/21/2023

3

4

7

_

4 0

IU

12

Table of Contents

Cover Page	1
Table of Contents	
Definitions/Glossary	4
Case Narrative	5
Method Summary	
Sample Summary	
Detection Summary	
Client Sample Results	9
QC Sample Results	12
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16

3

4

6

Ω

9

10

12

Definitions/Glossary

Client: TRC Environmental Corporation. Job ID: 240-187144-1

Project/Site: CCR DTE SCPP 1AS23 Verification

Qualifiers

General Chemistry

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Appreviation	These commonly used abbreviations may of may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
D1 F	

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cleveland

Page 4 of 17

Case Narrative

Client: TRC Environmental Corporation.

Project/Site: CCR DTE SCPP 1AS23 Verification

Job ID: 240-187144-1

Job ID: 240-187144-1

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-187144-1

Receipt

The samples were received on 6/16/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

0

10

11

12

Method Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE SCPP 1AS23 Verification

Job ID: 240-187144-1

Method	Method Description	Protocol	Laboratory
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CLE

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

5

7

10

111

Sample Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE SCPP 1AS23 Verification

Job ID: 240-187144-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-187144-1	MW-16-03	Water	06/15/23 09:50	06/16/23 08:00
240-187144-2	DUP-01	Water	06/15/23 00:00	06/16/23 08:00
240-187144-3	EB-01	Water	06/14/23 09:20	06/16/23 08:00

4

Ę

6

8

9

10

Detection Summary

Client: TRC Environmental Corporation.

Client Sample ID: MW-16-03

Project/Site: CCR DTE SCPP 1AS23 Verification

Lab Sample ID: 240-187144-1

Job ID: 240-187144-1

							_	
Analyte	Result	Qualifier	RL	Unit	Dil Fa	D	Method	Prep Type
Total Dissolved Solids	3400		50	mg/L		_	SM 2540C	Total/NA

Client Sample ID: DUP-01 Lab Sample ID: 240-187144-2

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Total Dissolved Solids	3400	50	mg/L	1	SM 2540C	Total/NA

Client Sample ID: EB-01 Lab Sample ID: 240-187144-3

No Detections.

6

Ė

a

10

12

1:

Client: TRC Environmental Corporation.

Job ID: 240-187144-1

Project/Site: CCR DTE SCPP 1AS23 Verification

Client Sample ID: MW-16-03 Lab Sample ID: 240-187144-1

Date Collected: 06/15/23 09:50 Matrix: Water

Date Received: 06/16/23 08:00

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	3400		50	mg/L			06/20/23 10:15	1

__

4

5

7

8

10

11

Client: TRC Environmental Corporation.

Job ID: 240-187144-1

Project/Site: CCR DTE SCPP 1AS23 Verification

Client Sample ID: DUP-01 Lab Sample ID: 240-187144-2

Date Collected: 06/15/23 00:00 Matrix: Water
Date Received: 06/16/23 08:00

General Chemistry								
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids (SM 2540C)	3400	50	ma/l			06/20/23 10:15	1	

Eurofins Cleveland

_

6

8

9

11

Client: TRC Environmental Corporation.

Project/Site: CCR DTE SCPP 1AS23 Verification

Client Sample ID: EB-01 Lab Sample ID: 240-187144-3

Date Collected: 06/14/23 09:20 Matrix: Water

Date Received: 06/16/23 08:00

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	10	U	10	mg/L			06/20/23 10:15	1

Job ID: 240-187144-1

Δ

5

6

8

9

11

12

QC Sample Results

Client: TRC Environmental Corporation.

Project/Site: CCR DTE SCPP 1AS23 Verification

Job ID: 240-187144-1

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 240-577835/1 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

MB MB

Analysis Batch: 577835

 Analyte
 Result
 Qualifier
 RL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Dissolved Solids
 10
 U
 10
 mg/L
 06/20/23 10:15
 1

Lab Sample ID: LCS 240-577835/2

Client Sample ID: Lab Control Sample
Matrix: Water

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 577835

Spike LCS LCS %Rec Added Result Qualifier Analyte Unit D %Rec Limits **Total Dissolved Solids** 518 491 mg/L 95 80 - 120

Lab Sample ID: 240-187144-3 DU

Client Sample ID: EB-01

Matrix: Water

Prep Type: Total/NA

Wattix. Water

Analysis Batch: 577835

 Sample Analyte
 Sample Result Total Dissolved Solids
 Sample Qualifier
 DU DU
 RPD
 RPD
 RPD
 Limit Mg/L
 Total Dissolved Solids
 10
 U
 10
 U
 mg/L
 NC
 20

2

6

7

0

9

10

QC Association Summary

 ${\bf Client: TRC\ Environmental\ Corporation.}$

Project/Site: CCR DTE SCPP 1AS23 Verification

Job ID: 240-187144-1

General Chemistry

Analysis Batch: 577835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
240-187144-1	MW-16-03	Total/NA	Water	SM 2540C			
240-187144-2	DUP-01	Total/NA	Water	SM 2540C			
240-187144-3	EB-01	Total/NA	Water	SM 2540C			
MB 240-577835/1	Method Blank	Total/NA	Water	SM 2540C			
LCS 240-577835/2	Lab Control Sample	Total/NA	Water	SM 2540C			
240-187144-3 DU	EB-01	Total/NA	Water	SM 2540C			

3

4

5

6

8

9

10

11

1:

Lab Chronicle

Client: TRC Environmental Corporation.

Project/Site: CCR DTE SCPP 1AS23 Verification

Client Sample ID: MW-16-03 Lab Sample ID: 240-187144-1

Date Collected: 06/15/23 09:50 **Matrix: Water**

Date Received: 06/16/23 08:00

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor **Number Analyst** Lab or Analyzed SM 2540C EET CLE 06/20/23 10:15 Total/NA Analysis 577835 GH

Client Sample ID: DUP-01 Lab Sample ID: 240-187144-2

Date Collected: 06/15/23 00:00 **Matrix: Water**

Date Received: 06/16/23 08:00

Batch Batch Dilution Batch Prepared Prep Type Method Run Factor Number Analyst or Analyzed Type Lab 06/20/23 10:15 Total/NA SM 2540C 577835 GH EET CLE Analysis

Client Sample ID: EB-01 Lab Sample ID: 240-187144-3

Date Collected: 06/14/23 09:20 **Matrix: Water**

Date Received: 06/16/23 08:00

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Туре Run Factor Number Analyst Lab Total/NA SM 2540C 577835 GH EET CLE 06/20/23 10:15 Analysis

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Job ID: 240-187144-1

Accreditation/Certification Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE SCPP 1AS23 Verification

Job ID: 240-187144-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date 02-27-24		
California	State	2927			
Connecticut	State	PH-0590	06-29-23		
Florida	NELAP	E87225	06-30-23		
Georgia	State	4062	02-28-24		
Illinois	NELAP	200004	07-31-23		
lowa	State	421	06-01-25		
Kentucky (UST)	State	112225	02-28-24 12-31-23 02-27-24 12-31-23		
Kentucky (WW)	State	KY98016			
Michigan	State	9135			
Minnesota	NELAP	039-999-348			
Minnesota (Petrofund)	State	3506	08-01-23		
New Jersey	NELAP	OH001	06-30-23		
New York	NELAP	10975	04-02-24		
Ohio	State	8303	02-27-24		
Ohio VAP	State	ORELAP 4062	02-27-24		
Oregon	NELAP	4062	02-27-24		
Pennsylvania	NELAP	68-00340	08-31-24		
Texas	NELAP	T104704517-22-17	08-31-23		
Virginia	NELAP	460175	09-14-23		
West Virginia DEP	State	210	12-31-23		

Eurofins Cleveland

5

6

8

9

10

12

eurofins Environment Testing America	Eurofins Environment Testing America	of COCs	#	Sampler:	For Lab Use Only:	Walk-in Client:	Lab Sampling:	Job / SDG No.		Sample Specific Notes:										stained longer than 1 month)	for Months		Therm ID No.:	Date/Time/13 \SC	Date/Filme: 1515	Ostelling 13 800	
20/20		Dato:	Carrier:								0-18	7144	Chai	of Cu	stody					Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	Disposal by Lab	(Medico	CompanyEENA	Configura C	1
Chain of Custody Record	□ RCRA □ Other:	Sito Contact:	Lab Contact: Kris Brooks		-	(N .	/A) (JSW	/ SV	Perform N	×	×	×							Sample Disposal (A fee may	Return to Client	J	Cooler Terrip. (°C): Obs'd	-	Received by: (M) ML	1515 Received in Laboratory by:	1
Chain o	rogram:	and a distant	ranca:com	Analysis Turnaround Time	WORKING DAYS	w 3 day 5	2 weeks			Sample Sample Sample Sample Sample Calcomp. Calcomp.	O GW	GW 1	G GW 1						JE	aste Codes for the sample in	Unknown	_	~	15/0 BIRTING		0/6/5/73 1579	
CHIGAN	Regulatory Program:	Empile whoman	Tel/Fax:		☐ CALENDAR DAYS					Sample Sample Date Time	41xh3 6950	1 43	CASO SMILE						INO3; 5=NaOH; 6= Other	Please List any EPA Wample.	ant Doison B	::	Custody Seal No.:	Someany C/1	Company	Company	
>> Select a Laboratory or Service Center << #N/A #N/A #N/A	#N/A ##	Client Contact	TRC	1540 Eisenhower Place	City/State/Zip: Ann Arbor MI 48108	Phone	(xxx) xxx-xxxx FAX Project Name: DTE CCR SCPP 1AS23 Verification	Site:	P O # 199490	Sample Identification	MW-16-03	DUP-01	EB-01	Page 1	16 0	f 17			Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	Non-Hazard Flammable Skin Irritant	Special Instructions/QC Requirements & Comments:	Custody Seals Intact: Tes No	Relinquished by:	Relinquished by	Kelinduish da by Kelinduish (2023)	

Eurofins - Canton Sample Receipt Form/Narrative Login # : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Cooler unmodered has
Cooler Received on 6-16-23 Opened on 6-16-23
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off Eurofins Courier Other
Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # Rox Client Cooler Box Other
Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None
1. Cooler temperature upon receipt See Multiple Cooler Form
IR GUN# 22 (CF +0.0 °C) Observed Cooler Temp. 20 °C Corrected Cooler Temp. 20 °C
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity No No Tests that are not
-Were the seals on the outside of the cooler(s) signed & dated? Checked for pH by
-were tamper/custody seals on the bottle(s) or bottle kits (LLFig Merig)? -Were tamper/custody seals intact and uncompromised? Receiving:
3. Shippers' packing slip attached to the cooler(s)? Yes Vo
4. Did custody papers accompany the sample(s)?
5. Were the custody papers relinquished & signed in the appropriate place?
6. Was/were the person(s) who collected the samples clearly identified on the COC?
7. Did all bottles arrive in good condition (Unbroken)?
8. Could all bottle labels (ID/Date/Time) be reconciled with the COC? (Ye) No 9. For each sample, does the COC specify preservatives (Y/N), # of containers (Y/N), and eample type of grab/comp(Y/N)?
10. Were correct bottle(s) used for the test(s) indicated?
11. Sufficient quantity received to perform indicated analyses?
12. Are these work share samples and all listed on the COC? Yes
If yes, Questions 13-17 have been checked at the originating laboratory.
13. Were all preserved sample(s) at the correct pH upon receipt? Yes WA pH Strip Lot# 10BDH4321
14. Were VOAs on the COC?
15. Were air bubbles >6 mm in any VOA vials? Larger than this.
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes No
17. Was a LL Hg or Me Hg trip blank present?Yes 19
Contacted PM Date by via Verbal Voice Mail Other
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page Samples processed by:
19. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) were received with bubble >6 mm in diameter. (Notify PM)
20. SAMPLE PRESERVATION
Sample(s) were further preserved in the laboratory.
Sample(s) were further preserved in the laboratory. Time preserved: Preservative(s) added/Lot number(s):
VOA Sample Preservation - Date/Time VOAs Frozen:

WI-NC-099

6/21/2023

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 1/18/2024 4:52:48 PM Revision 1

JOB DESCRIPTION

CCR DTE St. Clair Power

JOB NUMBER

240-193602-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 1/18/2024 4:52:48 PM Revision 1

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	16
QC Association Summary	19
Lab Chronicle	21
Certification Summary	23
Chain of Custody	24

9

4

5

6

8

10

11

Definitions/Glossary

Client: TRC Environmental Corporation.

Job ID: 240-193602-1

Project/Site: CCR DTE St. Clair Power

Qualifiers

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

e

7

ŏ

10

11

12

Case Narrative

Client: TRC Environmental Corporation. Project: CCR DTE St. Clair Power

Job ID: 240-193602-1 Eurofins Cleveland

Job Narrative 240-193602-1

REVISION

The report being provided is a revision of the original report sent on 10/27/2023. The report (revision 1) is being revised due to to lower the reprting limit for chromium.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/14/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.1°C and 0.3°C

Metals

Method 6020B: Some requested practical quantitation limits (PQLs) on the following samples fall below the laboratory's verified standard quantitation limit: MW-16-01 (240-193602-1), MW-16-02 (240-193602-2), MW-16-03 (240-193602-3), MW-16-04 (240-193602-4), DUP-01 (240-193602-5) and EB-01 (240-193602-6). The continuing calibration blanks and method blanks may not support the lower PQL.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 9056A_28D: The following samples were diluted due to the nature of the sample matrix: MW-16-01 (240-193602-1), MW-16-02 (240-193602-2), MW-16-03 (240-193602-3), MW-16-04 (240-193602-4) and DUP-01 (240-193602-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

2

Job ID: 240-193602-1

3

4

J

7

ŏ

10

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET CLE
6020B	Metals (ICP/MS)	SW846	EET CLE
7470A	Mercury (CVAA)	SW846	EET CLE
9056A	Anions, Ion Chromatography	SW846	EET CLE
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CLE
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CLE
7470A	Preparation, Mercury	SW846	EET CLE

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

9

3

4

5

6

8

9

10

45

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-193602-1	MW-16-01	Water	10/12/23 10:00	10/14/23 08:00
240-193602-2	MW-16-02	Water	10/12/23 09:04	10/14/23 08:00
240-193602-3	MW-16-03	Water	10/12/23 11:49	10/14/23 08:00
240-193602-4	MW-16-04	Water	10/12/23 12:57	10/14/23 08:00
240-193602-5	DUP-01	Water	10/12/23 00:00	10/14/23 08:00
240-193602-6	EB-01	Water	10/11/23 10:40	10/14/23 08:00

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-01

Job ID: 240-193602-1

Lab Sample ID: 240-193602-1

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Boron	2200	100	ug/L		6010D	Total
						Recoverable
Barium	220	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	20000	1000	ug/L	1	6020B	Total
						Recoverable
Iron	570	100	ug/L	1	6020B	Total
						Recoverable
Lithium	52	8.0	ug/L	1	6020B	Total
						Recoverable
Molybdenum	25	5.0	ug/L	1	6020B	Total
						Recoverable
Chloride	1500	10	mg/L	10	9056A	Total/NA
Fluoride	2.0	0.10	mg/L	2	9056A	Total/NA
Total Dissolved Solids	2000	40	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-16-02

Lab Sample ID: 240-193602-2

Analyte	Result (Qualifier RL	Unit	Dil Fac	D Method	Prep Type
Boron	2100	100	ug/L	1	6010D	Total
						Recoverable
Barium	410	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	38000	1000	ug/L	1	6020B	Total
						Recoverable
Chromium	2.0	2.0	ug/L	1	6020B	Total
						Recoverable
Iron	1000	100	ug/L	1	6020B	Total
						Recoverable
Lithium	62	8.0	ug/L	1	6020B	Total
						Recoverable
Molybdenum	25	5.0	ug/L	1	6020B	Total
						Recoverable
Chloride	2100	20	mg/L	20	9056A	Total/NA
Fluoride	1.6	0.10	mg/L	2	9056A	Total/NA
Total Dissolved Solids	2900	50	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-16-03

Lab Sample ID: 240-193602-3

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Boron	2100	100	ug/L	1	6010D	Total
						Recoverable
Barium	450	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	48000	1000	ug/L	1	6020B	Total
						Recoverable
Iron	930	100	ug/L	1	6020B	Total
						Recoverable
Lithium	64	8.0	ug/L	1	6020B	Total
						Recoverable
Molybdenum	22	5.0	ug/L	1	6020B	Total
						Recoverable
Chloride	2200	25	mg/L	25	9056A	Total/NA
Fluoride	1.4	0.25	mg/L	5	9056A	Total/NA
Total Dissolved Solids	3200	50	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cleveland

1/18/2024 (Rev. 1)

2

3

4

6

_

9

10

12

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-04

Job ID: 240-193602-1

Lab Sample ID: 240-193602-4

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Boron	2500	100	ug/L		6010D	Total
						Recoverable
Barium	650	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	38000	1000	ug/L	1	6020B	Total
						Recoverable
Chromium	3.1	2.0	ug/L	1	6020B	Total
						Recoverable
Cobalt	1.3	1.0	ug/L	1	6020B	Total
						Recoverable
Iron	3200	100	ug/L	1	6020B	Total
						Recoverable
Lead	1.8	1.0	ug/L	1	6020B	Total
I :4L:	00	0.0	/1	4	COCOD	Recoverable
Lithium	96	8.0	ug/L	1	6020B	Total
Maluladanum	17	F 0	/1	4	COOOD	Recoverable
Molybdenum	17	5.0	ug/L	1	6020B	Total Recoverable
Chloride	2700	25	ma/l	25	9056A	Total/NA
			mg/L			
Fluoride	1.7	0.25	mg/L	5	9056A	Total/NA
Total Dissolved Solids	3800	50	mg/L	1	SM 2540C	Total/NA

Client Sample ID: DUP-01

Lab Sample ID: 240-193602-5

Lab Sample ID: 240-193602-6

Analyte	Result Qualifier	RL	Unit	Dil Fac I	Method	Prep Type
Boron	2200	100	ug/L		6010D	Total
						Recoverable
Barium	210	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	19000	1000	ug/L	1	6020B	Total
						Recoverable
Iron	570	100	ug/L	1	6020B	Total
						Recoverable
Lithium	49	8.0	ug/L	1	6020B	Total
						Recoverable
Molybdenum	25	5.0	ug/L	1	6020B	Total
						Recoverable
Chloride	1300	20	mg/L	20	9056A	Total/NA
Fluoride	2.0	0.10	mg/L	2	9056A	Total/NA
Total Dissolved Solids	2100	40	mg/L	1	SM 2540C	Total/NA

Client Sample ID: EB-01

Analyte RLUnit Dil Fac D Method Result Qualifier **Prep Type** 9056A Sulfate 1.0 mg/L Total/NA 1.0

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-1

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/12/23 10:00 Date Received: 10/14/23 08:00

Total Dissolved Solids (SM 2540C)

2000

Client Sample ID: MW-16-01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2200		100	ug/L		10/16/23 14:00	10/18/23 05:54	1
Method: SW846 6020B - Me	tals (ICP/MS)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Barium	220		5.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Calcium	20000		1000	ug/L		10/16/23 14:00	10/18/23 16:44	1
Chromium	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Iron	570		100	ug/L		10/16/23 14:00	10/18/23 16:44	1
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Lithium	52		8.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Molybdenum	25		5.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Method: SW846 7470A - Me	rcury (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:19	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	1500		10	mg/L			10/21/23 12:26	10
Fluoride (SW846 9056A)	2.0		0.10	mg/L			10/21/23 12:06	2
Sulfate (SW846 9056A)	2.0	U	2.0	mg/L			10/21/23 12:06	2

40

mg/L

10/19/23 09:19

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Method: SW846 6010D - Metals (ICP) - Total Recoverable

Lab Sample ID: 240-193602-2

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/12/23 09:04 Date Received: 10/14/23 08:00

Client Sample ID: MW-16-02

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2100		100	ug/L		10/16/23 14:00	10/18/23 05:59	1
Method: SW846 6020B -	Metals (ICP/MS)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Barium	410		5.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Calcium	38000		1000	ug/L		10/16/23 14:00	10/18/23 16:46	1
Chromium	2.0		2.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Iron	1000		100	ug/L		10/16/23 14:00	10/18/23 16:46	1
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Lithium	62		8.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Molybdenum	25		5.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1

Method: SW846 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:21	1

General Chemistry							
Analyte	Result Qual	ifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	2100	20	mg/L			10/21/23 04:03	20
Fluoride (SW846 9056A)	1.6	0.10	mg/L			10/21/23 03:43	2
Sulfate (SW846 9056A)	2.0 U	2.0	mg/L			10/21/23 03:43	2
Total Dissolved Solids (SM 2540C)	2900	50	mg/L			10/19/23 09:19	1

2

Λ

5

9

10

12

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-3

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/12/23 11:49 Date Received: 10/14/23 08:00

Client Sample ID: MW-16-03

Method: SW846 6010D - Metals (ICP) - Total Recoverable								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2100		100	ug/L		10/16/23 14:00	10/18/23 06:03	1
	etals (ICP/MS)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Barium	450		5.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Calcium	48000		1000	ug/L		10/16/23 14:00	10/18/23 16:49	1

Beryllium	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	
Cadmium	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Calcium	48000		1000	ug/L	10/16/23 14:00	10/18/23 16:49	•
Chromium	2.0	U	2.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Cobalt	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Iron	930		100	ug/L	10/16/23 14:00	10/18/23 16:49	•
Lead	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Lithium	64		8.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Molybdenum	22		5.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Selenium	5.0	U	5.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Thallium	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
<u> </u>							

Method: SW846 7470A - Mercu	ıry (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:23	1

General Chemistry							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	2200	25	mg/L			10/21/23 07:24	25
Fluoride (SW846 9056A)	1.4	0.25	mg/L			10/21/23 07:04	5
Sulfate (SW846 9056A)	5.0 U	5.0	mg/L			10/21/23 07:04	5
Total Dissolved Solids (SM 2540C)	3200	50	mg/L			10/19/23 09:19	1

_

Λ

5

7

a

10

12

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-4

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/12/23 12:57 Date Received: 10/14/23 08:00

Client Sample ID: MW-16-04

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2500		100	ug/L		10/16/23 14:00	10/18/23 06:08	1
Method: SW846 6020E	B - Metals (ICP/MS)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Barium	650		5.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Calcium	38000		1000	ug/L		10/16/23 14:00	10/18/23 16:51	1
Chromium	3.1		2.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Cobalt	1.3		1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Iron	3200		100	ug/L		10/16/23 14:00	10/18/23 16:51	1
Lead	1.8		1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Lithium	96		8.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Molybdenum	17		5.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1

Method: SW846 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.20	U	0.20	ug/L	_	10/16/23 14:00	10/18/23 14:25	1	

General Chemistry							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	2700	25	mg/L			10/21/23 06:44	25
Fluoride (SW846 9056A)	1.7	0.25	mg/L			10/21/23 06:24	5
Sulfate (SW846 9056A)	5.0 U	5.0	mg/L			10/21/23 06:24	5
Total Dissolved Solids (SM 2540C)	3800	50	mg/L			10/19/23 09:19	1

Eurofins Cleveland

2

4

5

8

9

11

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-5

Matrix: Water

Job ID: 240-193602-1

Client Sample ID: DUP-01 Date Collected: 10/12/23 00:00 Date Received: 10/14/23 08:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2200		100	ug/L		10/16/23 14:00	10/18/23 06:12	1
Method: SW846 6020B - Me	tals (ICP/MS)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Barium	210		5.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Calcium	19000		1000	ug/L		10/16/23 14:00	10/18/23 16:54	1
Chromium	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Iron	570		100	ug/L		10/16/23 14:00	10/18/23 16:54	1
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Lithium	49		8.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Molybdenum	25		5.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Method: SW846 7470A - Me	rcury (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:31	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorida (CM04C 00ECA)	4200		20				10/21/22 02:22	20

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	1300		20	mg/L			10/21/23 03:23	20
Fluoride (SW846 9056A)	2.0		0.10	mg/L			10/21/23 03:02	2
Sulfate (SW846 9056A)	2.0	U	2.0	mg/L			10/21/23 03:02	2
Total Dissolved Solids (SM 2540C)	2100		40	mg/L			10/19/23 09:19	1

Eurofins Cleveland

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-6

Matrix: Water

Job ID: 240-193602-1

Client	Samp	le ID:	EB-01
D-4- O-	Haraka ali	40/44	100 40-4

Date Collected: 10/11/23 10:40 Date Received: 10/14/23 08:00

Total Dissolved Solids (SM 2540C)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Boron	100	U	100	ug/L		10/16/23 14:00	10/18/23 06:17	
Method: SW846 6020B - Me	etals (ICP/MS)	- Total Reco	verable					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Barium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Calcium	1000	U	1000	ug/L		10/16/23 14:00	10/18/23 16:56	
Chromium	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Iron	100	U	100	ug/L		10/16/23 14:00	10/18/23 16:56	
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Lithium	8.0	U	8.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Molybdenum	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	
Method: SW846 7470A - Me	ercury (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:33	
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride (SW846 9056A)	1.0	U	1.0	mg/L			10/21/23 05:44	
Fluoride (SW846 9056A)	0.050	U	0.050	mg/L			10/21/23 05:44	
Sulfate (SW846 9056A)	1.0		1.0	mg/L			10/21/23 05:44	

50

mg/L

50 U

10/18/23 09:19

Job ID: 240-193602-1

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 240-590931/1-A

Matrix: Water

Analyte

Boron

Analysis Batch: 591127

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 590931

MB MB Result Qualifier RL Unit Prepared Analyzed Dil Fac 100 10/16/23 14:00 10/18/23 04:31 100 U ug/L

Lab Sample ID: LCS 240-590931/2-A

Matrix: Water

Analysis Batch: 591127

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 590931

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 1000 1000 100 80 - 120 Boron ug/L

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 240-590931/1-A

Client Sample ID: Method Blank Prep Type: Total Recoverable Matrix: Water Prep Batch: 590931 Analysis Batch: 591382

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Barium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Calcium	1000	U	1000	ug/L		10/16/23 14:00	10/18/23 15:59	1
Chromium	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Iron	100	U	100	ug/L		10/16/23 14:00	10/18/23 15:59	1
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Lithium	8.0	U	8.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Molybdenum	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1

Lab Sample ID: LCS 240-590931/3-A

Matrix: Water

Analysis Batch: 591382

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 590931

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	100	101		ug/L		101	80 - 120	
Arsenic	1000	941		ug/L		94	80 - 120	
Barium	1000	940		ug/L		94	80 - 120	
Beryllium	500	489		ug/L		98	80 - 120	
Cadmium	500	482		ug/L		96	80 - 120	
Calcium	25000	22000		ug/L		88	80 - 120	
Chromium	500	494		ug/L		99	80 - 120	
Cobalt	500	478		ug/L		96	80 - 120	
Iron	5000	4530		ug/L		91	80 - 120	
Lead	500	484		ug/L		97	80 - 120	
Lithium	500	487		ug/L		97	80 - 120	
Molybdenum	500	475		ug/L		95	80 - 120	
Selenium	1000	955		ug/L		95	80 - 120	

Eurofins Cleveland

Client: TRC Environmental Corporation. Job ID: 240-193602-1

LCS LCS

Unit

ug/L

Project/Site: CCR DTE St. Clair Power

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 240-590931/3-A **Matrix: Water**

Analysis Batch: 591382

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable Prep Batch: 590931

%Rec

Analyte Added Result Qualifier Unit %Rec Limits Thallium 1000 954 ug/L 95 80 - 120

Spike

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-590935/1-A

Lab Sample ID: LCS 240-590935/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 591320

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 590935**

Prepared Analyzed Dil Fac

MB MB Analyte Result Qualifier

Mercury 0.20 П

Client Sample ID: Lab Control Sample

10/16/23 14:00 10/18/23 13:48

Prep Type: Total/NA **Prep Batch: 590935**

Analysis Batch: 591320 LCS LCS Spike

%Rec Added Analyte Result Qualifier Unit %Rec Limits 5.00 80 - 120 Mercury 4.87 ug/L 97

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-591640/3

Matrix: Water

Analysis Batch: 591640

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL Unit D Dil Fac Prepared Analyzed Chloride 1.0 U 1.0 mg/L 10/21/23 01:22 Fluoride 0.050 U 0.050 mg/L 10/21/23 01:22 Sulfate 1.0 U 1.0 mg/L 10/21/23 01:22

RL

0.20

Lab Sample ID: LCS 240-591640/4

Matrix: Water

Analysis Batch: 591640

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits Analyte Chloride 50.0 51.7 mg/L 103 90 - 110 Fluoride 2.50 2.74 mg/L 110 90 - 110 Sulfate 50.0 54.2 mg/L 90 - 110 108

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 240-591249/1

Matrix: Water

Total Dissolved Solids

Analyte

Analysis Batch: 591249

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Prepared Result Qualifier RL Unit D Analyzed Dil Fac 10 10 U mg/L 10/18/23 09:19

Eurofins Cleveland

QC Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Prep Type: Total/NA

Dil Fac

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

MB MB Result Qualifier

10 U

Sample Sample

Lab Sample ID: LCS 240-591249/2 **Matrix: Water**

Analysis Batch: 591249

Analyte

Total Dissolved Solids

Lab Sample ID: MB 240-591417/1

Matrix: Water Analysis Batch: 591417

Total Dissolved Solids

Lab Sample ID: LCS 240-591417/2 **Matrix: Water**

Analysis Batch: 591417

Analyte

Total Dissolved Solids Lab Sample ID: 240-193602-1 DU

Matrix: Water Analysis Batch: 591417

Analyte

Result Qualifier Total Dissolved Solids 2000

Spike Added

RL

10

336

Spike

Added

336

317

316

LCS LCS

Result Qualifier

Unit

mg/L

Unit mg/L

%Rec D

94 80 - 120

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

%Rec

Limits

10/19/23 09:19

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec Result Qualifier Limits Unit %Rec

> 80 - 120 mg/L

Prepared

Client Sample ID: MW-16-01 Prep Type: Total/NA

DU DU **RPD** Result Qualifier Unit **RPD** Limit 1920 mg/L 20

QC Association Summary

Client: TRC Environmental Corporation. Job ID: 240-193602-1 Project/Site: CCR DTE St. Clair Power

Metals

Prep Batch: 590931

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total Recoverable	Water	3005A	
240-193602-2	MW-16-02	Total Recoverable	Water	3005A	
240-193602-3	MW-16-03	Total Recoverable	Water	3005A	
240-193602-4	MW-16-04	Total Recoverable	Water	3005A	
240-193602-5	DUP-01	Total Recoverable	Water	3005A	
240-193602-6	EB-01	Total Recoverable	Water	3005A	
MB 240-590931/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-590931/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCS 240-590931/3-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 590935

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	7470A	
240-193602-2	MW-16-02	Total/NA	Water	7470A	
240-193602-3	MW-16-03	Total/NA	Water	7470A	
240-193602-4	MW-16-04	Total/NA	Water	7470A	
240-193602-5	DUP-01	Total/NA	Water	7470A	
240-193602-6	EB-01	Total/NA	Water	7470A	
MB 240-590935/1-A	Method Blank	Total/NA	Water	7470A	
LCS 240-590935/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 591127

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total Recoverable	Water	6010D	590931
240-193602-2	MW-16-02	Total Recoverable	Water	6010D	590931
240-193602-3	MW-16-03	Total Recoverable	Water	6010D	590931
240-193602-4	MW-16-04	Total Recoverable	Water	6010D	590931
240-193602-5	DUP-01	Total Recoverable	Water	6010D	590931
240-193602-6	EB-01	Total Recoverable	Water	6010D	590931
MB 240-590931/1-A	Method Blank	Total Recoverable	Water	6010D	590931
LCS 240-590931/2-A	Lab Control Sample	Total Recoverable	Water	6010D	590931

Analysis Batch: 591320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	7470A	590935
240-193602-2	MW-16-02	Total/NA	Water	7470A	590935
240-193602-3	MW-16-03	Total/NA	Water	7470A	590935
240-193602-4	MW-16-04	Total/NA	Water	7470A	590935
240-193602-5	DUP-01	Total/NA	Water	7470A	590935
240-193602-6	EB-01	Total/NA	Water	7470A	590935
MB 240-590935/1-A	Method Blank	Total/NA	Water	7470A	590935
LCS 240-590935/2-A	Lab Control Sample	Total/NA	Water	7470A	590935

Analysis Batch: 591382

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total Recoverable	Water	6020B	590931
240-193602-2	MW-16-02	Total Recoverable	Water	6020B	590931
240-193602-3	MW-16-03	Total Recoverable	Water	6020B	590931
240-193602-4	MW-16-04	Total Recoverable	Water	6020B	590931
240-193602-5	DUP-01	Total Recoverable	Water	6020B	590931
240-193602-6	EB-01	Total Recoverable	Water	6020B	590931

Eurofins Cleveland

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Metals (Continued)

Analysis Batch: 591382 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 240-590931/1-A	Method Blank	Total Recoverable	Water	6020B	590931
LCS 240-590931/3-A	Lab Control Sample	Total Recoverable	Water	6020B	590931

General Chemistry

Analysis Batch: 591249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-6	EB-01	Total/NA	Water	SM 2540C	
MB 240-591249/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-591249/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 591417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	SM 2540C	_
240-193602-2	MW-16-02	Total/NA	Water	SM 2540C	
240-193602-3	MW-16-03	Total/NA	Water	SM 2540C	
240-193602-4	MW-16-04	Total/NA	Water	SM 2540C	
240-193602-5	DUP-01	Total/NA	Water	SM 2540C	
MB 240-591417/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-591417/2	Lab Control Sample	Total/NA	Water	SM 2540C	
240-193602-1 DU	MW-16-01	Total/NA	Water	SM 2540C	

Analysis Batch: 591640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	9056A	
240-193602-1	MW-16-01	Total/NA	Water	9056A	
240-193602-2	MW-16-02	Total/NA	Water	9056A	
240-193602-2	MW-16-02	Total/NA	Water	9056A	
240-193602-3	MW-16-03	Total/NA	Water	9056A	
240-193602-3	MW-16-03	Total/NA	Water	9056A	
240-193602-4	MW-16-04	Total/NA	Water	9056A	
240-193602-4	MW-16-04	Total/NA	Water	9056A	
240-193602-5	DUP-01	Total/NA	Water	9056A	
240-193602-5	DUP-01	Total/NA	Water	9056A	
240-193602-6	EB-01	Total/NA	Water	9056A	
MB 240-591640/3	Method Blank	Total/NA	Water	9056A	
LCS 240-591640/4	Lab Control Sample	Total/NA	Water	9056A	

Eurofins Cleveland

_

6

8

9

10

12

Lab Chronicle

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-1

Matrix: Water

Job ID: 240-193602-1

Client Sample ID: MW-16-01 Date Collected: 10/12/23 10:00 Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 05:54
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:44
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:19
Total/NA	Analysis	9056A		2	591640	JWW	EET CLE	10/21/23 12:06
Total/NA	Analysis	9056A		10	591640	JWW	EET CLE	10/21/23 12:26
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Lab Sample ID: 240-193602-2 Client Sample ID: MW-16-02 Date Collected: 10/12/23 09:04

Date Received: 10/14/23 08:00

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 05:59
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:46
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:21
Total/NA	Analysis	9056A		2	591640	JWW	EET CLE	10/21/23 03:43
Total/NA	Analysis	9056A		20	591640	JWW	EET CLE	10/21/23 04:03
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Client Sample ID: MW-16-03 Lab Sample ID: 240-193602-3

Date Collected: 10/12/23 11:49 **Matrix: Water** Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 06:03
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:49
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:23
Total/NA	Analysis	9056A		5	591640	JWW	EET CLE	10/21/23 07:04
Total/NA	Analysis	9056A		25	591640	JWW	EET CLE	10/21/23 07:24
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Lab Chronicle

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-4

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/12/23 12:57 Date Received: 10/14/23 08:00

Client Sample ID: MW-16-04

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 06:08
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:51
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:25
Total/NA	Analysis	9056A		5	591640	JWW	EET CLE	10/21/23 06:24
Total/NA	Analysis	9056A		25	591640	JWW	EET CLE	10/21/23 06:44
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Lab Sample ID: 240-193602-5 **Client Sample ID: DUP-01** Date Collected: 10/12/23 00:00

Matrix: Water

Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 06:12
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:54
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:31
Total/NA	Analysis	9056A		2	591640	JWW	EET CLE	10/21/23 03:02
Total/NA	Analysis	9056A		20	591640	JWW	EET CLE	10/21/23 03:23
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Client Sample ID: EB-01 Lab Sample ID: 240-193602-6 Date Collected: 10/11/23 10:40

Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 06:17
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:56
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:33
Total/NA	Analysis	9056A		1	591640	JWW	EET CLE	10/21/23 05:44
Total/NA	Analysis	SM 2540C		1	591249	QUY8	EET CLE	10/18/23 09:19

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Eurofins Cleveland

Matrix: Water

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-24
Georgia	State	4062	02-27-24
Illinois	NELAP	200004	07-31-24
lowa	State	421	06-01-25
Kentucky (UST)	State	112225	02-28-24
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	02-27-24
Minnesota	NELAP	039-999-348	12-28-23
New Jersey	NELAP	OH001	07-01-24
New York	NELAP	10975	01-04-24
Ohio	State	8303	02-27-24
Ohio VAP	State	ORELAP 4062	02-27-24
Oregon	NELAP	4062	11-27-23
Pennsylvania	NELAP	68-00340	01-01-24
Texas	NELAP	T104704517-22-19	08-31-24
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-19-23

4

5

8

9

10

12

Phone (330) 497-9396 Phone (330) 497-0772						
Client Information	Sampler	J 1485C		Lab PM Brooks, Kris M	Camer Tracking No(s):	COC No. 240-112841-38006.1
Client Contact:			-	lie	State of Ongin	Page
Jacob Krenz	73170	7 531	2 Kris	Kris. Brooks@et.eurofinsus.com		Page 1 of 1
Company TRC Environmental Corporation.		PWSID		alysis	Requested	# qor
Address: 1540 Eisenhower Place	Due Date Requested:					Codes.
City Ann Arbor	TAT Requested (days):			10,00	-	A - HCL M - Hexane B - NaOH None C - 70 A catata
State, Zip MI, 48108-7080	Compliance Project:	A Yes A No				
Phone 313-971-7080(Tel) 313-971-9022(Fax)	PO# 199490 - 2023			8e' Cq'		G - Amchlor T - TSP Dodecahydrate
Email JKrenz@trccompanies.com	WO # 518728.0004			(ol) 5, 88, 1		I - Ice J - Di Water
Project Name CCR DTE St. Clair Power	Project # 24016804			Sb, A . II. V. Z . Fluorid		K - EDTA L - EDA
Site Michigan	SSOW#			SD (Young)		Other:
Sample Identification	aten of the state	Sample Type Sample (C=comp,	Matrix (W-water, S-solid. Dewastefoli, Dewastefoli,	ieid Filtered 320_Ra228 - Ra	240-1936	otsi Number
	1		771	6 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	02 (Special Instructions/Note:
MW-16-01	10/0/33	0) 00	Water	ナナナナ	Chain	2
MW-16-02	CINIA C	3 250	Water	ナナナナナン	of C	
MW-16-03	,	1149 6	Water	ナナナナナるマ	usto	M
MW-16-04	10003	1257 C	Water	ナナナナシュ	dy	1.~
DUP-01	- rdcip	ر ا	Water	ナイナナイクグ		4
EB-01	10/11/01	104, 6	0 Water	ノ アナナナ 5 5		IV.
			Water			
Possible Hazard Identification Non-Hazard Plammable Skin Irritant	Poison B T Unknown	n Radiological	jical	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	assessed if samples are r	retained longer than 1 month) Archive For Months
Deliverable Requested: I, II, III, IV, Other (specify)				Special Instructions/QC Requirements	ents:	
Empty Kit Relinquished by		Jate:		Time	Method of Shipment	
Reinquished by	COULD (32	132	Company	Received by C	me (//	63 152 Company RC
Reinquished by All Man	10/13/23 Date/Time //3	1254	Company		Date/Time	1354 Company
Custody Seals Intact: Custody Seal No:	(8/0/6)	(78)	2	Cooled emperature(s) °C and Other Remarks	Remarks (1)	120 Ollan EEI No
						Ver: 01/16/2019

💸 eurofins

Chain of Custody Record

Eurofins Cleveland 180 S. Van Buren Avenue

Eurofins – Cleveland San	nple Receipt Form/!	Narrative		Login #	:	
Barberton Facility					6.1	1-11
lient Tra Corporat	\\O_i'	Site Name_			Cooler unp	раскей бу:
ooler Received on	363	Opened on 1	1/14/23	_	L Ds	home
edEx: 1st Grd Exp U	PS FAS Waypoin		Off Eurofins Co	urier O	her	
eceipt After-hours: Drop-	off Date/Time		Storage Lo	ocation		
rofins Cooler # EC	Foam Box (Client Cooler	Box Other			
Packing material used:	Bubble Wrap Fo	oam Plastic I	Bag None O	ther		
COOLANT:	et Ice Blue Ice	Dry Ice W	ater Mone			
Cooler temperature upo			See Multiple	Cooler Form	1	
IR GUN# 22	(CFO._°C	Observed Co	ooler Temp	°C Co	rrected Cool	er Temp°C
Were tamper/custody se	als on the outside of t	he cooler(s)? If	Yes Quantity	Yes	(No)	
-Were the seals on the				Yes		Tests that are not checked for pH by
-Were tamper/custody		_		Yes		Receiving:
-Were tamper/custody				Yes	No (NA)	
Shippers' packing slip at		-		Yes		VOAs
Did custody papers acco				Yes	No	Oil and Grease
Were the custody papers			iate place?	Ves	No	TOC
Was/were the person(s)	-		-	? Fee	No	
Did all bottles arrive in				(8-)	No	
Could all bottle labels (I	D/Date/Time) be recor	nciled with the	COC?	Yes	No	
For each sample, does th	e COC specify preser	vatives((Y)N), #	of containers (Y)	V), and san	ple type of g	grab/comp(Y/N)?
. Were correct bottle(s) us	sed for the test(s) indic	ated?	~	Yes)	No	
. Sufficient quantity recei	ved to perform indicat	ed analyses?		Ves	No	
2. Are these work share san	nples and all listed on	the COC?		Yes	No	
If yes, Questions 13-17			aboratory.			
Were all preserved samp		upon receipt?				H Strip Lot# HC316719
Were VOAs on the CO				Yes		
6. Were air bubbles >6 mr	•			Yes		
6. Was a VOA trip blank p			ot #	_ Yes	Not	
7. Was a LL Hg or Me Hg	trip blank present?			Yes	MO)	
ontacted PM	Date	by	via \	Verbal Vo	ice Mail Oth	ner
oncerning						
B. CHAIN OF CUSTOD	Y & SAMPLE DISC!	REPANCIES	additional nex	t page	Samples pro-	cessed by:
. SAMPLE CONDITIO	N					
imple(s)						
imple(s)					n a broken co	
ample(s)				>6 mm in	diameter. (N	otify PM)
. SAMPLE PRESERVA	TION					
ample(s)				were furth	er preserved	in the laboratory.
ample(s) ime preserved:	Preservative(s) ad	ded/Lot number	r(s).	_were furth	ici pieseiveu	m me moonatory.
mie proservou.	i reservative(s) au	Low Lot Hulliot	(0)			
OA Sample Preservation -	Date/Time VOAs Fro	zen:				

Log	in	#	*	
-----	----	---	---	--

			Eurofins - Canto	on Sample Receipt I	Multiple Cooler Form	
	Descri	iption	IR Gun # (Circle)	Observed	Corrected	Coolant (Circle)
(EC) Clie	Circle)	Other		Temp °C	Temp °C	(Welke) Blue toe Dyk
EC Clo		Other	IR GUN 9:	1 2	0.3	Weller None Wellce) Silve Ice By Ic
			IR GON 0:	0.	0.5	Wellice Sive ice By ice
IC Cle		Other	IR GUN F:			Welte Blue toe Bylor
EC Cle		Other	IR SUN 6:			Water Mone Water Street Dry Ice
EC Cle	nt Beax	Other	IR GUN F:			Welte None by ke
EC Cle	M Box	Other				Welst Mone
SC CSe	nf Box	Other	IR GUN #:	· ·		Weder Mene
SC Clea	of Best	Other	IR GUN #:			Wellice More too By too Water Manne
EC Clo	of Box	Other	IR GUN 6:			Wellice Stee See Bytee Water Mann
BC Cle	nt Ben	Other	11 GUN 6:			Wellce Sive Ice Bylce
EC CSec	nt Banc	Other	R OW #:			Wellie Shee See Bytes
BC Cle	d Box	Other	IR GON 6:			Wellie Nee too Byte
BC CBo	nd Best	Other	R 69H 6:			Wellto Nee to Byte
BC Cle	nd Best	Other	IR GUN F:			Wellto Nee Ice Byte
BC CBe	of Box	Other	IR 60H #:			Worker the tee Byte
BC CSe	d Bex	Other	12 GOM #:			Worker the fee Byte
BC CSec	ni Ben	Other	IR GUN #:			Well to the to Byte
BC Clo		Other	IR GUN #:			Wellice the too Byte
BC CBo		Other	IR GUN F:			Wellice Sheelice Byles
BC Clo		Other	10: GUN #:			Wellie Nee Ice Byte
SC Clea		Other	R GUN #:			Wellice Shoolice Byte
BC CBe		Other	R 64N 6:			Well too She lee By to
		Öther	R GUN #:			Weler Mone By to By to
BC CBe			R CW C:			Welet Mene
BC CSei		Other	R GW 4:			Woley Mone Byte Wolfe Byte
BC CBer		Other	R 60H 6:			Weley Mane Wellies She too By to
BC CBer	-	Other				Weller Hone Wellico Sive Ico Byte
SC Clien	l lex	Other	IR GUN #:			Water Name
SC CSea	l Box	Other	R GUN #:			Water Name
IC Clea	ł Bex	Other	# GUN #:			Wellice Silve Ice Bry Ice Water Mane
SC CSon	Bex	Other	R GUN F:			Wellice Shre ice Bry ice
BC Clon	.Box	Ölher	R GUN F:			Wellice Blee toe Bry to
BC Clon	Box	Other	IR GUN #:			Well ice Nee Ice Bry ice
EC Clien	Sex	Other	R GUN F:			Well to She to Bry to
EC Clea		Other	IR GUN #:			Wellice Sive toe Bry to Waler Mess
					□ See Tempe	erature Excursion Form

171-NC-099 Cooler Receipt Form Page 2 - Multiple Coden

Login Container Summary Report

240-193602

Temperature readings: _____

Client Sample ID	<u>Lab ID</u>	Container Type	<u>Con</u> pH	tainer Temp	Preservative Added (mls) Lot #
MW-16-01	240-193602-C-1	Plastic 500ml - with Nitric Acid	<2		
MW-16-01	240-193602-D-1	Plastic 1 liter - Nitric Acid	<2		
MW-16-01	240-193602-E-1	Plastic 1 liter - Nitric Acid	<2		
MW-16-02	240-193602-C-2	Plastic 500ml - with Nitric Acid	<2		
MW-16-02	240-193602-D-2	Plastic 1 liter - Nitric Acid	<2		
MW-16-02	240-193602-E-2	Plastic 1 liter - Nitric Acid	<2		
MW-16-03	240-193602-C-3	Plastic 500ml - with Nitric Acid	<2		
MW-16-03	240-193602-D-3	Plastic 1 liter - Nitric Acid	<2		
MW-16-03	240-193602-E-3	Plastic 1 liter - Nitric Acid	<2		
MW-16-04	240-193602-C-4	Plastic 500ml - with Nitric Acid	<2		
MW-16-04	240-193602-D-4	Plastic 1 liter - Nitric Acid	<2		
MW-16-04	240-193602-E-4	Plastic 1 liter - Nitric Acid	<2		
DUP-01	240-193602-C-5	Plastic 500ml - with Nitric Acid	<2		
DUP-01	240-193602-D-5	Plastic 1 liter - Nitric Acid	<2		
DUP-01	240-193602-E-5	Plastic 1 liter - Nitric Acid	<2		
EB-01	240-193602-C-6	Plastic 500ml - with Nitric Acid	<2		
EB-01	240-193602-D-6	Plastic 1 liter - Nitric Acid	<2		

<2

240-193602-E-6 Plastic 1 liter - Nitric Acid

EB-01

12

10

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 12/22/2023 1:03:04 PM

JOB DESCRIPTION

CCR DTE St. Clair Power

JOB NUMBER

240-196742-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 12/22/2023 1:03:04 PM

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790 2

А

6

4.0

. .

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	
Sample Summary	7
Detection Summary	
Client Sample Results	9
QC Sample Results	12
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16

3

4

8

9

11

Definitions/Glossary

Client: TRC Environmental Corporation.

Job ID: 240-196742-1

Project/Site: CCR DTE St. Clair Power

Qualifiers

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

7

8

10

11

12

Case Narrative

Client: TRC Environmental Corporation. Project: CCR DTE St. Clair Power

Job ID: 240-196742-1 Eurofins Cleveland

Job Narrative 240-196742-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/9/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.2°C

General Chemistry

Method 9056A_28D: The following samples were diluted due to the nature of the sample matrix: MW-16-01 (240-196742-2) and DUP-01 (240-196742-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Page 5 of 17 12/22/2023

2

Job ID: 240-196742-1

2

4

5

6

8

9

10

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-196742-1

Method	Method Description	Protocol	Laboratory	
9056A	Anions, Ion Chromatography	SW846	EET CLE	

4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

1

5

__

0

9

11

12

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-196742-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
240-196742-1	EB-01	Water	12/06/23 10:10	12/09/23 08:00	
240-196742-2	MW-16-01	Water	12/07/23 08:58	12/09/23 08:00	
240-196742-3	DUP-01	Water	12/07/23 00:00	12/09/23 08:00	

6

0

9

10

Detection Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-196742-1

Client Sample ID: EB-01 Lab Sample ID: 240-196742-1

No Detections.

Client Sample ID: MW-16-01 Lab Sample ID: 240-196742-2

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	1200	10	mg/L	10	9056A	Total/NA
Fluoride	1.5	0.10	mg/L	2	9056A	Total/NA

Client Sample ID: DUP-01 Lab Sample ID: 240-196742-3

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Met	nod	Prep Type
Chloride	1200	20	mg/L	20	905	3A	Total/NA
Fluoride	1.6	0.10	mg/L	2	905	ŝΑ	Total/NA

Eurofins Cleveland

Client: TRC Environmental Corporation. Job ID: 240-196742-1

Project/Site: CCR DTE St. Clair Power

Client Sample ID: EB-01 Lab Sample ID: 240-196742-1

Date Collected: 12/06/23 10:10 Matrix: Water
Date Received: 12/09/23 08:00

General Chemistry								
Analyte	Result Qualifier		RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	1.0	U	1.0	mg/L			12/22/23 04:44	1
Fluoride (SW846 9056A)	0.050	U	0.050	mg/L			12/22/23 04:44	1
Sulfate (SW846 9056A)	1.0	U	1.0	mg/L			12/22/23 04:44	1

O

0

9

10

10

Client Sample Results

Client: TRC Environmental Corporation. Job ID: 240-196742-1

Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-01 Lab Sample ID: 240-196742-2

Date Collected: 12/07/23 08:58

Date Received: 12/09/23 08:00

Matrix: Water

General Chemistry							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	1200	10	mg/L			12/22/23 06:11	10
Fluoride (SW846 9056A)	1.5	0.10	mg/L			12/22/23 05:49	2
Sulfate (SW846 9056A)	2.0 U	2.0	mg/L			12/22/23 05:49	2

5

6

8

9

11

12

1:

Client Sample Results

Client: TRC Environmental Corporation. Job ID: 240-196742-1

Project/Site: CCR DTE St. Clair Power

Client Sample ID: DUP-01 Lab Sample ID: 240-196742-3

Date Collected: 12/07/23 00:00 Matrix: Water

Date Received: 12/09/23 08:00

General Chemist	ry							
Analyte	Resu	lt Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 90	56A) 120	0	20	mg/L			12/22/23 06:54	20
Fluoride (SW846 90	56A) 1	6	0.10	mg/L			12/22/23 06:33	2
Sulfate (SW846 9056)	A) 2	0 U	2.0	mg/L			12/22/23 06:33	2

Ē

6

8

9

11

12

1:

QC Sample Results

Client: TRC Environmental Corporation.
Project/Site: CCR DTE St. Clair Power

Job ID: 240-196742-1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-598444/3

Matrix: Water

Analysis Batch: 598444

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: EB-01

Client Sample ID: EB-01

Prep Type: Total/NA

Prep Type: Total/NA

MB MB Unit Dil Fac Analyte Result Qualifier RL D Prepared Analyzed Chloride 1.0 U 1.0 mg/L 12/21/23 20:47 Fluoride 0.050 U 0.050 mg/L 12/21/23 20:47 1.0 U Sulfate 1.0 mg/L 12/21/23 20:47

Lab Sample ID: LCS 240-598444/4

Matrix: Water

Analysis Batch: 598444

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Ur	nit D	%Rec	Limits	
Chloride	50.0	48.2	mç	g/L	96	90 - 110	
Fluoride	2.50	2.44	mç	g/L	97	90 - 110	
Sulfate	50.0	49.9	mg	g/L	100	90 - 110	

Lab Sample ID: 240-196742-1 MS

Matrix: Water

Analysis Batch: 598444

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	1.0	U	50.0	46.1		mg/L		92	80 - 120	
Fluoride	0.050	U	2.50	2.18		mg/L		87	80 - 120	
Sulfate	1.0	U	50.0	46.6		mg/L		93	80 - 120	

Lab Sample ID: 240-196742-1 MSD

Matrix: Water

Analysis Batch: 598444

7 mining 0:10 = 0:10:11 0:00 1:11												
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	1.0	U	50.0	47.7		mg/L		95	80 - 120	4	15	
Fluoride	0.050	U	2.50	2.29		mg/L		91	80 - 120	5	15	
Sulfate	1.0	U	50.0	48.5		ma/L		97	80 - 120	4	15	

Eurofins Cleveland

3

+

6

Ω

3 4 C

11

12

L

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-196742-1

General Chemistry

Analysis Batch: 598444

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-196742-1	EB-01	Total/NA	Water	9056A	
240-196742-2	MW-16-01	Total/NA	Water	9056A	
240-196742-2	MW-16-01	Total/NA	Water	9056A	
240-196742-3	DUP-01	Total/NA	Water	9056A	
240-196742-3	DUP-01	Total/NA	Water	9056A	
MB 240-598444/3	Method Blank	Total/NA	Water	9056A	
LCS 240-598444/4	Lab Control Sample	Total/NA	Water	9056A	
240-196742-1 MS	EB-01	Total/NA	Water	9056A	
240-196742-1 MSD	EB-01	Total/NA	Water	9056A	

3

4

8

9

10

11

Lab Chronicle

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-196742-1

Lab Sample ID: 240-196742-1

Matrix: Water

Client Sample ID: EB-01
Date Collected: 12/06/23 10:10

Date Received: 12/09/23 08:00

		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
L	Total/NA	Analysis	9056A		1	598444	JWW	EET CLE	12/22/23 04:44

Client Sample ID: MW-16-01 Lab Sample ID: 240-196742-2

Date Collected: 12/07/23 08:58 Matrix: Water

Date Received: 12/09/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			598444	JWW	EET CLE	12/22/23 05:49
Total/NA	Analysis	9056A		10	598444	JWW	EET CLE	12/22/23 06:11

Client Sample ID: DUP-01 Lab Sample ID: 240-196742-3

Date Collected: 12/07/23 00:00 Matrix: Water

Date Received: 12/09/23 08:00

Batch Batch Dilution Batch Prepared Prep Type Method Туре Run Factor **Number Analyst** or Analyzed Lab 12/22/23 06:33 Total/NA 9056A 598444 JWW EET CLE Analysis 2 Total/NA Analysis 9056A 20 598444 JWW EET CLE 12/22/23 06:54

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

5

J

9

4.4

12

1

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-196742-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-24
Georgia	State	4062	02-27-24
Illinois	NELAP	200004	07-31-24
lowa	State	421	06-01-25
Kentucky (UST)	State	112225	02-28-24
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	02-27-24
Minnesota	NELAP	039-999-348	12-31-23
Minnesota (Petrofund)	State	3506	08-01-23 *
New Jersey	NELAP	OH001	07-01-24
New York	NELAP	10975	04-02-24
Ohio	State	8303	02-27-24
Ohio VAP	State	ORELAP 4062	02-27-24
Oregon	NELAP	4062	02-27-24
Pennsylvania	NELAP	68-00340	08-31-24
Texas	NELAP	T104704517-22-19	08-31-24
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-31-23

Eurofins Cleveland

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Environment Testing

💸 eurofins

MICHIGAN マートラー 13-4 190 Chain of Custody Record

Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772

Eurofins Cleveland

180 S. Van Buren Avenue

N - None
O - Ashao2
P - Na2045
R - Na25203
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
V - MCAA
W - pH 4-5 Special Instructions/Note: Ver: 06/08/2021 Z - other (specify) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont COC No: 240-114845-40726.1 Page: Page 1 of 1 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid J - DI Water K - EDTA L - EDA Total Number of containers Method of Shipment: Carrier Tracking No(s): State of Origin: **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: 240-196742 Chain of Custody Lab PM:
Brooks, Kris M
E-Mail:
Kris.Brooks@et.eurofinsus.com ≥ ≥ 9056A_28D - Chloride Perform MS/MSD (Yes or No) Sample Matrix
Type (W=varter, is=solid.
(C=Comp, O=vaste/oil.)
G=grab) BT=Tissue, A=AP) Sompany Preservation Code: Water Matrix Water Water Radiological 1927 0 9 0 9130 Compliance Project: A Yes A No Sample Time 0 0 0329 Date/Time: Unknown Date: (AT Requested (days): Date/Time: 123 | 223 | Date/Time: | Due Date Requested PO #: 199490 - 2023 Sample Date wo #: 518728.0004 12-1-23 12-7-23 12-6-23 Project #: 24016804 SSOW#: Phone: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No.: Phone: 313-971-7080(Tel) 313-971-9022(Fax) 0-91-MW DUP-0 Possible Hazard Identification E 8-0 Sompany: TRC Environmental Corporation. vbuening@trccompanies.com Empty Kit Relinquished by: Project Name: CCR DTE St. Clair Power Ndress: 1540 Eisenhower Place Client Information Sample Identification Client Contact: Mr. Vincent Buening State, Zip: MI, 48108-7080 elinquished by: Ann Arbor Michigan

Eurofins - Clevel	and Sample Receipt For	m/Narrative	7	Login # :	
Barberton Facility	<u>y</u>				
Client RC		Site Name		Cooler u	npacked by:
Cooler Received on	12.9.23	Opened on	4.23	117)·2011
FedEx: 1st Grd Ex	p UPS FAS Waypo	Client Drop Off	Eurofins Cour	ier Other	
Receipt After-hour	s: Drop-off Date/Time	·	Storage Loca		
Eurofins Cooler #	Form Box		Box Other		-
_		Foam Plastic Bag		r	
	Wellce Blue Ice	Dry Ice Water			
1. Cooler temperate	~ ` ` \ \		See Multiple Coo	£	20
IR GUN#	(CF),	C) Observed Coole	r Temp.	°C Corrected Cool	er TempC
2. Were tamper/cus	tody seals on the outside of	f the cooler(s)? If Ye	s Ouantity	YES No	
•	on the outside of the coole		(No NA	Tests that are pot checked for pH by
	custody seals on the bottle(s		g/MeHg)?	Yes No	Receiving:
-Were tamper/c	custody seals intact and unc	ompromised?		YES No NA	
3. Shippers' packing	slip attached to the cooler(s)?	`	Yes (No.)	VOAs
	rs accompany the sample(s)		•	Yes No	Oll and Grease TOC
	papers relinquished & sign			Yes No	
•	son(s) who collected the san			Yes No	
	ive in good condition (Unbr			Yes No	•
	bels (ID/Date/Time) be reco			Yes No	L/comp(VAN)
	loes the COC specify presence(s) used for the test(s) indicate		, —	- ·	ID/COMPLETINE!
	e(s) used for the test(s) mail received to perform indicate			Yes No	
	are samples and all listed on			Yes No	
	13-17 have been checked at			100 100	
	sample(s) at the correct pH			Yes No Sa pH	Strip Lot# HC316719
4. Were VOAs on th		-		es No	
	6 mm in any VOA vials?		n this.	res No NA	
	lank present in the cooler(s)		Y	red No	
7. Was a LL Hg or M	le Hg trip blank present?		Y	es No	
ontacted PM	Date	bv	via Verhal	Voice Mail Other	
	1 1			VOJOC TVIBIL OBIO-	
oncerning					
			· · · · · · · · · · · · · · · · · · ·		
. CHAIN OF CUST	ODY & SAMPLE DISCR	EPANCIES Dad	ditional next page	Samples process	ed by:
		· ·			
	<u> </u>				
SAMPLE CONDIT	MON	,			
mple(s)		ere received after the i	recommended holdi	ing time had expired	1.
nple(s)	, ,			in a broken contain	
aple(s)	/			diameter. (Notify	
SAMPLE PRESER	VATION /				5
ple(s)	***************************************				1
F-3(3)	•		upra fied	her preserved in the	laboratory.
e preserved:	•	VLot number(s):	were furti	her preserved in the	laboratory.
•	Preservative(s) added				laboratory.
•	•				laboratory.
•	Preservative(s) added				laboratory.

Appendix B Data Quality Reviews

Laboratory Data Quality Review Groundwater Monitoring Event April 2023 DTE Electric Company St. Clair Power Plant (DTE SCPP)

Groundwater samples were collected by TRC for the April 2023 sampling event. Samples were analyzed for anions, total metals, and total dissolved solids by Eurofins-Test America Laboratories, Inc. (Eurofins-TA), located in Barberton, Ohio. The laboratory analytical results are reported in laboratory reports 240-184669-1 (Revision 1) and 240-184674-1 (Revision 1).

During the April 2023 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-16-01 ■ MW-16-02 ■ MW-16-03 ■ MW-16-04

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A
Total Boron	SW846 3005A/6010D
Total Metals	SW846 3005A/6020B/7470A
Total Dissolved Solids	SM 2540C

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures.
 Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), where applicable.
 The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;
- Data for laboratory duplicates, where applicable. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and

Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III, IV, and additional Part 115 constituents as well as copper, iron, magnesium, nickel, vanadium, silver, and zinc will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- There was one equipment blank submitted with this dataset (EB-01). No target analytes were detected in the equipment blank.
- No target analytes were detected in the method blanks.
- LCS recoveries for all target analytes were within laboratory control limits.
- MS/MSD analyses were performed on sample EB-01 for anions. The percent recoveries (%Rs) and relative percent differences (RPDs) for the MS/MSD analyses met the method acceptance criteria.
- A laboratory duplicate analysis was not performed on a sample from this data set.
- DUP-01 corresponds with MW-16-03; RPDs between the parent and duplicate sample were within the QC limits with the following exception:
 - The RPD for TDS (42.9%) was >30. Therefore, the positive results for TDS should be considered estimated in all groundwater samples in this data set, as summarized in the attached table, Attachment A.
- The nondetect RL (2.0 mg/L) for sulfate in sample MW-16-01 was above the QAPP-specified RL (1.0 mg/L) due to a 2-fold dilution likely performed due to the elevated concentration of chloride.
- The nondetect RL (5.0 mg/L) for sulfate in samples MW-16-02, MW-16-03, MW-16-03, MW-16-04, and DUP-01 was above the QAPP-specified RL (1.0 mg/L) due to a 5-fold dilution likely performed due to elevated concentrations of chloride.
- The nondetect RL for chromium (5.0 μg/L) was above the QAPP requested RL (2 μg/L) in all groundwater samples.
- The laboratory reported results for fluoride in both in laboratory reports 240-184669-1 and 240-184674-1; the highest detected fluoride concentrations between the two reports should be used for project objectives in order to remain conservative.

Laboratory Data Quality Review Groundwater Verification Event June 2023 DTE Electric Company St. Clair Power Plant (DTE SCPP)

A groundwater sample was collected by TRC for the June 2023 sampling event. The sample was analyzed for total dissolved solids by Eurofins-Test America Laboratories, Inc. (Eurofins-TA), located in Barberton, Ohio. The laboratory analytical results are reported in laboratory report 240-187144-1.

During the June 2023 sampling event, a groundwater sample was collected from the following well:

■ MW-16-03

The sample was analyzed for the following constituent:

Analyte Group	Method
Total Dissolved Solids	SM 2540C

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures.
 Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), where applicable.
 The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;
- Data for laboratory duplicates, where applicable. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- The reviewed Appendix III constituent will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- There was one equipment blank submitted with this dataset (EB-01). TDS was not detected in the equipment blank.
- TDS was not detected in the method blank.
- The LCS recovery for TDS was within laboratory control limits.
- MS/MSD analyses were not performed on a sample from this data set.
- Laboratory duplicate analysis was performed on sample EB-01 for TDS; all criteria were met.
- DUP-01 corresponds with MW-16-03; the relative percent difference between the parent and duplicate sample was within the QC limit.

Laboratory Data Quality Review Groundwater Monitoring Event October 2023 DTE Electric Company St. Clair Power Plant (DTE SCPP)

Groundwater samples were collected by TRC for the October 2023 sampling event. Samples were analyzed for anions, total metals, and total dissolved solids by Eurofins Environment Testing, located in Barberton, Ohio. Samples were analyzed for radium by Eurofins Environment Testing, located in Earth City, Missouri. The laboratory analytical results are reported in laboratory reports 240-193602-1, 240-193602-2, and 240-193602-3.

During the October 2023 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-16-01

■ MW-16-02

■ MW-16-03

■ MW-16-04

Each sample was analyzed for the following constituents:

Analyte Group	Method				
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A				
Total Boron	SW846 3005A/6010D				
Total Metals	SW846 3005A/6020B/7470A				
Total Dissolved Solids	SM 2540C				
Radium (Radium-226, Radium-228, Combined Radium)	SW846 9315/9320				

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020) and the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures.
 Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), where applicable.
 The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;

- Data for laboratory duplicates, where applicable. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III, IV, and additional Part 115 constituents as well as copper, iron, nickel, vanadium, silver, and zinc will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- TDS was analyzed slightly after the 7th day of collection for sample MW-16-02. However, there is no impact on data usability since the sample was analyzed for TDS on the 7th day after collection.
- There was one equipment blank submitted with this dataset (EB-01). Sulfate (1.0 ug/L) was detected in the equipment blank. There is no impact on the data usability since sulfate was nondetect in the associated samples.
- No target analytes were detected in the method blanks with the following exception.
 - Radium-228 was detected in method blank 160-632483/1-A at 0.6466 +/- 0.334 pCi/L.
 The detected radium-228 results for samples MW-16-01, MW16-04, and DUP-01 associated with this method blank are potentially false positives, as summarized in the attached table, Attachment A.
- LCS recoveries for all target analytes were within laboratory control limits.
- Laboratory duplicate analyses were performed on sample MW-16-01 for TDS, radium-226, and radium-228; all criteria were met.
- Samples DUP-01 and MW-16-01 were submitted as the field duplicate pair with this data set; all criteria were met.
- The nondetect RL (2.0 mg/L) for sulfate in samples MW-16-01, MW-16-02, and DUP-01 was above the QAPP-specified RL (1.0 mg/L) due to 2-fold dilutions likely performed due to the elevated concentrations of chloride.

- The nondetect RL (5.0 mg/L) for sulfate in samples MW-16-03 and MW-16-04 was above the QAPP-specified RL (1.0 mg/L) due to 5-fold dilutions likely performed due to elevated concentrations of chloride.
- The nondetect RL for chromium (5.0 μg/L) was above the QAPP requested RL (2.0 μg/L) in all groundwater samples.
- The nondetect RL (50 mg/L) for TDS in sample EB-01 was above the QAPP-specified RL (10 mg/L); there is no adverse impact on the data usability due to this issue since TDS was detected >10x the elevated RL for EB-01 in the associated groundwater samples.
- Carrier recoveries were within 40-110%.

Field Parameter Data Quality Review Groundwater Sampling Event October 2023 Verification Resampling DTE Electric Company St. Clair Power Plant Former Bottom Ash Basins (DTE SCPP BABs)

On October 27, 2023, TRC Environmental Corporation (TRC) collected groundwater parameters at monitoring well MW-16-02 to verify initial pH (field measured) results that were outside of prediction limits during the October 2023 detection monitoring event. Prior to field parameter collection, the well was evacuated to the top of the well screen and at least one total volume of the pump system of groundwater were purged and stabilized in accordance with the *Hydrogeological Monitoring Plan for the DTE Electric Company St. Clair Power Plant Bottom Ash Basins Coal Combustion Residual Unit* (TRC, December 2020).

TRC routinely reviews the field parameter data to assess data usability. The following sections summarize the data review procedure and the results of this review.

Data Quality Review Procedure

The following items were included in the evaluation of the field parameter data:

- Review of sonde calibration data;
- Confirm field parameter stabilization criteria were met;
- Compare field parameters to historical data;
- Compare field parameters to prediction limits, and;
- Overall usability of data based on these items.

Findings

The data quality objectives for the project were met and the data are usable. The discussion that follows describes the QA/QC results and evaluation.

- Sonde calibration readings were within the calibration range for all field parameters.
- Field parameters met stabilization criteria for three successive readings.
- Field parameter readings were comparable to historical data.
- Field parameter readings were within prediction limits.
- Data are usable for purposes of verification resampling.

Attachment A

Summary of Data Non-Conformances for Groundwater Monitoring Event Analytical Data
DTE St. Clair Power Plant
East China Township, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
MW-16-01	10/12/2023		
MW-16-04	10/12/2023	Radium-228	Method blank contamination; potential false positive.
DUP-01	10/12/2023		

Laboratory Data Quality Review Groundwater Monitoring Verification Event December 2023 DTE Electric Company St. Clair Power Plant (DTE SCPP)

Groundwater samples were collected by TRC for the December 2023 verification sampling event. Samples were analyzed for anions by Eurofins Environment Testing, located in Barberton, Ohio. The laboratory analytical results are reported in laboratory report 240-196742-1.

During the December 2023 sampling event, a groundwater sample was collected from the following well:

■ MW-16-01

The sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures.
 Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), where applicable.
 The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;
- Data for laboratory duplicates, where applicable. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- The reviewed Appendix III constituents will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- There was one equipment blank submitted with this dataset (EB-01). No target analytes were detected in the equipment blank.
- No target analytes were detected in the method blank.
- LCS recoveries for all target analytes were within laboratory control limits.
- Laboratory duplicate analyses were not performed on a sample from this data set.
- MS/MSD analyses were performed on sample EB-01 for anions; all criteria were met.
- Samples DUP-01 and MW-16-01 were submitted as the field duplicate pair with this data set; all criteria were met.
- The nondetect RL (2.0 mg/L) for sulfate in samples DUP-01 and MW-16-01 was above the QAPP-specified RL (1.0 mg/L) due to 2-fold dilutions likely performed due to the elevated concentrations of chloride.

Appendix C Groundwater Protection Standards Calculation and Comparison

Date: January 31, 2024

To: Chris Scieszka, DTE Electric Company

From: Sarah Holmstrom, TRC

Kristin Lowery, TRC Alex Eklund, TRC

Project No.: 518728.0004.0000

Subject: Groundwater Protection Standard Calculation and Comparison – DTE Electric

Company, St Clair Power Plant Bottom Ash Basins CCR Unit

DTE Electric Company (DTE Electric) is pursuing closure by removal for the St. Clair Power Plant (SCPP) Bottom Ash Basins (BABs) CCR unit. Closure by removal activities related to the BABs began on August 15, 2022. DTE Electric completed the removal of CCR from the BABs, including from the concrete-lined canal connecting the East and West BABs, in February 2023. The BABs were backfilled following CCR removal, and topsoil, seed and mulch blanket placement atop the BABs was complete by May 19, 2023.

While the BABs have remained in detection monitoring throughout its operation, the closure must demonstrate that groundwater concentrations do not exceed the Appendix IV constituent GWPS established under §257.95(h) after the closure of the CCR impoundment pursuant to 257.102(c). TRC calculated background statistical limits and developed GWPS for the Appendix IV parameters for the BABs in accordance with §257.95(h) as presented in this memorandum. Two consecutive post-CCR removal groundwater sampling events for Appendix IV constituents have been completed to demonstrate that the GWPS are met for closure of the SCPP BABs CCR unit in accordance with §257.102(c). These two semiannual closure monitoring events were conducted on April 28, 2023 and October 12, 2023.

Per the CCR Rule §257.95(h)¹, the EPA maximum contaminant levels (MCLs) will be the GWPSs for those Appendix IV constituents that have established MCLs. For Appendix IV constituents that do not have established MCLs, the GWPSs are based upon the EPA Regional Screening Levels (RSLs). For constituents that have statistically derived background levels higher than the MCL and/or RSL, the GWPS becomes equal to the background level.

This memorandum presents the background statistical limits and GWPS derived for the Appendix IV parameters for the SCPP BABs CCR unit using the aforementioned approach pursuant to §257.95(h). In addition, the April 2023 and October 2023 Appendix IV groundwater data are presented in this

¹ As amended per Phase One, Part One of the CCR Rule (83 FR 36435).

memorandum and show that all results are below their respective GWPS.

Background Data

Per 40 CFR §257.94(b), a minimum of eight rounds of background sampling for the Appendix IV constituents were completed at the SCPP BABs CCR unit from August 2016 through September 2017, as part of the baseline monitoring period for existing CCR surface impoundments. The Appendix IV constituents consist of the following:

Antimony	Beryllium	Cobalt	Lithium	Radium-226/228
Arsenic	Arsenic Cadmium		Mercury	Selenium
Barium	Chromium	Lead	Molybdenum	Thallium

The background Appendix IV data used in this analysis were provided in the Annual Groundwater Monitoring Report (2017 Annual Report) (TRC, January 2018). The background data for the SCPP BABs were evaluated in accordance with the *Groundwater Statistical Evaluation Plan* (Stats Plan) (TRC, October 2017, revised December 2020). Per the Stats Plan, the SCPP BABs CCR unit uses an intrawell statistical approach. For intrawell methods, the background data set is comprised of the historical data established at each individual monitoring well, which accounts for natural spatial variability that occurs in background encountered across the site. Background data were evaluated utilizing ChemStat™ statistical software. ChemStat™ is a software tool that is commercially available for performing statistical evaluation consistent with procedures outlined in U.S. EPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities (Unified Guidance; UG). Within the ChemStat™ statistical program (and the UG), tolerance limits were selected to perform the statistical calculation for background limits. Use of tolerance limits is a streamlined approach that offers adequate statistical power and is an acceptable approach under the CCR Rule. As such, upper tolerance limits (UTLs) were calculated for each of the CCR Appendix IV parameters at each monitoring well and used to compare to the respective MCL or RSL. The following narrative describes the methods employed and the results obtained for the UTL calculations and the resulting GWPSs. The ChemStat™ output files are included as an attachment.

The set of wells utilized for the SCPP BABs CCR Unit includes MW-16-01, MW-16-02, MW-16-03, and MW-16-04. As noted above, the SCPP BABs uses an intrawell statistical approach wherein each well serves as both the background and compliance well. The background data evaluation included the following steps:

- Review of data quality checklists for the baseline/background data sets for CCR Appendix IV constituents;
- Graphical representation of the baseline data as time versus concentration (T v. C) by well/constituent pair;
- Outlier testing of individual data points that appear from the graphical representations as potential outliers;
- Evaluation of percentage of non-detects for each baseline/background well-constituent (w/c) pair;
- Distribution of the data:

- Calculation of the UTLs for each cumulative baseline/background data set; and
- Establishment of GWPS as the higher of the MCL/RSL or the UTL for each Appendix IV constituent at each monitoring well.

The results of these evaluations are presented and discussed below.

Data Quality

Data from each sampling round were evaluated for completeness, overall quality and usability, method-specified sample holding times, precision and accuracy, and potential sample contamination. The review was completed using the following quality control (QC) information which at a minimum included chain-of-custody forms, investigative sample results including blind field duplicates, and as provided by the laboratory, method blanks, laboratory control spikes, laboratory duplicates. Data were found to be complete and usable for the purposes of the CCR monitoring program.

Time versus Concentration Graphs

The time versus concentration (T v. C) graphs (Attachment A) indicated potential or suspect outliers for antimony, beryllium, cadmium, chromium, cobalt, lead, and molybdenum due to singular detections and anomalously high values.

While variations in results are present, the graphs show consistent baseline data and do not suggest that data sets, as a whole, likely have overall trending or seasonality. However, due to limitations on CCR Rule implementation timelines, the data sets are of relatively short duration for making such observations regarding overall trending or seasonality.

Outlier Testing

The outliers identified in the T v. C graphs were tested using Dixon's Test for Outliers at the 95% confidence level.² Therefore, these data were removed from the background data set. Outlier removal from the background data set is summarized in Table 1.

Distribution of the Data Sets

ChemStat™ was utilized to evaluate each data set for normality. If the skewness coefficient was calculated to be between negative one and one, then the data were assumed to be approximately normally distributed. If the skewness coefficient was calculated as greater than one (or less than negative one) then the calculation was performed on the natural log (Ln) of the data. If the Ln of the data still determined that the data appeared to be skewed, then the Shapiro-Wilk test of normality (Shapiro-Wilk) was performed. The Shapiro-Wilk statistic was calculated on both non-transformed data and the Ln-transformed data. If the Shapiro-Wilk statistic indicated that normal distributional assumptions were not valid, then the parameter was considered a candidate for non-parametric statistical evaluation. Data sets that contained greater than 50% non-detects utilized non-parametric statistical evaluations, as described in the Stats Plan. The data distributions are summarized in Table 2.

² Dixon's test is not appropriate for data sets that are non-normal or primarily non-detect. Therefore, single detections above the reporting limit were excluded as outliers without the use of Dixon's test.

Tolerance Limits

Table 2 presents the calculated UTLs for the background/baseline data sets. As discussed above, the SCPP BABs CCR unit uses intrawell statistical methods; therefore, UTLs were calculated for each individual monitoring well. For normal and lognormal distributions, UTLs are calculated for 95 percent confidence using parametric methods. For non-normal background datasets, a non-parametric UTL is utilized, resulting in the highest value from the background dataset as the UTL. The achieved confidence levels for non-parametric tolerance limits depend entirely on the number of background data points, which are shown in the ChemStat™ outputs.

Groundwater Protection Standards

The resulting GWPSs were established as the higher of the MCL/RSL or the UTL for each Appendix IV constituent at each monitoring well. The GWPSs are summarized in Table 3.

Data Comparison to Groundwater Protection Standards

Concurrent with the April and October 2023 semiannual detection monitoring events, two post-CCR removal semiannual groundwater sampling events for Appendix IV parameters were conducted to demonstrate that the GWPS are met for closure by removal in accordance with §257.102(c). Groundwater samples were collected in accordance with the *CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company St. Clair Power Plant Bottom Ash Basins* (QAPP) (TRC, July 2016; revised August 2017) from all four monitoring wells and submitted to Eurofins Environment Testing (Eurofins) for analysis of the aforementioned Appendix IV metals and inorganic indicator constituents. Groundwater analytical results from the April 2023 and October 2023 post-CCR removal monitoring events are summarized on Tables 4 and 5, respectively. The laboratory analytical reports are included in Attachment B. The data were found to be complete and usable for the purposes of the CCR monitoring program. Data quality reviews are summarized in Attachment C.

The Appendix IV groundwater data were compared to the calculated GWPSs for each individual well (i.e., monitoring data from MW-16-01 is compared to the GWPS developed using the background dataset from MW-16-01, and so forth). Comparison of the April 2023 and October 2023 Appendix IV results to the GWPS is also shown on Tables 4 and 5. The Appendix IV groundwater results were all below their respective GWPS.

Attachments

Table 1	Summary of Outlier Evaluation
Table 2	Summary of Descriptive Statistics and Tolerance Limit Calculations
Table 3	Summary of Groundwater Protection Standards
Table 4	Summary of April 2023 Data Compared to Groundwater Protection Standards
Table 5	Summary of October 2023 Data Compared to Groundwater Protection Standards
Attachment B	ChemStat [™] Outputs Appendix IV Laboratory Reports Appendix IV Data Quality Reviews

Tables

Table 1
Summary of Outlier Evaluation
DTE Electric Company – St. Clair Power Plant

Parameter	Units	Monitoring Well	Sample Date	Data Outlier	Basis for Removal of Outlier
Antimony	ug/L	MW-16-01	1/13/2017	2.5	Single detection
Andinony	ug/L	MW-16-02	8/3/2016	2.1	Single detection
Beryllium	ug/L	MW-16-02	8/3/2016	1.2	Single detection
Beryllium	ug/L	MW-16-04	9/21/2016	1.5	Single detection
Cadmium	ug/L	MW-16-01	7/27/2017	1.1	Single detection
Caumum	ug/L	MW-16-02	7/27/2017	1.9	Single detection
Chromium	ug/L	MW-16-02	8/3/2016	48	Anomalously high value; failed Dixon's Test for Outliers at 95%
Cilionilani	ug/L	MW-16-04	9/21/2016	31	Anomalously high value; failed Dixon's Test for Outliers at 95%
Cobalt	ug/L	MW-16-02	8/3/2016	13	Anomalously high value; failed Dixon's Test for Outliers at 95%
Cobait	ug/L	MW-16-04	9/21/2016	11	Anomalously high value; failed Dixon's Test for Outliers at 95%
Lead	ug/L	MW-16-02	8/3/2016	10	Anomalously high value; failed Dixon's Test for Outliers at 95%
Leau	ug/L	MW-16-04	9/21/2016	8.8	Anomalously high value; failed Dixon's Test for Outliers at 95%
Molybdenum	ug/L	MW-16-02	11/11/2016	69	Anomalously high value; failed Dixon's Test for Outliers at 95%

ug/L = micrograms per liter

Table 2
Summary of Descriptive Statistics and Tolerance Limit Calculations
DTE Electric Company – St. Clair Power Plant

Monitoring	Skewn	ess Test	<u>-</u>	Wilks Test ical Value)	Outliers	Tolerance Limit	95% Tolerance
Well	Un-Transformed	Natural Log	Un-Transformed			Test	Limit
	Data	Transformed Data	Data	Transformed Data			
Antimony (ug/	/L)						
MW-16-01		100% Noi	n-Detect		Υ	PQL	2.0
MW-16-02		100% Noi	n-Detect		Υ	PQL	2.0
MW-16-03		100% Noi	n-Detect		N	PQL	2.0
MW-16-04		100% Noi	n-Detect		N	PQL	2.0
Arsenic (ug/L)							
MW-16-01		100% Noi	n-Detect		N	PQL	5.0
MW-16-02		> 50% No	n-Detect		N	Non-Parametric	12
MW-16-03		100% Noi	n-Detect		N	PQL	5.0
MW-16-04		> 50% No	n-Detect		N	Non-Parametric	10
Barium (ug/L)							
MW-16-01	-1 < 0.480305 < 1				N	Parametric	240
MW-16-02	1.19803 > 1	1.0391 > 1	0.859 > 0.768255	0.859 < 0.869548	N	Parametric	600
MW-16-03	1.60952 > 1	1.46674 > 1	0.859 > 0.768255	0.859 > 0.802253	N	Non-Parametric	590
MW-16-04	1.08667 > 1	1.01782 > 1	0.859 > 0.797215	0.859 > 0.817932	N	Non-Parametric	890
Beryllium (ug/	(L)						
MW-16-01		100% Noi	n-Detect		N	PQL	1.0
MW-16-02		100% Noi		Υ	PQL	1.0	
MW-16-03		100% Noi	n-Detect		N	PQL	1.0
MW-16-04		100% Noi	n-Detect		Υ	PQL	1.0

PQL = Practical Quantitation Limit

ug/L = micrograms per liter

mg/L = milligrams per liter

Table 2
Summary of Descriptive Statistics and Tolerance Limit Calculations
DTE Electric Company – St. Clair Power Plant

Monitoring	Skewn	ess Test	<u>-</u>	Wilks Test ical Value)	Outliers	Tolerance Limit	95% Tolerance	
Well	Un-Transformed Data	Natural Log Transformed Data	Un-Transformed Data	Natural Log Transformed Data	Removed	Test	Limit	
Cadmium (ug/	/L)							
MW-16-01		100% Noi	n-Detect		Υ	PQL	1.0	
MW-16-02		100% Noi	n-Detect		Υ	PQL	1.0	
MW-16-03		100% Noi	n-Detect		N	PQL	1.0	
MW-16-04		100% Noi	n-Detect		N	PQL	1.0	
Chromium (ug	g/L)							
MW-16-01	1.36084 > 1	-1 < 0.686325 < 1			N	Parametric	36	
MW-16-02	1.27568 > 1	-1 < 0.571595 < 1	-		Υ	Parametric	79	
MW-16-03		> 50% No	n-Detect		N	Non-Parametric	14	
MW-16-04	-1 < 0.76241 < 1		•		Υ	Parametric	21	
Cobalt (ug/L)								
MW-16-01		> 50% No	n-Detect		N	Non-Parametric	3.4	
MW-16-02	1.11306 > 1	-1 < 0.85828 < 1	•		Υ	Parametric	9.5	
MW-16-03		> 50% No	n-Detect		N	Non-Parametric	3.3	
MW-16-04	1.09667 > 1	-1 < 0.465141 < 1			Υ	Parametric	16	
Fluoride (mg/l	L)							
MW-16-01	-1 < -0.031618 < 1				N	Parametric	2.2	
MW-16-02	-1 < 0.294764 < 1				N	Parametric	1.8	
MW-16-03	-1 < -0.64941 < 1				N	Parametric	1.9	
MW-16-04	-1 < 0.802603 < 1				N	Parametric	1.9	

PQL = Practical Quantitation Limit

ug/L = micrograms per liter

mg/L = milligrams per liter

Table 2
Summary of Descriptive Statistics and Tolerance Limit Calculations
DTE Electric Company – St. Clair Power Plant

Monitoring	Skewn	ess Test	_	Wilks Test ical Value)	Outliers	Tolerance Limit	95% Tolerance
Well	Un-Transformed	Natural Log	Un-Transformed			Test	Limit
	Data	Transformed Data	Data	Transformed Data			
Lead (ug/L)							
MW-16-01		> 50% No	n-Detect		N	Non-Parametric	2.4
MW-16-02	1.03423 > 1	-1 < 0.763902 < 1	-		Υ	Parametric	10
MW-16-03		> 50% No	n-Detect		N	Non-Parametric	4.6
MW-16-04	1.1812 > 1	-1 < 0.623367 < 1	-		Υ	Parametric	13
Lithium (ug/L)							
MW-16-01	-1 < 0.0978567 < 1		-		N	Parametric	66
MW-16-02	-1 < 0.745231 < 1		-		N	Parametric	92
MW-16-03	-1 < 0.814384 < 1		ı		N	Parametric	77
MW-16-04	-1 < 0.439377 < 1		ı		N	Parametric	150
Mercury (ug/L)						
MW-16-01		100% Nor	n-Detect		N	PQL	0.20
MW-16-02		100% Nor	n-Detect		N	PQL	0.20
MW-16-03		100% Nor	n-Detect		N	PQL	0.20
MW-16-04		100% Nor	n-Detect		N	PQL	0.20
Molybdenum	(ug/L)						
MW-16-01	1.00724 > 1	-1 < 0.58368 < 1			N	Parametric	62
MW-16-02	-1 < 0.616111 < 1				Y	Parametric	55
MW-16-03	-1 < -0.514296 < 1				N	Parametric	40
MW-16-04	-1 < 0.771545 < 1	-	-		N	Parametric	36

PQL = Practical Quantitation Limit

ug/L = micrograms per liter

mg/L = milligrams per liter

Table 2
Summary of Descriptive Statistics and Tolerance Limit Calculations
DTE Electric Company – St. Clair Power Plant

Monitoring	Skewn	ess Test	•	Wilks Test ical Value)	Outliers	Tolerance Limit	95% Tolerance
Well	Un-Transformed Data	Natural Log Transformed Data			Removed	Test	Limit
Radium 226/2	28 (pCi/L)						
MW-16-01	-1 < 0.69254 < 1				N	Parametric	1.88
MW-16-02	-1 < -0.109897 < 1				N	Parametric	3.72
MW-16-03	-1 < 0.365312 < 1		-		N	Parametric	2.92
MW-16-04	-1 < 0.817435 < 1		-		N	Parametric	6.97
Selenium (ug/	L)						
MW-16-01		100% Nor	n-Detect		N	PQL	5.0
MW-16-02		100% Nor	n-Detect		N	PQL	5.0
MW-16-03		100% Nor	n-Detect		N	PQL	5.0
MW-16-04		100% Nor	n-Detect		N	PQL	5.0
Thallium (ug/L	_)						
MW-16-01		100% Nor	N	PQL	1.0		
MW-16-02		100% Nor	N	PQL	1.0		
MW-16-03		100% Nor	n-Detect		N	PQL	1.0
MW-16-04		100% Nor	n-Detect		N	PQL	1.0

PQL = Practical Quantitation Limit

ug/L = micrograms per liter

mg/L = milligrams per liter

Table 3Summary of Groundwater Protection Standards
DTE Electric Company – St. Clair Power Plant

Constituent	Unit	GWPS	MCL/RSL	MW-	16-01	MW-	16-02	MW-	16-03	MW-	16-04
Constituent	Unit	Selection	WCL/RSL	UTL	GWPS	UTL	GWPS	UTL	GWPS	UTL	GWPS
Antimony	ug/L	MCL	6	2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0
		Background									
Arsenic	ug/L	or MCL	10	5.0	10	12	12	5.0	10	10	10
Barium	ug/L	MCL	2,000	240	2,000	600	2,000	590	2,000	890	2,000
Beryllium	ug/L	MCL	4	1.0	4.0	1.0	4.0	1.0	4.0	1.0	4.0
Cadmium	ug/L	MCL	5	1.0	5.0	1.0	5.0	1.0	5.0	1.0	5.0
Chromium	ug/L	MCL	100	36	100	79	100	14	100	21	100
		Background									
Cobalt	ug/L	or RSL	6	3.4	6.0	9.5	9.5	3.3	6.0	16	16
Fluoride	mg/L	MCL	4	2.2	4.0	1.8	4.0	1.9	4.0	1.9	4.0
Lead	ug/L	RSL	15	2.4	15	10	15	4.6	15	13	15
		Background									
Lithium	ug/L	or RSL	40	66	66	92	92	77	77	150	150
Mercury	ug/L	MCL	2	0.20	2.0	0.20	2.0	0.20	2.0	0.20	2.0
Molybdenum	ug/L	RSL	100	62	100	55	100	40	100	36	100
		Background									
Radium-226/228	pCi/L	or MCL	5	1.88	5.00	3.72	5.00	2.92	5.00	6.97	6.97
Selenium	ug/L	MCL	50	5.0	50	5.0	50	5.0	50	5.0	50
Thallium	ug/L	MCL	2	1.0	2.0	1.0	2.0	1.0	2.0	1.0	2.0

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

ug/L = micrograms per liter

mg/L = milligrams per liter

Table 4Summary of April 2023 Data Compared to Groundwater Protection Standards
DTE Electric Company – St. Clair Power Plant

			Intrawell							
Constituent	Unit	nit MW-16-01		MW-	16-02	MW-	16-03	MW-	16-04	
		GWPS	4/28/2023	GWPS	4/28/2023	GWPS	4/28/2023	GWPS	4/28/2023	
Antimony	ug/L	6.0	< 2	6.0	< 2	6.0	< 2	6.0	< 2	
Arsenic	ug/L	10	< 5	12	< 5	10	< 5	10	< 5	
Barium	ug/L	2,000	220	2,000	400	2,000	450	2,000	670	
Beryllium	ug/L	4.0	< 1	4.0	< 1	4.0	< 1	4.0	< 1	
Cadmium	ug/L	5.0	< 1	5.0	< 1	5.0	< 1	5.0	< 1	
Chromium	ug/L	100	< 2	100	2.3	100	2.1	100	< 2	
Cobalt	ug/L	6.0	1.0	9.5	< 1	6.0	< 1	16	< 1	
Fluoride	mg/L	4.0	1.9	4.0	1.5	4.0	1.3	4.0	1.5	
Lead	ug/L	15	< 1	15	< 1	15	< 1	15	< 1	
Lithium	ug/L	66	53	92	66	77	68	150	98	
Mercury	ug/L	2.0	< 0.2	2.0	< 0.2	2.0	< 0.2	2.0	< 0.2	
Molybdenum	ug/L	100	25	100	25	100	22	100	17	
Radium-226/228	pCi/L	5.00	1.43	5.00	2.31	5.00	2.96	6.97	4.83	
Selenium	ug/L	50	< 5	50	< 5	50	< 5	50	< 5	
Thallium	ug/L	2.0	< 1	2.0	< 1	2.0	< 1	2.0	< 1	

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

ug/L = micrograms per liter

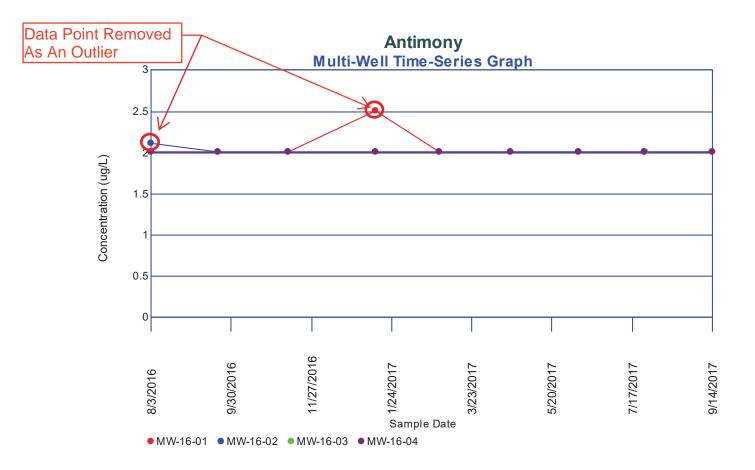
mg/L = milligrams per liter

Table 5Summary of October 2023 Data Compared to Groundwater Protection Standards
DTE Electric Company – St. Clair Power Plant

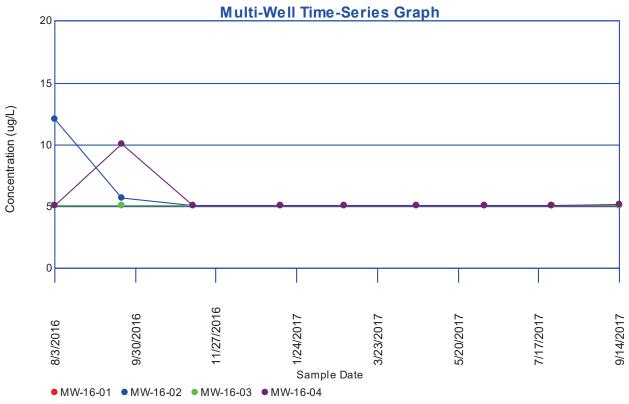
Constituent	Unit	Intrawell							
		MW-16-01		MW-16-02		MW-16-03		MW-16-04	
		GWPS	10/12/2023	GWPS	10/12/2023	GWPS	10/12/2023	GWPS	10/12/2023
Antimony	ug/L	6.0	< 2	6.0	< 2	6.0	< 2	6.0	< 2
Arsenic	ug/L	10	< 5	12	< 5	10	< 5	10	< 5
Barium	ug/L	2,000	220	2,000	410	2,000	450	2,000	650
Beryllium	ug/L	4.0	< 1	4.0	< 1	4.0	< 1	4.0	< 1
Cadmium	ug/L	5.0	< 1	5.0	< 1	5.0	< 1	5.0	< 1
Chromium	ug/L	100	< 2	100	2.0	100	< 2	100	3.1
Cobalt	ug/L	6.0	< 1	9.5	< 1	6.0	< 1	16	1.3
Fluoride	mg/L	4.0	2.0	4.0	1.6	4.0	1.4	4.0	1.7
Lead	ug/L	15	< 1	15	< 1	15	< 1	15	1.8
Lithium	ug/L	66	52	92	62	77	64	150	96
Mercury	ug/L	2.0	< 0.2	2.0	< 0.2	2.0	< 0.2	2.0	< 0.2
Molybdenum	ug/L	100	25	100	25	100	22	100	17
Radium-226/228	pci/L	5.00	1.60	5.00	4.73	5.00	4.95	6.97	5.40
Selenium	ug/L	50	< 5	50	< 5	50	< 5	50	< 5
Thallium	ug/L	2.0	< 1	2.0	< 1	2.0	< 1	2.0	< 1

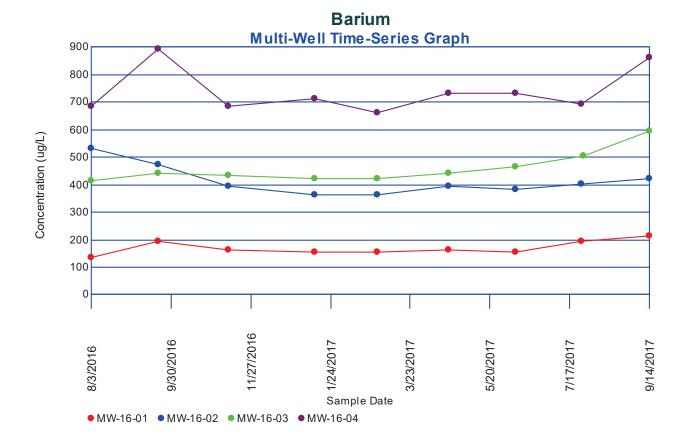
MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

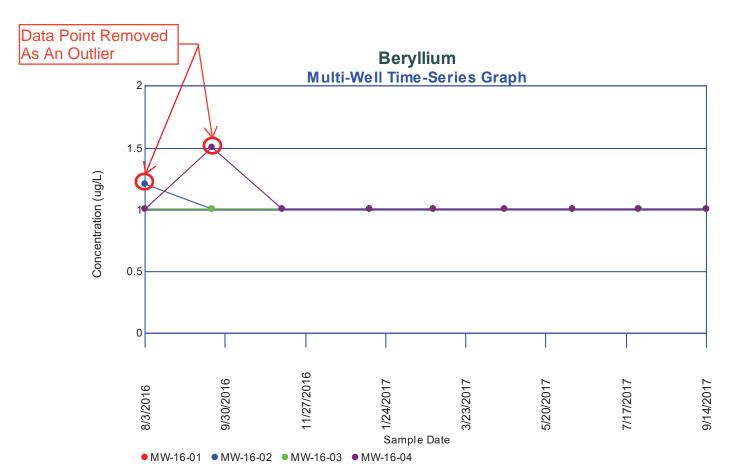
RSL - Regional Screening Level from 83 FR 36435.

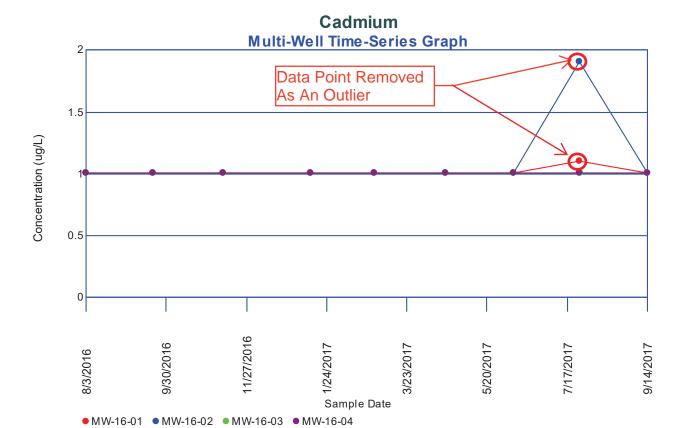

UTL - Upper Tolerance Limit (95%) of the background data set.

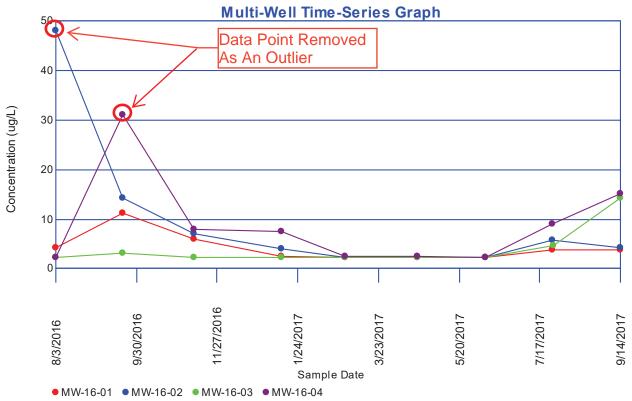
GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

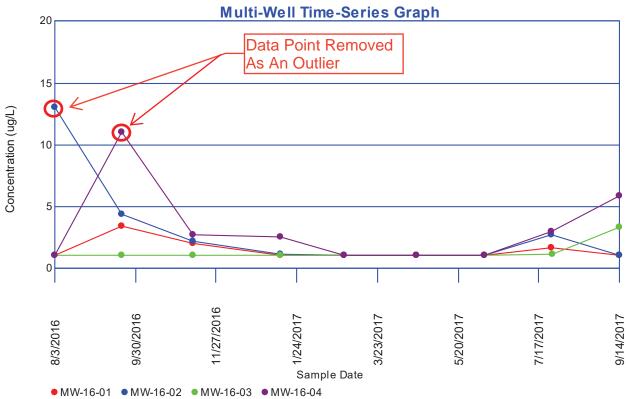

ug/L = micrograms per liter

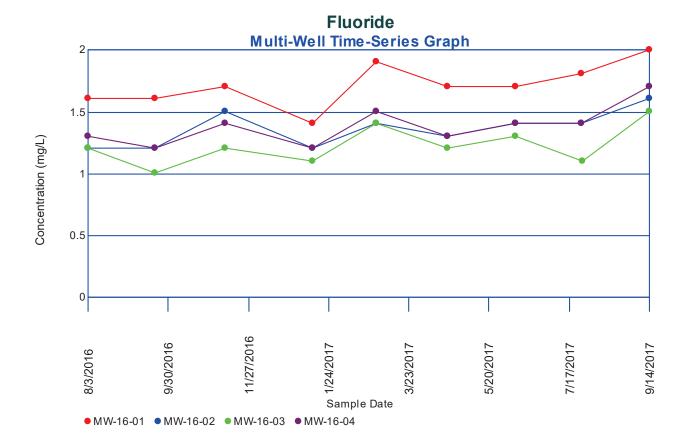

mg/L = milligrams per liter

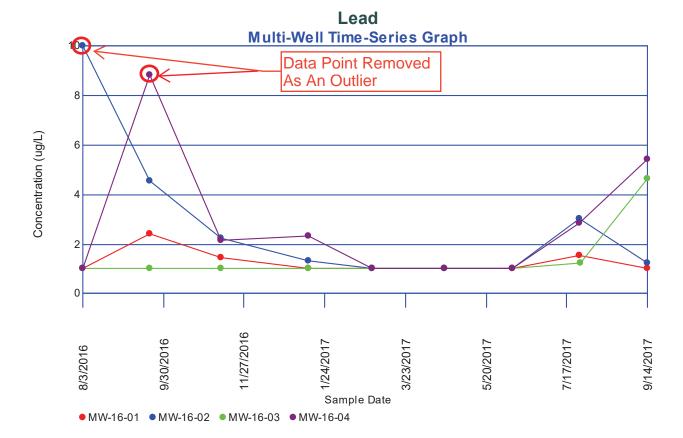

Attachment A ChemStat™ Outputs









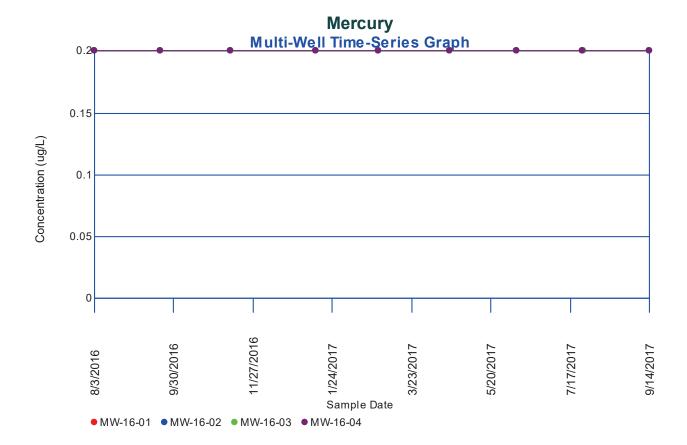

Chromium

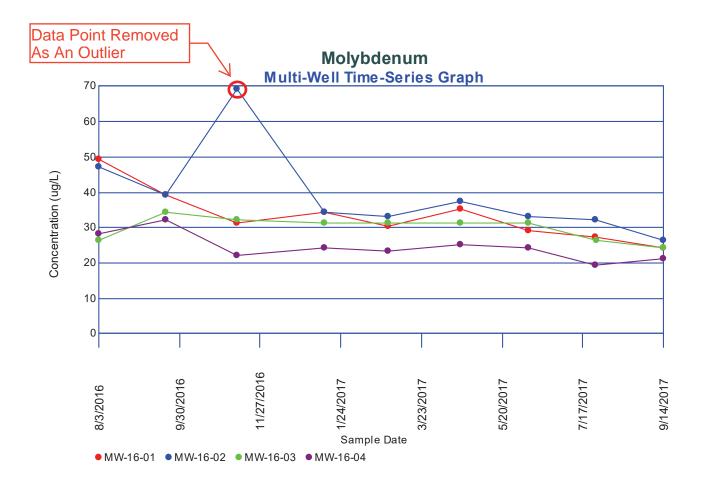
Cobalt

Lithium Multi-Well Time-Series Graph 200 150 Concentration (ug/L) 100 11/27/2016

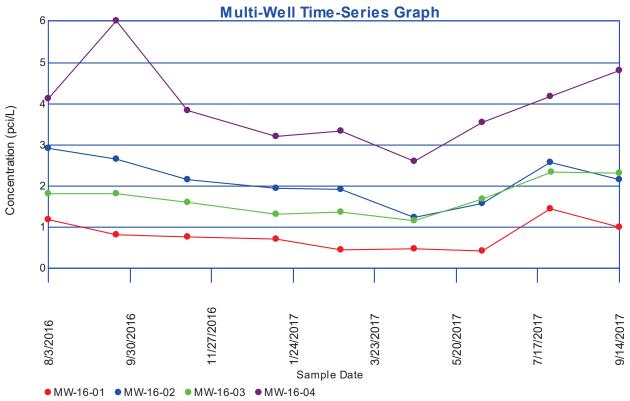
1/24/2017

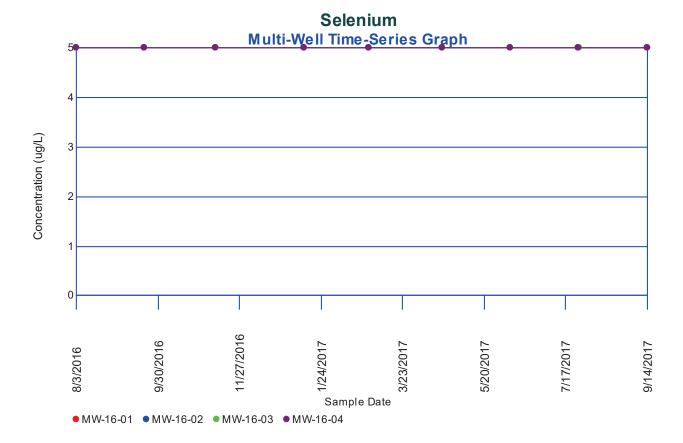
Sample Date

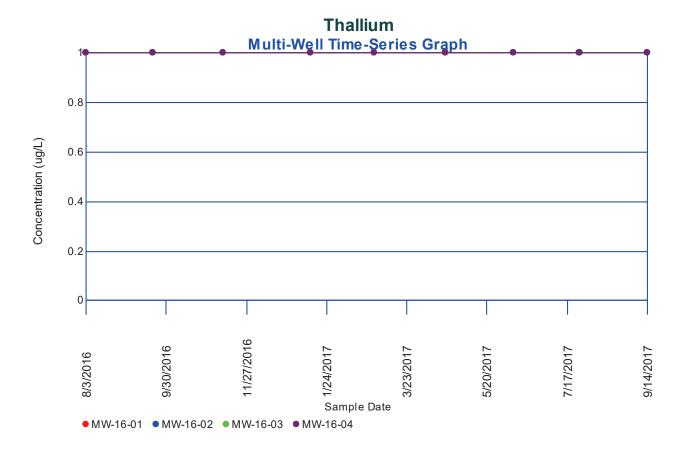

3/23/2017


5/20/2017

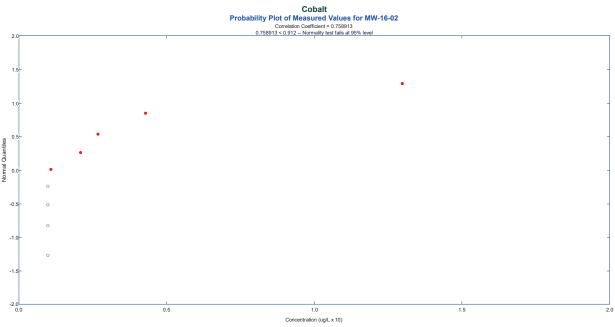
9/30/2016


● MW-16-01 ● MW-16-02 ● MW-16-03 ● MW-16-04

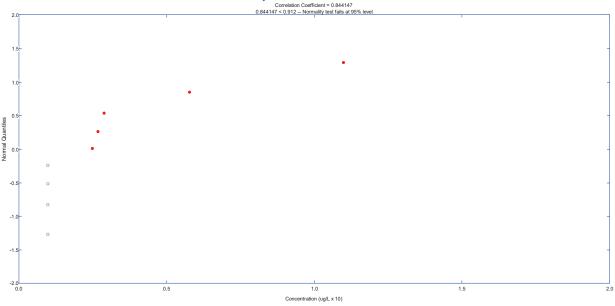

8/3/2016



Radium-226/228


Dixon's Test for Outliers

Parameter: Cobalt All Locations

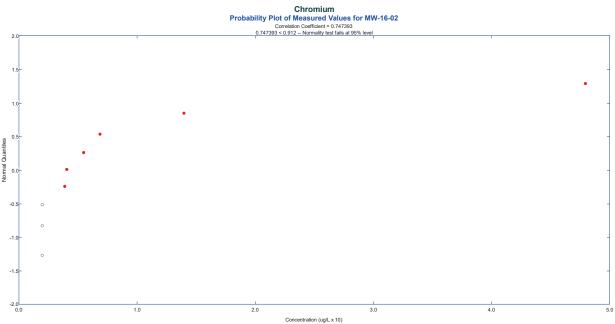

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

For 18 Measurements... 5% Level of Significance

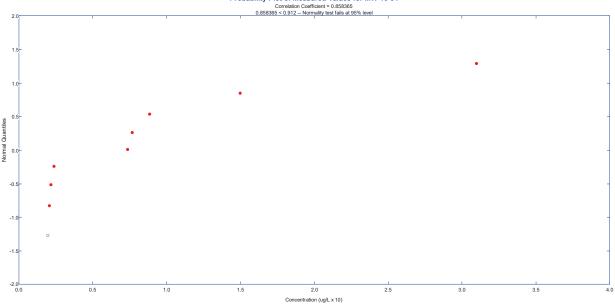
Iteration 1 2 3 4	Highest 0.6 0.67 0.604167 0.484848	Lowest 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Critical 0.475 0.49 0.507 0.525	Outlier 13 11 5.8 None	
Loc.	Date	Conc.	Outlier		
MW-16-04	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	ND<1 U 11 2.7 2.5 ND<1 U ND<1 U ND<1 U 2.9 5.8	FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE		
MW-16-02	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	13 4.3 2.1 1.1 ND<1 U ND<1 U ND<1 U 2.7 ND<1 U	TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE		

Cobalt Probability Plot of Measured Values for MW-16-04 Correlation Coefficient = 0.844147 0.844147 < 0.912 - Normality test fails at 95% level

Dixon's Test for Outliers


Parameter: Chromium

All Locations

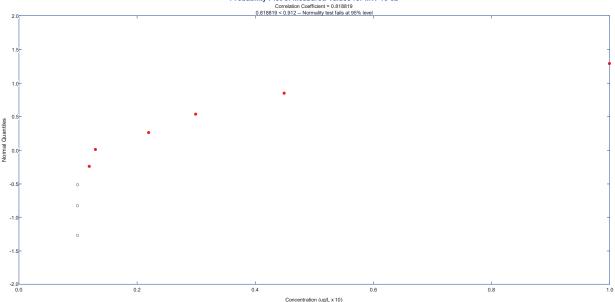

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

For 18 Measurements... 5% Level of Significance

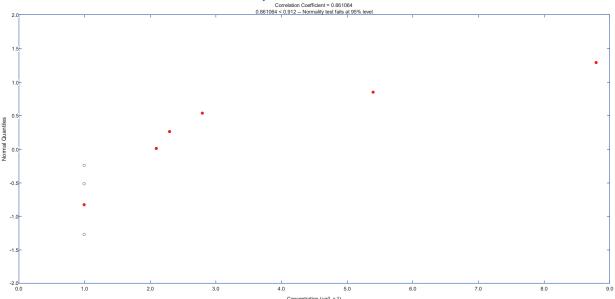
Iteration 1 2 3	Highest 0.717391 0.586207 0.469231	Lowest 0 0 0	Critical 0.475 0.49 0.507	Outlier 48 31 None	
Loc.	Date	Conc.	Outlier		
MW-16-04	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	2.1 31 7.7 7.4 2.2 2.4 ND<2 U 8.9 15	FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE		
MW-16-02	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	48 14 6.9 3.9 ND<2 U ND<2 U ND<2 U 5.5 4.1	TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE		

Chromium Probability Plot of Measured Values for MW-16-04 Correlation Coefficient = 0.858365 0.858365 < 0.912 - Normality test fails at 95% level

Dixon's Test for Outliers


Parameter: Lead **All Locations**

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit


For 18 Measurements... 5% Level of Significance

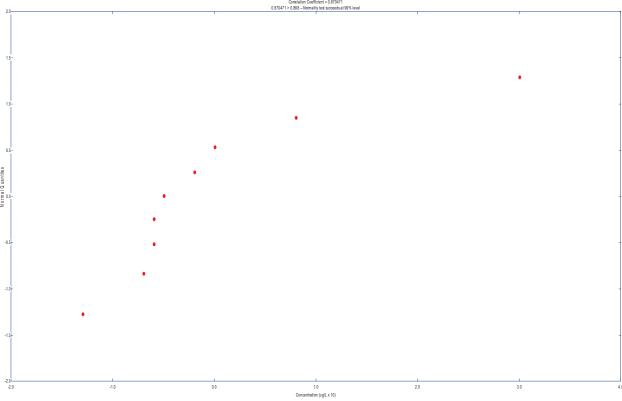
Iteration 1 2 3 4	Highest 0.511111 0.551282 0.545455 0.485714	Lowest 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Critical 0.475 0.49 0.507 0.525	Outlier 10 8.8 5.4 None	
Loc.	Date	Conc.	Outlier		
MW-16-04	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	ND<1 U 8.8 2.1 2.3 ND<1 U 1 ND<1 U 2.8 5.4	FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE		
MW-16-02	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	10 4.5 2.2 1.3 ND<1 U ND<1 U ND<1 U 3 1.2	TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE		

Lead
Probability Plot of Measured Values for MW-16-02
Correlation Coefficient = 0.818819
0.818819 < 0.912 - Normality test falls at 95% level

Lead
Probability Plot of Measured Values for MW-16-04
Correlation Coefficient = 0.861064
0.861064 < 0.912 — Normality test falls at 95% level

Dixon's Test for Outliers

Parameter: Molybdenum Location: MW-16-02


Location: MW-16-02 Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

For 9 Measurements... 5% Level of Significance

Iteration 1 2	Highest 0.594595 0.533333	Lowest 0.285714 0.461538	Critical 0.512 0.554	Outlier 69 None	
Loc.	Date	Conc.	Outlier		
MW-16-02	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017	47 39 69 34 33 37 33	FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE		
	9/14/2017	26	FALSE		

Molybdenum
Probability Plot of Residuals for MW-16-02
Complation Coefficient = 0.870471
0.870471 > 0.888 – Normality test succeeds at 99% level

Parameter: Antimony

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Measurements: 34 Total Non-Detect: 34 Percent Non-Detects: 100% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original		
There are 4 compliance locations							
Loc.	Meas.	ND	Date	Conc.	Original		
MW-16-01	8	8 (100%)	8/3/2016	ND<2 U	ND<2 U		
		, ,	9/21/2016	ND<2 U	ND<2 U		
			11/11/2016	ND<2 U	ND<2 U		
			2/28/2017	ND<2 U	ND<2 U		
			4/21/2017	ND<2 U	ND<2 U		
			6/9/2017	ND<2 U	ND<2 U		
			7/27/2017	ND<2 U	ND<2 U		
			9/14/2017	ND<2 U	ND<2 U		
			1/13/2017	2.5	2.5		
MW-16-02	8	8 (100%)	9/21/2016	ND<2 U	ND<2 U		
			11/11/2016	ND<2 U	ND<2 U		
			1/13/2017	ND<2 U	ND<2 U		
			2/28/2017	ND<2 U	ND<2 U		
			4/21/2017	ND<2 U	ND<2 U		
			6/9/2017	ND<2 U	ND<2 U		
			7/27/2017	ND<2 U	ND<2 U		
			9/14/2017	ND<2 U	ND<2 U		
			8/3/2016	2.1	2.1		
MW-16-03	9	9 (100%)	8/3/2016	ND<2 U	ND<2 U		
			9/21/2016	ND<2 U	ND<2 U		
			11/11/2016	ND<2 U	ND<2 U		
			1/13/2017	ND<2 U	ND<2 U		
			2/28/2017	ND<2 U	ND<2 U		
			4/21/2017	ND<2 U	ND<2 U		
			6/9/2017	ND<2 U	ND<2 U		
			7/28/2017	ND<2 U	ND<2 U		
			9/14/2017	ND<2 U	ND<2 U		
MW-16-04	9	9 (100%)	8/3/2016	ND<2 U	ND<2 U		
			9/21/2016	ND<2 U	ND<2 U		
			11/11/2016	ND<2 U	ND<2 U		
			1/13/2017	ND<2 U	ND<2 U		
			2/28/2017	ND<2 U	ND<2 U		
			4/21/2017	ND<2 U	ND<2 U		
			6/9/2017	ND<2 U	ND<2 U		
			7/27/2017	ND<2 U	ND<2 U		
			9/14/2017	ND<2 U	ND<2 U		

Parameter: Arsenic

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 36 Total Non-Detect: 32

Percent Non-Detects: 88.8889% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 co	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U	ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U
MW-16-02	9	7 (77.7778%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	12 5.6 ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U	12 5.6 ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U
MW-16-03	9	9 (100%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/28/2017 9/14/2017	ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U	ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U
MW-16-04	9	7 (77.7778%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	ND<5 U 10 ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U	ND<5 U 10 ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U S.1

Parameter: Barium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 36 Total Non-Detect: 0 Percent Non-Detects: 0%

Total Background Measurements: 0 There are 0 background locations

mpliance loca				
ilipilalice loca	tions			
Meas.	ND	Date	Conc.	Original
9	0 (0%)	8/3/2016	130	130
		9/21/2016	190	190
		11/11/2016	160	160
		1/13/2017	150	150
		2/28/2017	150	150
		4/21/2017	160	160
				150
				190
		9/14/2017	210	210
9	0 (0%)	8/3/2016	530	530
	,			470
				390
				360
				360
				390
				380
				400
		9/14/2017	420	420
9	0 (0%)	8/3/2016	410	410
	,			440
				430
				420
				420
				440
				460
				500
		9/14/2017	590	590
9	0 (0%)	8/3/2016	680	680
-	- (3.5)			890
				680
				710
				660
				730
				730
				690
				860
_		9 0 (0%) 9 0 (0%)	9 0 (0%) 8/3/2016 9/21/2016 11/11/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 9 0 (0%) 8/3/2016 9/21/2016 11/11/2016 11/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 9 9 0 (0%) 8/3/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	9 0 (0%) 8/3/2016 130 9/21/2016 190 11/11/2016 160 11/13/2017 150 2/28/2017 150 4/21/2017 160 6/9/2017 150 7/27/2017 190 9/14/2017 210 9 0 (0%) 8/3/2016 530 9/21/2016 470 11/11/2016 390 1/13/2017 360 2/28/2017 360 4/21/2017 390 6/9/2017 380 7/27/2017 400 9/14/2017 420 9 0 (0%) 8/3/2016 410 9/21/2016 440 11/11/2016 430 1/13/2017 420 2/28/2017 420 2/28/2017 400 9/21/2016 440 11/13/2017 420 2/28/2017 420 4/21/2017 590 9 0 (0%) 8/3/2016 680 9/21/2016 680 1/13/2017 590 9 0 (0%) 8/3/2016 680 9/21/2016 890 11/11/2016 680 1/13/2017 730 6/9/2017 730

Parameter: Beryllium

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Measurements: 34 Total Non-Detect: 34 Percent Non-Detects: 100% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 co	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/3/2016	ND<1 U	ND<1 U
		, ,	9/21/2016	ND<1 U	ND<1 U
			11/11/2016	ND<1 U	ND<1 U
			1/13/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/21/2017	ND<1 U	ND<1 U
			6/9/2017	ND<1 U	ND<1 U
			7/27/2017	ND<1 U	ND<1 U
			9/14/2017	ND<1 U	ND<1 U
			0/11/2011	110 110	110 110
MW-16-02	8	8 (100%)	9/21/2016	ND<1 U	ND<1 U
			11/11/2016	ND<1 U	ND<1 U
			1/13/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/21/2017	ND<1 U^	ND<1 U^
			6/9/2017	ND<1 U	ND<1 U
			7/27/2017	ND<1 U	ND<1 U
			9/14/2017	ND<1 U	ND<1 U
			8/3/2016	1.2	1.2
MW-16-03	9	9 (100%)	8/3/2016	ND<1 U	ND<1 U
10100	9	9 (10070)	9/21/2016	ND<1 U	ND<1 U
			11/11/2016	ND<1 U	ND<1 U
			1/13/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/21/2017	ND<1 U^	ND<1 U^
			6/9/2017	ND<1 U	ND<1 U
			7/28/2017	ND<1 U	ND<1 U
			9/14/2017	ND<1 U	ND<1 U
MW-16-04	8	8 (100%)	8/3/2016	ND<1 U	ND<1 U
		, ,	11/11/2016	ND<1 U	ND<1 U
			1/13/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/21/2017	ND<1 U^	ND<1 U^
			6/9/2017	ND<1 U	ND<1 U
			7/27/2017	ND<1 U	ND<1 U
			9/14/2017	ND<1 U	ND<1 U
			9/21/2016	1.5	1.5

Parameter: Cadmium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 34
Total Non-Detect: 34
Percent Non-Detects: 100%
Total Background Measurements: 0
There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original	
There are 4 compliance locations						
Loc.	Meas.	ND	Date	Conc.	Original	
MW-16-01	8	8 (100%)	8/3/2016	ND<1 U	ND<1 U	
		, ,	9/21/2016	ND<1 U	ND<1 U	
			11/11/2016	ND<1 U	ND<1 U	
			1/13/2017	ND<1 U	ND<1 U	
			2/28/2017	ND<1 U	ND<1 U	
			4/21/2017	ND<1 U	ND<1 U	
			6/9/2017	ND<1 U	ND<1 U	
			9/14/2017	ND<1 U	ND<1 U	
			7/27/2017	1.1	1.1	
MW-16-02	8	8 (100%)	8/3/2016	ND<1 U	ND<1 U	
		, ,	9/21/2016	ND<1 U	ND<1 U	
			11/11/2016	ND<1 U	ND<1 U	
			1/13/2017	ND<1 U	ND<1 U	
			2/28/2017	ND<1 U	ND<1 U	
			4/21/2017	ND<1 U	ND<1 U	
			6/9/2017	ND<1 U	ND<1 U	
			9/14/2017	ND<1 U	ND<1 U	
			7/27/2017	1.9	1.9	
MW-16-03	9	9 (100%)	8/3/2016	ND<1 U	ND<1 U	
			9/21/2016	ND<1 U	ND<1 U	
			11/11/2016	ND<1 U	ND<1 U	
			1/13/2017	ND<1 U	ND<1 U	
			2/28/2017	ND<1 U	ND<1 U	
			4/21/2017	ND<1 U	ND<1 U	
			6/9/2017	ND<1 U	ND<1 U	
			7/28/2017	ND<1 U	ND<1 U	
			9/14/2017	ND<1 U	ND<1 U	
MW-16-04	9	9 (100%)	8/3/2016	ND<1 U	ND<1 U	
			9/21/2016	ND<1 U	ND<1 U	
			11/11/2016	ND<1 U	ND<1 U	
			1/13/2017	ND<1 U	ND<1 U	
			2/28/2017	ND<1 U	ND<1 U	
			4/21/2017	ND<1 U	ND<1 U	
			6/9/2017	ND<1 U	ND<1 U	
			7/27/2017	ND<1 U	ND<1 U	
			9/14/2017	ND<1 U	ND<1 U	

Parameter: Chromium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 34 Total Non-Detect: 13

Percent Non-Detects: 38.2353% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	3 (33.3333%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	4 11 5.8 2.4 ND<2 U ND<2 U ND<2 U 3.6 3.5	4 11 5.8 2.4 ND<2 U ND<2 U ND<2 U 3.6 3.5
MW-16-02	8	3 (37.5%)	9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 8/3/2016	14 6.9 3.9 ND<2 U ND<2 U ND<2 U 5.5 4.1	14 6.9 3.9 ND<2 U ND<2 U ND<2 U 5.5 4.1
MW-16-03	9	6 (66.6667%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/28/2017 9/14/2017	ND<2 U 3 ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U 4.4	ND<2 U 3 ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U 4.4
MW-16-04	8	1 (12.5%)	8/3/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 9/21/2016	2.1 7.7 7.4 2.2 2.4 ND<2 U 8.9 15 31	2.1 7.7 7.4 2.2 2.4 ND<2 U 8.9 15

Parameter: Cobalt

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 34 Total Non-Detect: 21

Percent Non-Detects: 61.7647% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	6 (66.6667%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	ND<1 U 3.4 2 ND<1 U	ND<1 U 3.4 2 ND<1 U
MW-16-02	8	4 (50%)	9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 8/3/2016	4.3 2.1 1.1 ND<1 U ND<1 U ND<1 U 2.7 ND<1 U	4.3 2.1 1.1 ND<1 U ND<1 U ND<1 U 2.7 ND<1 U
MW-16-03	9	7 (77.7778%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/28/2017 9/14/2017	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U 1.1	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U 1.1 3.3
MW-16-04	8	4 (50%)	8/3/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 9/21/2016	ND<1 U 2.7 2.5 ND<1 U ND<1 U ND<1 U 2.9 5.8 11	ND<1 U 2.7 2.5 ND<1 U ND<1 U ND<1 U 2.9 5.8

Parameter: Fluoride

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 36 Total Non-Detect: 1

Percent Non-Detects: 2.77778% Total Background Measurements: 0 There are 0 background locations

Meas.	ND	Date	Conc.	Original
ompliance loca	tions			
Meas.	ND	Date	Conc.	Original
9	0 (0%)	8/3/2016	1.6	1.6
		9/21/2016	1.6	1.6
		11/11/2016	1.7	1.7
		1/13/2017	1.4	1.4
		2/28/2017	1.9	1.9
		4/21/2017	1.7	1.7
		6/9/2017	1.7	1.7
		7/27/2017	1.8	1.8
		9/14/2017	2	2
9	0 (0%)	8/3/2016	1.2	1.2
	,		1.2	1.2
			1.5	1.5
				1.2
				1.4
				1.3
				1.4
				1.4
		9/14/2017	1.6	1.6
9	1 (11.1111%)	8/3/2016	1.2	1.2
	,		1	1
			1.2	1.2
				1.1
				1.4
				1.2
				ND<1.3 U
				1.1
		9/14/2017	1.5	1.5
9	0 (0%)	8/3/2016	1.3	1.3
	` /	9/21/2016	1.2	1.2
				1.4
				1.2
				1.5
				1.3
				1.4
				1.4
		9/14/2017	1.7	1.7
	ompliance loca	Meas. ND 9 0 (0%) 9 0 (0%) 9 1 (11.1111%)	Meas. ND Date 9 0 (0%) 8/3/2016 9/21/2016 11/11/2016 11/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 9 0 (0%) 8/3/2016 9/21/2016 11/11/2016 11/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 9 1 (11.1111%) 8/3/2016 9/21/2016 11/11/2016 11/11/2016 11/11/2017 6/9/2017 7/28/2017 4/21/2017 6/9/2017 7/28/2017 9/14/2017 9 0 (0%) 8/3/2016 9/21/2016 11/11/2016 11/11/2016 11/11/2017 6/9/2017 7/28/2017 4/21/2017 6/9/2017 7/28/2017 4/21/2017 6/9/2017 7/28/2017 4/21/2017 6/9/2017 7/28/2017 4/21/2017 6/9/2017 7/27/2017	9 0 (0%) 8/3/2016 1.6 9/21/2016 1.6 1/1/11/2016 1.7 1/13/2017 1.4 2/28/2017 1.9 4/21/2017 1.8 9/14/2017 2 9 0 (0%) 8/3/2016 1.2 1/1/11/2016 1.5 1/13/2017 1.4 4/21/2017 1.7 6/9/2017 1.7 7/27/2017 1.8 9/14/2017 2 9 1 1 (11.1111%) 8/3/2016 1.2 1/1/11/2016 1.5 1/13/2017 1.4 4/21/2017 1.6 1.5 1/13/2017 1.4 4/21/2017 1.6 1.5 1/13/2017 1.5 1/27/2017 1.4 4/21/2017 1.5 1/2/28/2017 1.4 4/21/2017 1.5 1/13/2017 1.5 1/2/28/2017 1.5 1/2/29/2017 1.4 1/2/2/2017 1.3 1/2/29/2017 1.4 1/2/2/2017 1.3 1/2/2/2017 1.4 1/2/2/2017 1.4 1/2/2/2017 1.3 1/2/2/2017 1.5 1/2/2/2017 1.4 1/2/2/2017 1.3 1/2/2/2017 1.4 1/2/2/2/2017 1.4 1/2/2/2/2017 1.4 1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2

Parameter: Lead

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 34 Total Non-Detect: 19

Percent Non-Detects: 55.8824% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	6 (66.6667%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017	ND<1 U 2.4 1.4 ND<1 U ND<1 U ND<1 U ND<1 U 1.5 ND<1 U	ND<1 U 2.4 1.4 ND<1 U
MW-16-02	8	3 (37.5%)	9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 8/3/2016	4.5 2.2 1.3 ND<1 U ND<1 U ND<1 U 3 1.2	4.5 2.2 1.3 ND<1 U ND<1 U ND<1 U 3 1.2
MW-16-03	9	7 (77.7778%)	8/3/2016 9/21/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/28/2017 9/14/2017	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U 1.2	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U 1.2 4.6
MW-16-04	8	3 (37.5%)	8/3/2016 11/11/2016 1/13/2017 2/28/2017 4/21/2017 6/9/2017 7/27/2017 9/14/2017 9/21/2016	ND<1 U 2.1 2.3 ND<1 U 1 ND<1 U 2.8 5.4 8.8	ND<1 U 2.1 2.3 ND<1 U 1 ND<1 U 2.8 5.4 8.8

Parameter: Lithium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 36 Total Non-Detect: 0 Percent Non-Detects: 0%

Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	0 (0%)	8/3/2016	34	34
		` ,	9/21/2016	56	56
			11/11/2016	48	48
			1/13/2017	41	41
			2/28/2017	41	41
			4/21/2017	46 F1	46 F1
			6/9/2017	41	41
			7/27/2017	53	53
			9/14/2017	46	46
MW-16-02	9	0 (0%)	8/3/2016	76	76
		, ,	9/21/2016	81	81
			11/11/2016	62	62
			1/13/2017	53	53
			2/28/2017	60	60
			4/21/2017	63	63
			6/9/2017	62	62
			7/27/2017	66	66
			9/14/2017	56	56
MW-16-03	9	0 (0%)	8/3/2016	36	36
			9/21/2016	40	40
			11/11/2016	36	36
			1/13/2017	33	33
			2/28/2017	39	39
			4/21/2017	46	46
			6/9/2017	46	46
			7/28/2017	62	62
			9/14/2017	62	62
MW-16-04	9	0 (0%)	8/3/2016	57	57
			9/21/2016	130	130
			11/11/2016	91	91
			1/13/2017	81	81
			2/28/2017	81	81
			4/21/2017	85	85
			6/9/2017	77	77
			7/27/2017	100	100
			9/14/2017	110	110

Parameter: Mercury

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 36
Total Non-Detect: 36
Percent Non-Detects: 100%
Total Background Measurements: 0
There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/3/2016	ND<0.2 U	ND<0.2 U
		, ,	9/21/2016	ND<0.2 U	ND<0.2 U
			11/11/2016	ND<0.2 U	ND<0.2 U
			1/13/2017	ND<0.2 U	ND<0.2 U
			2/28/2017	ND<0.2 U	ND<0.2 U
			4/21/2017	ND<0.2 U	ND<0.2 U
			6/9/2017	ND<0.2 U	ND<0.2 U
			7/27/2017	ND<0.2 U	ND<0.2 U
			9/14/2017	ND<0.2 U	ND<0.2 U
MW-16-02	9	9 (100%)	8/3/2016	ND<0.2 U	ND<0.2 U
		, ,	9/21/2016	ND<0.2 U	ND<0.2 U
			11/11/2016	ND<0.2 U	ND<0.2 U
			1/13/2017	ND<0.2 U	ND<0.2 U
			2/28/2017	ND<0.2 U	ND<0.2 U
			4/21/2017	ND<0.2 U	ND<0.2 U
			6/9/2017	ND<0.2 U	ND<0.2 U
			7/27/2017	ND<0.2 U	ND<0.2 U
			9/14/2017	ND<0.2 U	ND<0.2 U
MW-16-03	9	9 (100%)	8/3/2016	ND<0.2 U	ND<0.2 U
			9/21/2016	ND<0.2 U	ND<0.2 U
			11/11/2016	ND<0.2 U	ND<0.2 U
			1/13/2017	ND<0.2 U	ND<0.2 U
			2/28/2017	ND<0.2 U	ND<0.2 U
			4/21/2017	ND<0.2 U	ND<0.2 U
			6/9/2017	ND<0.2 U	ND<0.2 U
			7/28/2017	ND<0.2 U	ND<0.2 U
			9/14/2017	ND<0.2 U	ND<0.2 U
MW-16-04	9	9 (100%)	8/3/2016	ND<0.2 U	ND<0.2 U
			9/21/2016	ND<0.2 U	ND<0.2 U
			11/11/2016	ND<0.2 U	ND<0.2 U
			1/13/2017	ND<0.2 U	ND<0.2 U
			2/28/2017	ND<0.2 U	ND<0.2 U
			4/21/2017	ND<0.2 U	ND<0.2 U
			6/9/2017	ND<0.2 U	ND<0.2 U
			7/27/2017	ND<0.2 U	ND<0.2 U
			9/14/2017	ND<0.2 U	ND<0.2 U

Parameter: Molybdenum Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 35 Total Non-Detect: 0 Percent Non-Detects: 0%

Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	0 (0%)	8/3/2016	49	49
			9/21/2016	39	39
			11/11/2016	31	31
			1/13/2017	34	34
			2/28/2017	30	30
			4/21/2017	35	35
			6/9/2017	29	29
			7/27/2017	27	27
			9/14/2017	24	24
MW-16-02	8	0 (0%)	8/3/2016	47	47
	-	(())	9/21/2016	39	39
			1/13/2017	34	34
			2/28/2017	33	33
			4/21/2017	37	37
			6/9/2017	33	33
			7/27/2017	32	32
			9/14/2017	26	26
			11/11/2016	69	69
MW-16-03	9	0 (0%)	8/3/2016	26	26
		0 (070)	9/21/2016	34	34
			11/11/2016	32	32
			1/13/2017	31	31
			2/28/2017	31	31
			4/21/2017	31	31
			6/9/2017	31	31
			7/28/2017	26	26
			9/14/2017	24	24
MW-16-04	9	0 (0%)	8/3/2016	28	28
1V1 V V - 1 O - O - 1	9	0 (0 /0)	9/21/2016	32	32
			11/11/2016	22	22
				24	24
			1/13/2017 2/28/2017	23	23
			4/21/2017	25 25	25 25
				25 24	25 24
			6/9/2017		
			7/27/2017	19	19
			9/14/2017	21	21

Concentrations (pci/L)

Parameter: Radium-226/228 Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 36 Total Non-Detect: 1

Percent Non-Detects: 2.77778% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 co	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	1 (11.1111%)	8/3/2016	1.16	1.16
			9/21/2016	ND<0.79 U	ND<0.79 U
			11/11/2016	0.736	0.736
			1/13/2017	0.693	0.693
			2/28/2017	0.443	0.443
			4/21/2017	0.457	0.457
			6/9/2017	0.41	0.41
			7/27/2017	1.43	1.43
			9/14/2017	0.993	0.993
MW-16-02	9	0 (0%)	8/3/2016	2.9	2.9
		- (-)	9/21/2016	2.63	2.63
			11/11/2016	2.13	2.13
			1/13/2017	1.92	1.92
			2/28/2017	1.89	1.89
			4/21/2017	1.22	1.22
			6/9/2017	1.57	1.57
			7/27/2017	2.56	2.56
			9/14/2017	2.13	2.13
MW-16-03	9	0 (0%)	8/3/2016	1.79	1.79
		,	9/21/2016	1.79	1.79
			11/11/2016	1.58	1.58
			1/13/2017	1.31	1.31
			2/28/2017	1.35	1.35
			4/21/2017	1.15	1.15
			6/9/2017	1.67	1.67
			7/28/2017	2.31	2.31
			9/14/2017	2.28	2.28
MW-16-04	9	0 (0%)	8/3/2016	4.11	4.11
	ŭ	0 (0.0)	9/21/2016	6	6
			11/11/2016	3.81	3.81
			1/13/2017	3.18	3.18
			2/28/2017	3.31	3.31
			4/21/2017	2.59	2.59
			6/9/2017	3.52	3.52
			7/27/2017	4.14	4.14
			9/14/2017	4.14 4.78	4.14
			3/ 14/2U 1 <i>1</i>	4.70	4.70

There are 0 unused locations

Parameter: Selenium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 36
Total Non-Detect: 36
Percent Non-Detects: 100%
Total Background Measurements: 0
There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/3/2016	ND<5 U	ND<5 U
		, ,	9/21/2016	ND<5 U	ND<5 U
			11/11/2016	ND<5 U	ND<5 U
			1/13/2017	ND<5 UF1	ND<5 UF1
			2/28/2017	ND<5 U	ND<5 U
			4/21/2017	ND<5 U	ND<5 U
			6/9/2017	ND<5 U	ND<5 U
			7/27/2017	ND<5 U	ND<5 U
			9/14/2017	ND<5 U	ND<5 U
MW-16-02	9	9 (100%)	8/3/2016	ND<5 U	ND<5 U
		, ,	9/21/2016	ND<5 U	ND<5 U
			11/11/2016	ND<5 U	ND<5 U
			1/13/2017	ND<5 U	ND<5 U
			2/28/2017	ND<5 U	ND<5 U
			4/21/2017	ND<5 U	ND<5 U
			6/9/2017	ND<5 U	ND<5 U
			7/27/2017	ND<5 U	ND<5 U
			9/14/2017	ND<5 U	ND<5 U
MW-16-03	9	9 (100%)	8/3/2016	ND<5 U	ND<5 U
			9/21/2016	ND<5 U	ND<5 U
			11/11/2016	ND<5 U	ND<5 U
			1/13/2017	ND<5 U	ND<5 U
			2/28/2017	ND<5 U	ND<5 U
			4/21/2017	ND<5 U	ND<5 U
			6/9/2017	ND<5 U	ND<5 U
			7/28/2017	ND<5 U	ND<5 U
			9/14/2017	ND<5 U	ND<5 U
MW-16-04	9	9 (100%)	8/3/2016	ND<5 U	ND<5 U
			9/21/2016	ND<5 U	ND<5 U
			11/11/2016	ND<5 U	ND<5 U
			1/13/2017	ND<5 U	ND<5 U
			2/28/2017	ND<5 U	ND<5 U
			4/21/2017	ND<5 U	ND<5 U
			6/9/2017	ND<5 U	ND<5 U
			7/27/2017	ND<5 U	ND<5 U
			9/14/2017	ND<5 U	ND<5 U

Parameter: Thallium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 36
Total Non-Detect: 36
Percent Non-Detects: 100%
Total Background Measurements: 0
There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 4 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/3/2016	ND<1 U	ND<1 U
		, ,	9/21/2016	ND<1 U	ND<1 U
			11/11/2016	ND<1 U	ND<1 U
			1/13/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/21/2017	ND<1 U	ND<1 U
			6/9/2017	ND<1 U	ND<1 U
			7/27/2017	ND<1 U	ND<1 U
			9/14/2017	ND<1 U	ND<1 U
MW-16-02	9	9 (100%)	8/3/2016	ND<1 U	ND<1 U
			9/21/2016	ND<1 U	ND<1 U
			11/11/2016	ND<1 U	ND<1 U
			1/13/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/21/2017	ND<1 U	ND<1 U
			6/9/2017	ND<1 U	ND<1 U
			7/27/2017	ND<1 U	ND<1 U
			9/14/2017	ND<1 U	ND<1 U
MW-16-03	9	9 (100%)	8/3/2016	ND<1 U	ND<1 U
			9/21/2016	ND<1 U	ND<1 U
			11/11/2016	ND<1 U	ND<1 U
			1/13/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/21/2017	ND<1 U	ND<1 U
			6/9/2017	ND<1 U	ND<1 U
			7/28/2017	ND<1 U	ND<1 U
			9/14/2017	ND<1 U	ND<1 U
MW-16-04	9	9 (100%)	8/3/2016	ND<1 U	ND<1 U
			9/21/2016	ND<1 U	ND<1 U
			11/11/2016	ND<1 U	ND<1 U
			1/13/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/21/2017	ND<1 U	ND<1 U
			6/9/2017	ND<1 U	ND<1 U
			7/27/2017	ND<1 U	ND<1 U
			9/14/2017	ND<1 U	ND<1 U

Parameter: Barium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations							
Location	Obs.	Mean	Std. Dev.	Skewness			
MW-16-01	9	165.556	25.5495	0.480305			
MW-16-02	9	411.111	55.7773	1.19803			
MW-16-03	9	456.667	56.7891	1.60952			
MW-16-04	9	736.667	82.1584	1.08667			

Obs.	Mean	Std. Dev.	Skewness
36	442.5	213.118	0.263858

Parameter: Barium

Natural Logarithm Transformation

Non-Detects Replaced with Detection Limit

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations						
Location	Obs.	Mean	Std. Dev.	Skewness		
MW-16-01	9	5.09899	0.151458	0.277232		
MW-16-02	9	6.01133	0.127545	1.0391		
MW-16-03	9	6.11777	0.114873	1.46674		
MW-16-04	9	6.59696	0.106168	1.01782		

Obs.	Mean	Std. Dev.	Skewness
36	5.95626	0.562649	-0.559673

Parameter: Barium Location: MW-16-02

Normality Test of Parameter Concentrations

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

K = 4 for 9 measurements

x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
360	530	170	0.5888	100.096
360	470	110	0.3244	35.684
380	420	40	0.1976	7.904
390	400	10	0.0947	0.947
390	390	0		
400	390	-10		
420	380	-40		
470	360	-110		
530	360	-170		
	360 360 380 390 390 400 420 470	360 530 360 470 380 420 390 400 390 390 400 390 420 380 470 360	360 530 170 360 470 110 380 420 40 390 400 10 390 390 0 400 390 -10 420 380 -40 470 360 -110	360 530 170 0.5888 360 470 110 0.3244 380 420 40 0.1976 390 400 10 0.0947 390 390 0 400 390 -10 420 380 -40 470 360 -110

Sum of b values = 144.631 Sample Standard Deviation = 55.7773 W Statistic = 0.84046

5% Critical value of 0.829 is less than 0.84046
Data is normally distributed at 95% level of significance

1% Critical value of 0.764 is less than 0.84046
Data is normally distributed at 99% level of significance

10% Critical value of 0.859 is greater than 0.84046 Evidence of non-normality at 90% level of significance

Parameter: Barium Location: MW-16-02

Normality Test of Parameter Concentrations

Natural Logarithm Transformation

Non-Detects Replaced with Detection Limit

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	5.8861	6.27288	0.386773	0.5888	0.227732
2	5.8861	6.15273	0.266629	0.3244	0.0864943
3	5.94017	6.04025	0.100083	0.1976	0.0197765
4	5.96615	5.99146	0.0253178	0.0947	0.0023976
5	5.96615	5.96615	0		
6	5.99146	5.96615	-0.0253178		
7	6.04025	5.94017	-0.100083		
8	6.15273	5.8861	-0.266629		
9	6.27288	5.8861	-0.386773		

Sum of b values = 0.3364 Sample Standard Deviation = 0.127545 W Statistic = 0.869548

5% Critical value of 0.829 is less than 0.869548 Data is normally distributed at 95% level of significance

1% Critical value of 0.764 is less than 0.869548
Data is normally distributed at 99% level of significance

10% Critical value of 0.859 is less than 0.869548 Data is normally distributed at 90% level of significance

Parameter: Barium Location: MW-16-03

Normality Test of Parameter Concentrations

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	410	590	180	0.5888	105.984
2	420	500	80	0.3244	25.952
3	420	460	40	0.1976	7.904
4	430	440	10	0.0947	0.947
5	440	440	0		
6	440	430	-10		
7	460	420	-40		
8	500	420	-80		
9	590	410	-180		

Sum of b values = 140.787 Sample Standard Deviation = 56.7891 W Statistic = 0.768255

5% Critical value of 0.829 exceeds 0.768255 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 is less than 0.768255

Data is normally distributed at 99% level of significance

10% Critical value of 0.859 is greater than 0.768255 Evidence of non-normality at 90% level of significance

Parameter: Barium Location: MW-16-04

Normality Test of Parameter Concentrations

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	660	890	230	0.5888	135.424
2	680	860	180	0.3244	58.392
3	680	730	50	0.1976	9.88
4	690	730	40	0.0947	3.788
5	710	710	0		
6	730	690	-40		
7	730	680	-50		
8	860	680	-180		
9	890	660	-230		

Sum of b values = 207.484 Sample Standard Deviation = 82.1584 W Statistic = 0.797215

5% Critical value of 0.829 exceeds 0.797215 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 is less than 0.797215

Data is normally distributed at 99% level of significance

10% Critical value of 0.859 is greater than 0.797215 Evidence of non-normality at 90% level of significance

Parameter: Barium Location: MW-16-03

Normality Test of Parameter Concentrations

Natural Logarithm Transformation

Non-Detects Replaced with Detection Limit

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	6.01616	6.38012	0.363965	0.5888	0.214303
2	6.04025	6.21461	0.174353	0.3244	0.0565602
3	6.04025	6.13123	0.0909718	0.1976	0.017976
4	6.06379	6.08677	0.0229895	0.0947	0.00217711
5	6.08677	6.08677	0		
6	6.08677	6.06379	-0.0229895		
7	6.13123	6.04025	-0.0909718		
8	6.21461	6.04025	-0.174353		
9	6.38012	6.01616	-0.363965		

Sum of b values = 0.291016 Sample Standard Deviation = 0.114873 W Statistic = 0.802253

5% Critical value of 0.829 exceeds 0.802253
Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 is less than 0.802253
Data is normally distributed at 99% level of significance

10% Critical value of 0.859 is greater than 0.802253 Evidence of non-normality at 90% level of significance

Parameter: Barium Location: MW-16-04

Normality Test of Parameter Concentrations

Natural Logarithm Transformation

Non-Detects Replaced with Detection Limit

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	6.49224	6.79122	0.298982	0.5888	0.17604
2	6.52209	6.75693	0.23484	0.3244	0.076182
3	6.52209	6.59304	0.0709517	0.1976	0.0140201
4	6.53669	6.59304	0.0563529	0.0947	0.00533662
5	6.56526	6.56526	0		
6	6.59304	6.53669	-0.0563529		
7	6.59304	6.52209	-0.0709517		
8	6.75693	6.52209	-0.23484		
9	6.79122	6.49224	-0.298982		

Sum of b values = 0.271579 Sample Standard Deviation = 0.106168 W Statistic = 0.817932

5% Critical value of 0.829 exceeds 0.817932 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 is less than 0.817932
Data is normally distributed at 99% level of significance

10% Critical value of 0.859 is greater than 0.817932 Evidence of non-normality at 90% level of significance

Parameter: Chromium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	6		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	3.7	3.18983	1.37683
MW-16-02	8	4.675	4.37583	1.22647
MW-16-03	9	3.04444	4.28576	2.13249
MW-16-04	8	5.8375	4.80563	0.76241

Obs.	Mean	Std. Dev.	Skewness
34	4.25882	4.12473	1.36124

Parameter: Chromium

Original Data (Not Transformed) Aitchison's Adjustment

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations							
Location	Obs.	Mean	Std. Dev.	Skewness			
MW-16-01	9	3.36667	3.52846	1.36084			
MW-16-02	8	4.3	4.75034	1.27568			
MW-16-03	9	2.37778	4.65666	2.072			
MW-16-04	8	5.7125	4.95996	0.836269			

Obs.	Mean	Std. Dev.	Skewness
34	3.87647	4.45245	1.38522

Parameter: Chromium

Natural Logarithm Transformation Aitchison's Adjustment

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations					
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-16-01	9	0.994579	0.854089	0.686325	
MW-16-02	8	1.13091	1.0151	0.571595	
MW-16-03	9	0.579919	0.95786	1.45012	
MW-16-04	8	1.41783	0.936668	0.361276	

Obs.	Mean	Std. Dev.	Skewness
34	1.01648	0.947775	0.757235

Parameter: Cobalt

Original Data (Not Transformed) Aitchison's Adjustment

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	5			
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-16-01	9	0.777778	1.25875	1.36132	
MW-16-02	8	1.275	1.62107	1.11306	
MW-16-03	9	0.488889	1.11517	2.23487	
MW-16-04	8	1.7375	2.11926	1.09667	

Obs.	Mean	Std. Dev.	Skewness
34	1.04412	1.5584	1.52318

Parameter: Cobalt

Natural Logarithm Transformation Aitchison's Adjustment

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations					
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-16-01	9	0.265214	0.442427	1.31017	
MW-16-02	8	0.411139	0.575869	0.85828	
MW-16-03	9	0.143248	0.395262	2.4458	
MW-16-04	8	0.591514	0.681459	0.465141	

Obs.	Mean	Std. Dev.	Skewness
34	0.344041	0.531796	1.19356

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	•		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	1.71111	0.176383	-0.031618
MW-16-02	9	1.35556	0.1424	0.294764
MW-16-03	9	1.22222	0.156347	0.446271
MW-16-04	9	1.37778	0.156347	0.802603

Obs.	Mean	Std. Dev.	Skewness
36	1.41667	0.237246	0.554063

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	•		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	1.71111	0.176383	-0.031618
MW-16-02	9	1.35556	0.1424	0.294764
MW-16-03	9	1.15	0.242384	-0.64941
MW-16-04	9	1.37778	0.156347	0.802603

Obs.	Mean	Std. Dev.	Skewness
36	1.39861	0.268989	-0.0838555

Parameter: Lead

Original Data (Not Transformed) Aitchison's Adjustment

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	0.588889	0.925263	1.28001
MW-16-02	8	1.525	1.63073	1.03423
MW-16-03	9	0.644444	1.53551	2.2843
MW-16-04	8	1.7	1.87388	1.1812

Obs.	Mean	Std. Dev.	Skewness
34	1.08529	1.53191	1.55905

Parameter: Lead

Natural Logarithm Transformation Aitchison's Adjustment

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	Location	S			
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-16-01	9	0.179712	0.306878	1.45581	
MW-16-02	8	0.479479	0.579869	0.763902	
MW-16-03	9	0.18982	0.504704	2.41115	
MW-16-04	8	0.536358	0.637722	0.623367	

Obs.	Mean	Std. Dev.	Skewness
34	0.336838	0.519024	1.35731

Parameter: Lithium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	•		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	45.1111	6.7536	0.0978567
MW-16-02	9	64.3333	8.9861	0.745231
MW-16-03	9	44.4444	10.8641	0.814384
MW-16-04	9	90.2222	21.0522	0.439377

Obs.	Mean	Std. Dev.	Skewness
36	61.0278	22.6936	1.09731

Parameter: Molybdenum
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	33.1111	7.4405	1.00724
MW-16-02	8	35.125	6.1281	0.616111
MW-16-03	9	29.5556	3.35824	-0.514296
MW-16-04	9	24.2222	3.8658	0.771545

Obs.	Mean	Std. Dev.	Skewness
35	30.3714	6.66459	0.822234

Parameter: Molybdenum
Natural Logarithm Transformation
Non-Detects Replaced with Detection Limit

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	3.47927	0.211314	0.58368
MW-16-02	8	3.54598	0.171196	0.164837
MW-16-03	9	3.38025	0.117757	-0.612924
MW-16-04	9	3.17649	0.154093	0.45526

Obs.	Mean	Std. Dev.	Skewness	
35	3.3912	0.212874	0.192845	

Parameter: Radium-226/228 Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	6		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	0.790222	0.349237	0.578517
MW-16-02	9	2.10556	0.532191	-0.109897
MW-16-03	9	1.69222	0.405672	0.365312
MW-16-04	9	3.93778	1.00052	0.817435

Obs.	Mean	Std. Dev.	Skewness
36	2.13144	1.30782	0.965681

Parameter: Radium-226/228 Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	6		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	0.746333	0.373262	0.69254
MW-16-02	9	2.10556	0.532191	-0.109897
MW-16-03	9	1.69222	0.405672	0.365312
MW-16-04	9	3.93778	1.00052	0.817435

Obs.	Mean	Std. Dev.	Skewness
36	2.12047	1.32099	0.926892

Parameter: Barium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-01

Background observations = 9
Background mean = 165.556
Background standard deviation = 25.5495
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 242.996

Parameter: Chromium

Natural Logarithm Transformation

Aitchison's Adjustment

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 0.994579
Background standard deviation = 0.854089
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 3.58332

Location Date Value Significant

Parameter: Cobalt

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 66.6667%
Background measurements (n) = 9
Maximum Background Concentration = 3.4
Minimum Coverage = 71.7%
Average Coverage = 90%

Location Date Value Significant

Parameter: Fluoride

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 1.71111
Background standard deviation = 0.176383
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 2.24573

Location

Date

Value

Significant

Parameter: Lead

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 66.6667%
Background measurements (n) = 9
Maximum Background Concentration = 2.4
Minimum Coverage = 71.7%
Average Coverage = 90%

Location Date Value Significant

Parameter: Lithium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-01

Background observations = 9
Background mean = 45.1111
Background standard deviation = 6.7536
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 65.5813

Parameter: Molybdenum
Natural Logarithm Transformation
Non-Detects Replaced with Detection Limit

MW-16-01

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 3.47927
Background standard deviation = 0.211314
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 4.11977

Parameter: Radium-226/228
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

MW-16-01

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 0.746333
Background standard deviation = 0.373262
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 1.87769

MW-16-02

Parameter: Arsenic

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 77.7778%

Background measurements (n) = 9

Maximum Background Concentration = 12

Minimum Coverage = 71.7%

Average Coverage = 90%

MW-16-02

Parameter: Barium

Natural Logarithm Transformation Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 6.01133
Background standard deviation = 0.127545
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 6.39792

MW-16-02

Parameter: Chromium

Natural Logarithm Transformation Aitchison's Adjustment

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 8
Background mean = 1.13091
Background standard deviation = 1.0151
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 4.36706

Parameter: Cobalt

Natural Logarithm Transformation

Aitchison's Adjustment

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-02

Background observations = 8
Background mean = 0.411139
Background standard deviation = 0.575869
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 2.24701

MW-16-02

Parameter: Fluoride

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 1.35556
Background standard deviation = 0.1424
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 1.78717

Parameter: Lead

Natural Logarithm Transformation

Aitchison's Adjustment

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-02

Background observations = 8
Background mean = 0.479479
Background standard deviation = 0.579869
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 2.3281

Parameter: Lithium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 64.3333
Background standard deviation = 8.9861
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 91.5702

Location Date Value Significant

Parameter: Molybdenum
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

MW-16-02

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 8
Background mean = 35.125
Background standard deviation = 6.1281
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 54.6614

MW-16-02

Parameter: Radium-226/228
Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 2.10556
Background standard deviation = 0.532191
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 3.71863

Parameter: Barium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 0%
Background measurements (n) = 9
Maximum Background Concentration = 590
Minimum Coverage = 71.7%
Average Coverage = 90%

Location Date Value Significant

MW-16-03

Parameter: Chromium
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 66.6667%
Background measurements (n) = 9
Maximum Background Concentration = 14
Minimum Coverage = 71.7%
Average Coverage = 90%

Parameter: Cobalt

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 77.7778%

Background measurements (n) = 9

Maximum Background Concentration = 3.3

Minimum Coverage = 71.7%

Average Coverage = 90%

Location Date Value Significant

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-03

Background observations = 9
Background mean = 1.15
Background standard deviation = 0.242384
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 1.88467

Parameter: Lead

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 77.7778%

Background measurements (n) = 9

Maximum Background Concentration = 4.6

Minimum Coverage = 71.7%

Average Coverage = 90%

Location Date Value Significant

Parameter: Lithium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-03

Background observations = 9
Background mean = 44.4444
Background standard deviation = 10.8641
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 77.3734

MW-16-03

Parameter: Molybdenum
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 29.5556
Background standard deviation = 3.35824
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 39.7344

Parameter: Radium-226/228
Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-03

Background observations = 9
Background mean = 1.69222
Background standard deviation = 0.405672
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 2.92181

Parameter: Arsenic

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 77.7778%

Background measurements (n) = 9

Maximum Background Concentration = 10

Minimum Coverage = 71.7%

Average Coverage = 90%

MW-16-04

Parameter: Barium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 0%
Background measurements (n) = 9
Maximum Background Concentration = 890
Minimum Coverage = 71.7%
Average Coverage = 90%

MW-16-04

Parameter: Chromium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL MW-16-04

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 8
Background mean = 5.8375
Background standard deviation = 4.80563
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 21.1579

Parameter: Cobalt

Natural Logarithm Transformation

Aitchison's Adjustment

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-04

Background observations = 8
Background mean = 0.591514
Background standard deviation = 0.681459
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 2.764

Parameter: Fluoride

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 1.37778
Background standard deviation = 0.156347
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 1.85167

Significant

Location Date Value

MW-16-04

Parameter: Lead

Natural Logarithm Transformation Aitchison's Adjustment

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 8
Background mean = 0.536358
Background standard deviation = 0.637722
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 2.56942

Location Date Value Significant

Parameter: Lithium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 90.2222
Background standard deviation = 21.0522
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 154.031

Location Date Value Significant

MW-16-04

Parameter: Molybdenum
Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-04

Background observations = 9
Background mean = 24.2222
Background standard deviation = 3.8658
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 35.9395

Location Date Value Significant

Parameter: Radium-226/228
Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

MW-16-04

Background observations = 9
Background mean = 3.93778
Background standard deviation = 1.00052
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 6.97036

Location Date Value Significant

Attachment B Appendix IV Laboratory Reports

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 1/18/2024 4:52:34 PM Revision 2

JOB DESCRIPTION

CCR DTE St. Clair Power

JOB NUMBER

240-184674-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 1/18/2024 4:52:34 PM Revision 2

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790 6

4

5

6

7

ŏ

9

10

1 1

12

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	16
QC Association Summary	18
Lab Chronicle	20
Certification Summary	22
Chain of Custody	23

3

4

£

8

9

11

Definitions/Glossary

Client: TRC Environmental Corporation.

Job ID: 240-184674-1

Project/Site: CCR DTE St. Clair Power

Qualifiers

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	v used abbreviations may	or may not be	present in this report.
ADDIEVIALIOII	THESE COMMISSION	/ useu abbievialions may	y OI IIIay IIOL De	present in tins repor

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

L

_

7

_

10

11

12

Case Narrative

Client: TRC Environmental Corporation. Project: CCR DTE St. Clair Power

Job ID: 240-184674-1 Eurofins Cleveland

Job Narrative 240-184674-1

REVISION

The report being provided is a revision of the original report sent on 5/19/2023. The report (revision 2) is being revised due to to lower the reprting limit for chromium.

Report revision history

Revision 1 - 6/7/2023 - Reason - Client would like the results reported to the RL only..

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/4/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4°C, 1.8°C, 2.4°C and 2.6°C

Metals

Method 6020B: Some requested practical quantitation limits (PQLs) on the following samples fall below the laboratory's verified standard quantitation limit: MW-16-01 (240-184674-1), MW-16-02 (240-184674-2), MW-16-03 (240-184674-3), MW-16-04 (240-184674-4), DUP-01 (240-184674-5) and EB-01 (240-184674-6). The continuing calibration blanks and method blanks may not support the lower PQL.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

2

Job ID: 240-184674-1

3

4

5

8

9

11

12

L

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Method	Method Description	Protocol	Laboratory
6020B	Metals (ICP/MS)	SW846	EET CLE
7470A	Mercury (CVAA)	SW846	EET CLE
9056A	Anions, Ion Chromatography	SW846	EET CLE
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CLE
7470A	Preparation, Mercury	SW846	EET CLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

3

4

0

0

0

10

11

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-184674-1	MW-16-01	Ground Water	04/28/23 14:53	05/04/23 08:00
240-184674-2	MW-16-02	Ground Water	04/28/23 13:01	05/04/23 08:00
240-184674-3	MW-16-03	Ground Water	04/28/23 11:35	05/04/23 08:00
240-184674-4	MW-16-04	Ground Water	04/28/23 10:15	05/04/23 08:00
240-184674-5	DUP-01	Ground Water	04/28/23 00:00	05/04/23 08:00
240-184674-6	EB-01	Water	04/28/23 15:00	05/04/23 08:00

6

O

10

11

12

Client: TRC Environmental Corporation.

Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Client Sample ID: MW-16-01

Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	220		5.0	ug/L		6020B	Total
							Recoverable
Molybdenum	25		5.0	ug/L	1	6020B	Total
							Recoverable
Lithium	53		8.0	ug/L	1	6020B	Total
Electric Control of the Control of t						00504	Recoverable
Fluoride 	1.9		0.25	mg/L	5	9056A	Total/NA
Client Sample ID: MW-16-0	2				Lab San	iple ID: 2	40-184674-2
 Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	400		5.0	ug/L		6020B	Total
				-			Recoverable
Chromium	2.3		2.0	ug/L	1	6020B	Total
							Recoverable
Molybdenum	25		5.0	ug/L	1	6020B	Total
							Recoverable
Lithium	66		8.0	ug/L	1	6020B	Total
					_		Recoverable
Fluoride -	1.5		0.25	mg/L	5	9056A	Total/NA
Client Sample ID: MW-16-0	3				Lab San	nple ID: 2	40-184674-3
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	450	<u> </u>	5.0	ug/L		6020B	Total
				3			Recoverable
Chromium	2.1		2.0	ug/L	1	6020B	Total
				· ·			Recoverable
Molybdenum	22		5.0	ug/L	1	6020B	Total
							Recoverable
Lithium	68		8.0	ug/L	1	6020B	Total
							Recoverable
Fluoride -	1.3		0.25	mg/L	5	9056A	Total/NA
Client Sample ID: MW-16-0	4				Lab Sam	nple ID: 2	40-184674-4
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	670		5.0	ug/L		6020B	Total
				J			Recoverable
Molybdenum	17		5.0	ug/L	1	6020B	Total
•							Recoverable
Lithium	98		8.0	ug/L	1	6020B	Total
							Recoverable
Fluoride	1.5		0.25	mg/L	5	9056A	Total/NA
Client Sample ID: DUP-01					Lab San	nple ID: 2	40-184674-5
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Barium	470		5.0	ug/L	<u> </u>	6020B	Total
	770		0.0	<i>49,</i> ∟	•	30200	Recoverable
Chromium	2.6		2.0	ug/L	1	6020B	Total
	2.0		2.0	~9, ∟	•	30235	Recoverable
Molybdenum	23		5.0	ug/L	1	6020B	Total
•			- · -	- J. –	•		Recoverable
							recoverable
Lithium	70		8.0	ug/L	1	6020B	Total

This Detection Summary does not include radiochemical test results.

1.3

Fluoride

Eurofins Cleveland

Total/NA

9056A

Lab Sample ID: 240-184674-1

0.25

mg/L

Detection Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Lab Sample ID: 240-184674-6

Client Sample ID: EB-01

 \boldsymbol{A}

No Detections.

4

5

10

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-01 Date Collected: 04/28/23 14:53

Date Received: 05/04/23 08:00

Lab Sample ID: 240-184674-1

Matrix: Ground Water

Job ID: 240-184674-1

Method: SW846 6020B - Method: Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0		2.0	ug/L	<u>-</u>	05/05/23 14:00	05/08/23 21:43	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Barium	220		5.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Chromium	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Molybdenum	25		5.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Lithium	53		8.0	ug/L		05/05/23 14:00	05/08/23 21:43	1
Method: SW846 7470A - Mei	curv (CVAA)							
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:03	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.9		0.25	mg/L			05/18/23 08:30	5

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-184674-2

Matrix: Ground Water

Job ID: 240-184674-1

Client Sample ID: MW-16-02
Date Collected: 04/28/23 13:01
Date Received: 05/04/23 08:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Barium	400		5.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Chromium	2.3		2.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Molybdenum	25		5.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Lithium	66		8.0	ug/L		05/05/23 14:00	05/08/23 21:45	1
Method: SW846 7470A - Me	rcury (CVAA)							
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:10	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.5		0.25	mg/L			05/18/23 08:50	5

1/18/2024 (Rev. 2)

2

5

7

0

10

11

12

Client: TRC Environmental Corporation.
Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-184674-3

Matrix: Ground Water

Job ID: 240-184674-1

Date Collected: 04/28/23 11:35 Date Received: 05/04/23 08:00

Client Sample ID: MW-16-03

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Barium	450		5.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Chromium	2.1		2.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Molybdenum	22		5.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Lithium	68		8.0	ug/L		05/05/23 14:00	05/08/23 21:53	1
Method: SW846 7470A - Me	cury (CVAA)							
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:12	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.3		0.25	mg/L			05/18/23 09:10	

4

5

8

9

10

46

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-184674-4

Date Collected: 04/28/23 10:15 Date Received: 05/04/23 08:00

Client Sample ID: MW-16-04

Matrix: Ground Water

Job ID: 240-184674-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Barium	670		5.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Chromium	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Molybdenum	17		5.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
Lithium	98		8.0	ug/L		05/05/23 14:00	05/08/23 21:56	1
- Method: SW846 7470A - Mei	cury (CVAA)							
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:14	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.5		0.25	mg/L			05/18/23 09:30	5

Client: TRC Environmental Corporation. Job ID: 240-184674-1 Project/Site: CCR DTE St. Clair Power

Client Sample ID: DUP-01 Lab Sample ID: 240-184674-5

Date Collected: 04/28/23 00:00 **Matrix: Ground Water** Date Received: 05/04/23 08:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Barium	470		5.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Chromium	2.6		2.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Molybdenum	23		5.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Lithium	70		8.0	ug/L		05/05/23 14:00	05/08/23 21:59	1
Method: SW846 7470A - Me	rcury (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 19:16	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride (SW846 9056A)	1.3		0.25	mg/L			05/18/23 10:31	5

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: EB-01 Date Collected: 04/28/23 15:00

Date Received: 05/04/23 08:00

Analyte

Fluoride (SW846 9056A)

Lab Sample ID: 240-184674-6

Matrice Matrice

Analyzed

05/18/23 07:09

Job ID: 240-184674-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Barium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Chromium	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Molybdenum	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Lithium	8.0	U	8.0	ug/L		05/05/23 14:00	05/08/23 22:01	1
Method: SW846 7470A -	Mercury (CVAA)							
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U -	0.20	ug/L		05/05/23 14:00	05/08/23 19:19	1

RL

0.050

Unit

mg/L

Prepared

Result Qualifier

0.050 U

Eurofins Cleveland

3

4

O

0

10

11

12

13

Dil Fac

Client: TRC Environmental Corporation. Job ID: 240-184674-1

Project/Site: CCR DTE St. Clair Power

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 240-572237/1-A

Matrix: Water

Analysis Batch: 572569

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 572237

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Arsenic	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Barium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Beryllium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Cadmium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Cobalt	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Chromium	2.0	U	2.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Molybdenum	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Lead	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Selenium	5.0	U	5.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Thallium	1.0	U	1.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
Lithium	8.0	U	8.0	ug/L		05/05/23 14:00	05/08/23 20:39	1
		-		3				

Lab Sample ID: LCS 240-572237/2-A

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

0	1.00	1.00				Prep Batch: 572237
•				_		%Rec
Added	Result	Qualifier	Unit	D	%Rec	Limits
100	103		ug/L		103	80 - 120
1000	947		ug/L		95	80 - 120
1000	964		ug/L		96	80 - 120
500	441		ug/L		88	80 - 120
500	478		ug/L		96	80 - 120
500	483		ug/L		97	80 - 120
500	482		ug/L		96	80 - 120
500	470		ug/L		94	80 - 120
500	446		ug/L		89	80 - 120
1000	944		ug/L		94	80 - 120
1000	916		ug/L		92	80 - 120
500	490		ug/L		98	80 - 120
	1000 1000 500 500 500 500 500 500 1000	Added Result 100 103 1000 947 1000 964 500 441 500 478 500 483 500 482 500 470 500 446 1000 944 1000 916	Added Result Qualifier 100 103 1000 947 1000 964 500 441 500 478 500 483 500 482 500 470 500 446 1000 944 1000 916	Added Result Qualifier Unit 1000 103 ug/L 1000 947 ug/L 1000 964 ug/L 500 441 ug/L 500 478 ug/L 500 483 ug/L 500 482 ug/L 500 470 ug/L 500 446 ug/L 1000 944 ug/L 1000 916 ug/L	Added Result Qualifier Unit D 100 103 ug/L ug/L 1000 947 ug/L ug/L 1000 964 ug/L ug/L 500 441 ug/L ug/L 500 478 ug/L ug/L 500 483 ug/L ug/L 500 470 ug/L ug/L 1000 944 ug/L ug/L 1000 916 ug/L ug/L	Added Result Qualifier Unit D %Rec 100 103 ug/L 103 1000 947 ug/L 95 1000 964 ug/L 96 500 441 ug/L 96 500 478 ug/L 96 500 483 ug/L 97 500 482 ug/L 96 500 470 ug/L 94 500 446 ug/L 89 1000 944 ug/L 94 1000 916 ug/L 92

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-572242/1-A

Matrix: Water

Analysis Batch: 572543

Client Sample	D: Met	thod Bl	ank
Pre	p Type	e: Total	/NA

Client Sample ID: Lab Control Sample

Prep Batch: 572242

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		05/05/23 14:00	05/08/23 18:20	1

Lab Sample ID: LCS 240-572242/2-A

Matrix: Water

Analyte Mercury

Analysis Batch: 572543

							Prep Ba	itch: 5722	42
	Spike	LCS	LCS				%Rec		
	Added	Result	Qualifier	Unit	D	%Rec	Limits		
_	5.00	4.84		ug/L		97	80 - 120		

Eurofins Cleveland

QC Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Prep Type: Total/NA

Client Sample ID: EB-01

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-573780/3

Lab Sample ID: LCS 240-573780/4

Matrix: Water

Analysis Batch: 573780

MB MB

Analyte Result Qualifier RL Unit Analyzed Dil Fac **Prepared** Fluoride 0.050 05/18/23 06:29 0.050 U mg/L

> **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 573780

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 2.50 90 - 110 Fluoride 2.67 mg/L 107

Lab Sample ID: 240-184674-6 MS Client Sample ID: EB-01 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 573780

Sample Sample Spike MS MS %Rec **Analyte** Result Qualifier Added Result Qualifier Limits Unit %Rec Fluoride 0.050 U 2.50 2.81 112 mg/L

Lab Sample ID: 240-184674-6 MSD

Matrix: Water

Analysis Batch: 573780

Spike MSD MSD %Rec **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Fluoride 0.050 U 2.50 2.69 108 80 - 120 mg/L

Eurofins Cleveland

QC Association Summary

Client: TRC Environmental Corporation.

Job ID: 240-184674-1

Project/Site: CCR DTE St. Clair Power

Metals

Prep Batch: 572237

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total Recoverable	Ground Water	3005A	
240-184674-2	MW-16-02	Total Recoverable	Ground Water	3005A	
240-184674-3	MW-16-03	Total Recoverable	Ground Water	3005A	
240-184674-4	MW-16-04	Total Recoverable	Ground Water	3005A	
240-184674-5	DUP-01	Total Recoverable	Ground Water	3005A	
240-184674-6	EB-01	Total Recoverable	Water	3005A	
MB 240-572237/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-572237/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 572242

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total/NA	Ground Water	7470A	_
240-184674-2	MW-16-02	Total/NA	Ground Water	7470A	
240-184674-3	MW-16-03	Total/NA	Ground Water	7470A	
240-184674-4	MW-16-04	Total/NA	Ground Water	7470A	
240-184674-5	DUP-01	Total/NA	Ground Water	7470A	
240-184674-6	EB-01	Total/NA	Water	7470A	
MB 240-572242/1-A	Method Blank	Total/NA	Water	7470A	
LCS 240-572242/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 572543

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total/NA	Ground Water	7470A	572242
240-184674-2	MW-16-02	Total/NA	Ground Water	7470A	572242
240-184674-3	MW-16-03	Total/NA	Ground Water	7470A	572242
240-184674-4	MW-16-04	Total/NA	Ground Water	7470A	572242
240-184674-5	DUP-01	Total/NA	Ground Water	7470A	572242
240-184674-6	EB-01	Total/NA	Water	7470A	572242
MB 240-572242/1-A	Method Blank	Total/NA	Water	7470A	572242
LCS 240-572242/2-A	Lab Control Sample	Total/NA	Water	7470A	572242

Analysis Batch: 572569

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total Recoverable	Ground Water	6020B	572237
240-184674-2	MW-16-02	Total Recoverable	Ground Water	6020B	572237
240-184674-3	MW-16-03	Total Recoverable	Ground Water	6020B	572237
240-184674-4	MW-16-04	Total Recoverable	Ground Water	6020B	572237
240-184674-5	DUP-01	Total Recoverable	Ground Water	6020B	572237
240-184674-6	EB-01	Total Recoverable	Water	6020B	572237
MB 240-572237/1-A	Method Blank	Total Recoverable	Water	6020B	572237
LCS 240-572237/2-A	Lab Control Sample	Total Recoverable	Water	6020B	572237

General Chemistry

Analysis Batch: 573780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total/NA	Ground Water	9056A	
240-184674-2	MW-16-02	Total/NA	Ground Water	9056A	
240-184674-3	MW-16-03	Total/NA	Ground Water	9056A	
240-184674-4	MW-16-04	Total/NA	Ground Water	9056A	
240-184674-5	DUP-01	Total/NA	Ground Water	9056A	

Eurofins Cleveland

Page 18 of 26

2

6

8

40

11

12

1.

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

General Chemistry (Continued)

Analysis Batch: 573780 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-6	EB-01	Total/NA	Water	9056A	
MB 240-573780/3	Method Blank	Total/NA	Water	9056A	
LCS 240-573780/4	Lab Control Sample	Total/NA	Water	9056A	
240-184674-6 MS	EB-01	Total/NA	Water	9056A	
240-184674-6 MSD	EB-01	Total/NA	Water	9056A	

3

4

5

0

10

11

12

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-01

Date Collected: 04/28/23 14:53 Date Received: 05/04/23 08:00

Total/NA

Analysis

9056A

Lab Sample ID: 240-184674-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:43
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:03
Total/NA	Analysis	9056A		5	573780	JWW	EET CLE	05/18/23 08:30

Client Sample ID: MW-16-02 Lab Sample ID: 240-184674-2

Date Collected: 04/28/23 13:01 **Matrix: Ground Water** Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:45
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:10
Total/NA	Analysis	9056A		5	573780	JWW	EET CLE	05/18/23 08:50

Lab Sample ID: 240-184674-3 **Client Sample ID: MW-16-03**

Date Collected: 04/28/23 11:35 **Matrix: Ground Water** Date Received: 05/04/23 08:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:53
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:12

Client Sample ID: MW-16-04 Lab Sample ID: 240-184674-4

573780 JWW

EET CLE

05/18/23 09:10

Date Collected: 04/28/23 10:15 **Matrix: Ground Water** Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:56
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:14
Total/NA	Analysis	9056A		5	573780	JWW	EET CLE	05/18/23 09:30

Lab Chronicle

Client: TRC Environmental Corporation.

Job ID: 240-184674-1

Project/Site: CCR DTE St. Clair Power

Client Sample ID: DUP-01

Lab Sample ID: 240-184674-5

Matrix: Ground Water

Date Collected: 04/28/23 00:00 Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 21:59
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:16
Total/NA	Analysis	9056A		5	573780	JWW	EET CLE	05/18/23 10:31

Client Sample ID: EB-01 Lab Sample ID: 240-184674-6

Date Collected: 04/28/23 15:00 Matrix: Water Date Received: 05/04/23 08:00

-	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A	-		572237	MRL	EET CLE	05/05/23 14:00
Total Recoverable	Analysis	6020B		1	572569	DSH	EET CLE	05/08/23 22:01
Total/NA	Prep	7470A			572242	MRL	EET CLE	05/05/23 14:00
Total/NA	Analysis	7470A		1	572543	AJC	EET CLE	05/08/23 19:19
Total/NA	Analysis	9056A		1	573780	JWW	EET CLE	05/18/23 07:09

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

2

3

4

5

9

-

12

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	07-05-23
Connecticut	State	PH-0590	06-29-23
Florida	NELAP	E87225	05-24-23
Georgia	State	4062	06-27-23
Illinois	NELAP	200004	07-24-23
lowa	State	421	05-31-23
Kentucky (UST)	State	112225	02-28-24
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	07-17-23
Minnesota	NELAP	039-999-348	12-28-23
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-23
New York	NELAP	10975	06-12-23
Ohio	State	8303	06-27-23
Ohio VAP	State	ORELAP 4062	06-27-23
Oregon	NELAP	4062	05-24-23
Pennsylvania	NELAP	68-00340	06-13-23
Texas	NELAP	T104704517-22-19	08-31-23
Virginia	NELAP	460175	08-03-23
West Virginia DEP	State	210	12-19-23

4

5

7

0

10

11

12

Eurofins - Canton Sample Receipt Form/Narrative Login # : 18701
Barberton Facility Client TR C For manufal Ground Site Name Cooler unpacked by:
Chem The Environmental (bipolation) She Hame
Cooler Received on 05-04-23 Opened on 05-04-23 Jeah M. Smull FedEx: 1st Grd Exp UPS FAS (Clipper) Client Drop Off Eurofins Courier Other
Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # F C Foam Box Client Cooler Box Other
Packing material used: Bubble Wrap Foam Plastic Bag None Other
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels (ID/Date/Time) be reconciled with the COC? 9. For each sample, does the COC specify preservatives (Y/N), # of containers (Y/N), and sample type of grab/comp(Y/N)? 10. Were correct bottle(s) used for the test(s) indicated? 11. Sufficient quantity received to perform indicated analyses? 12. Are these work share samples and all listed on the COC? If yes, Questions 13-17 have been checked at the originating laboratory. 13. Were all preserved sample(s) at the correct pH upon receipt? 14. Were VOAs on the COC? 15. Were air bubbles >6 mm in any VOA vials? 16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # 17. Was a LL Hg or Me Hg trip blank present? 18. Were the seals on the oblete of the cooler (s)? Trip Blank Lot # Yes No NA Tests that are not checked for pH by Receiving: Yes No NA NO VOAs Oil and Grease TOC NO NO Yos NO NO NO NO NO NO NO NO NO N
Contacted PM Date by via Verbal Voice Mail Other
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
None of the 250 mlp's have labels
19. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) were received with bubble >6 mm in diameter. (Notify PM)
20. SAMPLE PRESERVATION
Sample(s) were further preserved in the laboratory.
Time preserved: Preservative(s) added/Lot number(s):
VOA Sample Preservation - Date/Time VOAs Frozen:
1

Login #: 184674

		Eurofins - Canto	n Sample Receipt Mu	Iltiple Cooler Form	
Cooler Desc	ription	IR Gun#	Observed	Corrected	Coolant
(Circle		(Circle)	Temp °C	Temp °C	(Circle)
	ox Other	IR GUN #:	1.8	1.8.	Wet ice Blue Ice Dry ice Water None
(EC Client Bo	x Other	IR GUN #: 22	2.4	2.4. (Wet loe Blue Ice Dry Ice Water None
(EC) Client Bo	x Other	IR GUN #: 22	1.4	7.4	Wet ice Blue ice Dry ice
EC Client Bo	x Other	IR GUN#: 20	2.6	26	Wet ice Blue ice Dry ice
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Sive Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wel ice Blue Ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wat ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Stue Ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Öther	IR GUN #:			Wet ice Blue Ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client 8c	ox Other	IR GUN #:			Wet Ice Slue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
				☐ See Temp	erature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

Login Container Summary Report

240-184674

Temperature readings: Container Preservative Client Sample 1D Lab ID Container Type Temp Added (mls) Lot # pΗ Plastic 250ml - with Nitric Acid MW-16-01 240-184674-B-1 Plastic 1 liter - Nitric Acid MW-16-01 240-184674-C-1 <2 MW-16-01 240-184674-D-1 Plastic 1 liter - Nitric Acid <2 Plastic 250ml - with Nitric Acid MW-16-02 240-184674-B-2 <2 Plastic 1 liter - Nitric Acid MW-16-02 240-184674-C-2 <2 MW-16-02 240-184674-D-2 Plastic 1 liter - Nitric Acid <2 MW-16-03 240-184674-B-3 Plastic 250ml - with Nitric Acid <2 MW-16-03 240-184674-C-3 Plastic 1 liter - Nitric Acid <2 MW-16-03 240-184674-D-3 Plastic 1 liter - Nitric Acid <2 Plastic 250ml - with Nitric Acid MW-16-04 240-184674-B-4 <2 Plastic 1 liter - Nitric Acid MW-16-04 240-184674-C-4 <2 MW-16-04 240-184674-D-4 Plastic 1 liter - Nitric Acid <2 DUP-01 240-184674-B-5 Plastic 250ml - with Nitric Acid <2 DUP-01 Plastic 1 liter - Nitric Acid 240-184674-C-5 <2 DUP-01 240-184674-D-5 Plastic 1 liter - Nitric Acid <2 EB-01 Plastic 250ml - with Nitric Acid 240-184674-B-6 <2 EB-01 Plastic 1 liter - Nitric Acid 240-184674-C-6 <2

Plastic 1 liter - Nitric Acid

<2

240-184674-D-6

Page 1 of 1

EB-01

10

12

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 6/5/2023 5:08:13 PM

JOB DESCRIPTION

CCR DTE St. Clair Power

JOB NUMBER

240-184674-2

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 6/5/2023 5:08:13 PM

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Tracer Carrier Summary	15
QC Sample Results	16
QC Association Summary	17
Lab Chronicle	18
Certification Summary	20
Chain of Custody	21
Receipt Checklists	26

4

6

8

46

11

12

14

Definitions/Glossary

Client: TRC Environmental Corporation. Job ID: 240-184674-2

Project/Site: CCR DTE St. Clair Power

Qualifiers

	- 1
c a	М
••	

Qualifier	Qualifier Description
G	The Sample MDC is greater than the requested RL.
U	Result is less than the sample detection limit.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number

NC

MQL

Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Method Quantitation Limit

Negative / Absent NEG POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Eurofins Cleveland

Page 4 of 26

Case Narrative

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Job ID: 240-184674-2

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-184674-2

Receipt

The samples were received on 5/4/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4°C, 1.8°C, 2.4°C and 2.6°C

Gas Flow Proportional Counter

Method 9315_Ra226: Radium-226 batch 611032Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.MW-16-01 (240-184674-1), MW-16-02 (240-184674-2), MW-16-03 (240-184674-3), MW-16-04 (240-184674-4), DUP-01 (240-184674-5), EB-01 (240-184674-6), (LCS 160-611032/2-A), (MB 160-611032/1-A), (310-254620-D-17-A), (310-254620-D-17-B MS) and (310-254620-E-17-A MSD)

Method 9320_Ra228: Radium-228 batch 611041The detection goal was not met for the following sample(s). Sample was prepped at a reduced volume due to the presence of matrix interferences: MW-16-01 (240-184674-1). Analytical results are reported with the detection limit achieved.

Method 9320_Ra228: Radium-228 batch 611041Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.MW-16-01 (240-184674-1), MW-16-02 (240-184674-2), MW-16-03 (240-184674-3), MW-16-04 (240-184674-4), DUP-01 (240-184674-5), EB-01 (240-184674-6), (LCS 160-611041/2-A), (MB 160-611041/1-A), (310-254620-D-17-C), (310-254620-D-17-D MS) and (310-254620-E-17-B MSD)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Rac

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

J

7

ŏ

10

10

13

۳

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Method	Method Description	Protocol	Laboratory
9315	Radium-226 (GFPC)	SW846	EET SL
9320	Radium-228 (GFPC)	SW846	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Eurofins Cleveland

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-184674-1	MW-16-01	Ground Water	04/28/23 14:53	05/04/23 08:00
240-184674-2	MW-16-02	Ground Water	04/28/23 13:01	05/04/23 08:00
240-184674-3	MW-16-03	Ground Water	04/28/23 11:35	05/04/23 08:00
240-184674-4	MW-16-04	Ground Water	04/28/23 10:15	05/04/23 08:00
240-184674-5	DUP-01	Ground Water	04/28/23 00:00	05/04/23 08:00
240-184674-6	EB-01	Water	04/28/23 15:00	05/04/23 08:00

3

4

5

6

8

9

11

12

4 A

Detection Summary

Project/Site: CCR DTE St. Clair Power	
Client Sample ID: MW-16-01	Lab Sample ID: 240-184674-1
No Detections.	
Client Sample ID: MW-16-02	Lab Sample ID: 240-184674-2
No Detections.	
Client Sample ID: MW-16-03	Lab Sample ID: 240-184674-3
No Detections.	
Client Sample ID: MW-16-04	Lab Sample ID: 240-184674-4
No Detections.	
Client Sample ID: DUP-01	Lab Sample ID: 240-184674-5
No Detections.	
Client Sample ID: EB-01	Lab Sample ID: 240-184674-6
No Detections.	

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation.

Eurofins Cleveland

Job ID: 240-184674-2

Page 8 of 26

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Client Sample ID: MW-16-01

Lab Sample ID: 240-184674-1

Matrix: Ground Water

Date Collected: 04/28/23 14:53 Date Received: 05/04/23 08:00

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.527	U	0.379	0.382	1.00	0.552	pCi/L	05/10/23 18:58	06/02/23 08:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	63.0		30 - 110					05/10/23 18:58	06/02/23 08:10	1

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.905	U G	0.694	0.699	1.00	1.07	pCi/L	05/11/23 08:46	06/01/23 12:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	63.0		30 - 110					05/11/23 08:46	06/01/23 12:25	1
Y Carrier	81.7		30 - 110					05/11/23 08:46	06/01/23 12:25	1

Method: TAL-STL Ra	226_Ra228	- Combined	Radium-226	and Radiun	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.43		0.791	0.797	5.00	1.07	pCi/L		06/05/23 17:55	1

6/5/2023

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Client Sample ID: MW-16-02

Lab Sample ID: 240-184674-2

Matrix: Ground Water

Date Collected: 04/28/23 13:01 Date Received: 05/04/23 08:00

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	1.41		0.346	0.368	1.00	0.281	pCi/L	05/10/23 18:58	06/02/23 08:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.1		30 - 110					05/10/23 18:58	06/02/23 08:10	1

Method: SW846 93	20 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.898		0.429	0.437	1.00	0.587	pCi/L	05/11/23 08:46	06/01/23 12:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.1		30 - 110					05/11/23 08:46	06/01/23 12:25	1
Y Carrier	80.6		30 - 110					05/11/23 08:46	06/01/23 12:25	1

Method: TAL-STL Ra	226_Ra228 -	- Combined	Radium-226	and Radiur	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.31		0.551	0.571	5.00	0.587	pCi/L	_	06/05/23 17:55	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Client Sample ID: MW-16-03 Lab Sample ID: 240-184674-3 Date Collected: 04/28/23 11:35

Matrix: Ground Water

Date Received: 05/04/23 08:00

			Count Uncert.	Total Uncert.						
Analyte	Popult	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Allalyte	Resuit	Qualifier	(20+/-)	(20+/-)	KL_	MIDC	UIIIL	Frepareu	Allalyzeu	DII Fac
Radium-226	1.55		0.430	0.452	1.00	0.374	pCi/L	05/10/23 18:58	06/02/23 08:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	61.1		30 - 110					05/10/23 18:58	06/02/23 08:10	1

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.41		0.682	0.695	1.00	0.951	pCi/L	05/11/23 08:46	06/01/23 12:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	61.1		30 - 110					05/11/23 08:46	06/01/23 12:25	1
Y Carrier	78.7		30 - 110					05/11/23 08:46	06/01/23 12:25	1

Method: TAL-STL Ra	226_Ra228 -	- Combined	Radium-226	and Radiun	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	2.96		0.806	0.829	5.00	0.951	pCi/L		06/05/23 17:55	1
226 + 228										

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Client Sample ID: MW-16-04

Lab Sample ID: 240-184674-4

Matrix: Ground Water

Date	Collected:	04/28/23	10:15
Date	Received:	05/04/23	08:00

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	2.91		0.466	0.534	1.00	0.269	pCi/L	05/10/23 18:58	06/02/23 08:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.2		30 - 110					05/10/23 18:58	06/02/23 08:11	1

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.92		0.465	0.497	1.00	0.466	pCi/L	05/11/23 08:46	06/01/23 12:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.2		30 - 110					05/11/23 08:46	06/01/23 12:25	1
Y Carrier	90.2		30 - 110					05/11/23 08:46	06/01/23 12:25	1

Method: TAL-STL Ra	a226_Ra228 ·	- Combined	l Radium-226	and Radiun	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	4.83		0.658	0.729	5.00	0.466	pCi/L		06/05/23 17:55	1
226 + 228										

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: DUP-01

Lab Sample ID: 240-184674-5

Matrix: Ground Water

Job ID: 240-184674-2

Date Collected: 04/28/23 00:00 Date Received: 05/04/23 08:00

5 - Radium-2	26 (GFPC)								
	, ,	Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
1.01		0.313	0.326	1.00	0.301	pCi/L	05/10/23 18:58	06/02/23 08:11	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
83.9		30 - 110					05/10/23 18:58	06/02/23 08:11	1
	Result 1.01 %Yield	%Yield Qualifier	Count Uncert.	Result 1.01 Qualifier Qualifier (2σ+/-) (2σ+/-) (2σ+/-) (2σ+/-) %Yield Qualifier Limits	Count Total Uncert. Uncert. Uncert.	Count Uncert. Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. Total Uncert. Uncert.	Count Uncert. Uncert. Uncert. Variety V	Count Uncert. Uncert. Uncert. Vincert. Vincert.

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.21		0.467	0.480	1.00	0.574	pCi/L	05/11/23 08:46	06/01/23 12:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	83.9		30 - 110					05/11/23 08:46	06/01/23 12:25	1
Y Carrier	77.5		30 - 110					05/11/23 08:46	06/01/23 12:25	1

Method: TAL-STL Ra	a226_Ra228 -	- Combined	I Radium-226	and Radiun	n- 228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	2.22		0.562	0.580	5.00	0.574	pCi/L		06/05/23 17:55	1
226 + 228										

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Client Sample ID: EB-01

Lab Sample ID: 240-184674-6

Matrix: Water

Date Collected: 04/28/23 15:00 Date Received: 05/04/23 08:00

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0203	U	0.129	0.129	1.00	0.276	pCi/L	05/10/23 18:58	06/02/23 08:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.6		30 - 110					05/10/23 18:58	06/02/23 08:11	1

Method: SW846 9	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.00988	U	0.297	0.297	1.00	0.561	pCi/L	05/11/23 08:46	06/01/23 12:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.6		30 - 110					05/11/23 08:46	06/01/23 12:25	1
Y Carrier	79.8		30 - 110					05/11/23 08:46	06/01/23 12:25	1

Method: TAL-STL Raz	226_Ra228	- Combined	Radium-226	and Radiun	1-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	-0.0104	U	0.324	0.324	5.00	0.561	pCi/L		06/05/23 17:55	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Method: 9315 - Radium-226 (GFPC)

Matrix: Ground Water Prep Type: Total/NA

-			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
240-184674-1	MW-16-01	63.0	
240-184674-2	MW-16-02	87.1	
240-184674-3	MW-16-03	61.1	
240-184674-4	MW-16-04	93.2	
240-184674-5	DUP-01	83.9	
Tracer/Carrier Lege	nd		
Ba = Ba Carrier			

Method: 9315 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

		Percent Yield (Acceptance Limits)							
		Ва							
_ab Sample ID	Client Sample ID	(30-110)							
240-184674-6	EB-01	85.6							
_CS 160-611032/2-A	Lab Control Sample	92.7							
MB 160-611032/1-A	Method Blank	80.3							
Tracer/Carrier Legend									

Method: 9320 - Radium-228 (GFPC)

Matrix: Ground Water Prep Type: Total/NA

-				Paramat Vistal (Assessment Limite)
		Ва	Υ	Percent Yield (Acceptance Limits)
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
240-184674-1	MW-16-01	63.0	81.7	
240-184674-2	MW-16-02	87.1	80.6	
240-184674-3	MW-16-03	61.1	78.7	
240-184674-4	MW-16-04	93.2	90.2	
240-184674-5	DUP-01	83.9	77.5	
Tracer/Carrier Leger	nd			
Ba = Ba Carrier				
Y = Y Carrier				

Method: 9320 - Radium-228 (GFPC)

Y = Y Carrier

Matrix: Water Prep Type: Total/NA

				1 21
-				Percent Yield (Acceptance Limits)
		Ва	Y	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
240-184674-6	EB-01	85.6	79.8	
LCS 160-611041/2-A	Lab Control Sample	92.7	83.4	
MB 160-611041/1-A	Method Blank	80.3	83.4	
Tracer/Carrier Legend				
Ba = Ba Carrier				

Page 15 of 26

Job ID: 240-184674-2

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-611032/1-A

Lab Sample ID: LCS 160-611032/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 614273

Analysis Batch: 614273

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 611032

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ (2σ+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-226 0.09226 U 0.149 0.149 1.00 0.261 pCi/L 05/10/23 18:58 06/02/23 08:06

Total

Count

MΒ

Qualifier Limits Prepared Dil Fac Carrier %Yield Analyzed Ba Carrier 80.3 30 - 110 05/10/23 18:58 06/02/23 08:06

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 611032

Total LCS LCS %Rec Spike Uncert. Added Analyte Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-226 1.00 11.3 9 327 1.18 0.247 pCi/L 82 75 - 113

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 92.7 30 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-611041/1-A

Matrix: Water

Analysis Batch: 614157

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 611041

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ (2σ+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-228 0.4222 U 0.337 0.340 1.00 05/11/23 08:46 0.514 pCi/L 06/01/23 12:21 MB MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac 05/11/23 08:46 06/01/23 12:21 Ba Carrier 80.3 30 - 110 30 - 110 05/11/23 08:46 06/01/23 12:21 Y Carrier 83.4

Lab Sample ID: LCS 160-611041/2-A

Matrix: Water

Analysis Batch: 614157

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 611041

Total Spike LCS LCS Uncert.

%Rec Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-228 1.00 8.15 10.07 1.34 0.452 pCi/L 124 75 - 125

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 92.7 30 - 110 Y Carrier 83.4 30 - 110

Eurofins Cleveland

QC Association Summary

Client: TRC Environmental Corporation. Job ID: 240-184674-2 Project/Site: CCR DTE St. Clair Power

Rad

Prep Batch: 611032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184674-1	MW-16-01	Total/NA	Ground Water	PrecSep-21	
240-184674-2	MW-16-02	Total/NA	Ground Water	PrecSep-21	
240-184674-3	MW-16-03	Total/NA	Ground Water	PrecSep-21	
240-184674-4	MW-16-04	Total/NA	Ground Water	PrecSep-21	
240-184674-5	DUP-01	Total/NA	Ground Water	PrecSep-21	
240-184674-6	EB-01	Total/NA	Water	PrecSep-21	
MB 160-611032/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-611032/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	

Prep Batch: 611041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
240-184674-1	MW-16-01	Total/NA	Ground Water	PrecSep_0	
240-184674-2	MW-16-02	Total/NA	Ground Water	PrecSep_0	
240-184674-3	MW-16-03	Total/NA	Ground Water	PrecSep_0	
240-184674-4	MW-16-04	Total/NA	Ground Water	PrecSep_0	
240-184674-5	DUP-01	Total/NA	Ground Water	PrecSep_0	
240-184674-6	EB-01	Total/NA	Water	PrecSep_0	
MB 160-611041/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-611041/2-A	Lab Control Sample	Total/NA	Water	PrecSep 0	

Lab Chronicle

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-184674-1

Matrix: Ground Water

Job ID: 240-184674-2

Client Sample ID: MW-16-01

Date Collected: 04/28/23 14:53 Date Received: 05/04/23 08:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			611032	REV	EET SL	05/10/23 18:58
Total/NA	Analysis	9315		1	614272	SCB	EET SL	06/02/23 08:10
Total/NA	Prep	PrecSep_0			611041	BMP	EET SL	05/11/23 08:46
Total/NA	Analysis	9320		1	614158	FLC	EET SL	06/01/23 12:25
Total/NA	Analysis	Ra226_Ra228		1	614505	SCB	EET SL	06/05/23 17:55

Client Sample ID: MW-16-02 Lab Sample ID: 240-184674-2

Date Collected: 04/28/23 13:01 **Matrix: Ground Water**

Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			611032	REV	EET SL	05/10/23 18:58
Total/NA	Analysis	9315		1	614272	SCB	EET SL	06/02/23 08:10
Total/NA	Prep	PrecSep_0			611041	BMP	EET SL	05/11/23 08:46
Total/NA	Analysis	9320		1	614158	FLC	EET SL	06/01/23 12:25
Total/NA	Analysis	Ra226_Ra228		1	614505	SCB	EET SL	06/05/23 17:55

Client Sample ID: MW-16-03 Lab Sample ID: 240-184674-3

Date Collected: 04/28/23 11:35 **Matrix: Ground Water** Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			611032	REV	EET SL	05/10/23 18:58
Total/NA	Analysis	9315		1	614272	SCB	EET SL	06/02/23 08:10
Total/NA	Prep	PrecSep_0			611041	BMP	EET SL	05/11/23 08:46
Total/NA	Analysis	9320		1	614158	FLC	EET SL	06/01/23 12:25
Total/NA	Analysis	Ra226 Ra228		1	614505	SCB	EET SL	06/05/23 17:55

Client Sample ID: MW-16-04 Lab Sample ID: 240-184674-4

Date Collected: 04/28/23 10:15 **Matrix: Ground Water** Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			611032	REV	EET SL	05/10/23 18:58
Total/NA	Analysis	9315		1	614272	SCB	EET SL	06/02/23 08:11
Total/NA	Prep	PrecSep_0			611041	BMP	EET SL	05/11/23 08:46
Total/NA	Analysis	9320		1	614158	FLC	EET SL	06/01/23 12:25
Total/NA	Analysis	Ra226_Ra228		1	614505	SCB	EET SL	06/05/23 17:55

Eurofins Cleveland

Lab Chronicle

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Client Sample ID: DUP-01

Date Collected: 04/28/23 00:00 Date Received: 05/04/23 08:00 Lab Sample ID: 240-184674-5

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			611032	REV	EET SL	05/10/23 18:58
Total/NA	Analysis	9315		1	614272	SCB	EET SL	06/02/23 08:11
Total/NA	Prep	PrecSep_0			611041	BMP	EET SL	05/11/23 08:46
Total/NA	Analysis	9320		1	614158	FLC	EET SL	06/01/23 12:25
Total/NA	Analysis	Ra226_Ra228		1	614505	SCB	EET SL	06/05/23 17:55

Client Sample ID: EB-01 Lab Sample ID: 240-184674-6

Date Collected: 04/28/23 15:00

Matrix: Water Date Received: 05/04/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			611032	REV	EET SL	05/10/23 18:58
Total/NA	Analysis	9315		1	614272	SCB	EET SL	06/02/23 08:11
Total/NA	Prep	PrecSep_0			611041	BMP	EET SL	05/11/23 08:46
Total/NA	Analysis	9320		1	614158	FLC	EET SL	06/01/23 12:25
Total/NA	Analysis	Ra226_Ra228		1	614505	SCB	EET SL	06/05/23 17:55

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-184674-2

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-23
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-23
Florida	NELAP	E87689	06-30-23
HI - RadChem Recognition	State	n/a	06-30-23
Illinois	NELAP	200023	11-30-23
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-23
Kentucky (DW)	State	KY90125	12-31-23
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23
Louisiana (All)	NELAP	04080	06-30-23
Louisiana (DW)	State	LA011	12-31-23
Maryland	State	310	09-30-23
MI - RadChem Recognition	State	9005	06-30-23
Missouri	State	780	06-30-25
Nevada	State	MO000542020-1	07-31-23
New Jersey	NELAP	MO002	06-30-23
New York	NELAP	11616	03-31-24
North Carolina (DW)	State	29700	07-31-23
North Dakota	State	R-207	06-30-23
Oklahoma	NELAP	9997	08-31-23
Oregon	NELAP	4157	09-01-23
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-23
Texas	NELAP	T104704193	07-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00028	05-18-26
Utah	NELAP	MO000542021-14	07-31-23
Virginia	NELAP	10310	06-14-23
Washington	State	C592	08-30-23
West Virginia DEP	State	381	10-31-23

3

4

0

9

11

1/

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Cleveland

	101621
Eurofins - Canton Sample Receipt Form/Narrative Barberton Facility	Login # : 189679
	Cooler unpacked by:
	—— D /// D-H
Cooler Received on 05-04-73 Opened on 05-04-7	
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off Eurofins	
	age Location Other
Packing material used: Bubble Wrap Foam Plastic Bag None	Other
COOLANT: Wellie Blue Ice Dry Ice Water None	
	Aultiple Cooler Form
IR GUN # 22 (CF + 0.0°C) Observed Cooler Temp.	
IR GUN # 20 (Cr t O t O t O observed Cooler Temp.	C Corrected Cooler Temp.
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity	y Yes No Tests that are not
-Were the seals on the outside of the cooler(s) signed & dated?	No NA checked for pH by
-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)?	? Yes No Receiving:
-Were tamper/custody seals intact and uncompromised?	Yes No (NA)
3. Shippers' packing slip attached to the cooler(s)?	Yes No VOAs Oil and Grease
4. Did custody papers accompany the sample(s)?	No TOC
5. Were the custody papers relinquished & signed in the appropriate place?	des / No
6. Was/were the person(s) who collected the samples clearly identified on the	COC? Yes No
7. Did all bottles arrive in good condition (Unbroken)?	No No
8. Could all bottle labels (ID/Date/Time) be reconciled with the COC?	Wes No
9. For each sample, does the COC specify preservatives (7/N), # of containers	s (YNN), and sample type of grab/comp(Y/N)?
10. Were correct bottle(s) used for the test(s) indicated?	V. No
11. Sufficient quantity received to perform indicated analyses?	Web No
12. Are these work share samples and all listed on the COC?	Yes (No)
If yes, Questions 13-17 have been checked at the originating laboratory.	Yes No NA pH Strip Lot# HC208070
13. Were all preserved sample(s) at the correct pH upon receipt? 14. Were VOAs on the COC?	Yes No
15. Were air bubbles >6 mm in any VOA vials? Larger than this.	Yes No WA
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	
17. Was a LL Hg or Me Hg trip blank present?	Yes No
Contacted PM Dateby	via Verbal Voice Mail Other
Concerning	^
	3.
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	al next page Samples processed by:
	(4)
None of the 250 mlp's have labels	
1).
	1
	1 : 4
19. SAMPLE CONDITION	
	nmended holding time had expired.
	were received in a broken container.
Sample(s) were received with bu	ubble >6 mm in diameter. (Notify PM)
20. SAMPLE PRESERVATION	,
Sample(s)	were further preserved in the laboratory.
Fime preserved:Preservative(s) added/Lot number(s):	7
VOA Sample Preservation - Date/Time VOAs Frozen:	Polit
VOA Sample Freservation - Date/Time VOAS Frozen.	
we do not be a second of the s	· · · · · · · · · · · · · · · · · · ·

Login #: 184 674

		Eurofins - Canto	n Sample Receipt Mu	Iltiple Cooler Form	
Cooler Desc	ription	IR Gun#	Observed	Corrected	Coolant
(Circle		(Circle)	Temp °C	Temp °C	(Circle)
	ox Other	IR GUN #:	1.8	1.8.	Wet ice Blue Ice Dry ice Water None
(EC Client Bo	x Other	IR GUN #: 22	2.4	2.4. (Wet loe Blue Ice Dry Ice Water None
(EC) Client Bo	x Other	IR GUN #: 22	1.4	7.4	Wet ice Blue ice Dry ice
EC Client Bo	x Other	IR GUN#: 20	2.6	26	Wet ice Blue ice Dry ice
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	x Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Sive Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wel ice Blue Ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wat ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Stue Ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Sive ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client Bo	ox Öther	IR GUN #:			Wet ice Blue Ice Dry ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet Ice Blue Ice Dry Ice Water None
EC Client 8c	ox Other	IR GUN #:			Wet Ice Slue Ice Dry Ice Water None
EC Client Bo	ox Other	IR GUN #:			Wet ice Blue ice Dry ice Water None
				☐ See Temp	erature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

5/4/2023

Login Container Summary Report

240-184674

Temperature readings: Container Preservative Client Sample 1D Lab ID Container Type Temp Added (mls) Lot # pΗ Plastic 250ml - with Nitric Acid MW-16-01 240-184674-B-1 Plastic 1 liter - Nitric Acid <2 MW-16-01 240-184674-C-1 MW-16-01 240-184674-D-1 Plastic 1 liter - Nitric Acid <2 Plastic 250ml - with Nitric Acid MW-16-02 240-184674-B-2 <2 Plastic 1 liter - Nitric Acid MW-16-02 240-184674-C-2 <2 MW-16-02 240-184674-D-2 Plastic 1 liter - Nitric Acid <2 MW-16-03 240-184674-B-3 Plastic 250ml - with Nitric Acid <2 MW-16-03 240-184674-C-3 Plastic 1 liter - Nitric Acid <2 MW-16-03 240-184674-D-3 Plastic 1 liter - Nitric Acid <2 Plastic 250ml - with Nitric Acid MW-16-04 240-184674-B-4 <2 Plastic 1 liter - Nitric Acid MW-16-04 240-184674-C-4 <2 MW-16-04 240-184674-D-4 Plastic 1 liter - Nitric Acid <2 DUP-01 240-184674-B-5 Plastic 250ml - with Nitric Acid <2 DUP-01 Plastic 1 liter - Nitric Acid 240-184674-C-5 <2 DUP-01 240-184674-D-5 Plastic 1 liter - Nitric Acid <2 EB-01 Plastic 250ml - with Nitric Acid 240-184674-B-6 <2

Plastic 1 liter - Nitric Acid

Plastic 1 liter - Nitric Acid

<2

<2

240-184674-C-6

240-184674-D-6

Page 1 of 1

EB-01

EB-01

Phone: 330-497-9396 Fax: 330-497-0772 180 S. Van Buren Avenue Barberton, OH 44203

Chain of Custody Record

Environment Testing

💸 eurofins

T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 U - Acetone M - Hexane W - pH 4-5 S - H2SO4 V - MCAA Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitro Acid
F - MaNSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid COC No: 240-167613.1 240-184674-1 Page: Page 1 of 1 I - fce J - DI Water K.EDTA L.EDA Total Number of containers N 01 Q1 2 N N. Carrier Tracking No(s): State of Origin: Michigan **Analysis Requested** Accreditations Required (See note E-Mail: Kris.Brooks@et.eurofinsus.com Ra226Ra228_GFPC × × × × × × 320_Ra228/PrecSep_0 Standard Target List × × × × Lab PM: Brooks, Kris M 3315_Ra226/PrecSep_21 Standard Target List × × × × × × (ON TO SOY) CIEMISM (on so set) elqmes bene (Wawater, Sasolid, Oawasta/oll, BTeTissue, Preservation Code: Water Water Water Water Water Water A=Ab (C=comp, G=grab) Sample Type Eastern 13:01 Eastern 11:35 Eastern 10:15 Sample Eastem Eastern (AT Requested (days) Due Date Requested: Sample Date 4/28/23 4/28/23 4/28/23 4/28/23 Project #: 24016804 SSOW#: 4/28/23 4/28/23 5/17/2023 # OM Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) Phone: 314-298-8566(Tel) 314-298-8757(Fax) TRC CCR DTE St. Clair Power FestAmerica Laboratories, Inc MW-16-01 (240-184674-1) MW-16-02 (240-184674-2) MW-16-03 (240-184674-3) MW-16-04 (240-184674-4) CCR DTE St. Clair Power 13715 Rider Trail North, DUP-01 (240-184674-5) EB-01 (240-184674-6) Shipping/Receiving State, Zip: MO, 63045 Earth City

Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing North Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing North Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing North Central, LLC. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Possible Hazard Identification

Unconfirmed

Eastern

			Return 10 Cilent Disposal By Jah	By Jah	Months	
	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Requir		MORRIS	- 1
	Empty Kit Relinquished by:	Date:	Time.	Mothod of Chiamant.		
-	Relinquistanton			and of shiphinghi.		
	まと	Company Company	Received by:	Date/Time:	Company	-
	Refinquished by:	Date/Time	٠l			
6/5	todex	August 1	Keceived by:	Date/Time:	Company	1
5/	Relinquished by:	Date/Time			レイナイン	
20		A COUNTY OF THE PROPERTY OF TH	Keceived by:	Date/Time:	Company	1
2	Custody Seals Infact Custody Seal No					
3	△ Yes △ No		Cooler Temperature(s) °C and Other Remarks:			

Login Sample Receipt Checklist

Client: TRC Environmental Corporation.

Job Number: 240-184674-2

List Source: Eurofins St. Louis
List Number: 2
List Creation: 05/08/23 02:13 PM

Creator: Sharkey-Gonzalez, Briana L

Creator: Sharkey-Gonzalez, Briana L	•	•
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

ی

4

6

8

10

4.0

13

PREPARED FOR

Attn: Mr. Vincent Buening TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 1/18/2024 4:52:48 PM Revision 1

JOB DESCRIPTION

CCR DTE St. Clair Power

JOB NUMBER

240-193602-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 1/18/2024 4:52:48 PM Revision 1

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	16
QC Association Summary	19
Lab Chronicle	21
Certification Summary	23
Chain of Custody	24

9

4

5

6

8

10

11

Definitions/Glossary

Client: TRC Environmental Corporation.

Job ID: 240-193602-1

Project/Site: CCR DTE St. Clair Power

Qualifiers

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

e

7

ŏ

10

11

12

Case Narrative

Client: TRC Environmental Corporation. Project: CCR DTE St. Clair Power

Job ID: 240-193602-1 Eurofins Cleveland

Job Narrative 240-193602-1

REVISION

The report being provided is a revision of the original report sent on 10/27/2023. The report (revision 1) is being revised due to to lower the reprting limit for chromium.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/14/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.1°C and 0.3°C

Metals

Method 6020B: Some requested practical quantitation limits (PQLs) on the following samples fall below the laboratory's verified standard quantitation limit: MW-16-01 (240-193602-1), MW-16-02 (240-193602-2), MW-16-03 (240-193602-3), MW-16-04 (240-193602-4), DUP-01 (240-193602-5) and EB-01 (240-193602-6). The continuing calibration blanks and method blanks may not support the lower PQL.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 9056A_28D: The following samples were diluted due to the nature of the sample matrix: MW-16-01 (240-193602-1), MW-16-02 (240-193602-2), MW-16-03 (240-193602-3), MW-16-04 (240-193602-4) and DUP-01 (240-193602-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

2

Job ID: 240-193602-1

3

4

J

7

ŏ

10

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET CLE
6020B	Metals (ICP/MS)	SW846	EET CLE
7470A	Mercury (CVAA)	SW846	EET CLE
9056A	Anions, Ion Chromatography	SW846	EET CLE
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CLE
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET CLE
7470A	Preparation, Mercury	SW846	EET CLE

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

9

3

4

5

6

8

9

10

45

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-193602-1	MW-16-01	Water	10/12/23 10:00	10/14/23 08:00
240-193602-2	MW-16-02	Water	10/12/23 09:04	10/14/23 08:00
240-193602-3	MW-16-03	Water	10/12/23 11:49	10/14/23 08:00
240-193602-4	MW-16-04	Water	10/12/23 12:57	10/14/23 08:00
240-193602-5	DUP-01	Water	10/12/23 00:00	10/14/23 08:00
240-193602-6	EB-01	Water	10/11/23 10:40	10/14/23 08:00

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-01

Job ID: 240-193602-1

Lab Sample ID: 240-193602-1

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Boron	2200	100	ug/L		6010D	Total
						Recoverable
Barium	220	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	20000	1000	ug/L	1	6020B	Total
						Recoverable
Iron	570	100	ug/L	1	6020B	Total
						Recoverable
Lithium	52	8.0	ug/L	1	6020B	Total
						Recoverable
Molybdenum	25	5.0	ug/L	1	6020B	Total
						Recoverable
Chloride	1500	10	mg/L	10	9056A	Total/NA
Fluoride	2.0	0.10	mg/L	2	9056A	Total/NA
Total Dissolved Solids	2000	40	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-16-02

Lab Sample ID: 240-193602-2

Analyte	Result (Qualifier RL	Unit	Dil Fac	D Method	Prep Type
Boron	2100	100	ug/L	1	6010D	Total
						Recoverable
Barium	410	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	38000	1000	ug/L	1	6020B	Total
						Recoverable
Chromium	2.0	2.0	ug/L	1	6020B	Total
						Recoverable
Iron	1000	100	ug/L	1	6020B	Total
						Recoverable
Lithium	62	8.0	ug/L	1	6020B	Total
						Recoverable
Molybdenum	25	5.0	ug/L	1	6020B	Total
						Recoverable
Chloride	2100	20	mg/L	20	9056A	Total/NA
Fluoride	1.6	0.10	mg/L	2	9056A	Total/NA
Total Dissolved Solids	2900	50	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-16-03

Lab Sample ID: 240-193602-3

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Boron	2100	100	ug/L	1	6010D	Total
						Recoverable
Barium	450	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	48000	1000	ug/L	1	6020B	Total
						Recoverable
Iron	930	100	ug/L	1	6020B	Total
						Recoverable
Lithium	64	8.0	ug/L	1	6020B	Total
						Recoverable
Molybdenum	22	5.0	ug/L	1	6020B	Total
						Recoverable
Chloride	2200	25	mg/L	25	9056A	Total/NA
Fluoride	1.4	0.25	mg/L	5	9056A	Total/NA
Total Dissolved Solids	3200	50	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cleveland

1/18/2024 (Rev. 1)

2

3

4

6

_

9

10

12

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-04

Job ID: 240-193602-1

Lab Sample ID: 240-193602-4

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Boron	2500	100	ug/L		6010D	Total
						Recoverable
Barium	650	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	38000	1000	ug/L	1	6020B	Total
						Recoverable
Chromium	3.1	2.0	ug/L	1	6020B	Total
						Recoverable
Cobalt	1.3	1.0	ug/L	1	6020B	Total
						Recoverable
Iron	3200	100	ug/L	1	6020B	Total
						Recoverable
Lead	1.8	1.0	ug/L	1	6020B	Total
I :4L:	00	0.0	/1	4	COCOD	Recoverable
Lithium	96	8.0	ug/L	1	6020B	Total
Maluladanum	17	F 0	/1	4	COOOD	Recoverable
Molybdenum	17	5.0	ug/L	1	6020B	Total Recoverable
Chloride	2700	25	ma/l	25	9056A	Total/NA
			mg/L			
Fluoride	1.7	0.25	mg/L	5	9056A	Total/NA
Total Dissolved Solids	3800	50	mg/L	1	SM 2540C	Total/NA

Client Sample ID: DUP-01

Lab Sample ID: 240-193602-5

Lab Sample ID: 240-193602-6

Analyte	Result Qualifier	RL	Unit	Dil Fac I	Method	Prep Type
Boron	2200	100	ug/L		6010D	Total
						Recoverable
Barium	210	5.0	ug/L	1	6020B	Total
						Recoverable
Calcium	19000	1000	ug/L	1	6020B	Total
						Recoverable
Iron	570	100	ug/L	1	6020B	Total
						Recoverable
Lithium	49	8.0	ug/L	1	6020B	Total
						Recoverable
Molybdenum	25	5.0	ug/L	1	6020B	Total
						Recoverable
Chloride	1300	20	mg/L	20	9056A	Total/NA
Fluoride	2.0	0.10	mg/L	2	9056A	Total/NA
Total Dissolved Solids	2100	40	mg/L	1	SM 2540C	Total/NA

Client Sample ID: EB-01

Analyte RLUnit Dil Fac D Method Result Qualifier **Prep Type** 9056A Sulfate 1.0 mg/L Total/NA 1.0

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-1

Job ID: 240-193602-1

Matrix: Water

Client Sample ID: MW-16-01 Date Collected: 10/12/23 10:00 Date Received: 10/14/23 08:00

Sulfate (SW846 9056A)

Total Dissolved Solids (SM 2540C)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2200		100	ug/L		10/16/23 14:00	10/18/23 05:54	1
Method: SW846 6020B - Met	als (ICP/MS)	- Total Reco	verable					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Barium	220		5.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Calcium	20000		1000	ug/L		10/16/23 14:00	10/18/23 16:44	1
Chromium	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Iron	570		100	ug/L		10/16/23 14:00	10/18/23 16:44	1
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Lithium	52		8.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Molybdenum	25		5.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:44	1
Method: SW846 7470A - Mei	curv (CVAA)							
Analyte	• • • • • • • • • • • • • • • • • • • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:19	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	1500		10	mg/L			10/21/23 12:26	10
Fluoride (SW846 9056A)	2.0		0.10	mg/L			10/21/23 12:06	2

2.0

40

mg/L

mg/L

2.0 U

2000

Eurofins Cleveland

10/21/23 12:06

10/19/23 09:19

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Method: SW846 6010D - Metals (ICP) - Total Recoverable

Lab Sample ID: 240-193602-2

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/12/23 09:04 Date Received: 10/14/23 08:00

Client Sample ID: MW-16-02

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2100		100	ug/L		10/16/23 14:00	10/18/23 05:59	1
Method: SW846 6020B -	Metals (ICP/MS)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Barium	410		5.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Calcium	38000		1000	ug/L		10/16/23 14:00	10/18/23 16:46	1
Chromium	2.0		2.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Iron	1000		100	ug/L		10/16/23 14:00	10/18/23 16:46	1
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Lithium	62		8.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Molybdenum	25		5.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:46	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:46	1

Method: SW846 7470A - Mercu	ry (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:21	1

General Chemistry							
Analyte	Result Qual	ifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	2100	20	mg/L			10/21/23 04:03	20
Fluoride (SW846 9056A)	1.6	0.10	mg/L			10/21/23 03:43	2
Sulfate (SW846 9056A)	2.0 U	2.0	mg/L			10/21/23 03:43	2
Total Dissolved Solids (SM 2540C)	2900	50	mg/L			10/19/23 09:19	1

2

Λ

5

9

10

12

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-3

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/12/23 11:49 Date Received: 10/14/23 08:00

Client Sample ID: MW-16-03

Method: SW846 6010D - Me	etals (ICP) - To	tal Recovera	able					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2100		100	ug/L		10/16/23 14:00	10/18/23 06:03	1
	etals (ICP/MS)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Barium	450		5.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:49	1
Calcium	48000		1000	ug/L		10/16/23 14:00	10/18/23 16:49	1

Beryllium	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	
Cadmium	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Calcium	48000		1000	ug/L	10/16/23 14:00	10/18/23 16:49	•
Chromium	2.0	U	2.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Cobalt	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Iron	930		100	ug/L	10/16/23 14:00	10/18/23 16:49	•
Lead	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Lithium	64		8.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Molybdenum	22		5.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Selenium	5.0	U	5.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
Thallium	1.0	U	1.0	ug/L	10/16/23 14:00	10/18/23 16:49	•
<u> </u>							

Method: SW846 7470A - Mercu	ıry (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:23	1

General Chemistry							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	2200	25	mg/L			10/21/23 07:24	25
Fluoride (SW846 9056A)	1.4	0.25	mg/L			10/21/23 07:04	5
Sulfate (SW846 9056A)	5.0 U	5.0	mg/L			10/21/23 07:04	5
Total Dissolved Solids (SM 2540C)	3200	50	mg/L			10/19/23 09:19	1

_

Λ

5

7

a

10

12

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-4

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/12/23 12:57 Date Received: 10/14/23 08:00

Client Sample ID: MW-16-04

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2500		100	ug/L		10/16/23 14:00	10/18/23 06:08	1
Method: SW846 6020E	B - Metals (ICP/MS)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Barium	650		5.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Calcium	38000		1000	ug/L		10/16/23 14:00	10/18/23 16:51	1
Chromium	3.1		2.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Cobalt	1.3		1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Iron	3200		100	ug/L		10/16/23 14:00	10/18/23 16:51	1
Lead	1.8		1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Lithium	96		8.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Molybdenum	17		5.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:51	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:51	1

Method: SW846 7470A - Mercu	ry (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L	_	10/16/23 14:00	10/18/23 14:25	1

General Chemistry							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	2700	25	mg/L			10/21/23 06:44	25
Fluoride (SW846 9056A)	1.7	0.25	mg/L			10/21/23 06:24	5
Sulfate (SW846 9056A)	5.0 U	5.0	mg/L			10/21/23 06:24	5
Total Dissolved Solids (SM 2540C)	3800	50	mg/L			10/19/23 09:19	1

Eurofins Cleveland

2

4

5

8

9

11

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-5

Matrix: Water

Job ID: 240-193602-1

Client Sample ID: DUP-01 Date Collected: 10/12/23 00:00 Date Received: 10/14/23 08:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2200		100	ug/L		10/16/23 14:00	10/18/23 06:12	1
Method: SW846 6020B - Me	tals (ICP/MS)	- Total Reco	verable					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Barium	210		5.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Calcium	19000		1000	ug/L		10/16/23 14:00	10/18/23 16:54	1
Chromium	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Iron	570		100	ug/L		10/16/23 14:00	10/18/23 16:54	1
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Lithium	49		8.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Molybdenum	25		5.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:54	1
Method: SW846 7470A - Me	rcury (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:31	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorida (CMO4C 00ECA)	4200		20				10/21/22 02:22	20

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	1300		20	mg/L			10/21/23 03:23	20
Fluoride (SW846 9056A)	2.0		0.10	mg/L			10/21/23 03:02	2
Sulfate (SW846 9056A)	2.0	U	2.0	mg/L			10/21/23 03:02	2
Total Dissolved Solids (SM 2540C)	2100		40	mg/L			10/19/23 09:19	1

Eurofins Cleveland

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: EB-01

Total Dissolved Solids (SM 2540C)

Lab Sample ID: 240-193602-6

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/11/23 10:40
Date Received: 10/14/23 08:00

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	100	U	100	ug/L		10/16/23 14:00	10/18/23 06:17	1
Method: SW846 6020B - Me	etals (ICP/MS)	- Total Reco	verable					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Barium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Calcium	1000	U	1000	ug/L		10/16/23 14:00	10/18/23 16:56	1
Chromium	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Iron	100	U	100	ug/L		10/16/23 14:00	10/18/23 16:56	1
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Lithium	8.0	U	8.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Molybdenum	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 16:56	1
Method: SW846 7470A - Me	ercury (CVAA)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	ug/L		10/16/23 14:00	10/18/23 14:33	1
General Chemistry								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	1.0	Ū	1.0	mg/L			10/21/23 05:44	1
Fluoride (SW846 9056A)	0.050	U	0.050	mg/L			10/21/23 05:44	1
Sulfate (SW846 9056A)	1.0		1.0	mg/L			10/21/23 05:44	1

50

mg/L

50 U

10/18/23 09:19

2

_

6

8

46

11

12

Job ID: 240-193602-1

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 240-590931/1-A

Matrix: Water

Analyte

Boron

Analysis Batch: 591127

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 590931

MB MB Result Qualifier RL Unit Prepared Analyzed Dil Fac 100 10/16/23 14:00 10/18/23 04:31 100 U ug/L

Lab Sample ID: LCS 240-590931/2-A

Matrix: Water

Analysis Batch: 591127

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 590931

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 1000 1000 100 80 - 120 Boron ug/L

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 240-590931/1-A

Client Sample ID: Method Blank Prep Type: Total Recoverable Matrix: Water Prep Batch: 590931 Analysis Batch: 591382

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Arsenic	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Barium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Beryllium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Cadmium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Calcium	1000	U	1000	ug/L		10/16/23 14:00	10/18/23 15:59	1
Chromium	2.0	U	2.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Cobalt	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Iron	100	U	100	ug/L		10/16/23 14:00	10/18/23 15:59	1
Lead	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Lithium	8.0	U	8.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Molybdenum	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Selenium	5.0	U	5.0	ug/L		10/16/23 14:00	10/18/23 15:59	1
Thallium	1.0	U	1.0	ug/L		10/16/23 14:00	10/18/23 15:59	1

Lab Sample ID: LCS 240-590931/3-A

Matrix: Water

Analysis Batch: 591382

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 590931

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	100	101		ug/L		101	80 - 120	
Arsenic	1000	941		ug/L		94	80 - 120	
Barium	1000	940		ug/L		94	80 - 120	
Beryllium	500	489		ug/L		98	80 - 120	
Cadmium	500	482		ug/L		96	80 - 120	
Calcium	25000	22000		ug/L		88	80 - 120	
Chromium	500	494		ug/L		99	80 - 120	
Cobalt	500	478		ug/L		96	80 - 120	
Iron	5000	4530		ug/L		91	80 - 120	
Lead	500	484		ug/L		97	80 - 120	
Lithium	500	487		ug/L		97	80 - 120	
Molybdenum	500	475		ug/L		95	80 - 120	
Selenium	1000	955		ug/L		95	80 - 120	

Eurofins Cleveland

Client: TRC Environmental Corporation. Job ID: 240-193602-1

LCS LCS

Unit

ug/L

Project/Site: CCR DTE St. Clair Power

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 240-590931/3-A **Matrix: Water**

Analysis Batch: 591382

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable Prep Batch: 590931

%Rec

Analyte Added Result Qualifier Unit %Rec Limits Thallium 1000 954 ug/L 95 80 - 120

Spike

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-590935/1-A

Lab Sample ID: LCS 240-590935/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 591320

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 590935**

Prepared Analyzed Dil Fac

MB MB Analyte Result Qualifier

Mercury 0.20 П

Client Sample ID: Lab Control Sample

10/16/23 14:00 10/18/23 13:48

Prep Type: Total/NA **Prep Batch: 590935**

Analysis Batch: 591320 LCS LCS Spike

%Rec Added Analyte Result Qualifier Unit %Rec Limits 5.00 80 - 120 Mercury 4.87 ug/L 97

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-591640/3

Matrix: Water

Analysis Batch: 591640

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL Unit D Dil Fac Prepared Analyzed Chloride 1.0 U 1.0 mg/L 10/21/23 01:22 Fluoride 0.050 U 0.050 mg/L 10/21/23 01:22 Sulfate 1.0 U 1.0 mg/L 10/21/23 01:22

RL

0.20

Lab Sample ID: LCS 240-591640/4

Matrix: Water

Analysis Batch: 591640

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits Analyte Chloride 50.0 51.7 mg/L 103 90 - 110 Fluoride 2.50 2.74 mg/L 110 90 - 110 Sulfate 50.0 54.2 mg/L 90 - 110 108

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 240-591249/1

Matrix: Water

Total Dissolved Solids

Analyte

Analysis Batch: 591249

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Prepared Result Qualifier RL Unit D Analyzed Dil Fac 10 10 U mg/L 10/18/23 09:19

Eurofins Cleveland

QC Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Prep Type: Total/NA

Dil Fac

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

MB MB Result Qualifier

10 U

Sample Sample

Lab Sample ID: LCS 240-591249/2 **Matrix: Water**

Analysis Batch: 591249

Analyte

Total Dissolved Solids

Lab Sample ID: MB 240-591417/1

Matrix: Water Analysis Batch: 591417

Total Dissolved Solids

Lab Sample ID: LCS 240-591417/2 **Matrix: Water**

Analysis Batch: 591417

Analyte

Total Dissolved Solids Lab Sample ID: 240-193602-1 DU

Matrix: Water Analysis Batch: 591417

Analyte

Result Qualifier Total Dissolved Solids 2000

Spike Added

RL

10

336

Spike

Added

336

317

316

LCS LCS

Result Qualifier

Unit

mg/L

Unit mg/L

%Rec D

94 80 - 120

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

%Rec

Limits

10/19/23 09:19

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec Result Qualifier Limits Unit %Rec

> 80 - 120 mg/L

Prepared

Client Sample ID: MW-16-01 Prep Type: Total/NA

DU DU **RPD** Result Qualifier Unit **RPD** Limit 1920 mg/L 20

QC Association Summary

Client: TRC Environmental Corporation. Job ID: 240-193602-1 Project/Site: CCR DTE St. Clair Power

Metals

Prep Batch: 590931

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total Recoverable	Water	3005A	
240-193602-2	MW-16-02	Total Recoverable	Water	3005A	
240-193602-3	MW-16-03	Total Recoverable	Water	3005A	
240-193602-4	MW-16-04	Total Recoverable	Water	3005A	
240-193602-5	DUP-01	Total Recoverable	Water	3005A	
240-193602-6	EB-01	Total Recoverable	Water	3005A	
MB 240-590931/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-590931/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCS 240-590931/3-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 590935

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	7470A	
240-193602-2	MW-16-02	Total/NA	Water	7470A	
240-193602-3	MW-16-03	Total/NA	Water	7470A	
240-193602-4	MW-16-04	Total/NA	Water	7470A	
240-193602-5	DUP-01	Total/NA	Water	7470A	
240-193602-6	EB-01	Total/NA	Water	7470A	
MB 240-590935/1-A	Method Blank	Total/NA	Water	7470A	
LCS 240-590935/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 591127

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total Recoverable	Water	6010D	590931
240-193602-2	MW-16-02	Total Recoverable	Water	6010D	590931
240-193602-3	MW-16-03	Total Recoverable	Water	6010D	590931
240-193602-4	MW-16-04	Total Recoverable	Water	6010D	590931
240-193602-5	DUP-01	Total Recoverable	Water	6010D	590931
240-193602-6	EB-01	Total Recoverable	Water	6010D	590931
MB 240-590931/1-A	Method Blank	Total Recoverable	Water	6010D	590931
LCS 240-590931/2-A	Lab Control Sample	Total Recoverable	Water	6010D	590931

Analysis Batch: 591320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	7470A	590935
240-193602-2	MW-16-02	Total/NA	Water	7470A	590935
240-193602-3	MW-16-03	Total/NA	Water	7470A	590935
240-193602-4	MW-16-04	Total/NA	Water	7470A	590935
240-193602-5	DUP-01	Total/NA	Water	7470A	590935
240-193602-6	EB-01	Total/NA	Water	7470A	590935
MB 240-590935/1-A	Method Blank	Total/NA	Water	7470A	590935
LCS 240-590935/2-A	Lab Control Sample	Total/NA	Water	7470A	590935

Analysis Batch: 591382

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total Recoverable	Water	6020B	590931
240-193602-2	MW-16-02	Total Recoverable	Water	6020B	590931
240-193602-3	MW-16-03	Total Recoverable	Water	6020B	590931
240-193602-4	MW-16-04	Total Recoverable	Water	6020B	590931
240-193602-5	DUP-01	Total Recoverable	Water	6020B	590931
240-193602-6	EB-01	Total Recoverable	Water	6020B	590931

Eurofins Cleveland

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Metals (Continued)

Analysis Batch: 591382 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 240-590931/1-A	Method Blank	Total Recoverable	Water	6020B	590931
LCS 240-590931/3-A	Lab Control Sample	Total Recoverable	Water	6020B	590931

General Chemistry

Analysis Batch: 591249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-6	EB-01	Total/NA	Water	SM 2540C	
MB 240-591249/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-591249/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 591417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	SM 2540C	_
240-193602-2	MW-16-02	Total/NA	Water	SM 2540C	
240-193602-3	MW-16-03	Total/NA	Water	SM 2540C	
240-193602-4	MW-16-04	Total/NA	Water	SM 2540C	
240-193602-5	DUP-01	Total/NA	Water	SM 2540C	
MB 240-591417/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-591417/2	Lab Control Sample	Total/NA	Water	SM 2540C	
240-193602-1 DU	MW-16-01	Total/NA	Water	SM 2540C	

Analysis Batch: 591640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	9056A	
240-193602-1	MW-16-01	Total/NA	Water	9056A	
240-193602-2	MW-16-02	Total/NA	Water	9056A	
240-193602-2	MW-16-02	Total/NA	Water	9056A	
240-193602-3	MW-16-03	Total/NA	Water	9056A	
240-193602-3	MW-16-03	Total/NA	Water	9056A	
240-193602-4	MW-16-04	Total/NA	Water	9056A	
240-193602-4	MW-16-04	Total/NA	Water	9056A	
240-193602-5	DUP-01	Total/NA	Water	9056A	
240-193602-5	DUP-01	Total/NA	Water	9056A	
240-193602-6	EB-01	Total/NA	Water	9056A	
MB 240-591640/3	Method Blank	Total/NA	Water	9056A	
LCS 240-591640/4	Lab Control Sample	Total/NA	Water	9056A	

Eurofins Cleveland

_

6

8

9

10

12

Lab Chronicle

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-1

Matrix: Water

Job ID: 240-193602-1

Client Sample ID: MW-16-01 Date Collected: 10/12/23 10:00 Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 05:54
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:44
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:19
Total/NA	Analysis	9056A		2	591640	JWW	EET CLE	10/21/23 12:06
Total/NA	Analysis	9056A		10	591640	JWW	EET CLE	10/21/23 12:26
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Lab Sample ID: 240-193602-2 Client Sample ID: MW-16-02 Date Collected: 10/12/23 09:04

Date Received: 10/14/23 08:00

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 05:59
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:46
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:21
Total/NA	Analysis	9056A		2	591640	JWW	EET CLE	10/21/23 03:43
Total/NA	Analysis	9056A		20	591640	JWW	EET CLE	10/21/23 04:03
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Client Sample ID: MW-16-03 Lab Sample ID: 240-193602-3

Date Collected: 10/12/23 11:49 **Matrix: Water** Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 06:03
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:49
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:23
Total/NA	Analysis	9056A		5	591640	JWW	EET CLE	10/21/23 07:04
Total/NA	Analysis	9056A		25	591640	JWW	EET CLE	10/21/23 07:24
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Lab Chronicle

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-4

Matrix: Water

Job ID: 240-193602-1

Date Collected: 10/12/23 12:57 Date Received: 10/14/23 08:00

Client Sample ID: MW-16-04

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 06:08
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:51
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:25
Total/NA	Analysis	9056A		5	591640	JWW	EET CLE	10/21/23 06:24
Total/NA	Analysis	9056A		25	591640	JWW	EET CLE	10/21/23 06:44
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Lab Sample ID: 240-193602-5 **Client Sample ID: DUP-01** Date Collected: 10/12/23 00:00

Matrix: Water

Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 06:12
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:54
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:31
Total/NA	Analysis	9056A		2	591640	JWW	EET CLE	10/21/23 03:02
Total/NA	Analysis	9056A		20	591640	JWW	EET CLE	10/21/23 03:23
Total/NA	Analysis	SM 2540C		1	591417	QUY8	EET CLE	10/19/23 09:19

Client Sample ID: EB-01 Lab Sample ID: 240-193602-6 Date Collected: 10/11/23 10:40

Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6010D		1	591127	KLC	EET CLE	10/18/23 06:17
Total Recoverable	Prep	3005A			590931	S4FJ	EET CLE	10/16/23 14:00
Total Recoverable	Analysis	6020B		1	591382	RKT	EET CLE	10/18/23 16:56
Total/NA	Prep	7470A			590935	S4FJ	EET CLE	10/16/23 14:00
Total/NA	Analysis	7470A		1	591320	GK	EET CLE	10/18/23 14:33
Total/NA	Analysis	9056A		1	591640	JWW	EET CLE	10/21/23 05:44
Total/NA	Analysis	SM 2540C		1	591249	QUY8	EET CLE	10/18/23 09:19

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Eurofins Cleveland

Matrix: Water

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-1

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-24
Georgia	State	4062	02-27-24
Illinois	NELAP	200004	07-31-24
lowa	State	421	06-01-25
Kentucky (UST)	State	112225	02-28-24
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	02-27-24
Minnesota	NELAP	039-999-348	12-28-23
New Jersey	NELAP	OH001	07-01-24
New York	NELAP	10975	01-04-24
Ohio	State	8303	02-27-24
Ohio VAP	State	ORELAP 4062	02-27-24
Oregon	NELAP	4062	11-27-23
Pennsylvania	NELAP	68-00340	01-01-24
Texas	NELAP	T104704517-22-19	08-31-24
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-19-23

4

5

8

9

10

12

Phone (330) 497-9396 Phone (330) 497-0772						
Client Information	Sampler	J 1485C		Lab PM Brooks, Kris M	Camer Tracking No(s):	COC No. 240-112841-38006.1
Client Contact:			-	lie	State of Ongin	Page
Jacob Krenz	73170	7 531	2 Kris	Kris. Brooks@et.eurofinsus.com		Page 1 of 1
Company TRC Environmental Corporation.		PWSID		alysis	Requested	# qor
Address: 1540 Eisenhower Place	Due Date Requested:					Codes.
City Ann Arbor	TAT Requested (days):			10,00	-	A - HCL M - Hexane B - NaOH None C - 70 A catata
State, Zip MI, 48108-7080	Compliance Project:	A Yes A No				
Phone 313-971-7080(Tel) 313-971-9022(Fax)	PO# 199490 - 2023			8e' Cq'		G - Amchlor T - TSP Dodecahydrate
Email JKrenz@trccompanies.com	WO # 518728.0004			(ol) 5, 88, 1		I - Ice J - Di Water
Project Name CCR DTE St. Clair Power	Project # 24016804			Sb, A . II. V. Z . Fluorid		K - EDTA L - EDA
Site Michigan	SSOW#			SD (Young)		Other:
Sample Identification	aten of the state	Sample Type Sample (C=comp,	Matrix (W-water, S-solid. Dewastefoli, Dewastefoli,	ieid Filtered 320_Ra228 - Ra	240-1936	otsi Number
	1		771	6 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	02 (Special Instructions/Note:
MW-16-01	10/0/33	0) 00	Water	1777	Chain	2
MW-16-02	CINIA C	3 250	Water	ナナナナナン	of C	
MW-16-03	,	1149 6	Water	ナナナナナるマ	usto	M
MW-16-04	10003	1257 C	Water	ナナナナシュ	dy	1.~
DUP-01	- rdcip	ر ا	Water	ナイナナイクグ		4
EB-01	10/11/01	104, 6	0 Water	ノ アナナナ 5 5		IV.
			Water			
Possible Hazard Identification Non-Hazard Plammable Skin Irritant	Poison B T Unknown	n Radiological	jical	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	assessed if samples are r	retained longer than 1 month) Archive For Months
Deliverable Requested: I, II, III, IV, Other (specify)				Special Instructions/QC Requirements	ents:	
Empty Kit Relinquished by		Jate:		Time	Method of Shipment	
Reinquished by	COULD (32	132	Company	Received by C	me (//	63 152 Company RC
Reinquished by All Man	10/13/23 Date/Time //3	1254	Company		Date/Time	1354 Company
Custody Seals Intact: Custody Seal No:	(8/0/6)	(78)	2	Cooled emperature(s) °C and Other Remarks	Remarks (17)	120 Ollas EFINO
						Ver: 01/16/2019

💸 eurofins

Chain of Custody Record

Eurofins Cleveland 180 S. Van Buren Avenue

Eurofins – Cleveland San	nple Receipt Form/!	Narrative		Login #	:	
Barberton Facility					6.1	1-11
lient Tra Corporat	\\O_i'	Site Name_			Cooler un	раскей бу:
ooler Received on	363	Opened on 1	1/14/23	_	L Ds	home
edEx: 1st Grd Exp U	PS FAS Waypoin		Off Eurofins Co	urier O	her	
eceipt After-hours: Drop-	off Date/Time		Storage Lo	ocation		
rofins Cooler # EC	Foam Box (Client Cooler	Box Other			
Packing material used:	Bubble Wrap Fo	am Plastic I	Bag None O	ther		
COOLANT:	et Ice Blue Ice	Dry Ice W	ater Mone			
Cooler temperature upo			See Multiple	Cooler Form	1	
IR GUN# 22	(CFO._°C	Observed Co	ooler Temp	°C Co	rrected Cool	er Temp°C
Were tamper/custody se	als on the outside of t	he cooler(s)? If	Yes Quantity	Yes	(No)	
-Were the seals on the				Yes		Tests that are not checked for pH by
-Were tamper/custody		_		Yes		Receiving:
-Were tamper/custody				Yes	No (NA)	
Shippers' packing slip at		-		Yes		VOAs
Did custody papers acco				Yes	No	Oil and Grease
Were the custody papers			iate place?	Ves	No	TOC
Was/were the person(s)	-			? Fee	No	
Did all bottles arrive in				(8-)	No	
Could all bottle labels (I	D/Date/Time) be recor	nciled with the	COC?	Yes	No	
For each sample, does th	e COC specify preser	vatives((Y)N), #	of containers (Y)	V), and san	ple type of g	grab/comp(Y/N)?
. Were correct bottle(s) us	sed for the test(s) indic	ated?	~	Yes)	No	
. Sufficient quantity recei	ved to perform indicat	ed analyses?		Ves	No	
2. Are these work share san	nples and all listed on	the COC?		Yes	No	
If yes, Questions 13-17			aboratory.			
Were all preserved samp		upon receipt?				H Strip Lot# HC316719
Were VOAs on the CO				Yes		
6. Were air bubbles >6 mr	•			Yes		
6. Was a VOA trip blank p			ot #	_ Yes	Not	
7. Was a LL Hg or Me Hg	trip blank present?			Yes	MO)	
ontacted PM	Date	by	via \	Verbal Vo	ice Mail Oth	ner
oncerning						
B. CHAIN OF CUSTOD	Y & SAMPLE DISC!	REPANCIES	additional nex	t page	Samples pro-	cessed by:
. SAMPLE CONDITIO	N					
imple(s)						
imple(s)					n a broken co	
ample(s)				>6 mm in	diameter. (N	otify PM)
. SAMPLE PRESERVA	TION					
ample(s)				were furth	er preserved	in the laboratory.
ample(s) ime preserved:	Preservative(s) ad	ded/Lot number	r(s).	_were furth	ici pieseiveu	m me moonatory.
mie proservou.	i reservative(s) au	Low Lot Hulliot	(0)			
OA Sample Preservation -	Date/Time VOAs Fro	zen:				

_	og	in	#	*	
---	----	----	---	---	--

			Eurofins - Canto	on Sample Receipt I	Multiple Cooler Form	
	Descri	iption	IR Gun # (Circle)	Observed	Corrected	Coolant (Circle)
(EC) Clie	Circle)	Other		Temp °C	Temp °C	(Welke) Blue toe Dyk
EC Clo		Other	IR GUN 9:	1 2	0.3	Weller None Welle) Sive ice By ic
			IR GON 0:	0.	0.5	Wellice Sive ice By ice
IC Cle		Other	IR GUN F:			Welte Blue toe Bylor
EC Cle		Other	IR SUN 6:			Water Mone Water Street Dry Ice
EC Cle	nt Beax	Other	IR GUN F:			Welte None by ke
EC Cle	M Box	Other				Welst Mone
SC CSe	nf Box	Other	IR GUN #:	· ·		Weder Mene
SC Clea	of Best	Other	IR GUN #:			Wellice More too By too Water Manne
EC Clo	of Box	Other	IR GUN 6:			Wellice Stee See Bytee Water Mann
BC Cle	nt Ben	Other	11 GUN 6:			Wellce Sive Ice Bylce
EC CSec	nt Banc	Other	R OW #:			Wellie Shee See Bytes
BC Cle	d Box	Other	IR GON 6:			Wellie Nee too Byte
BC CBo	nd Best	Other	R 69H 6:			Wellto Nee to Byte
BC Cle	nd Best	Other	IR GUN F:			Wellto Nee Ice Byte
BC CBe	of Box	Other	IR 60H #:			Worker the tee Byte
BC CSe	d Bex	Other	12 GOM #:			Worker the fee Byte
BC CSec	ni Ben	Other	IR GUN #:			Well to the to Byte
BC Clo		Other	IR GUN #:			Wellice Nee Ico Byles
BC CBo		Other	IR GUN F:			Wellice Sheelice Byles
BC Clo		Other	10: GUN #:			Wellie Nee Ice Byte
SC Clea		Other	R GUN #:			Wellice Shoolice Byte
BC CBe		Other	R 64N 6:			Well too She lee By to
		Öther	R GUN #:			Weler Mone By to By to
BC CBe			R CW C:			Welet Mene
BC CSei		Other	R GW 4:			Woley Mone Byte Wolfe Byte
BC CBer		Other	R 60H 6:			Weley Mane Wellies She too By to
BC CBer	-	Other				Weller Hone Wellico Sive Ico Byte
SC Clien	l lex	Other	IR GUN #:			Water Name
SC CSea	l Box	Other	R GUN #:			Water Name
IC Clea	ł Bex	Other	# GUN #:			Wellice Silve Ice Bry Ice Water Name
SC CSon	Bex	Other	R GUN F:			Wellice Shre ice Bry ice
BC Clon	.Box	Ölher	R GUN F:			Wellice Blee toe Bry to
BC Clon	Box	Other	IR GUN F:			Well ice Nee Ice Bry ice
EC Clien	Sex	Other	R GUN F:			Well to She to Bry to
EC Clea		Other	12 GUN #:			Wellice Sive toe Bry to Waler Mess
					□ See Tempe	erature Excursion Form

171-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

3

Ę

6

8

10

1 U

12

Login Container Summary Report

240-193602

Temperature readings: _____

Client Sample ID	<u>Lab ID</u>	Container Type	<u>Con</u> pH	tainer Temp	Preservative Added (mls) Lot #
MW-16-01	240-193602-C-1	Plastic 500ml - with Nitric Acid	<2		
MW-16-01	240-193602-D-1	Plastic 1 liter - Nitric Acid	<2		
MW-16-01	240-193602-E-1	Plastic 1 liter - Nitric Acid	<2		
MW-16-02	240-193602-C-2	Plastic 500ml - with Nitric Acid	<2		
MW-16-02	240-193602-D-2	Plastic 1 liter - Nitric Acid	<2		
MW-16-02	240-193602-E-2	Plastic 1 liter - Nitric Acid	<2		
MW-16-03	240-193602-C-3	Plastic 500ml - with Nitric Acid	<2		
MW-16-03	240-193602-D-3	Plastic 1 liter - Nitric Acid	<2		
MW-16-03	240-193602-E-3	Plastic 1 liter - Nitric Acid	<2		
MW-16-04	240-193602-C-4	Plastic 500ml - with Nitric Acid	<2		
MW-16-04	240-193602-D-4	Plastic 1 liter - Nitric Acid	<2		
MW-16-04	240-193602-E-4	Plastic 1 liter - Nitric Acid	<2		
DUP-01	240-193602-C-5	Plastic 500ml - with Nitric Acid	<2		
DUP-01	240-193602-D-5	Plastic 1 liter - Nitric Acid	<2		
DUP-01	240-193602-E-5	Plastic 1 liter - Nitric Acid	<2		
EB-01	240-193602-C-6	Plastic 500ml - with Nitric Acid	<2		
EB-01	240-193602-D-6	Plastic 1 liter - Nitric Acid	<2		

<2

240-193602-E-6 Plastic 1 liter - Nitric Acid

EB-01

13

14

JOB DESCRIPTION

PREPARED FOR

Attn: Mr. Vincent Buening

1540 Eisenhower Place

Generated 11/11/2023 12:18:23 PM

TRC Environmental Corporation.

Ann Arbor, Michigan 48108-7080

ANALYTICAL REPORT

CCR DTE St. Clair Power

JOB NUMBER

240-193602-2

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 11/11/2023 12:18:23 PM

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Tracer Carrier Summary	15
QC Sample Results	16
QC Association Summary	18
Lab Chronicle	19
Certification Summary	21
Chain of Custody	22
Receipt Checklists	27

4

5

7

g

10

12

IS

Definitions/Glossary

Client: TRC Environmental Corporation.

Job ID: 240-193602-2

Project/Site: CCR DTE St. Clair Power

Qualifiers

Qualifier	Qualifier Description
G	The Sample MDC is greater than the requested RL.
U	Result is less than the sample detection limit.

Glossary								
Abbreviation	These commonly used abbreviations may or may not be present in this report.							
n	Listed under the "D" column to designate that the result is reported on a dry weight basis							
%R	Percent Recovery							
CFL	Contains Free Liquid							
CFU	Colony Forming Unit							
CNF	Contains No Free Liquid							
DER	Duplicate Error Ratio (normalized absolute difference)							
Dil Fac	Dilution Factor							
DL	Detection Limit (DoD/DOE)							
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample							
DLC	Decision Level Concentration (Radiochemistry)							
EDL	Estimated Detection Limit (Dioxin)							
LOD	Limit of Detection (DoD/DOE)							
LOQ	Limit of Quantitation (DoD/DOE)							
MCL	EPA recommended "Maximum Contaminant Level"							
MDA	Minimum Detectable Activity (Radiochemistry)							
MDC	Minimum Detectable Concentration (Radiochemistry)							

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

 POS
 Positive / Present

 PQL
 Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cleveland

Page 4 of 27

2

3

4

5

7

_

10

12

Case Narrative

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Job ID: 240-193602-2

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-193602-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/14/2023~8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.1° C and 0.3° C

Gas Flow Proportional Counter

Method 9320 Ra228: Radium-228 prep batch 160-632483:

The following sample(s) did not meet the requested limit (RL) due to the reduced sample volume attributed to the presence of matrix interference. During preparation the analyst visually noted matrix effects. The data have been reported with this narrative. MW-16-04 (240-193602-4)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Rad

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

0

8

4.0

11

12

14

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Method	Method Description	Protocol	Laboratory
9315	Radium-226 (GFPC)	SW846	EET SL
9320	Radium-228 (GFPC)	SW846	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

2

6

- [

8

9

11

14

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-193602-1	MW-16-01	Water	10/12/23 10:00	10/14/23 08:00
240-193602-2	MW-16-02	Water	10/12/23 09:04	10/14/23 08:00
240-193602-3	MW-16-03	Water	10/12/23 11:49	10/14/23 08:00
240-193602-4	MW-16-04	Water	10/12/23 12:57	10/14/23 08:00
240-193602-5	DUP-01	Water	10/12/23 00:00	10/14/23 08:00
240-193602-6	EB-01	Water	10/11/23 10:40	10/14/23 08:00

6

9

10

111

13

14

Detection Summary

Project/Site: CCR DTE St. Clair Power	
Client Sample ID: MW-16-01	Lab Sample ID: 240-193602-1
No Detections.	
Client Sample ID: MW-16-02	Lab Sample ID: 240-193602-2
No Detections.	
Client Sample ID: MW-16-03	Lab Sample ID: 240-193602-3
No Detections.	
Client Sample ID: MW-16-04	Lab Sample ID: 240-193602-4
No Detections.	
Client Sample ID: DUP-01	Lab Sample ID: 240-193602-5
No Detections.	
Client Sample ID: EB-01	Lab Sample ID: 240-193602-6
No Detections.	

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation.

Eurofins Cleveland

Job ID: 240-193602-2

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-1 Client Sample ID: MW-16-01

Date Collected: 10/12/23 10:00

Matrix: Water Date Received: 10/14/23 08:00

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.515		0.177	0.183	1.00	0.161	pCi/L	10/18/23 09:10	11/09/23 21:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.9		30 - 110					10/18/23 09:10	11/09/23 21:08	1

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.09		0.618	0.627	1.00	0.888	pCi/L	10/18/23 09:12	11/07/23 16:17	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.9		30 - 110					10/18/23 09:12	11/07/23 16:17	1
Y Carrier	86.4		30 - 110					10/18/23 09:12	11/07/23 16:17	1

Method: TAL-STL Ra	226_Ra228	- Combined	Radium-226	and Radiun	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.60		0.643	0.653	5.00	0.888	pCi/L	_	11/10/23 17:32	1
226 + 228										

Job ID: 240-193602-2

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Client Sample ID: MW-16-02

Lab Sample ID: 240-193602-2

Matrix: Water

Date Collected: 10/12/23 09:04 Date Received: 10/14/23 08:00

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	1.10		0.319	0.334	1.00	0.328	pCi/L	10/18/23 09:10	11/09/23 21:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.2		30 - 110					10/18/23 09:10	11/09/23 21:09	1

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	3.63		0.716	0.791	1.00	0.630	pCi/L	10/18/23 09:12	11/07/23 11:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.2		30 - 110					10/18/23 09:12	11/07/23 11:16	1
Y Carrier	85.2		30 - 110					10/18/23 09:12	11/07/23 11:16	1

_		rtadiam 220	and Radium	1-220					
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
4.73		0.784	0.859	5.00	0.630	pCi/L		11/10/23 17:32	1
		Result Qualifier 4.73	Uncert. Result Qualifier (2σ+/-)	Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-)	Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL	Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC	Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit	Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared	Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed

3

_

10

11

14

14

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Client Sample ID: MW-16-03

Lab Sample ID: 240-193602-3 Date Collected: 10/12/23 11:49

Matrix: Water

Date Received: 10/14/23 08:00

Method: SW846 9	315 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	1.48		0.359	0.383	1.00	0.313	pCi/L	10/18/23 09:10	11/09/23 21:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.9		30 - 110					10/18/23 09:10	11/09/23 21:09	1

Method: SW846 93	20 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	3.47		0.694	0.764	1.00	0.596	pCi/L	10/18/23 09:12	11/07/23 11:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.9		30 - 110					10/18/23 09:12	11/07/23 11:16	1
Y Carrier	84.5		30 - 110					10/18/23 09:12	11/07/23 11:16	1

Method: TAL-STL Ra	226_Ra228	- Combined	Radium-226	and Radiur	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	4.95		0.781	0.855	5.00	0.596	pCi/L		11/10/23 17:32	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Client Sample ID: MW-16-04

Lab Sample ID: 240-193602-4

Matrix: Water

Date Collected: 10/12/23 12:57 Date Received: 10/14/23 08:00

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	3.31		0.610	0.679	1.00	0.427	pCi/L	10/18/23 09:10	11/09/23 21:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.1		30 - 110					10/18/23 09:10	11/09/23 21:08	1

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	2.10	G	0.833	0.855	1.00	1.07	pCi/L	10/18/23 09:12	11/07/23 11:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.1		30 - 110					10/18/23 09:12	11/07/23 11:19	1
Y Carrier	86.4		30 - 110					10/18/23 09:12	11/07/23 11:19	1

Method: TAI	-STL Ra226_Ra228	- Combined	d Radium-226	and Radiu	m-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Rad	lium 5.40		1.03	1.09	5.00	1.07	pCi/L		11/10/23 17:32	1
226 + 228										

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Client Sample ID: DUP-01

Lab Sample ID: 240-193602-5

Matrix: Water

Date Collected: 10/12/23 00:00 Date Received: 10/14/23 08:00

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.524		0.191	0.197	1.00	0.211	pCi/L	10/18/23 09:10	11/09/23 21:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.7		30 - 110					10/18/23 09:10	11/09/23 21:08	1

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.757		0.355	0.362	1.00	0.466	pCi/L	10/18/23 09:12	11/07/23 11:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.7		30 - 110					10/18/23 09:12	11/07/23 11:19	1
Y Carrier	82.2		30 - 110					10/18/23 09:12	11/07/23 11:19	1

Method: TAL-STL Ra	226_Ra228	- Combined	l Radium-226	and Radiun	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.28		0.403	0.412	5.00	0.466	pCi/L		11/10/23 17:32	1

3

9

10

12

13

14

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-6

Matrix: Water

Job ID: 240-193602-2

Client Sample ID: EB	-01
Date Collected: 10/11/23	10:40

Date Received: 10/14/23 08:00

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.116	U	0.0795	0.0802	1.00	0.220	pCi/L	10/18/23 09:10	11/09/23 21:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.3		30 - 110					10/18/23 09:10	11/09/23 21:08	1

Method: SW846 9	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.213	U	0.330	0.331	1.00	0.562	pCi/L	10/18/23 09:12	11/07/23 11:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.3		30 - 110					10/18/23 09:12	11/07/23 11:19	1
Y Carrier	80.0		30 - 110					10/18/23 09:12	11/07/23 11:19	1

Method: TAL-STL Ra2	26_Ra228	 Combined 	Radium-226	and Radiun	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0972	U	0.339	0.341	5.00	0.562	pCi/L	_	11/10/23 17:32	1

2

g

10

12

13

14

Tracer/Carrier Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Method: 9315 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
240-193602-1	MW-16-01	91.9	
240-193602-1 DU	MW-16-01	94.4	
240-193602-2	MW-16-02	92.2	
240-193602-3	MW-16-03	92.9	
240-193602-4	MW-16-04	85.1	
240-193602-5	DUP-01	91.7	
240-193602-6	EB-01	86.3	
_CS 160-632482/2-A	Lab Control Sample	88.0	
MB 160-632482/1-A	Method Blank	92.7	
Tracer/Carrier Legend			

Method: 9320 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
240-193602-1	MW-16-01	91.9	86.4	
240-193602-1 DU	MW-16-01	94.4	86.4	
240-193602-2	MW-16-02	92.2	85.2	
240-193602-3	MW-16-03	92.9	84.5	
240-193602-4	MW-16-04	85.1	86.4	
240-193602-5	DUP-01	91.7	82.2	
240-193602-6	EB-01	86.3	80.0	
LCS 160-632483/2-A	Lab Control Sample	88.0	83.4	
MB 160-632483/1-A	Method Blank	92.7	84.9	

Ba = Ba Carrier

Y = Y Carrier

Eurofins Cleveland

10

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-632482/1-A

Lab Sample ID: LCS 160-632482/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 636166

Analysis Batch: 636166

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 632482

	МВ	МВ	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.06510	U	0.108	0.108	1.00	0.188	pCi/L	10/18/23 09:10	11/09/23 21:08	1

Total

Count

MB MB

%Yield Qualifier Limits Dil Fac Carrier Prepared Analyzed Ba Carrier 92.7 30 - 110 10/18/23 09:10 11/09/23 21:08

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 632482

Total LCS LCS %Rec Spike Uncert. Added Limits Analyte Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Radium-226 1.00 75 - 125 11.3 10.88 1.24 0.229 pCi/L 96

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 88.0 30 - 110

Lab Sample ID: 240-193602-1 DU Client Sample ID: MW-16-01

Matrix: Water

Analysis Batch: 636166

Prep Type: Total/NA **Prep Batch: 632482**

Prep Batch: 632483

Total

	Sample	Sample	DU	DU	Uncert.					RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit	RER	Limit
Radium-226	0.515		0.5255		0.191	1.00	0.191	pCi/L	 0.03	1

DU DU %Yield Qualifier Carrier Limits Ba Carrier 94.4 30 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-632483/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 635681

		Count	Total					
	MB MB	Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.6466	0.328	0.334	1.00	0.446 pCi/l	10/18/23 09:12	11/07/23 11:15	1

MB MB Qualifier Dil Fac Carrier %Yield Limits Prepared Analyzed Ba Carrier 92.7 30 - 110 10/18/23 09:12 11/07/23 11:15 30 - 110 Y Carrier 84.9 10/18/23 09:12 11/07/23 11:15

Eurofins Cleveland

QC Sample Results

Client: TRC Environmental Corporation. Job ID: 240-193602-2

Project/Site: CCR DTE St. Clair Power

Lab Sample ID: LCS 160-632483/2-A

Matrix: Water

Carrier

Ba Carrier

Y Carrier

Analysis Batch: 635681

Method: 9320 - Radium-228 (GFPC) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 632483

				Total						
	Spike	LCS	LCS	Uncert.					%Rec	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-228	7.74	8.655		1.21	1.00	0.462	pCi/L	112	75 - 125	

LCS LCS %Yield Qualifier Limits 88.0 30 - 110 83.4 30 - 110

Lab Sample ID: 240-193602-1 DU Client Sample ID: MW-16-01

Matrix: Water Prep Type: Total/NA Analysis Batch: 635643 **Prep Batch: 632483**

ı						iotai					
		Sample	Sample	DU	DU	Uncert.					RER
	Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit	RER	Limit
	Radium-228	1.09		0.3960	U	0.506	1.00	0.839	pCi/L	 0.61	1
ı											

DU DU Carrier %Yield Qualifier Limits 30 - 110 Ba Carrier 94.4 Y Carrier 86.4 30 - 110

QC Association Summary

Client: TRC Environmental Corporation.

Job ID: 240-193602-2

Project/Site: CCR DTE St. Clair Power

Rad

Prep Batch: 632482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	PrecSep-21	
240-193602-2	MW-16-02	Total/NA	Water	PrecSep-21	
240-193602-3	MW-16-03	Total/NA	Water	PrecSep-21	
240-193602-4	MW-16-04	Total/NA	Water	PrecSep-21	
240-193602-5	DUP-01	Total/NA	Water	PrecSep-21	
240-193602-6	EB-01	Total/NA	Water	PrecSep-21	
MB 160-632482/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-632482/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
240-193602-1 DU	MW-16-01	Total/NA	Water	PrecSep-21	

Prep Batch: 632483

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-193602-1	MW-16-01	Total/NA	Water	PrecSep_0	
240-193602-2	MW-16-02	Total/NA	Water	PrecSep_0	
240-193602-3	MW-16-03	Total/NA	Water	PrecSep_0	
240-193602-4	MW-16-04	Total/NA	Water	PrecSep_0	
240-193602-5	DUP-01	Total/NA	Water	PrecSep_0	
240-193602-6	EB-01	Total/NA	Water	PrecSep_0	
MB 160-632483/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-632483/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
240-193602-1 DU	MW-16-01	Total/NA	Water	PrecSep 0	

3

4

6

Ω

9

10

13

14

Lab Chronicle

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Client Sample ID: MW-16-01

Lab Sample ID: 240-193602-1

Date Collected: 10/12/23 10:00 Date Received: 10/14/23 08:00 Matrix: Water

Job ID: 240-193602-2

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			632482	KAC	EET SL	10/18/23 09:10
Total/NA	Analysis	9315		1	636166	SCB	EET SL	11/09/23 21:08
Total/NA	Prep	PrecSep_0			632483	KAC	EET SL	10/18/23 09:12
Total/NA	Analysis	9320		1	635643	CMM	EET SL	11/07/23 16:17
Total/NA	Analysis	Ra226_Ra228		1	636395	EMH	EET SL	11/10/23 17:32

Lab Sample ID: 240-193602-2

Client Sample ID: MW-16-02

Date Collected: 10/12/23 09:04 **Matrix: Water** Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			632482	KAC	EET SL	10/18/23 09:10
Total/NA	Analysis	9315		1	636166	SCB	EET SL	11/09/23 21:09
Total/NA	Prep	PrecSep_0			632483	KAC	EET SL	10/18/23 09:12
Total/NA	Analysis	9320		1	635681	SCB	EET SL	11/07/23 11:16
Total/NA	Analysis	Ra226_Ra228		1	636395	EMH	EET SL	11/10/23 17:32

Client Sample ID: MW-16-03 Lab Sample ID: 240-193602-3

Date Collected: 10/12/23 11:49 Matrix: Water

Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			632482	KAC	EET SL	10/18/23 09:10
Total/NA	Analysis	9315		1	636166	SCB	EET SL	11/09/23 21:09
Total/NA	Prep	PrecSep_0			632483	KAC	EET SL	10/18/23 09:12
Total/NA	Analysis	9320		1	635681	SCB	EET SL	11/07/23 11:16
Total/NA	Analysis	Ra226_Ra228		1	636395	EMH	EET SL	11/10/23 17:32

Client Sample ID: MW-16-04 Lab Sample ID: 240-193602-4

Date Collected: 10/12/23 12:57 Matrix: Water Date Received: 10/14/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			632482	KAC	EET SL	10/18/23 09:10
Total/NA	Analysis	9315		1	636168	SCB	EET SL	11/09/23 21:08
Total/NA	Prep	PrecSep_0			632483	KAC	EET SL	10/18/23 09:12
Total/NA	Analysis	9320		1	635643	CMM	EET SL	11/07/23 11:19
Total/NA	Analysis	Ra226_Ra228		1	636395	EMH	EET SL	11/10/23 17:32

Lab Chronicle

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Lab Sample ID: 240-193602-5

Job ID: 240-193602-2

Matrix: Water

Client Sample ID: DUP-01 Date Collected: 10/12/23 00:00 Date Received: 10/14/23 08:00

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor **Number Analyst** Lab or Analyzed PrecSep-21 10/18/23 09:10 Total/NA Prep 632482 KAC EET SL Total/NA Analysis 9315 1 636168 SCB EET SL 11/09/23 21:08 Total/NA Prep PrecSep_0 632483 KAC EET SL 10/18/23 09:12 Total/NA 11/07/23 11:19 Analysis 9320 1 635643 CMM EET SL Total/NA EET SL 11/10/23 17:32 Analysis Ra226_Ra228 1 636395 EMH

Client Sample ID: EB-01 Lab Sample ID: 240-193602-6

Date Collected: 10/11/23 10:40 **Matrix: Water**

Date Received: 10/14/23 08:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep-21			632482	KAC	EET SL	10/18/23 09:10
Total/NA	Analysis	9315		1	636168	SCB	EET SL	11/09/23 21:08
Total/NA	Prep	PrecSep_0			632483	KAC	EET SL	10/18/23 09:12
Total/NA	Analysis	9320		1	635643	CMM	EET SL	11/07/23 11:19
Total/NA	Analysis	Ra226_Ra228		1	636395	EMH	EET SL	11/10/23 17:32

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE St. Clair Power

Job ID: 240-193602-2

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Alaska (UST)	State	20-001	05-06-25	
ANAB	Dept. of Defense ELAP	L2305	04-06-25	
ANAB	Dept. of Energy	L2305.01	04-06-25	
ANAB	ISO/IEC 17025	L2305	04-06-25	
Arizona	State	AZ0813	12-08-23	
California	Los Angeles County Sanitation Districts	10259	06-30-22 *	
California	State	2886	06-30-24	
Connecticut	State	PH-0241	03-31-25	
Florida	NELAP	E87689	06-30-24	
HI - RadChem Recognition	State	n/a	06-30-24	
Illinois	NELAP	200023	11-30-23	
lowa	State	373	12-01-24	
Kentucky (DW)	State	KY90125	12-31-23	
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23	
Louisiana	NELAP	04080	06-30-22 *	
Louisiana (All)	NELAP	04080	06-30-24	
Louisiana (DW)	State	LA011	12-31-23	
Maryland	State	310	09-30-24	
Massachusetts	State	M-MO054	06-30-24	
MI - RadChem Recognition	State	9005	06-30-24	
Missouri	State	780	06-30-25	
Nevada	State	MO000542020-1	07-31-24	
New Jersey	NELAP	MO002	06-30-24	
New Mexico	State	MO00054	06-30-24	
New York	NELAP	11616	03-31-24	
North Carolina (DW)	State	29700	07-31-24	
North Dakota	State	R-207	06-30-24	
Oklahoma	NELAP	9997	08-31-24	
Oregon	NELAP	4157	09-01-24	
Pennsylvania	NELAP	68-00540	02-28-24	
South Carolina	State	85002001	06-30-24	
Texas	NELAP	T104704193	07-31-24	
US Fish & Wildlife	US Federal Programs	058448	07-31-24	
USDA	US Federal Programs	P330-17-00028	05-18-26	
Utah	NELAP	MO000542021-14	07-31-24	
Virginia	NELAP	10310	06-15-25	
Washington	State	C592	08-30-24	
West Virginia DEP	State	381	12-31-23	

4

Δ

5

0

9

11

14

4 4

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Cleveland

Chain of Custody Record

Environment Testing

🔆 eurofins

COC No 240-112841-38006.

Camer Tracking No(s)

State of Ongin

E-Mail: Kris.Brooks@et.eurofinsus.com

Lab PM Brooks, Kris M

J 1850

ampler | DV: X/

40678C

TAT Requested (days):

24016804 SSOW#

hone. 313-971-7080(Tel) 313-971-9022(Fax)

State, Zip. MI, 48108-7080

Ann Arbor

JKrenz@trccompanies.com

CCR DTE St. Clair Power

Michigan

Due Date Requested

TRC Environmental Corporation

1540 Eisenhower Place

Analysis Requested

Page Page 1 of 1 Job#

Preservation Codes

Barberton, OH 44203 Phone (330) 497-9396 Phone (330) 497-0772 **Eurofins Cleveland** 180 S. Van Buren Avenue

Client Information

Jacob Krenz

Page 22 of 27

MW-16-02 MW-16-03 MW-16-04

DUP-01 EB-01

AW-16-01

Sample Identification

Custody Seal No.

Custody Seals Intact:

A Yes A No

Poison B

Skin Irritant

Deliverable Requested: 1, 11, 111, 1V, Other (specify)

Empty Kit Relinquished by

wished by

Flammable

Non-Hazard

Possible Hazard Identification

Eurofins – Cleveland S Barberton Facility	ample Receipt For	rm/Narrative		Login #	:	
	4. 0	Sita Nama			Cooler unp	packed by:
Client Tra Corpor		Site Name	21/1/1/2		1	
Cooler Received on		Opened on 16	0/14/23	<u>l</u>	-	bome
FedEx: 1st Grd Exp		Client Drop	Off Eurofins Con		Other	
Receipt After-hours: Dro		Cli C I.	Storage Lo			
Eurofins Cooler #		Client Cooler Foam Plastic				
Packing material use COOLANT:				ther		
1. Cooler temperature u		e Dry ice w	ater None See Multiple	Cooler For		
in Cooler temperature u	pon receipt	00) 01 10				er Temp °C
IR GUN# 32	(CF	_°C) Observed Co	ooler Temp	C	orrected Cool	er 1empC
-Were tamper/custo -Were tamper/custo 3. Shippers' packing slip 4. Did custody papers ac	the outside of the cool dy seals on the bottl dy seals intact and u attached to the cool company the sample	oler(s) signed & dat e(s) or bottle kits (L incompromised? er(s)?	ed? .LHg/MeHg)?	Yes Yes Yes		Tests that are not checked for pH by Receiving: VOAs Oil and Grease TOC
5. Were the custody paper					\vee	
6. Was/were the person(· ·		illined on the COC!	Vies.	No No	
7. Did all bottles arrive i	•	· ·	COCo	¥.06	No No	
 Could all bottle labels For each sample, does 	the COC specify pr	reconciled with the	of containers (V)			rah/comp(V/N)?
10. Were correct bottle(s)			of containers (17)		No	rab/comp((1/x 1).
11. Sufficient quantity rec				Ves	No No	
12. Are these work share	_	-		Yes		
If yes, Questions 13-	•		laboratory	103	No.	
13. Were all preserved sar			doordtory.	Yes	No NA pl	H Strip Lot# HC316719
14. Were VOAs on the C	-	-			(No)	
15. Were air bubbles >6		ls? 🛑 悔 Larg	er than this.		No WA	
16. Was a VOA trip blan						
17. Was a LL Hg or Me l				Yes	(No)	
Contacted PM	Date	by	via V	erbal V	oice Mail Oth	er
Concerning						
18. CHAIN OF CUSTO	DY & SAMPLE D	ISCREPANCIES	additional next	page	Samples prod	cessed by:
19. SAMPLE CONDIT		were received a	after the recommend	led holdi	ng time had ex	pired.
Sample(s)					in a broken co	
Sample(s)						
20. SAMPLE PRESER						
S1-(-)					41	in the leborate-
Sample(s) Time preserved:	D=======) addad/I -+1	-(a):	were fur	ther preserved	in the laboratory.
i ime preserved:	Preservative(s	s) added/Lot number	(s):			
VOA Sample Preservation	n - Date/Time VOA	s Frozen:				

Log	in	#	*	
-----	----	---	---	--

,				Eurofins - Canto	n Sample Receipt M	Aultiple Cooler Form	
Co	oler D	escri	ption	IR Gun#	Observed	Corrected	Coolant
	(CI	rcle)		(Circle)	Temp °C	Temp °C	(Circle)
(tc)	Client	Box	Other	IR GUN #;	0.2	0.	Wellice Blue tice By ic
EC	Client	Box	Other	M GWN #: 22	0.4	0.3	Notice Sive Ice By ic
К	Client	Box	Other	IR GUN #:	V		Weller Mose
IC	Client	Box	Other	IR GUN #:			Weller None
IC	Clont	Box	Other	IR GUN 6:			Wellice More Ice Bylce Weller Mone
1C	Client	Box	Other	IR GUN #:		,	Wellice Blue Sce Bylce Winter Mane
8C	Clent	3 ox	Other	IR GUN 6:			Wellice Blue Ice By ice Weller Mone
8C	Client	Best	Other	IR GUN 5:			Wellice Shoe Ice Bylce
8C	Client	Best	Other	IR GUN 6:			Weller the tee tyle
ac ac	Clout	Box	Other	12 GUN 6:			Weller She lee byte
BC	Ciont	Desc	Other	R 00H #:			Wolfe No lee byte
BC	Cloud	Best	Other	IR GON 6:			Wellice the Ice Bylce
BC	Cloud	Ben	Other	IR GUN 6:			Weller Hee Byte
ac.	Cloni	Bex	Other	IR GUN 7:			Wellto the loe Byte
BC	Client	Bex	Other	12 GON #:			Wellto like too Byto
BC	Client	Ben	Other	17. GON #:			Wolfer New Ico Byte
BC	Cloni	Bex	Other	IR GUN #:			Welter Shee lee Byte
. BC	Client	Bex	Olher	R GON #:			Wellice Shee Ico Brytse
BC	Cloud	Век	Other	IR 60N 6:			Wellice She les Byte
BC	Cloud	Bex	Other	IR GON #:		-	Well too Blue too Brytes Water Mana
80	Cloud	Beix	Other	IR GUN 9:		*	Wellice She lice Byte
8C	Client	Box	Other	IR GUN 4:			Wellice She ice Byte Water Mane
ec.	Client	ðen.	Öther	R GWH #:			Worker None By to
BC	CSonf	Box	Other	R 6W 6:			Weller Need Byte
8C	Client	Box	Other	R 60H 5:			Weller Mane
8C	Client	Best	Other	# GW 6:			Well too Blue too By to Water Base
€C	Client	3ex	Other	IR GUM #:			Wellice She ice By to Water Hone
BC	Client	Box	Other	R GUN F:			Wellice She ice by ice
IC	Cloud	8ex	Other	R 60N #:			Wellice Sive ice Bry ice
SC	Cloud	Box	Other	R GON 6:			Wellce Blue ice Bry ice
(C	CSonf	.Box	Ölher	IR GON 6:			Weller Mane
BC	Clonf	Box	Other	IR GUN 6:			Wellice Blee Ice Bry Ice Water Mane
BC .	Client	Bex	Other	R 60N 6:			Wellice She ice Bry ice Weller Mone
EC	Client	Bex	Other	# GUN #:			Weller Need Bry to
						□ See Tempe	reture Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coders

Login Container Summary Report

240-193602

Temperature readings: _____

Client Sample ID	Lab ID	Container Type	Container Preservative pH Temp Added (mls) Lot #
MW-16-01	240-193602-C-1	Plastic 500ml - with Nitric Acid	<2
MW-16-01	240-193602-D-1	Plastic 1 liter - Nitric Acid	<2
MW-16-01	240-193602-E-1	Plastic 1 liter - Nitric Acid	<2
MW-16-02	240-193602-C-2	Plastic 500ml - with Nitric Acid	<2
MW-16-02	240-193602-D-2	Plastic 1 liter - Nitric Acid	<2
MW-16-02	240-193602-E-2	Plastic 1 liter - Nitric Acid	<2
MW-16-03	240-193602-C-3	Plastic 500ml - with Nitric Acid	<2
MW-16-03	240-193602-D-3	Plastic 1 liter - Nitric Acid	<2
MW-16-03	240-193602-E-3	Plastic 1 liter - Nitric Acid	<2
MW-16-04	240-193602-C-4	Plastic 500ml - with Nitric Acid	<2
MW-16-04	240-193602-D-4	Plastic 1 liter - Nitric Acid	<2
MW-16-04	240-193602-E-4	Plastic 1 liter - Nitric Acid	<2
DUP-01	240-193602-C-5	Plastic 500ml - with Nitric Acid	<2
DUP-01	240-193602-D-5	Plastic 1 liter - Nitric Acid	<2
DUP-01	240-193602-E-5	Plastic 1 liter - Nitric Acid	<2
EB-01	240-193602-C-6	Plastic 500ml - with Nitric Acid	<2
EB-01	240-193602-D-6	Plastic 1 liter - Nitric Acid	<2

<2

240-193602-E-6 Plastic 1 liter - Nitric Acid

EB-01

Company

7 2023 OBUS

Company

Savironment Testing

Chain of Custody Record

Eurofins Cleveland

180 S. Van Buren Avenue	ี	Chain of	or Custody Record	dy he	5					
Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772				II ah DM				Carrier Tracking No(s):	COC No.	
	Sampler:			Brooks, Kris M	Kris M				240-175339.1	3.1
Client Information (Sub Contract Lab)	Phone:			E-Mail:		G	800	State of Origin: Michigan	Page 1 of 1	
Client Contact: Shipping/Receiving				Kris.Bro	Ans. Brooks (Wet. euroring 303.00)	Required	Accreditations Required (See note):		Job #:	
Company: TactAmerica Laboratories, Inc.									Preservation Codes:	n Codes:
Address:	Due Date Requested: 11/14/2023						Analysis	Analysis Requested	A - HCL	N - Hexane N - None
13715 Rider Trail North, City:	TAT Requested (days):	: (s):							C - Zn Acetate D - Nitric Acid	
Earth City State, Zip:	T -				teld t	1si_			E - NaHSO4 F - MeOH	
MO, 63045	PO #:			(0	33	arget			G - Amenior H - Ascorbic Acid	Acid U - Acetone
314-298-8566(Tel) 314-298-8757(Fax)	#CVW			N A	(0	T bı			1 - Ice J - DI Water	V - MCAA
Email:	Ė				or No	epue			sine: K - EDTA L - EDA	Y - Trizma
Project Name:	Project #: 24016804			() eld	Yes (os 0 ^{-c}			contra	(Special)
CCK DIE St. Clair Tower	SSOW#:			mes	ap (24-		10 11	
TRC CCR DTE St. Clair Power			-	Matrix	W/S		197		equ	
			Sample		M m		8228		unN l	
		Sample	C=comp,	= :	nohe		19229			Special Instructions/Note:
Cample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	18	4	-	N.			
		X	Preservation Code	on Code:	1				2	
MW-16-01 (240-193602-1)	10/12/23	10:00 Eastern		Water	<u> </u>	×	×		1 0	
MW-16-02 (240-193602-2)	10/12/23	09:04 Eastern		Water	×	×	×		4 0	
MW-16-03 (240-193602-3)	10/12/23	11:49 Eastern		Water	<u> </u>	\rightarrow	×		2 0	
MW-16-04 (240-193602-4)	10/12/23	12:57 Eastern		Water	×	×	×		7 0	
III ID-04 (240-193602-5)	10/12/23	Eastern		Water	×	×	×		7	
EB-01 (240-193602-6)	10/11/23	10:40 Eastern		Water	×	×	×		2	
LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the Any changes to the Funding Environment Testing North Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory or other instructions will be provided.	ronment Testing North Ce	Intral, LLC place	s the ownership	of method, an	lyte & acci	editation	compliance upon or	ir subcontract laboratories. This sament Testing North Central, LLC labora	ple shipment is forward Itory or other instruction	ded under chain-of-custody. If the ns will be provided. Any changes to
Note: Since Japoratory accidentations are subject to comment		family hain	s and harviene	amples must be	Sulpher	201 10 1110			The Environment Forviro	anomy.

Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Mont laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complacement accreditation status should be brought to Eurofins Environment Testing North Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complacement. Possible Hazard Identification

4		Keturi 10 Cilent	- Special
nconfirmed Primary Delivership Regulasted: 1 1 1 1 V. Other (specify) Primary Delivership	Primary Deliverable Rank: 2	Special Instructions/QC Requirements:	
	Date:	Time:	Method of Shipment:
mpky Kit Relinquished by:		Description by:	Date/Time:
Inclushed by:	Company Company	Received by Action Actions	
ACM CONTRACTOR OF STATE OF STA		The state of the s	
1	Company	The same of the sa	- 00
2000			Date/Time:
Date/Time	Company		
kelinquished by:			

Custody Seal No.:

Custody Seals Intact:
△ Yes △ No

Login Sample Receipt Checklist

Client: TRC Environmental Corporation.

Job Number: 240-193602-2

Login Number: 193602
List Source: Eurofins St. Louis
List Number: 2
List Creation: 10/17/23 02:51 PM

Creator: Pinette, Meadow L

Creator: Pinette, Meadow L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

6

8

10

12

4 1

1

Attachment C Appendix IV Data Quality Reviews

Laboratory Data Quality Review Groundwater Monitoring Event April 2023 DTE Electric Company St. Clair Power Plant (DTE SCPP)

Groundwater samples were collected by TRC for the April 2023 sampling event. Samples were analyzed for total metals by Eurofins-Test America Laboratories, Inc. (Eurofins-TA), located in Barberton, Ohio. The laboratory analytical results are reported in laboratory reports 240-184669-1 (Revision 1) and 240-184674-1 (Revision 1).

During the April 2023 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-16-01

■ MW-16-02

■ MW-16-03

■ MW-16-04

Each sample was analyzed for the following constituents:

Analyte Group	Method
Total Metals	SW846 3005A/6020B/7470A

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures.
 Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), where applicable.
 The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;
- Data for laboratory duplicates, where applicable. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix IV total metals will be utilized for the purposes of a closure monitoring program.
- Data are usable for the purposes of the closure monitoring program.

QA/QC Sample Summary

- There was one equipment blank submitted with this dataset (EB-01). No target analytes were detected in the equipment blank.
- No target analytes were detected in the method blanks.
- LCS recoveries for all target analytes were within laboratory control limits.
- MS/MSD analyses were performed on sample EB-01 for anions. The percent recoveries (%Rs) and relative percent differences (RPDs) for the MS/MSD analyses met the method acceptance criteria.
- A laboratory duplicate analysis was not performed on a sample from this data set.
- DUP-01 corresponds with MW-16-03; RPDs between the parent and duplicate sample were within the QC limits with the following exception:
- The nondetect RL for chromium (5.0 μg/L) was above the QAPP requested RL (2 μg/L) in all groundwater samples.

Laboratory Data Quality Review Groundwater Monitoring Event April 2023 DTE Electric Company St. Clair Power Plant (DTE SCPP)

Groundwater samples were collected by TRC for the April 2023 sampling event. Samples were analyzed for radium by Eurofins located in St. Louis, Missouri (Eurofins – St. Louis). The laboratory analytical results are reported in laboratory report 240-184674-2.

During the April 2023 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-16-01

■ MW-16-02

■ MW-16-03

■ MW-16-04

Each sample was analyzed for the following constituents:

Analyte Group	Method
Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228)	SW846 9315/9320

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCS/LCSDs are used to assess the accuracy and precision of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes;
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- The reviewed radium results will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the detection monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- Target analytes were not detected in the method blanks.
- No target analytes were detected in the equipment blank (EB-01).
- LCS recoveries for all target analytes were within laboratory control limits.
- MS/MSD analyses were not performed on a sample from this data set.
- The field duplicate pair samples were DUP-01/MW-16-03. The results between the parent and duplicate samples were within acceptance limits.
- Carrier recoveries were within 40-110%.
- The minimum detectable concentration (MDC) for radium 228 and combined radium (1.07 pCi/L) was above the QAPP requested RL (1.0 pCi/L) in sample MW-16-01. There is no adverse impact on data usability since combined radium was detected above the QAPP specified RL in this sample and radium 228 was reported with the detection limit achieved.

Laboratory Data Quality Review Groundwater Monitoring Event October 2023 DTE Electric Company St. Clair Power Plant (DTE SCPP)

Groundwater samples were collected by TRC for the October 2023 sampling event. Samples were analyzed for anions, total metals, and total dissolved solids by Eurofins Environment Testing, located in Barberton, Ohio. Samples were analyzed for radium by Eurofins Environment Testing, located in Earth City, Missouri. The laboratory analytical results are reported in laboratory reports 240-193602-1, 240-193602-2, and 240-193602-3.

During the October 2023 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-16-01

■ MW-16-02

■ MW-16-03

■ MW-16-04

Each sample was analyzed for the following constituents:

Analyte Group	Method	
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A	
Total Boron	SW846 3005A/6010D	
Total Metals	SW846 3005A/6020B/7470A	
Total Dissolved Solids	SM 2540C	
Radium (Radium-226, Radium-228, Combined Radium)	SW846 9315/9320	

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020) and the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures.
 Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), where applicable.
 The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;

- Data for laboratory duplicates, where applicable. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III, IV, and additional Part 115 constituents as well as copper, iron, nickel, vanadium, silver, and zinc will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- TDS was analyzed slightly after the 7th day of collection for sample MW-16-02. However, there is no impact on data usability since the sample was analyzed for TDS on the 7th day after collection.
- There was one equipment blank submitted with this dataset (EB-01). Sulfate (1.0 ug/L) was detected in the equipment blank. There is no impact on the data usability since sulfate was nondetect in the associated samples.
- No target analytes were detected in the method blanks with the following exception.
 - Radium-228 was detected in method blank 160-632483/1-A at 0.6466 +/- 0.334 pCi/L.
 The detected radium-228 results for samples MW-16-01, MW16-04, and DUP-01 associated with this method blank are potentially false positives, as summarized in the attached table, Attachment A.
- LCS recoveries for all target analytes were within laboratory control limits.
- Laboratory duplicate analyses were performed on sample MW-16-01 for TDS, radium-226, and radium-228; all criteria were met.
- Samples DUP-01 and MW-16-01 were submitted as the field duplicate pair with this data set; all criteria were met.
- The nondetect RL (2.0 mg/L) for sulfate in samples MW-16-01, MW-16-02, and DUP-01 was above the QAPP-specified RL (1.0 mg/L) due to 2-fold dilutions likely performed due to the elevated concentrations of chloride.

- The nondetect RL (5.0 mg/L) for sulfate in samples MW-16-03 and MW-16-04 was above the QAPP-specified RL (1.0 mg/L) due to 5-fold dilutions likely performed due to elevated concentrations of chloride.
- The nondetect RL for chromium (5.0 μg/L) was above the QAPP requested RL (2.0 μg/L) in all groundwater samples.
- The nondetect RL (50 mg/L) for TDS in sample EB-01 was above the QAPP-specified RL (10 mg/L); there is no adverse impact on the data usability due to this issue since TDS was detected >10x the elevated RL for EB-01 in the associated groundwater samples.
- Carrier recoveries were within 40-110%.

Attachment A

Summary of Data Non-Conformances for Groundwater Monitoring Event Analytical Data CCR DTE ST. Clair Power East China Township, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
MW-16-01	10/12/2023		
MW-16-04	10/12/2023	Radium-228	Method blank contamination; potential false positive.
DUP-01	10/12/2023		