

Prepared for

DTE Electric Company

One Energy Plaza Detroit, Michigan 48226

ALTERNATE LINER DEMONSTRATION BOTTOM ASH BASINS

BELLE RIVER POWER PLANT

East China Township, Michigan

Prepared by

Geosyntec Consultants of Michigan

3011 West Grand Boulevard, Suite 2300 Ann Arbor, Michigan 48105

GLP8017

April 2023

TABLE OF CONTENTS

1.	INTRODUCTION	1-1
	1.1 Background	1-1
	1.2 Purpose	1-2
	1.3 Report Organization	1-2
	1.4 Terms of Reference	1-2
2.	CHARACTERIZATION OF SITE HYDROGEOLOGY	2-1
	2.1 Introduction	2-2
	2.2 Site Geology	2-2
	2.2.1 Bottom Ash Basin Site-Specific Geology	2-2
	2.3 Uppermost Aquifer Field Testing and Hydrogeology	2-3
	2.4 Summary of Data Used for Site Characterization	2-3
	2.5 ALD-Specific Site Investigation Details	2-4
	2.5.1 Cone Penetration Tests	2-4
	2.5.2 Sonic Drilling	2-5
	2.5.3 Laboratory Testing	2-5
	2.6 Conceptual Site Model	2-5
3.	POTENTIAL FOR INFILTRATION	3-1
	3.1 Site-Specific Soil and Porewater Details	3-1
	3.1.1 Soil Samples for Hydraulic Conductivity Testing	3-1
	3.1.2 Site-Specific Porewater Testing and Results	3-2
	3.2 Hydraulic Conductivity Testing Procedure	3-2

Geosyntec Consultants of Michigan

	3.3 Hydraulic Conductivity Test Results and Assessment	3-3
4.	FATE AND TRANSPORT MODEL ANALYSES	4-1
	4.1 Introduction	4-1
	4.2 Groundwater Protection Standards	4-2
	4.3 Consideration of Background Groundwater Concentrations	4-2
	4.4 CCR Porewater Quality Results	4-2
	4.5 Fate and Transport Model	4-3
	4.5.1 Analysis Model	4-3
	4.5.2 Proposed Mathematical and Associated Computer Model	4-3
	4.5.3 Fate and Transport Model Inputs	4-4
	4.6 Fate and Transport Analysis Results and Evaluation	4-7
	4.6.1 Fate and Transport Baseline Model Results	4-7
	4.6.2 Sensitivity Analysis	4-7
	4.6.3 Reliability of Computer Model	4-9
	4.6.4 Degree of Conservativeness in Model Results	4-9
5.	SUMMARY	5-1
6.	CERTIFICATION	6-1

LIST OF TABLES

- Table 2-1 Field and Laboratory Testing Summary
- Table 2-2 Pore Pressure Dissipation Tests Results
- Table 3-1 Chemistry Results of Site-Specific Filtered CCR Porewater
- Table 3-2 Summary of Hydraulic Conductivity Tests Results
- Table 3-3 Summary of Compatibility Tests Hydraulic Conductivity and Pore Volumes Passed Results
- Table 3-4 Summary of Compatibility Tests pH Results
- Table 3-5 Summary of Compatibility Tests Electrical Conductivity Results
- Table 3-6 Summary of Compatibility Tests Termination Criteria
- Table 4-1 Groundwater Protection Standards
- Table 4-2 Baseline Fate and Transport Results
- Table 4-3 Background and Predicted Concentrations Compared to GWPS
- Table 4-4 Sensitivity Analysis Model Inputs
- Table 4-5 Sensitivity Analysis Model Results

LIST OF FIGURES

- Figure 1-1 Site Plan
- Figure 2-1 Field Investigation Locations
- Figure 2-2 Site Map with Cross Section Transects
- Figure 2-3 Cross Section A-A'
- Figure 2-4 Cross Section B-B'
- Figure 2-5 Cross Section C-C'
- Figure 2-6 Cross Section D-D'

Figure 2-7 – Cross Section E-E'

Figure 3-1 – Filtered BAB and DB Porewater Sample Piper Diagram

Figure 3-2 – B1-ST-1 (7-9') PV Passed with Time

Figure 3-3 – B1-ST-1 (7-9') Hydraulic Conductivity with Time

Figure 3-4 – B1-ST-1 (7-9') Hydraulic Conductivity with PV

Figure 3-5 – B1-ST-1 (7-9') pH of Inflow and Outflow with Time

Figure 3-6 – B1-ST-1 (7-9') Electrical Conductivity (EC) with Time

Figure 3-7 – B2-ST-1 (1-3') PV Passed with Time

Figure 3-8 – B2-ST-1 (1-3') Hydraulic Conductivity with Time

Figure 3-9 – B2-ST-1 (1-3') Hydraulic Conductivity with PV

Figure 3-10 – B2-ST-1 (1-3') pH of Inflow and Outflow with Time

Figure 3-11 – B2-ST-1 (1-3') Electrical Conductivity (EC) with Time

Figure 3-12 – B2-ST-4 (47-49') PV Passed with Time

Figure 3-13 – B2-ST-4 (47-49') Hydraulic Conductivity with Time

Figure 3-14 – B2-ST-4 (47-49') Hydraulic Conductivity with PV

Figure 3-15 – B2-ST-4 (47-49') pH of Inflow and Outflow with Time

Figure 3-16 – B2-ST-4 (47-49') Electrical Conductivity (EC) with Time

Figure 3-17 – B3-ST-5 (77-79') PV Passed with Time

Figure 3-18 – B3-ST-5 (77-79') Hydraulic Conductivity with Time

Figure 3-19 – B3-ST-5 (77-79') Hydraulic Conductivity with PV

Figure 3-20 – B3-ST-5 (77-79') pH of Inflow and Outflow with Time

Figure 3-21 – B3-ST-5 (77-79') Electrical Conductivity (EC) with Time

Figure 3-22 – B4-ST-3 (47-49') PV Passed with Time

Figure 3-23 – B4-ST-3 (47-49') Hydraulic Conductivity with Time

Figure 3-24 – B4-ST-3 (47-49') Hydraulic Conductivity with PV

Figure 3-25 – B4-ST-3 (47-49') pH of Inflow and Outflow with Time

Figure 3-26 – B4-ST-3 (47-49') Electrical Conductivity (EC) with Time

Figure 3-27 – B5-ST-5 (87-89') PV Passed with Time

Figure 3-28 – B5-ST-5 (87-89') Hydraulic Conductivity with Time

Figure 3-29 – B5-ST-5 (87-89') Hydraulic Conductivity with PV

Figure 3-30 – B5-ST-5 (87-89') pH of Inflow and Outflow with Time

Figure 3-31 – B5-ST-5 (87-89') Electrical Conductivity (EC) with Time

Figure 4-1 – Fate and Transport Conceptual Model

LIST OF APPENDICES

Appendix A – Monitoring Well Slug Test Results

Appendix B – Monitoring Well Logs

Appendix C – 1970s Boring Logs

Appendix D – 2016 Boring Logs

Appendix E – 2020 Boring Logs

Appendix F – 1970s Laboratory Test Results

Appendix G – 2016 Laboratory Test Results

Appendix H – 2020 Laboratory Test Results

Appendix I1– CPT Logs

Appendix I2 – PPD Test Results

Appendix J – Chemistry Analysis of Site-Specific Water

Appendix K – ALD Hydraulic Conductivity Test Results

Appendix L – Groundwater Protection Standard Calculations

Appendix M – Fate and Transport Model Inputs

Appendix N – Fate and Transport Model Outputs

1. INTRODUCTION

This report has been prepared to provide the Preliminary Alternate Liner Demonstration (ALD) of Belle River Power Plant Bottom Ash Basins (BABs), one of two coal combustion residuals (CCR) units at the site, in accordance with 40 CFR Part 257 as amended on November 12, 2020 (CCR Part B Rule). **Figure 1-1** provides a site location.

This report concludes that there is no reasonable probability that water from the BABs will cause a release to the groundwater that will exceed the groundwater protection standards (GWPS) at the waste boundary over the projected active life of the CCR unit.

1.1 Background

DTE Electric Company (DTE) submitted the Alternate Liner Demonstration Application for BABs to the United States Environmental Protection Agency (USEPA) on November 30, 2020 [1] in accordance with the CCR Rule. Soon after, DTE started the field and laboratory investigation studies to meet the requirements of the CCR Rule.

One of the requirements of the CCR Rule is to conduct hydraulic conductivity testing using site-specific permeant liquid. The CCR Rule acknowledges that these tests may last a long time such that the operator of the CCR unit may need to submit an extension request for the laboratory testing program, and submit a preliminary ALD.

DTE submitted extension requests due to "analytical limitation" under separate covers, dated September 1, 2021 [2] and September 1, 2022 [3]. The extension requests detailed the compatibility testing program results through August 12, 2022. The USEPA has not yet responded to the extension request.

The Part B Rule does not require the submittal of a preliminary ALD (PALD) by November 30, 2021, if an extension request is submitted in accordance with §257.71(d)(2)(ii)(A). However, DTE provided a PALD [4] out of an abundance of caution and with confidence in the performance of the liner system as a "place holder" to comply with the requirement to submit an ALD by November 30, 2021.

The PALD detailed the site investigation, conceptual site model, laboratory study, and fate and transport model concluding that there is no reasonable probability that water from the BABs will cause a release to the groundwater that will exceed the GWPS at the waste boundary over the projected active life of the CCR unit. This ALD includes additional data analyzed subsequent to the submittal of the PALD, and confirms the appropriateness of the hydraulic conductivities used in the PALD fate and transport model.

1.2 Purpose

The purpose of this report is to provide the final ALD including the approach, analysis details, and results in accordance with the CCR Rule.

1.3 Report Organization

The remainder of this report is organized as follows:

- Section 2 provides the field and laboratory investigation details, information on site geology/hydrogeology, and conceptual site model details.
- Section 3 provides results of hydraulic conductivity testing, termination criteria details, chemistry testing of site-specific porewater, and discussion of results.
- Section 4 provides analysis approach, details, GWPS, and evaluation of results as to whether the BABs meet the ALD requirement of the CCR Rule.
- Section 5 provides a summary of the report.
- Section 6 provides certification.
- Section 7 provides references.

1.4 Terms of Reference

This report was prepared by Mike Coram C.P.G., Clinton Carlson Ph.D., P.E., Jesse Varsho P.E., and reviewed by John Seymour, P.E. of Geosyntec Consultants of Michigan, Inc.(Geosyntec).

2. CHARACTERIZATION OF SITE HYDROGEOLOGY

The CCR Rule requires the following:

- $\S257.71(d)(ii)(A)$ Characterization of site hydrogeology. A characterization of the variability of site-specific soil and hydrogeology surrounding the surface impoundment that will control the rate and direction of contaminant transport from the impoundment. The owner or operator must provide all of the following as part of this line of evidence:
- (1) Measurements of the hydraulic conductivity in the uppermost aquifer from all monitoring wells associated with the impoundment(s) and discussion of the methods used to obtain these measurements;
- (2) Measurements of the variability in subsurface soil characteristics collected from around the perimeter of the CCR surface impoundment to identify regions of substantially higher conductivity;
- (3) Documentation that all sampling methods used are in line with recognized and generally accepted practices that can provide data at a spatial resolution necessary to adequately characterize the variability of subsurface conditions that will control contaminant transport;
- (4) Explanation of how the specific number and location of samples collected are sufficient to capture subsurface variability if:
 - (i) Samples are advanced to a depth less than the top of the groundwater table or 20 ft beneath the bottom of the nearest water body, whichever is greater, and/or
 - (ii) Samples are spaced further apart than 200 ft around the impoundment perimeter;
- (5) A narrative description of site geological history; and
- (6) Conceptual site models with cross-sectional depictions of the site environmental sequence stratigraphy that include, at a minimum:
 - (i) The relative location of the impoundment with depth of ponded water noted;
 - (ii) Monitoring wells with screening depth noted;
 - (iii) Depiction of the location of other samples used in the development of the model;

- (iv) The upper and lower limits of the uppermost aquifer across the site;
- (v) The upper and lower limits of the depth to groundwater measured from monitoring wells if the uppermost aquifer is confined; and
- (vi) Both the location and geometry of any nearby points of groundwater discharge or recharge (e.g., surface waterbodies) with potential to influence groundwater depth and flow measured around the unit.

2.1 <u>Introduction</u>

This section provides information on site geology and hydrogeology, data used in site characterization, a summary of ALD-specific field and laboratory study, and a conceptual site model built using the Environmental Visualization System (EVS).

2.2 Site Geology

The surficial topography of St. Clair County is characterized by a low-relief floodplain, stream terrace, and lakeshore deposits. The subsurface geology of the area is defined by glacial deposits, which range in thickness from 100- to 400-feet (ft) thick. These glacial sediments, including lacustrine, till, and sand and gravel outwash deposits, were deposited on the underlying bedrock. Throughout St. Clair County the underlying bedrock varies but is primarily fine-grained siliclastic rock, mostly shale with some sandstone [1].

The St. Clair River is the major surface water body in the county and runs along the eastern boundary of the county. Shallow regional groundwater flow would be expected to be to the east towards the St. Clair River. The BABs are located approximately one mile west of the St. Clair River.

2.2.1 Bottom Ash Basin Site-Specific Geology

The geology of St. Clair County consists of approximately 100 to 400 ft of glacial deposits, primarily lacustrine deposits, till, and, to a lesser extent, sand and gravel outwash, overlying a variety of bedrock surfaces. The glacial material underlying the BABs appears to be glaciolacustrine clays with local sand lenses. The uppermost aquifer unit (sandy rich interval) appears to be deposits from glaciofluvial outwash deposited directly above the bedrock surface.

The BABs are underlain by more than 100 ft of unconsolidated sediments, with the lower confining Bedford Shale generally encountered from 140 to 150 ft below ground surface (bgs). In general, the BABs are initially underlain by approximately 90 ft in the western portion of the BABs and 130 ft in the eastern portion of the BABs of laterally extensive low hydraulic conductivity clayrich deposits. During Geosyntec's ALD investigation in December 2020, cone penetration test

(CPT) dissipation tests were performed to determine hydraulic conductivity of the underlying clayrich deposits. The results of the dissipation tests are summarized in Section 2.5.1. The CPT data confirmed that the underlying deposits are consistently low hydraulic conductivity units.

The uppermost aquifer unit within the BABs is a confined, sand-rich interval (within the footprint of the BABs) that directly overlies the Bedford Shale. It is thicker in the western portion of the BABs and decreases to the southeast. From west to east/southeast the uppermost aquifer increases in fines from a sandy unit to a silty unit. For the purposes of this report, the saturated unit directly overlying the Bedford Shale (sandy and silty) is considered the "uppermost aquifer unit" and is further discussed in Section 2.6.

2.3 Uppermost Aquifer Field Testing and Hydrogeology

TRC calculated the hydraulic conductivities within the CCR monitoring wells set within the upper portion of the uppermost aquifer using single well hydraulic conductivity tests (e.g., slug tests) performed in 2016 and 2021 by TRC [1]. Test results are provided in **Appendix A** and included in the conceptual site model. The monitoring well logs and construction details are presented in **Appendix B**.

As calculated by TRC, the hydraulic conductivity of the uppermost aquifer using wells at the BABs (MW-16-01 and MW-16-09) is approximately 1.2 ft/day (4.0E-4 centimeters per second [cm/s]). This relatively low hydraulic conductivity indicates that the uppermost aquifer has low groundwater yield potential across the site. As discussed in the TRC Initial Application for Alternative Liner Demonstration, the potential horizontal groundwater flow is to the west-northwest. The uppermost aquifer is further discussed in Section 2.3.

2.4 Summary of Data Used for Site Characterization

Data from three separate investigations were used to characterize the subsurface stratigraphy and soil characteristics for the site. Historical investigations included a 1973-1974 investigation performed by Bechtel and a 2016 investigation performed by TRC, which are included in the initial ALD Application [1]. Data from Geosyntec's 2020 ALD Investigation were used to supplement the previous data sets. In total, these three investigations included 56 investigative locations that included 22 soil borings, 13 monitoring wells and 16 CPTs. **Figure 2-1** provides investigation locations.

Boring logs from the 1970s, 2016, and 2020 field investigations are provided in **Appendices C** through **E**, respectively. These investigations extend across the site and include the BABs and DB, which is approximately 400 ft southeast of the BABs. Considering the proximity of both CCR units, field investigation data are used for both the BABs and DB.

Field testing included pocket penetrometer tests on fine-grained soils, slug tests for the monitoring wells screened in the uppermost aquifer, and PPD tests at CPT locations. Lab testing included grain size distributions, Atterberg limits, water content, dry and/or total unit weight, specific gravity, and hydraulic conductivity testing. Type of tests, standards and number of tests are summarized in **Table 2-1**. Laboratory test results are provided in **Appendices F** through **H** for the 1970s, 2016, and 2020 laboratory studies, respectively.

It is Geosyntec's opinion that the combined data used in building the site model are sufficient to capture the variability that may exist in soil conditions.

2.5 <u>ALD-Specific Site Investigation Details</u>

The scope of work for the ALD-Specific Site Investigation (SI) was completed in December 2020 and included drilling and sampling and advancing a CPT probe through the embankment and native soils. The purpose of the fieldwork was to obtain nominally undisturbed samples for hydraulic conductivity testing and to supplement the existing data set to characterize the alternate liner materials in accordance with the CCR Rule. Investigations were conducted generally at 200-ft intervals but adjusted in the field as necessary to avoid underground utility lines, overhead power lines, and access issues, as needed. Investigations extended down to 100 ft bgs to an elevation of approximately 490 ft, which is lower than the groundwater elevation, and 20 ft below the nearest water body that is St. Clair River with a bottom elevation of approximately 525 ft.

The following sections provide a summary of the fieldwork completed during the SI.

2.5.1 Cone Penetration Tests

Eight CPTs were completed around the berms of the BABs in 200 ft intervals to characterize the BABs embankment and native soils. Similarly, eight CPTs were completed around the DB. The CPT locations are provided in **Figure 2-1**. CPTs were advanced from the ground surface to refusal or to approximately 100 ft bgs. PPD tests were conducted to estimate in-situ hydraulic conductivity at select depths; at a minimum, these tests were conducted near the sonic borings and at the elevation near where undisturbed samples were collected for laboratory hydraulic conductivity testing.

In total, 16 PPD tests were completed at CPTs advanced around the BABs, and 12 PPD tests were completed at CPTs advanced around the DB. Hydraulic conductivity values were estimated to range between 9.76E-9 cm/s and 2.81E-6 cm/s around the BABs, and range between 7.97E-9 cm/s and 1.63E-6 cm/s around the DB. Hydraulic conductivity values are similar between soils underlying the BABs and DB. Results are summarized in **Table 2-2**. These values are consistent with TRC's 2018 Natural Clay Liner Equivalency Evaluation Report [1].

CPT logs are provided in **Appendix I1**, and PPD tests are provided in **Appendix I2**.

2.5.2 Sonic Drilling

In December 2020, six soil borings were advanced at the site to evaluate the subsurface geology, collect undisturbed samples for hydraulic conductivity testing, and collect additional soil samples for characterization of native soils and the embankment. Soil samples were collected continuously in 2- to 10-foot sections from the ground surface to the termination of the soil boring. Geosyntec staff were present to log each boring and describe the soil samples in accordance with the Unified Soil Classification System (USCS).

Shelby tubes were collected from the BABs embankment soils and native soils at approximately 20 ft intervals from each of the sonic borings in accordance with ASTM D1587 [5]. The soil borings were advanced to depths of approximately 100 ft-bgs to within the uppermost aquifer and/or into the top of the underlying shale bedrock. Sonic drilling locations are provided in **Figure 2-1.** Boring logs are provided in **Appendix E**. Soil stratigraphy is discussed in Section 2.6.

2.5.3 Laboratory Testing

A suite of index testing and hydraulic conductivity testing was conducted on select soil samples. Fourteen soil samples were collected from six borings from depths between 5 ft-bgs and 90 ft-bgs for hydraulic conductivity testing to capture soft to very stiff soils. Details of hydraulic conductivity testing are provided in Section 3.

Index testing included:

- 24 Moisture Content tests (ASTM D2216)
- 4 Specific Gravity tests (ASTM D854)
- 22 Grain Size Mechanical Sieve tests (ASTM D6913)
- 21 Atterberg Limits tests (ASTM D4318)

Note that these tests are included in **Table 2-1**. Test results are provided in **Appendix H**.

2.6 Conceptual Site Model

An EVS model was developed for the site based on data collected during the field investigations from the 1970s, 2016, and 2020. The EVS model centralized all the data to develop a comprehensive conceptual site model. Based on the EVS model, the overall conceptual site model of the BABs lithology is relatively consistent with low hydraulic conductivity clay-rich deposits with non-interconnected sand seams at greater depths. Within the footprint of the BABs, the

uppermost aquifer unit sits directly above the bedrock and appears to thin and increase in silt from west to east/southeast across the BABs.

Specific to the BABs, cross-sections (**Figures 2-2** through **2-7**) were created from the EVS model and analyzed to determine the various changes in lithology within the clay confining unit directly underlying the BABs and the characteristics of the uppermost aquifer unit which sits directly on the bedrock. Upon review of the transects, the lithology beneath the BABs consists of (from the ground surface downward) (1) clay, (2) clay with sand, (3) uppermost aquifer unit, and (4) shale bedrock. These units are consistent with historical reports and TRC's November 2020, Initial Application for Alternate Liner Demonstration [1]. There were some discrepancies, in that the second clay unit was described as silty instead of sandy. Based on CPT and geotechnical index testing during Geosyntec's 2020 ALD investigation, the lower clay was re-interpreted as "clay with sand" mainly due to sand seams that were encountered. The clay within the "clay with sand" unit is relatively consistent stiff gray clay. Therefore, the lithology directly underlying the BABs consists of the following:

- (1) Clay 50 to 60 ft thick directly beneath the BABs. This unit consists of mainly soft to medium stiff clay and minimal sand seams. None of the sand seams are interconnected or considered an aquifer unit.
- (2) Clay with sand This unit was encountered at approximately 50 to 60 ft bgs with increasing thickness from west to east. At the west end of the BABs, this unit is approximately 40-ft thick and increases in thickness to 80-ft thick at the eastern edge of the BABs. This unit consists of stiffer gray clay with increasing sand seams. Although there are more frequent sand seams, most are less than 1-ft thick and have hydraulic conductivity values greater than 1.0E-7 cm/s except for one location which is discussed in more detail below. The data supports that none of the sand seams are interconnected or considered an aquifer unit. Consequently, because the sands are isolated, the unit behaves like a low hydraulic conductivity clay unit.
- (3) Uppermost Aquifer Unit –This unit was encountered at approximately 90 ft bgs in the west and increases in depth to 140 ft bgs in the east. The thickness of the unit corresponds to the overlying unit and thins from west to east and directly sits atop the bedrock. The thickness changes from approximately 50-ft thick in the western edge of the BABs to 10-ft thick in the eastern/southeastern edge of the BABs. This sandy unit is saturated and considered the uppermost aquifer unit within the BABs. There is a transition from sandy aquifer beneath the BABs to a thin saturated silty aquifer south/southeast of the BABs. Specifically, this silty aquifer extends beneath the DB. Both are considered the "uppermost aquifer unit" on the cross sections and within the EVS model.

• (4) Shale bedrock – This unit was encountered at approximately 140-150 ft bgs.

During Geosyntec's 2020 investigation, CPT tests were conducted, and PPD tests were completed at CPT-01B, CPT-03, and CPT-06 to estimate the hydraulic conductivity of the lithology. In addition, laboratory testing was conducted on individual grab samples from the three sonic borings around BABs for long-term breakthrough potential and is further discussed in Section 3. Based on the review of the PPD test data, values ranged between 9.76E-9 cm/s and 2.81E-6 cm/s. The CPT-derived highest hydraulic conductivity value of 2.81E-6 cm/s was calculated at CPT-03 from a sand seam at 510 ft above mean sea level (AMSL) (approximately 80 ft bgs) within the (2) clay with sand unit. PPD tests at CPT-03 directly above and below the sand seam indicated hydraulic conductivities less than 1.0E-7 cm/s. Therefore, the (1) clay and (2) clay with sand lithologies beneath the BABs have adequate hydraulic conductivity values to be considered a low hydraulic conductivity unit and is consistent with TRC's 2018 Natural Clay Liner Equivalency Evaluation Report [1].

Below the clay with sand is the uppermost aquifer unit that mainly consists of sand. This unit directly overlies the Bedford shale and decreases in thickness from west to south/southeast across the BABs. In the western portion of the BABs, the uppermost aquifer unit is approximately 50-ft thick (near MW-16-01) and thins to approximately 10-ft thick to the southeast. Beyond the BABs, the EVS model predicts this unit extending to the DB with increasing fines/silts. The hydraulic head in the (3) uppermost aquifer unit associated with the BABs is approximately 574 ft AMSL [1] with an almost flat horizontal gradient.

The bottom of the BABs is at an elevation of approximately 580 ft and the bottom of the clay underlying the BABs is at an elevation of approximately 500 ft (western portion), thus more than 80 ft of low hydraulic conductivity clay-rich deposits ((1) clay and (2) clay with sand) separate the bottom of the BABs from the underlying (3) uppermost aquifer unit.

3. POTENTIAL FOR INFILTRATION

The CCR Rule requires:

§257.71(d)(ii)(B) Potential for infiltration. A characterization of the potential for infiltration through any soil-based liner components and/or naturally occurring soil that control release and transport of leachate. All samples collected in the field for measurement of saturated hydraulic conductivity must be sent to a certified laboratory for analysis under controlled conditions and analyzed using recognized and generally accepted methodology. Facilities must document how the selected method is designed to simulate on-site conditions. The owner or operator must also provide documentation of the following as part of this line of evidence:

- (1) The location, number, depth, and spacing of samples relied upon is supported by the data collected in paragraph (d)(1)(ii)(A) of this section and is sufficient to capture the variability of saturated hydraulic conductivity for the soil-based liner components and/or naturally occurring soil;
- (2) The liquid used to pre-hydrate the samples and measure long-term hydraulic conductivity reflects the pH and major ion composition of the CCR surface impoundment porewater;
- (3) That samples intended to represent the hydraulic conductivity of naturally occurring soils (i.e., not mechanically compacted) are handled in a manner that will ensure the macrostructure of the soil is not disturbed during collection, transport, or analysis; and
- (4) Any test for hydraulic conductivity relied upon includes, in addition to other relevant termination criteria specified by the method, criteria that equilibrium has been achieved between the inflow and outflow, within acceptable tolerance limits, for both electrical conductivity and pH.

3.1 Site-Specific Soil and Porewater Details

3.1.1 Soil Samples for Hydraulic Conductivity Testing

Fourteen site-specific soil samples were collected for hydraulic conductivity testing. Considering the extent of existing field investigation data, including CPTs with PPDs and earlier borings, Geosyntec believes that the collected samples are sufficient to capture the variability of hydraulic conductivity in the natural soils present at the BABs.

3.1.2 Site-Specific Porewater Testing and Results

Site-specific CCR porewater samples were collected from both the BABs and the DB for geochemical analyses to assess the representative composition of an "aggressive" solution for use in the hydraulic conductivity compatibility testing. Due to the high turbidity of basin waters, samples were filtered through a 0.45-micron filter to evaluate dissolved concentrations. Site-specific porewater samples were tested for CCR Rule Appendix III and Appendix IV parameters as well as additional major cations (sodium, magnesium, potassium), anions (total alkalinity), iron, and manganese.

All porewater samples were found to be slightly basic, with pH concentrations ranging from 7.87 to 9.01 SU. Total dissolved solids (TDS) concentrations of all three samples are similar, ranging from 200 to 300 milligrams per liter (mg/L). All three samples have TDS concentrations < 1000 mg/L, which is defined by the United States Geological Survey (USGS) as "freshwater". The BABs and DB samples have similar major ion compositions, as illustrated on the Piper diagram in **Figure 3-1**. The anion composition is very similar for all three samples and consists of predominantly sulfate with some alkalinity and very little chloride. The cation composition is predominantly calcium and monovalent cations (potassium/sodium), with a smaller proportion of magnesium. The DB sample has a slightly higher relative percentage of calcium and lower monovalent cations compared to the BAB samples.

The analytical results are provided in **Appendix J** and tabulated in **Table 3-1**. Results were used to calculate total ionic strength for each sample. Total ionic strength is a measure of the combined ion concentrations in a solution and can represent the salinity of a sample. Total ionic strength was calculated for each sample using geochemical modeling software Geochemist's Workbench (GWB) v12.0.4. The GWB thermodynamic dataset 'thermo.com.V8.R6_.tdat' was used for the calculations in order to incorporate all tested parameters. Analytical results for each parameter were input into GWB in units of mg/L and the ionic strength of each sample was calculated in units of molality (m).

Both BAB samples contained similar ionic strength values (0.0088 and 0.0080 m) compared to the slightly higher ionic strength of the DB sample (0.0106 m). Thus, the DB sample is considered to be the more aggressive solution and was used for compatibility testing as described in Section 3.2.

3.2 <u>Hydraulic Conductivity Testing Procedure</u>

Eight soil samples were tested for hydraulic conductivity, *k* using deionized water in accordance with ASTM D5084 [6] to establish a baseline hydraulic conductivity. The other six samples were selected for compatibility testing in accordance with ASTM D7100 [7] using site-specific water. The use of ASTM D7100 is discussed in the preamble of the CCR Rule and deemed appropriate by USEPA.

ASTM D7100 termination criteria require the following conditions:

- The ratio of outflow to inflow is between 0.75 and 1.25.
- The hydraulic conductivity is steady, defined as four or more consecutive hydraulic conductivity measurements falling within ±25 % of the mean value for hydraulic conductivity if the mean hydraulic conductivity is greater than or equal to 1.0E-8 cm/s or within ±50 % if the mean hydraulic conductivity is less than 1.0E-8 cm/s, and a plot or tabulation of the hydraulic conductivity versus time shows no significant upward or downward trend;
- At least 2 pore volumes (PV) of flow have passed through the sample; and
- pH and electrical conductivity of effluent are within 10% of that for the influent with no significant increasing or decreasing trends.

3.3 Hydraulic Conductivity Test Results and Assessment

The final measured hydraulic conductivities based on ASTM D5084 for the samples range from 2.7E-9 to 2.2E-8 cm/s. **Table 3-2** presents a summary of the measured hydraulic conductivities for the samples and more details are provided in **Appendix H**.

Results for the hydraulic conductivity compatibility tests are provided in **Appendix K** with measurements through December 23, 2022 and summarized in and summarized in **Table 3-3**. The table provides sample ID, the start date for testing, amount of PV passed through the sample, and hydraulic conductivity measurements.

A set of figures are included to present:

- PV passed with time;
- hydraulic conductivity with time;
- hydraulic conductivity versus PV passed;
- pH of inflow and outflow with time; and
- electrical conductivity (EC) of inflow and outflow with time.

These plots are provided in **Figures 3-2** through **3-31**.

The final measured hydraulic conductivities of samples range between 4.4E-09 and 2.1E-08 cm/s. The amount of PV that passed through the samples ranges from 2.8 to 10.5. All samples have

passed more than 2 PV to satisfy the termination criterion. The hydraulic conductivities generally remained steady with time and PV passed.

pH measurements are provided in **Table 3-4.** The average pH of inflow ranges from 8.2 to 8.4, and the average pH of outflow ranges from 8.2 to 8.4. The average pH of outflow was within 10 percent of the average of pH of inflow.

EC measurements are provided in **Table 3-5**. The average EC of inflow ranges from 1,030 to 1,098, and the average EC of outflow ranges from 874 to 1,381. The EC measurements of outflow are within the 10% of the EC measurements of inflow for sample B1-ST-1. The EC measurements of outflow were within 10% of the EC measurements of inflow for the other samples for at least one measurement; however, the outflow and inflow EC measurements are not within 10% as of December 2022.

Table 3-6 summarizes if the samples have reached the termination criteria for PV, hydraulic conductivity, pH, and EC in December 2022. As summarized in the table, all samples have reached the termination criteria for PV passed, hydraulic conductivity, and pH. One sample (B1-ST-1) has reached the termination criterion for EC, though the other samples satisfied this criterion at some point during testing. Overall, the average hydraulic conductivity measurements for the samples (6.9E-9 to 2.6E-8 cm/s) have remained steady or slightly decreased from the average measurements (8.2E-9 to 2.2E-8 cm/s) presented in the PALD [4]. Only the average hydraulic conductivity measured for sample B4-ST-3 (1.8E-8 to 2.6E-8 cm/s) increased from the PALD [4].

The results do not include inflow versus outflow data. The project team decided to keep the inflow constant to provide a more stable hydraulic gradient across the sample, more accurate estimation of hydraulic conductivity, faster testing, and more control in the testing procedure. It is Geosyntec's opinion that the inflow/outflow criterion was satisfied during the two years of testing because of the consistently low hydraulic conductivity results and constant hydraulic conductivity measurements (not significantly increasing or decreasing).

4. FATE AND TRANSPORT MODEL ANALYSES

The CCR Rule requires:

 $\S257.71(d)(ii)$ (C) Mathematical model to estimate the potential for releases. Owners or operators must incorporate the data collected for paragraphs (d)(1)(ii)(A) and (d)(1)(ii)(B) of this section into a mathematical model to calculate the potential groundwater concentrations that may result in downgradient wells as a result of the impoundment. Facilities must also, where available, incorporate the national-scale data on constituent concentrations and behavior provided by the existing risk record. Application of the model must account for the full range of site current and potential future conditions at and around the site to ensure that high-end groundwater concentrations have been effectively characterized. All the data and assumptions incorporated into the model must be documented and justified.

- (1) The models relied upon in this paragraph (d)(1)(ii)(C) must be well- established and validated, with documentation that can be made available for public review.
- (2) The owner or operator must use the models to demonstrate that, for each constituent in appendix IV of this part, there is no reasonable probability that the peak groundwater concentration that may result from releases to groundwater from the CCR surface impoundment throughout its active life will exceed the groundwater protection standard at the waste boundary.
- (3) The demonstration must include the peak groundwater concentrations modeled for all constituents in appendix IV of this part attributed both to the impoundment in isolation and in addition to background.

4.1 <u>Introduction</u>

A fate and transport model analysis was performed to evaluate whether the peak groundwater concentrations that may result from releases to the groundwater from the BABs exceeds the GWPS at the waste boundary throughout its active life.

The model considers flow of CCR pore water Constituents of Concern (COCs) migrating through the bottom of the BABs down to the uppermost aquifer. The model does not consider additional migration of COCs horizontally to the waste boundary. If considered, the horizontal groundwater flux would reduce the concentrations of the COCs; thus, the model presents a conservative assessment.

According to §257.71(2)(ii)(C)(3), the owner must submit "...a final demonstration that updates only the finalized hydraulic conductivity data to confirm that the model results in the preliminary demonstration are accurate." The hydraulic conductivity used in the calculation of the Darcy

velocity for the baseline fate and transport model corresponds to the geometric mean of all available data. For the PALD [4], a hydraulic conductivity of 2.15E-8 cm/s was used for the baseline model. The recalculated geometric mean hydraulic conductivity based on the updated laboratory test results presented in Section 3.3 is approximately 2.14E-8 cm/s, or a decrease of less than 1%. Furthermore, a sensitivity analysis was performed as part of the fate and transport analyses in the PALD [4] that captured this change in hydraulic conductivity data within the range of hydraulic conductivities evaluated. Therefore, the model results for the fate and transport analysis presented in the PALD [4] are considered accurate and not updated for this ALD. The following sections summarize the fate and transport analyses from the PALD for convenience.

As discussed in Section 4.6.1, the results of the model predict COC concentrations that are very low such that there is no reasonable probability that water from the BABs will cause releases to groundwater that will exceed the GWPS at the waste boundary over the projected active life of the BABs.

4.2 **Groundwater Protection Standards**

Groundwater samples from TRC's 2016 and 2017 sampling events were tested for Appendix IV COCs and represent eight rounds of background groundwater data. The data were used to calculate site-specific background levels (background) for Appendix IV COCs. **Appendix L** provides the memorandum describing the statistical calculations.

To develop GWPS for the ALD, the federal Maximum Contaminant Level (MCL), Regional Screening Levels, and background were evaluated and the highest value was selected as the GWPS in accordance with the CCR Rule. Where MCL are not available Regional Screening Levels were used. GWPS are provided in **Table 4-1**.

4.3 Consideration of Background Groundwater Concentrations

The site-specific background has been considered and is a factor when determining if GWPS have been exceeded. At the BABs, naturally occurring background concentrations are generally much lower than the GWPS. The predicted groundwater concentrations and the peak background concentrations are further discussed in Section 4.6.1.

4.4 CCR Porewater Quality Results

CCR porewater quality samples from the BABs and the DB were collected in December of 2020 and January of 2021. Samples were analyzed for Appendix III and IV parameters by ALS Environmental in Holland, MI. Analytical results were compared for each parameter and the highest CCR porewater concentration was used as the established concentration of the constituent (C_o) when calculating the predicted groundwater concentrations (PGC_t), as discussed further below. The CCR porewater quality data is summarized in **Table 4-2**.

In addition to the site-specific CCR porewater concentrations, 90th percentile concentrations from the 2014 EPA study [8] were considered in the analysis. This data is summarized in **Table 4-2**.

4.5 Fate and Transport Model

4.5.1 Analysis Model

A one-dimensional fate and transport model was designed to further understand the potential for contaminant transport from the BABs to the uppermost aquifer. The model was developed with a contaminant transport process through the clay and clay with sand layers under the BABs. Contaminant transport processes are discussed in Section 4.5.2.1.

The modeling program POLLUTE [9] was selected for the one-dimensional fate and transport evaluation. POLLUTE uses the input parameters to perform calculations for individual transport processes, and then uses the semi-analytical solution for the various transportation process (see Section 4.5.2) to yield predicted concentrations at the various specified times and distances.

Model setup and inputs are discussed in detail in the following sections and are summarized by layer in **Figure 4-1**.

4.5.2 Proposed Mathematical and Associated Computer Model

4.5.2.1 Mathematical Model

The potential transport mechanisms that may occur at the BABs for the various modeled layers include advection, mechanical dispersion and diffusion. For porous media, these transport mechanisms can be represented by the following one-dimensional flow equation [10]:

Equation No. 1:
$$n\frac{\delta c}{\delta t} = nD\frac{\delta^2 c}{\delta z^2} - V_\alpha \frac{\delta c}{\delta z} - \rho K_d \frac{\delta c}{\delta t} - n\lambda c$$

Where:

c = concentration at any point

D = coefficient of hydrodynamic dispersion in the vertical direction

n = porosity of the geologic layer

 K_d = distribution coefficient

 V_{α} = Darcy velocity in the vertical direction

 ρ = dry density of soil

 λ = decay constant of the contaminant species

t = time

POLLUTE utilizes the transport phenomena as governed by Equation No. 1.

4.5.2.2 Predicted Groundwater Concentrations

This model uses an initial concentration value of one (1), which represents a unit concentration of any constituent in the CCR porewater. The results from the model can thus be used as a prediction factor for estimating the future concentration of any constituent of concern in groundwater. Multiplying the output prediction factor by the initial CCR porewater concentration provides the predicted groundwater concentration at the end of the model run. The following equation (Equation No. 2) illustrates this concept:

Equation No. 2: $PGC_t = PF_t * C_o$

Where:

PGC_t = predicted groundwater concentration after t years.

 PF_t = prediction factored after t years, which is the output of the model.

 C_0 = established CCR porewater concentration of the constituent of concern.

4.5.3 Fate and Transport Model Inputs

4.5.3.1 Initial CCR Porewater or Source Concentration

The initial CCR porewater concentration input value used was unity (1). This value is unitless because it represents unit CCR porewater concentration of any given constituent. Therefore, the model results represent a fraction of the initial CCR porewater concentration for any constituent.

4.5.3.2 Number of Layers and Layer Thickness

Two layers were modeled at the site: the clay layer and the clay with sand layer. At the BABs, the clay layer has an average thickness of 40 ft; the clay with sand layer has an average thickness of 63 ft. The average thickness of each layer was derived from an isopach map generated by subtracting the surface representing the bottom of the layer from the surface representing the top

of the layer, and averaging the difference over the footprint of the BABs footprint; model documentation for the average thickness of each layer can be found in **Appendix M**.

POLLUTE also allows layers to be subdivided into sublayers, which allows the predicted concentration distribution within a layer to be calculated. The clay layer was divided into 25 sublayers at the BABs. The clay with sand layer was divided into 40 sublayers at the BABs.

4.5.3.3 *Modeling Period*

The model was run for the operating period of 55 years. This modeling period captures the amount of time elapsed from the 1980s, when operations started at the BABs, to 2034, which is the end of the projected active life of the BABs.

4.5.3.4 *Talbot Parameters*

POLLUTE uses a Laplace transform to find the solution to the advection-dispersion equation. The numerical inversion of the Laplace transform depends on the Talbot parameters. The model provides default values for the parameters or they can be selected by the user. The default Talbot parameter were used in this demonstration [11].

4.5.3.5 **Boundary Conditions**

POLLUTE allows the user to select between multiple upper and lower boundary conditions. The top boundary condition typically represents the bottom of the CCR unit as a potential source. The top boundary can be specified as either zero flux, constant concentration, or finite mass. A constant concentration was assumed as it provides conservative model results because it assumes that the leachate quality will remain constant at the maximum measured values over time.

The lower boundary can be specified as either zero flux, constant concentration, fixed outflow, or infinite thickness. For this model, an infinite thickness lower boundary was used. Therefore, the model output is a prediction factor of contaminant concentration in groundwater at the interface between the clay with sand layer and the underlying uppermost aquifer.

4.5.3.6 *Darcy Vertical Velocity*

POLLUTE requires a Darcy velocity to be input for the model as a whole. The Darcy velocity was calculated for the BABs using a vertical gradient and the vertical hydraulic conductivity of the clay with sand layer. For the BABs, the vertical gradient was calculated using hydrogeologic data from the uppermost aquifer and the elevation of the typical operation water level as controlled by the outflow structure within the BABs. These parameters were chosen to produce a conservative value for the Darcy velocity. A Darcy velocity value of 1.02E-3 m/year was calculated for the BABs as provided in **Appendix M**. The hydraulic conductivity value used for the calculation of

Darcy velocity is the average (geometric mean) of historical and current lab testing for the vertical hydraulic conductivity data.

4.5.3.7 Hydrodynamic Dispersion Coefficient

The vertical coefficient of hydrodynamic dispersion is a required input for each layer within the POLLUTE model. The hydrodynamic dispersion coefficient is calculated using Equation No. 3:

Equation No. 3:
$$D = D^* + av$$

Where:

D = the hydrodynamic dispersion coefficient (m²/year);

 D^* = the effective diffusion coefficient (m²/year).

a = the dispersivity (m);

v = the groundwater seepage velocity (m/year).

For this demonstration, a coefficient of hydrodynamic dispersion value (D) of 0.19 m²/year was input into the model. This value was based on the effective diffusion coefficient (D*) for chloride (0.19 m²/yr), as calculated by Rowe et al. [12]. The coefficient of chloride was chosen as it is considered to have a high capacity for diffusion compared to other constituents of interest. Therefore, it is a conservative constituent to model among the COCs.

The second part of Equation 3, the product of dispersivity and groundwater seepage velocity, is related to dispersion. Rowe et al. [12] discusses when the seepage velocity (1.02E-3 m/year) is low (i.e., clay soils), diffusion will control the parameter hydrodynamic dispersion (D) and dispersion is negligible.

4.5.3.8 Effective Porosity and Density Input

The average porosity of each model layer was estimated using laboratory data as discussed in Section 2. The model shows good agreement between porosity values and geologic layers, with the overlying clay unit having lower porosities than the underlying clay with sand unit. An average of 46 percent porosity was used for the clay layer, while an average of 42 percent porosity was used for the clay with sand layer.

Based on empirical data provided by Sara (1994) [10], the laboratory porosity data was converted to effective porosities. Effective porosity values of 0.37 and 0.34 were used for the clay and clay with sand layers, respectively.

Density values from laboratory testing were also used to determine a suitable model input. The average density of 1,500 kg/m³ (94.2 pcf) was estimated from the available data. This value was used in the POLLUTE model.

4.5.3.9 Adsorption Coefficient and Degradation

Adsorption and degradation of constituents can play a significant role in the impedance of contaminant migration in the subsurface. Within POLLUTE, the adsorption coefficient simulates the impedance of constituents or sorption of contaminants in the modeled layers, while degradation simulates the breakdown of contaminants over time. In this model, adsorption and degradation are assumed to be zero, which provides a more conservative model result.

4.6 Fate and Transport Analysis Results and Evaluation

4.6.1 Fate and Transport Baseline Model Results

The modeling was performed to evaluate predicted groundwater quality based on the hydrogeology of the site. At the BABs, the baseline model calculated a PFt of 2.66E-33. With both the Co and PFt established, the PGCt (i.e. predicted concentration) was calculated and compared to the established GWPS for the BABs. As provided in **Table 4-3**, the predicted groundwater quality results, and the 90th percentile concentrations from the 2014 EPA study [8] are below the GWPS levels. In addition, the predicted concentrations were added to the highest concentrations that were measured in 2016-2017 groundwater sampling event and compared to the GWPS. The combined results from predicted concentrations and the highest measured concentrations are below the GWPS (see **Tables 4-3**). Therefore, no impacts to groundwater above GWPS are predicted over the duration of the active life of the BABs.

The driving mechanism for the transport is chemical diffusion, because the advective flow would take more than a thousand years for a water molecule to travel from the bottom of BABs to upper most aquifer. **Appendix M** provides calculations for the time of travel.

The baseline model outputs for the BABs are included in **Appendix N**.

4.6.2 Sensitivity Analysis

Many of the model inputs are specific to the site. Given the potential for sampling bias, uncertainty, and natural variation, a sensitivity analysis was conducted to evaluate the impact on the variation of the model inputs. The analysis focused on changes to the model output, or PF_t , given a variation to a single model input as discussed in the following sections. A summary of the sensitivity analyses model input values is provided in **Table 4-4**.

The resulting PF_t, from each sensitivity analysis was compared to a threshold prediction value, PF_{threshold}. The PF_{threshold} value represents the PF_t at which impacts to groundwater are predicted for Appendix IV COCs at the top of the uppermost aquifer under the CCR unit. The threshold value is 0.2 for the northern BAB and 0.6 for the southern BAB. PF_{threshold} is calculated using Equation 4:

Equation No. 4:
$$PF_{threshold} = min\left\{\frac{GWPS_1}{C_1}, \frac{GWPS_2}{C_2}, \dots, \frac{GWPS_i}{C_i}, \dots, \frac{GWPS_n}{C_n}\right\}$$

Where:

PF_{threshold} = threshold prediction factor

GWPS_i = groundwater protection standard for constituent 'i'

C_i = maximum porewater concentration of the COC 'i'

4.6.2.1 *Darcy Velocity*

A sensitivity analysis was completed to evaluate the impact of Darcy velocity. A Darcy velocity of 2.03E-3 m/year was selected as the value to use for this analysis. This value is double the baseline value calculated during this demonstration and thus serves as a suitable value for input to the sensitivity analysis.

4.6.2.2 Coefficient of Hydrodynamic Dispersion

Model sensitivity to the coefficient of hydrodynamic dispersion was evaluated by increasing and decreasing the input value by 25%. The initial input value was derived from laboratory testing [12], and thus a 25% increase and decrease is considered a satisfactory variation for the purposes of a sensitivity analysis.

4.6.2.3 *Porosity and Effective Porosity*

Model sensitivity to the porosity and effective porosity was evaluated by increasing and decreasing the input value by the minimum and maximum range of values calculated from the laboratory results.

4.6.2.4 Layer Thickness

The isopach maps (**Appendix M**) were used to calculate the maximum and minimum thickness for the clay and clay with sand layers. Using those values as inputs, four additional models were run for the BABs to evaluate model sensitivities to layer thickness. In each model only one variable was changed.

4.6.2.5 *Modeling Period*

The modeling period used was 55 years (the "baseline"). To further evaluate the impact of modeling runtime on the resultant PFt, one model was run with a modeling period of 85 years, to capture the post-closure care period, though DTE intends to close the BABs by removal.

4.6.2.6 *Sensitivity Results*

Additional fate and transport model runs were completed to evaluate model sensitivities to changing model inputs. As shown in **Table 4-5**, using more conservative model input parameters resulted in PF_t values ranging from 6.23E-38 to 1.30E-26. This demonstrates that the BABs will not impact groundwater quality assuming conditions more conservative than the baseline scenario. The sensitivity modeling results are presented in **Table 4-5** whereas the model outputs are included in **Appendix N.**

4.6.3 Reliability of Computer Model

The computer-based fate and transport model used for this analysis is based on rigorous and proven analytical solutions to the advection-dispersion equation for layered deposits. These equations were derived with the intent of modeling the physical and chemical transport of contaminants from waste impoundments. Widespread use, comprehensive documentation, and abundant publications ([11], [14], [15], [10], [16]) demonstrate the versatility of this modeling approach for assessing groundwater impacts. The outputs obtained from models conducted in POLLUTE can be compared to those obtained using other approaches to solving the advection-dispersion equation.

4.6.4 Degree of Conservativeness in Model Results

Input parameters for the baseline models were based on site-specific data whenever possible. When not possible, input values were derived from an understanding of the site and relevant peer-reviewed literature. If a high degree of uncertainty was present, conservative input values were selected. A summary of the various conservative assumptions is listed below:

- The maximum measured CCR porewater concentration for each constituent was used for the fate and transport model prediction table;
- Constant CCR porewater concentration or a constant mass was used for the entire
 modeling period. A specific mass could have been assumed for modeling purposes which
 would have resulted in decrease CCR porewater concentrations over time but to be
 conservative the model assumed constant CCR porewater concentration over time;

- Adsorption can significantly reduce the concentrations of metal constituents as they
 move through soils, especially clays which would retard or slow down migration. To be
 conservative, the model assumed no adsorption would occur over time;
- Degradation of concentrations (input values) through either the biologic or chemical process was assumed not to occur during the modelling period. By assuming no degradation, the model overestimates the predicted groundwater quality over time; and
- The CCR Rule requires compliance at the waste boundary. The analysis only considers vertical flow from the bottom of the DB to the top of the uppermost aquifer; the analysis does not consider a horizontal flow towards the waste boundary, which would further lower the predicted concentration levels for COCs.

5. SUMMARY

This Preliminary ALD has been prepared to assess if the BABs meets the ALD requirements per the CCR Rule. The data included comprehensive field and laboratory investigation data collected from the 1970s to 2020. The 2020 field and laboratory investigation studies were conducted specifically to fill data gaps and to address the CCR Rule requirements. The data were incorporated into an EVS model to create a comprehensive conceptual site model to understand the lithology beneath the BABs and as a basis for the fate and transport analysis. The EVS model was relatively consistent with historical representations of the geology associated with the BABs.

Site-specific water was collected from the BABs and DB and tested to assess which one of the CCR units had the more aggressive water. Water from DB was deemed to be more aggressive and used for compatibility testing to estimate the impacts on the hydraulic conductivity of site-specific soil samples. The results of the testing program are presented in this ALD.

A comprehensive subsurface stratigraphy model was created using the available data set incorporated into the conceptual site model. Fate and transport analyses were conducted to assess whether there is a reasonable probability that water from the BABs may result in a release to the groundwater during its active life that would exceed the GWPS at the waste boundary. The baseline fate and transport analysis was conducted using the available site-specific data and an operating period of 55 years, which captures the period from the 1980s, when operations started, to 2034, which is the end of the projected active life of BABs.

The analysis considered different contaminant transport mechanisms including, advection, dispersion, and diffusion. The analysis indicates that advective flow would take more than a thousand years for a water molecule to travel from the bottom of the BABs to the uppermost aquifer. Therefore, the analyses results indicate that, due to the low hydraulic conductivity of the in-situ soils, chemical diffusion is the dominant transport mechanism compared to advection or seepage flow. Consequently, the hydraulic conductivity testing described in Section 3 is sufficient to characterize hydraulic conductivity and demonstrate the performance of the alternate liner system as it relates to advection or seepage flow.

A sensitivity analysis was performed as part of additional fate and transport analyses to account for sampling bias, uncertainty, and natural variation in site-specific inputs. Predicted groundwater concentrations for both the baseline and sensitivity analyses are below GWPS. The sensitivity analyses show that there is no reasonable probability that water from the BABs will result in a release to the groundwater that would exceed the GWPS at the waste boundary over the projected active life of the BABs.

6. CERTIFICATION

CCR Unit: DTE Electric Company; Belle River Power Plant, Bottom Ash Basins (BABs)

I, Clinton P. Carlson, being a Registered Professional Engineer in good standing in the State of Michigan, do hereby certify in accordance with the CCR Rule, to the best of my knowledge, information, and belief, that the information contained in this plan has been prepared in accordance with the accepted practice of engineering and that the BABs meets the requirements of the Alternative Liner Demonstration per the CCR Rule.

Clinton P. Carlson, Ph.D.

Printed Name

linton Lordson April 10, 2023

Signature Date

6201066842 Michigan February 16, 2025 Registration Number State Expiration Date

Affix Seal

CLINTON

CARLSON

ENGINEER No.

620106684

REFERENCES

- [1] TRC, "Initial Application for an Alternative Liner Demonstration Belle River Power Plant, Bottom Ash Basins," November 2020.
- [2] Geosyntec Consultants and Excel Geotechnical Testing, "Extension Request for Belle River Power Plant Bottom Ash Basin Alternative Liner Demonstration," September 2021.
- [3] Geosyntec Consultants and Excel Geotechnical Testing, "Extension Request for Belle River Power Plant Bottom Ash Basins Alternative Liner Demonstration," September 2022.
- [4] Geosyntec Consultants, "Preliminary Alternate Liner Demonstration Bottom Ash Basins, Belle River Power Plant, East China Township, MI," 2021.
- [5] American Society for Testing and Materials, "Standard Practice for Thin-walled Tube Sampling for Fine-grained Soils," ASTM D1587, 2015.
- [6] American Society for Testing and Materials, "Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter," ASTM D5084, 2016.
- [7] American Society for Testing and Materials, "Standard Test Method for Hydraulic Conductivity Compatibility Testing of Soils with Aqueous Solutions," ASTM D7100, 2020.
- [8] United States Environmental Protection Agency, "Human and Ecological Risk Assessment of Coal Combustion Residuals," Regulation Identifier Number: 2050-AE81, 2014.
- [9] R. K. Rowe, J. R. Booker and M. J. Fraser, "POLLUTEv7.13," GAEA Technologies, Ltd., Windsor, Ontario, Canada, 2007.
- [10] R. K. Rowe, "Contaminant Migrating Through Groundwater: The Role of Analysis in The Design of Barriers," *Canadian Geotechnical Journal*, vol. 25, no. 4, pp. 778-798, 1988.
- [11] A. Talbot, "The Accurate Numerical Integration of Laplace Transforms," *Journal of Applied Mathematics*, vol. 23, no. 1, pp. 97-120, 1979.
- [12] R. K. Rowe, R. M. Quigley, R. W. I. Brachman and J. R. Booker, "Clayey Barrier Systems for Waste Disposal Facilities," London, England, 2004.

- [13] M. N. Sara, "Standard Handbook for Solid and Hazardous Waste Facility Assessments," Lewis Publishers, U.S., 1994.
- [14] R. K. Rowe, "Pollutant Transport Through Barriers," Proceedings of ASCE Specialty Conference, Geotechnical Practice for Waste Disposal, pp. 159-181, Ann Arbor, MI, June 1987.
- [15] R. K. Rowe and J. R. Booker, "An Efficient Analysis of Pollutant Migration Through Soil," in *Numerical Methods for Transient and Coupled Systems*, Lewis, Hinton, Bettess and Schrefler, Eds., New York, NY, John Wiley & Sons Ltd., 1987, pp. 13-42.
- [16] R. K. Rowe and J. R. Booker, "Contaminant Migration Through a Liner Underlain by Fractured Till and an Aquifer," Geotechnical Research Center Report GEOT-12-89; Faculty of Engineering Science, University of Western Ontario, 1989.

TABLES

Table 2-1 – Field and Laboratory Testing Summary

Test	Current ASTM	Number Used in Characterization
Pocket Penetrometer	WK27337	194
Slug Test	D4044	4
Grain Size Distribution	D6913	43
Atterberg Limits	D4318	72
Water Content	D2216	96
Unit Weight	D7263	64
Specific Gravity	D854	10
Hydraulic Conductivity	D5084/D7100	19/6
Cone Penetration Test	D3441	16

Table 2-2 – Pore Pressure Dissipation Tests Results

CPT ID	Lithology Unit	Hydraulic Conductivity (cm/s)
CPT-01B	Clay	1.80E-8
CPT-01B	Clay	3.61E-8
CPT-01B	Seam 2	8.54E-8
CPT-01B	Seam2	5.78E-7
CPT-01B	Seam 3	2.05E-8
CPT-01B	Seam 4	2.57E-8
CPT-03	Clay	9.76E-9
CPT-03	Clay	2.48E-8
CPT-03	Clay with Sand	3.14E-8
CPT-03	Clay with Sand	1.97E-8
CPT-03	Seam 3	2.81E-6
CPT-03	Seam 3	5.19E-7
CPT-03	Clay with Sand	2.96E-8
CPT-06B	Clay	3.33E-8
CPT-06B	Clay with Sand	1.96E-8
CPT-06B	Clay with Sand	2.34E-8
CPT-08B	Clay	1.91E-8
CPT-08B	Clay 2	3.35E-8
CPT-08C	Seam 2	2.97E-8
CPT-08C	Clay with Sand 2	8.03E-8
CPT-08C	Clay with Sand 2	2.97E-8
CPT-11	Clay	1.97E-8
CPT-11	Clay	2.64E-8
CPT-11	Clay with Sand 2	4.68E-8
CPT-11	Clay with Sand 4	3.86E-8
CPT-11	Clay with Sand 4	2.76E-8
CPT-12	Clay	7.97E-9
CPT-13B	Seam 3	1.63E-6

 ${\bf Table~3-1-Chemistry~Results~of~Site-Specific~Filtered~CCR~Porewater}$

Sample ID	Unit	Bottom Ash Basin - North	Bottom Ash Basin - South	Diversion Basin
Alkalinity, Total (as CaCO3)	mg/L	88	60	100
Antimony	mg/L	0.01 U	0.01 U	0.01 U
Arsenic	mg/L	0.0085	0.007	0.0093
Barium	mg/L	0.94	0.58	0.59
Beryllium	mg/L	0.004	0.00216	0.004
Boron	mg/L	0.38	0.83	1.29
Cadmium	mg/L	0.004 U	0.004 U	0.004 U
Calcium	mg/L	83	54	80
Chloride	mg/L	9.0	9.6	14
Chromium	mg/L	0.0087	0.0049	0.01
Cobalt	mg/L	0.01	0.00554	0.0052
Fluoride	mg/L	0.26	0.52	0.31
Iron	mg/L	0.16	1.05	0.34

Sample ID	Unit	Bottom Ash Basin - North	Bottom Ash Basin - South	Diversion Basin
Lead	mg/L	0.006	0.0061	0.01
Lithium	mg/L	0.034	0.0174	0.031
Magnesium	mg/L	15.9	13.8	17.5
Manganese	mg/L	0.01	0.0145	0.0137
Mercury	mg/L	0.0004 U	0.0004 U	0.0004 U
Molybdenum	mg/L	0.035	0.046	0.058
рН	SU	7.87	8.71	9.01
Potassium	mg/L	5.9	7.5	7.6
Selenium	mg/L	0.00582	0.0057	0.0061
Sodium	mg/L	55	86	115
Sulfate	mg/L	100	110	130
Thallium	mg/L	0.01	0.00117	0.00516
Total Dissolved Solids	mg/L	200	220	300
Ionic Strength	molal (m)	0.0088	0.0080	0.0106

Notes: U – Analyzed but not detected above the method detection limit. The method detection limit is shown.

Table 3-2 – Summary of Hydraulic Conductivity Tests Results [6]

ID	Date	Hydraulic Conductivity (cm/s)
B1-ST-3 (36-38')	January 26, 2021	2.7E-9
B2-ST-2 (7-9')	January 26, 2021	2.0E-8
B2-ST-7 (97-99')	February 15, 2021	2.2E-8
B3-ST-1 (1-3')	February 8, 2021	9.6E-9
B4-ST-4 (67-69')	February 15, 2021	1.8E-8
B5-ST-2 (27-29')	February 15, 2021	2.1E-8
B6-ST-4 (47-49')	February 17, 2021	1.8E-8
B6-ST-7 (97-99')	February 17, 2021	1.2E-8

Table 3-3 – Summary of Compatibility Tests [7] - Hydraulic Conductivity and Pore Volumes Passed Results

ID	Date	Days After Injection	Hydraulic Conductivity (cm/s)	Pore Volumes Passed After Injection
D1 CT 1 (7 0)	March 15, 2021	0	1.2E-8	0
B1-ST-1 (7-9')	December 23, 2022	648	4.4E-9	2.84
D2 CT 1 (1 2)	March 15, 2021	0	1.8E-8	0
B2-ST-1 (1-3')	December 23, 2022	648	8.8E-9	5.21
D2 ST 4 (47 40)	March 15, 2021	0	2.4E-8	0
B2-ST-4 (47-49')	December 23, 2022	648	1.8E-8	7.94
D2 CT 5 (77 70)	March 15, 2021	0	2.2E-8	0
B3-ST-5 (77-79')	December 23, 2022	648	1.5E-8	10.55
D4 CT 2 (47 40)	March 15, 2021	0	2.7E-8	0
B4-ST-3 (47-49')	December 23, 2022	648	2.1E-8	9.89
DE CT E (07 90)	March 15, 2021	0	1.7E-8	0
B5-ST-5 (87-89')	December 23, 2022	648	1.0E-8	8.36

Table 3-4 – Summary of Compatibility Tests [7] - pH Results

Sample ID	Parameter	pH Inflow	pH Outflow	
	Min	7.8	8.1	
B1-ST-1 (7-9')	Max	9.1	9.1	
	Average	8.4	8.4	
	Min	7.8	7.9	
B2-ST-1 (1-3')	Max	8.9	9.1	
	Average	8.3	8.3	
	Min	7.7	7.8	
B2-ST-4 (47-49')	Max	9.4	9.0	
	Average	8.3	8.3	
	Min	7.5	7.6	
B3-ST-5 (77-79')	Max	9.1	8.9	
	Average	8.3	8.2	
	Min	7.7	7.8	
B4-ST-3 (47-49')	Max	9.0	8.8	
	Average	8.2	8.2	
	Min	7.6	7.7	
B5-ST-5 (87-89')	Max	8.9	9.2	
	Average	8.3	8.2	

 $\textbf{Table 3-5} - \textbf{Summary of Compatibility Tests} \ [7] \textbf{ - Electrical Conductivity Results}$

Sample ID	Parameter	EC Inflow (μs/cm)	EC Outflow (μs/cm)	
	Min	622	1141	
B1-ST-1 (7-9')	Max	1315	1614	
	Average	1094	1280	
	Min	560	856	
B2-ST-1 (1-3')	Max	1345	3050	
	Average	1081	1381	
	Min	523	720	
B2-ST-4 (47-49')	Max	1312	2090	
	Average	1070	1035	
	Min	579	672	
B3-ST-5 (77-79')	Max	1397	1133	
	Average	1098	879	
	Min	518	632	
B4-ST-3 (47-49')	Max	1283	1637	
	Average	1033	874	
	Min	555	655	
B5-ST-5 (87-89')	Max	1291	2010	
	Average	1070	931	

 $\textbf{Table 3-6} - \textbf{Summary of Compatibility Tests} \ [7] \textbf{ - Termination Criteria}$

		Termination Criterion Reached (as of December 23, 2022)								
Sample ID	Pore Volumes Passed	Steady Hydraulic Conductivity	рН	Electrical Conductivity						
B1-ST-1 (7-9')	Yes	Yes	Yes	Yes						
B2-ST-1 (1-3')	Yes	Yes	Yes	No						
B2-ST-4 (47-49')	Yes	Yes	Yes	No						
B3-ST-5 (77-79')	Yes	Yes	Yes	No						
B4-ST-3 (47-49')	Yes	Yes	Yes	No						
B5-ST-5 (87-89')	Yes	Yes	Yes	No						

Table 4-1 – Groundwater Protection Standards

Constituent	Unit	GWPS Selection	MCL/RSL	MW-	16-05	MW-	16-06	MW-	MW-16-07 MW-16-08		MW-16-10		MW-16-11/A		
Constituent	Unit	GWPS Selection	IVICL/K3L	UTL	GWPS	UTL	GWPS	UTL	GWPS	UTL	GWPS	UTL	GWPS	UTL	GWPS
Antimony	mg/L	MCL	6.0E-03	2.0E-03	6.0E-03	2.0E-03	6.0E-03	2.0E-03	6.0E-03	2.1E-03	6.0E-03	2.1E-03	6.0E-03	3.2E-03	6.0E-03
Arsenic	mg/L	Background or MCL	1.0E-02	1.4E-02	1.4E-02	7.5E-03	1.0E-02	1.9E-02	1.9E-02	3.0E-02	3.0E-02	1.1E-02	1.1E-02	2.4E-02	2.4E-02
Barium	mg/L	MCL	2.0E+00	3.7E-01	2.0E+00	3.3E-01	2.0E+00	5.0E-01	2.0E+00	4.9E-01	2.0E+00	2.0E-01	2.0E+00	6.2E-01	2.0E+00
Beryllium	mg/L	MCL	4.0E-03	1.0E-03	4.0E-03	1.0E-03	4.0E-03	1.7E-03	4.0E-03	1.6E-03	4.0E-03	1.0E-03	4.0E-03	1.6E-03	4.0E-03
Cadmium	mg/L	MCL	5.0E-03	1.0E-03	5.0E-03	1.0E-03	5.0E-03	1.3E-03	5.0E-03	1.5E-03	5.0E-03	1.0E-03	5.0E-03	1.0E-03	5.0E-03
Chromium	mg/L	MCL	1.0E-01	4.7E-02	1.0E-01	1.4E-02	1.0E-01	2.7E-02	1.0E-01	5.5E-02	1.0E-01	3.2E-02	1.0E-01	1.8E-02	1.0E-01
Cobalt	mg/L	Background or RSL	6.0E-03	2.1E-02	2.1E-02	4.7E-03	6.0E-03	1.3E-02	1.3E-02	2.2E-02	2.2E-02	1.7E-02	1.7E-02	7.1E-03	7.1E-03
Fluoride	mg/L	MCL	4.0E+00	1.3E+00	4.0E+00	1.3E+00	4.0E+00	1.2E+00	4.0E+00	1.3E+00	4.0E+00	2.1E+00	4.0E+00	1.9E+00	4.0E+00
Lead	mg/L	Background or RSL	1.5E-02	2.3E-02	2.3E-02	4.4E-03	1.5E-02	1.2E-02	1.5E-02	2.2E-02	2.2E-02	3.5E-02	3.5E-02	7.7E-03	1.5E-02
Lithium	mg/L	Background	4.0E-02	6.7E-02	6.7E-02	5.5E-02	5.5E-02	9.2E-02	9.2E-02	1.1E-01	1.1E-01	1.2E-01	1.2E-01	1.5E-01	1.5E-01
Mercury	mg/L	MCL	2.0E-03	2.0E-04	2.0E-03	2.0E-04	2.0E-03	2.0E-04	2.0E-03	2.0E-04	2.0E-03	2.0E-04	2.0E-03	2.0E-04	2.0E-03
Molybdenum	mg/L	RSL	1.0E-01	4.3E-02	1.0E-01	3.0E-02	1.0E-01	1.0E-01	1.0E-01	6.7E-02	1.0E-01	5.0E-02	1.0E-01	4.9E-02	1.0E-01
Radium-226/228	pCi/L	Background or MCL	5.0E+00	5.5E+00	5.5E+00	2.6E+00	5.0E+00	5.8E+00	5.8E+00	7.6E+00	7.6E+00	3.2E+00	5.0E+00	2.6E+00	5.0E+00
Selenium	mg/L	MCL	5.0E-02	5.0E-03	5.0E-02	5.0E-03	5.0E-02	5.3E-03	5.0E-02	5.0E-03	5.0E-02	5.0E-03	5.0E-02	5.0E-03	5.0E-02
Thallium	mg/L	Background or MCL	2.0E-03	1.1E-03	2.0E-03	1.0E-03	2.0E-03	2.3E-03	2.3E-03	1.3E-03	2.0E-03	1.0E-03	2.0E-03	1.0E-03	2.0E-03

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

mg/L = milligrams per liter

Table 4-2 – Baseline Fate and Transport Results

	Constituent	Units		Observed atration	90th Percentile	Prediction Factor		Groundwater (Uppermost Ad	Quality at Top quifer	Most Conservative		ne - Site /Fail)	Outcome - 90th Percentile
			BAB-North	BAB-South	Concentration	ВАВ	BAB-North	BAB-South	90th Percentile	GWPS	BAB-North	BAB-South	Joan Fercentile
	Antimony	mg/L	1.0E-02	1.0E-02	4.0E-02	2.66E-33	2.7E-35	2.7E-35	1.1E-34	6.0E-03	PASS	PASS	PASS
	Arsenic	mg/L	8.5E-03	7.0E-03	7.8E-01	2.66E-33	2.3E-35	1.9E-35	2.1E-33	1.0E-02	PASS	PASS	PASS
	Barium	mg/L	9.4E-01	5.8E-01	2.1E-01	2.66E-33	2.5E-33	1.5E-33	5.6E-34	2.0E+00	PASS	PASS	PASS
	Beryllium	mg/L	4.0E-03	2.2E-03	1.0E-03	2.66E-33	1.1E-35	5.7E-36	2.7E-36	4.0E-03	PASS	PASS	PASS
	Cadmium	mg/L	4.0E-03	4.0E-03	6.0E-02	2.66E-33	1.1E-35	1.1E-35	1.6E-34	5.0E-03	PASS	PASS	PASS
≥	Chromium	mg/L	8.7E-03	4.9E-03	2.0E-01	2.66E-33	2.3E-35	1.3E-35	5.3E-34	1.0E-01	PASS	PASS	PASS
	Cobalt	mg/L	1.0E-02	5.5E-03	5.0E-02	2.66E-33	2.7E-35	1.5E-35	1.3E-34	6.0E-03	PASS	PASS	PASS
Appendix	Fluoride	mg/L	2.6E-01	5.2E-01	2.1E+01	2.66E-33	6.9E-34	1.4E-33	5.7E-32	4.0E+00	PASS	PASS	PASS
) bdc	Lead	mg/L	6.0E-03	6.1E-03	1.0E-01	2.66E-33	1.6E-35	1.6E-35	2.7E-34	1.5E-02	PASS	PASS	PASS
₹	Lithium	mg/L	3.4E-02	1.7E-02	4.5E-01	2.66E-33	9.0E-35	4.6E-35	1.2E-33	4.0E-02	PASS	PASS	PASS
	Mercury	mg/L	4.0E-04	4.0E-04	7.0E-06	2.66E-33	1.1E-36	1.1E-36	1.9E-38	2.0E-03	PASS	PASS	PASS
	Molybdenum	mg/L	3.5E-02	4.6E-02	7.1E+00	2.66E-33	9.3E-35	1.2E-34	1.9E-32	1.0E-01	PASS	PASS	PASS
	Combined Radium	pCi/L	1.8E+00	6.7E-40	-	2.66E-33	4.7E-33	1.8E-72	-	5.0E+00	PASS	PASS	NA
	Selenium	mg/L	5.8E-03	5.7E-03	3.2E-01	2.66E-33	1.5E-35	1.5E-35	8.5E-34	5.0E-02	PASS	PASS	PASS
	Thallium	mg/L	1.0E-02	1.2E-03	3.0E-03	2.66E-33	2.7E-35	3.1E-36	8.0E-36	2.0E-03	PASS	PASS	PASS

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

mg/L = milligrams per liter

Table 4-3
Background and Maximum Predicted Concentrations Compared to GWPS

					MW-16-01				
Constituent	Unit	GWPS Selection	Data						
	S		Maximum Observed Concentration	Maximum Predicted Concentration	Combined Concentration	GWPS	Pass/Fail		
			(A)	(B)	(A+B)				
Antimony	mg/L	MCL	2.0E-03	6.7E-42	2.0E-03	6.0E-03	Pass		
Arsenic	mg/L	MCL	5.0E-03	6.2E-42	5.0E-03	1.0E-02	Pass		
Barium	mg/L	MCL	3.0E-01	3.9E-40	3.0E-01	2.0	Pass		
Beryllium	mg/L	MCL	2.8E-03	2.7E-42	2.8E-03	4.0E-03	Pass		
Cadmium	mg/L	MCL	1.0E-03	2.7E-42	1.0E-03	5.0E-03	Pass		
Chromium	mg/L	MCL	1.0E-03	6.7E-42	1.0E-03	1.0E-01	Pass		
Cobalt	mg/L	RSL	3.6E-03	3.5E-42	3.6E-03	6.0E-03	Pass		
Fluoride	mg/L	MCL	1.80	2.9E-40	1.8	4.0	Pass		
Lead	mg/L	RSL	3.5E-03	6.7E-42	3.5E-03	1.5E-02	Pass		
Lithium	mg/L	Background	2.3E-02	4.1E-41	2.3E-02	4.2E-02	Pass		
Mercury	mg/L	MCL	2.0E-04	2.7E-43	2.0E-04	2.0E-03	Pass		
Molybdenum	mg/L	RSL	8.9E-02	2.0E-40	8.9E-02	1.0E-01	Pass		
Radium-226/228	pCi/L	MCL	1.8E-03	1.2E-39	1.8E-03	5.0E-03	Pass		
Selenium	mg/L	MCL	5.0E-03	5.8E-42	5.0E-03	5.0E-02	Pass		
Thallium	mg/L	MCL	1.0E-03	3.5E-42	1.0E-03	2.0E-03	Pass		

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

mg/L = milligrams per liter

Table 4-3
Background and Predicted Concentrations Compared to GWPS

			MW-16-02							
		GWPS Selection	Data							
Constituent	Unit		Maximum Observed Concentration	Maximum Predicted Concentration	Combined Concentration	GWPS	Pass/Fail			
			(A)	(B)	(A+B)					
Antimony	mg/L	MCL	2.0E-03	6.7E-42	2.0E-03	6.0E-03	Pass			
Arsenic	mg/L	MCL	5.0E-03	6.2E-42	5.0E-03	1.0E-02	Pass			
Barium	mg/L	MCL	3.3E-01	3.9E-40	3.3E-01	2.0	Pass			
Beryllium	mg/L	MCL	2.8E-03	2.7E-42	2.8E-03	4.0E-03	Pass			
Cadmium	mg/L	MCL	1.0E-03	2.7E-42	1.0E-03	5.0E-03	Pass			
Chromium	mg/L	MCL	1.9E-02	6.7E-42	1.9E-02	1.0E-01	Pass			
Cobalt	mg/L	RSL	3.9E-03	3.5E-42	3.9E-03	6.0E-03	Pass			
Fluoride	mg/L	MCL	1.30	2.9E-40	1.3E+00	4.0	Pass			
Lead	mg/L	RSL	2.9E-03	6.7E-42	2.9E-03	1.5E-02	Pass			
Lithium	mg/L	RSL	1.9E-02	4.1E-41	1.9E-02	4.0E-02	Pass			
Mercury	mg/L	MCL	2.0E-04	2.7E-43	2.0E-04	2.0E-03	Pass			
Molybdenum	mg/L	RSL	6.5E-02	2.0E-40	6.9E-02	1.0E-01	Pass			
Radium-226/228	pCi/L	MCL	2.7E-03	1.2E-39	3.4E-03	5.0E-03	Pass			
Selenium	mg/L	MCL	5.0E-03	5.8E-42	5.0E-03	5.0E-02	Pass			
Thallium	mg/L	MCL	1.0E-03	3.5E-42	1.0E-03	2.0E-03	Pass			

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

mg/L = milligrams per liter

Table 4-3
Background and Predicted Concentrations Compared to GWPS

			MW-16-03 Data						
Constituent	Unit	GWPS Selection							
			Maximum Observed Concentration	Maximum Predicted Concentration	Combined Concentration	GWPS	Pass/Fail		
			(A)	(B)	(A+B)				
Antimony	mg/L	MCL	2.0E-03	6.7E-42	2.0E-03	6.0E-03	Pass		
Arsenic	mg/L	MCL	5.0E-03	6.2E-42	5.0E-03	1.0E-02	Pass		
Barium	mg/L	MCL	3.0E-01	3.9E-40	3.0E-01	2.0	Pass		
Beryllium	mg/L	MCL	1.0E-03	2.7E-42	1.0E-03	4.0E-03	Pass		
Cadmium	mg/L	MCL	1.0E-03	2.7E-42	1.0E-03	5.0E-03	Pass		
Chromium	mg/L	MCL	2.0E-03	6.7E-42	2.0E-03	1.0E-01	Pass		
Cobalt	mg/L	RSL	1.0E-03	3.5E-42	1.0E-03	6.0E-03	Pass		
Fluoride	mg/L	MCL	1.80	2.9E-40	1.8	4.0	Pass		
Lead	mg/L	RSL	1.0E-03	6.7E-42	1.0E-03	1.5E-02	Pass		
Lithium	mg/L	RSL	1.9E-02	4.1E-41	1.9E-02	4.0E-02	Pass		
Mercury	mg/L	MCL	2.0E-04	2.7E-43	2.0E-04	2.0E-03	Pass		
Molybdenum	mg/L	Background	1.0E-01	2.0E-40	1.0E-01	1.1E-01	Pass		
Radium-226/228	pCi/L	MCL	2.0E-03	1.2E-39	2.7E-03	5.0E-03	Pass		
Selenium	mg/L	MCL	5.0E-03	5.8E-42	5.0E-03	5.0E-02	Pass		
Thallium	mg/L	MCL	1.0E-03	3.5E-42	1.0E-03	2.0E-03	Pass		

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

mg/L = milligrams per liter

Table 4-3
Background and Predicted Concentrations Compared to GWPS

		GWPS Selection	MW-16-04					
Constituent	Unit		Data					
			Maximum Observed Concentration	Maximum Predicted Concentration	Combined Concentration	GWPS	Pass/Fail	
			(A)	(B)	(A+B)			
Antimony	mg/L	MCL	2.0E-03	6.7E-42	2.0E-03	6.0E-03	Pass	
Arsenic	mg/L	MCL	7.0E-03	6.2E-42	7.0E-03	1.0E-02	Pass	
Barium	mg/L	MCL	4.4E-01	3.9E-40	4.4E-01	2.0	Pass	
Beryllium	mg/L	MCL	1.0E-03	2.7E-42	1.0E-03	4.0E-03	Pass	
Cadmium	mg/L	MCL	1.0E-03	2.7E-42	1.0E-03	5.0E-03	Pass	
Chromium	mg/L	MCL	2.7E-02	6.7E-42	2.7E-02	1.0E-01	Pass	
Cobalt	mg/L	Background	7.4E-03	3.5E-42	7.4E-03	1.3E-02	Pass	
Fluoride	mg/L	MCL	1.80	2.9E-40	1.8	4.0	Pass	
Lead	mg/L	RSL	7.1E-03	6.7E-42	7.1E-03	1.5E-02	Pass	
Lithium	mg/L	RSL	3.7E-02	4.1E-41	3.7E-02	4.0E-02	Pass	
Mercury	mg/L	MCL	2.0E-04	2.7E-43	2.0E-04	2.0E-03	Pass	
Molybdenum	mg/L	Background	1.1E-01	2.0E-40	1.1E-01	1.2E-01	Pass	
Radium-226/228	pCi/L	MCL	2.7E-03	1.2E-39	3.5E-03	5.0E-03	Pass	
Selenium	mg/L	MCL	2.0E-03	5.8E-42	2.0E-03	5.0E-02	Pass	
Thallium	mg/L	MCL	1.0E-03	3.5E-42	1.0E-03	2.0E-03	Pass	

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

mg/L = milligrams per liter

Table 4-3
Background and Predicted Concentrations Compared to GWPS

			MW-16-09					
Constituent			Data					
	Unit	GWPS Selection	Maximum Observed Concentration	Maximum Predicted Concentration	Combined Concentration	GWPS	Pass/Fail	
			(A)	(B)	(A+B)			
Antimony	mg/L	MCL	2.0E-03	6.7E-42	2.0E-03	6.0E-03	Pass	
Arsenic	mg/L	MCL	7.2E-03	6.2E-42	7.2E-03	1.0E-02	Pass	
Barium	mg/L	MCL	3.1E-01	3.9E-40	3.1E-01	2.0	Pass	
Beryllium	mg/L	MCL	1.0E-03	2.7E-42	1.0E-03	4.0E-03	Pass	
Cadmium	mg/L	MCL	1.0E-03	2.7E-42	1.0E-03	5.0E-03	Pass	
Chromium	mg/L	MCL	1.8E-02	6.7E-42	1.8E-02	1.0E-01	Pass	
Cobalt	mg/L	Background	5.9E-03	3.5E-42	5.9E-03	7.7E-03	Pass	
Fluoride	mg/L	MCL	1.60	2.9E-40	1.6	4.0	Pass	
Lead	mg/L	RSL	5.4E-03	6.7E-42	5.4E-03	1.5E-02	Pass	
Lithium	mg/L	Background	5.5E-02	4.1E-41	5.5E-02	6.5E-02	Pass	
Mercury	mg/L	MCL	2.0E-04	2.7E-43	2.0E-04	2.0E-03	Pass	
Molybdenum	mg/L	RSL	6.5E-02	2.0E-40	6.9E-02	1.0E-01	Pass	
Radium-226/228	pCi/L	MCL	3.2E-03	1.2E-39	4.0E-03	5.0E-03	Pass	
Selenium	mg/L	MCL	5.0E-03	5.8E-42	5.0E-03	5.0E-02	Pass	
Thallium	mg/L	MCL	1.0E-03	3.5E-42	1.0E-03	2.0E-03	Pass	

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

mg/L = milligrams per liter

Table 4-4 – Sensitivity Analysis Model Inputs

	Baseline	Sensitivit	y Analysis	Baseline	Sensitivity Analysis	Baseline		tivity lysis	Baseline		tivity lysis	Baseline	Sensi Ana	tivity lysis	Baseline	Sensitivity Analysis
Layer Properties	Thickness (m)	Max Thickness (m)	Min Thickness (m)	Dv (m/yr)	Dv (m/yr)	СоНД	CoHD +25%	CoHD -25%	Total Porosity	Max Porosity	Min Porosity	Effective Porosity	Eff. Porosity Max	Eff. Porosity Min	Modeling Period (years)	Modeling Period (years)
Clay	12.01	13.99	11.03	1.02E-03	2.03E-03	0.019	0.024	0.014	0.46	0.56	0.34	0.37	0.45	0.28	55	85
Clay with Sand	19.29	23.62	15.18	1.02E-03	2.03E-03	0.019	0.024	0.014	0.42	0.55	0.24	0.34	0.45	0.20	55	85

Dv = Vertical Darcy Velocity

CoHD = Coefficient of Hydrodynamic Dispersion

Table 4-5 – Sensitivity Analysis Model Results

	Bottom Ash Basins Sensitivity Analysis						
Model Name	Description	Prediction Factor	Pass?*				
BAB_Baseline	Baseline model for the Bottom Ash Basins.	2.66E-33	YES				
BAB_ExtendedRun	Model runtime was extended from 55 years to 85 years.	1.30E-26	YES				
BAB_Darcy	Darcy velocity was doubled.	2.52E-32	YES				
BAB_CoHD_High	Coefficient of Hydrodynamic Dispersion was increased by 25%.	1.53E-30	YES				
BAB_CoHD_Low	Coefficient of Hydrodynamic Dispersion was decreased by 25%.	6.23E-38	YES				
BAB_ClayPoro_High	Used the highest effective porosity in clay interval; derived from laboratory data in project database.	2.50E-33	YES				
BAB_ClayPoro_Low	Used the lowest effective porosity in clay interval; derived from laboratory data in project database.	3.08E-33	YES				
BAB_SandPoro_High	Used the highest effective porosity in clay with sand interval; derived from laboratory data in project database.	1.67E-33	YES				
BAB_SandPoro_Low	Used the lowest effective porosity in clay with sand interval; derived from laboratory data in project database.	1.06E-32	YES				
BAB_ClayThick	Used thickest clay interval seen in boring/well; derived from project database.	3.60E-35	YES				
BAB_ClayThin	Used thinnest clay interval seen in boring/well; derived from project database.	1.92E-32	YES				
BAB_SandThick	Used thickest clay with sand interval seen in boring/well; derived from project database.	1.48E-37	YES				
BAB_SandThin	Used thinnest clay with sand interval seen in boring/well; derived from project database.	1.36E-29	YES				
* Indicates value less th	nat PF _{threshold} , as discussed in Section 4.6.2.						

FIGURES

250

125

375

500

Feet

- Boring Geosyntec
- CPT Geosyntec
- MW TRC
- Boring Bechtel

Cross Section Locations Bell River Power Plant - Bottom Ash Basins China Township, MI

Geosyntec[▶]

consultants

April 2023

GLP8017

Figure 2-2

Legend

Boring Locations

Boring - Geosyntec

CPT - Geosyntec

MW - TRC

Boring - Bechtel

Service Layer Credits: Google Earth Imagery dated 03/24/2019

Figure

2-3

April 2023

Legend

Boring Locations

Boring - Geosyntec

CPT - Geosyntec

MW - TRC

O Boring - Bechtel

Service Layer Credits: Google Earth Imagery dated 03/24/2019

Water Level of Uppermost Aquifer

End of Investigation

■ Well Screen Interval

- - - Top of Uppermost Aquifer Unit

□ CPT Pore Pressure Dissipation Test

Geotechnical Sample Elevation

Vertical Scale: 1-inch = 50-feet Horizontal Scale: 1-inch = 100-feet Elevations are in Average Mean Sea Level Unit interfaces are interpreted from limited data and are approximate.

Cross Section C - C'
Belle River Power Plant - Bottom Ash Basins China Township, MI

Figure 2-5

April 2023

Legend

Boring Locations

Boring - Geosyntec

CPT - Geosyntec

MW - TRC

Boring - Bechtel

Service Layer Credits: Google Earth Imagery dated 03/24/2019

Water Level of Uppermost Aquifer

End of Investigation

■ Well Screen Interval

- - - Top of Uppermost Aquifer Unit

CPT Pore Pressure Dissipation Test

Geotechnical Sample Elevation

Vertical Scale: 1-inch = 50-feet Horizontal Scale: 1-inch = 100-feet Elevations are in Average Mean Sea Level Unit interfaces are interpreted from limited data and are approximate.

Cross Section D - D' Belle River Power Plant - Bottom Ash Basins China Township, MI

Figure 2-6

April 2023

% meq/kg

Results are shown in the relative percentage of milliequivalents per kilogram (meq/kg).

Filtered BAB and DB Porewater Sample

Piper Diagram

Belle River Power Plant St. Clair County, MI

Geosy	Figure	
Geosyntec Consulta		
GLP8017	April 2023	3-1

B1-ST-1 (7-9') PV Passed with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec

consultants

Geosyntec Consultants of Milchigan

Detroit, MI April 2023

Figure

B1-ST-1 (7-9') Hydraulic Conductivity with Time BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN Geosyntec Figure

Geosyntec consultants
Geosyntec Consultants
Geosyntec Consultants of Michigan

0.0

Detroit, MI

April 2023

B1-ST-1 (7-9') Hydraulic Conductivity with PV

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosy	nte	C
	11.4	

consultants

Geosyntec Consultants of Michigan Detroit, MI

April 2023

Figure

B1-ST-1 (7-9') pH of Inflow and Outflow with Time							
BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN							
Figure	Geosyntec consultants						
3-5	Geosyntec Consultants of Michigan Detroit MI April 2023						

B1-ST-1 (7-9') Electrical Conductivity (EC) with Time					
BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN					
Geosy	Figure				
Geosyntec Consult	3-6				

B2-ST-1 (1-3') PV Passed with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec[▶]

consultants

Geosyntec Consultants of Michi

Detroit, MI April 2023

Figure

B2-ST-1 (1-3') Hydraulic Conductivity with PV

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

(G	90	Sy	m	te	C	V

consultants Geosyntec Consultants of Michigan

Detroit, MI April 2023 **Figure**

B2-ST-1 (1-3') pH of Inflow and Outflow with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec[▶]

tec Figure

consultants

Detroit, MI

April 2023 **3-10**

B2-ST-1 (1-3') E	Electrical Conductivi Time	ty (EC) with
	E RIVER POWER PLAN' HINA TOWNSHIP, MICHIO	=
Geosyntec consultants		Figure
Geosyntec Consultants of MIchigan Detroit, MI April 2023		3-11

B2-ST-4 (47-49') PV Passed with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec

consultants

Geosyntec Consultants of Michiga

Detroit, MI

April 2023

Figure

B2-ST-4 (47-49') Hydraulic Conductivity with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec[▶]

consultants

Geosyntec Consultants of Michigan

Detroit, MI

April 2023

Figure

B2-ST-4 (47-49') pH of Inflow and Outflow with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec consultants

Figure

Geosyntec Consultants of Michigan

3-15

Detroit, MI April 2023

B3-ST-5 (77-79') PV Passed with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec D

consultants

Geosyntec Consultants of Mich

Detroit, MI

April 2023

Figure

B3-ST-5 (77-79') Hydraulic Conductivity with Time BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN Geosyntec Consultants Geosyntec Consultants of Michigan Detroit, MI April 2023 3-18

B3-ST-5 (77-79') pH of Inflow and Outflow with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec[▶]

Figure

consultants

Detroit, MI April 2023

B4-ST-3 (47-49') PV Passed with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec D

consultants

Geosyntec Consultants of Michigan

Detroit, MI April 2023

Figure

B4-ST-3 (47-49') H	lydraulic Conductiv	ity with Time
	E RIVER POWER PLANT INA TOWNSHIP, MICHIG	
Geosyntec consultants		Figure
Geosyntec Consultants of Michigan Detroit, MI April 2023		3-23
<u>'</u>	•	

B4-ST-3 (47-49') pH of Inflow and Outflow with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec D

Figure

consultants

Detroit, MI

April 2023

B5-ST-5 (87-89') PV Passed with Time

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec D

consultants

Geosyntec Consultants of Michigan

Detroit, MI April 2023

Figure

B5-ST-5 (87-89') Hydraulic Conductivity with Time

EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec[▶]

Figure

consultants
Geosyntec Consultants of Michigan

April 2023

Detroit, MI April

B5-ST-5 (87-89') Hydraulic Conductivity with PV

BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN

Geosyntec D

consultants
Geosyntec Consultants of Michigan

Detroit, MI April 2023

Figure

B5-ST-5 (87-89') pH of Inflow and Outflow with Time BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGAN Geosyntec consultants Ceosyntec Consultants Geosyntec Consultants April 2023 3-30

Time			
BELLE RIVER POWER PLANT EAST CHINA TOWNSHIP, MICHIGA	N		
Geosyntec Consultants	Figure		

consultants

Detroit, MI April 2023

2016 Slug Test Results

Hydraulic Conductivity Results

DTE Electric Company Belle River Power Plant ChinaTownship, Michigan

Test Location ID	Date Performed	Test Type	Hydraulic Conductivity (K)	
			cm/sec	ft/day
MW-16-01b	3/1/2016	Falling Head	3.58E-04	1.015
		Rising Head	2.72E-04	0.770
		Average	3.15E-04	0.892
MW-16-04	3/1/2016	Falling Head	7.93E-05	0.225
		Rising Head	4.11E-05	0.116
		Average	6.02E-05	0.171
	3/1/2016	Falling Head	4.26E-05	0.121
MW-16-05		Rising Head	2.13E-05	0.060
		Average	3.19E-05	0.090
MW-16-07	3/1/2016	Falling Head	1.24E-04	0.350
		Rising Head	7.21E-05	0.204
		Average	9.79E-05	0.277
Minimum		3.19E-05	9.05E-02	
		Maximum	3.15E-04	8.92E-01
	(Geometric Mean	8.77E-05	0.249

Conversion:

$$\frac{1 \text{ cm}}{1 \text{ sec}} \times \frac{86,400 \text{ sec}}{1 \text{ day}} \times \frac{1 \text{ ft}}{30.48 \text{ cm}} = 2.83\text{E}+03 \frac{\text{ft}}{\text{day}}$$

Notes:

Slug test results calculated using the Bower-Rice (1976) Solution.

MW-16-01 FALLING HEAD SLUG TEST

Data Set: P:\...\MW-16-01_IN.aqt

Date: 05/22/17 Time: 13:38:07

PROJECT INFORMATION

Company: TRC Environmental Corporation

Client: DTE EC BRPP CCR
Project: 231828.0003.0000
Location: China Township, MI

Test Well: $\frac{MW-16-01}{4/13/16}$

AQUIFER DATA

Saturated Thickness: <u>52.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-16-01)

Initial Displacement: 0.835 ft Static Water Column Height: 84.12 ft

Total Well Penetration Depth: 84.12 ft Screen Length: 5. ft Casing Radius: 0.08333 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0003581 cm/sec y0 = 0.7491 ft

MW-16-01 RISING HEAD SLUG TEST

Data Set: P:\...\MW-16-01 OUT.aqt

Date: 05/22/17 Time: 13:40:08

PROJECT INFORMATION

Company: TRC Environmental Corporation

Client: DTE EC BRPP CCR
Project: 231828.0003.0000
Location: China Township, MI

Test Well: MW-16-01 Test Date: 4/13/16

AQUIFER DATA

Saturated Thickness: <u>52.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-16-01)

Initial Displacement: 1.138 ft Static Water Column Height: 84.07 ft

Total Well Penetration Depth: 84.07 ft Screen Length: 5. ft Casing Radius: 0.08333 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0002716 cm/sec y0 = 0.7541 ft

MW-16-04 FALLING HEAD SLUG TEST

Data Set: P:\...\MW-16-04 IN.aqt

Date: 05/22/17 Time: 13:41:00

PROJECT INFORMATION

Company: TRC Environmental Corporation

Client: DTE EC BRPP CCR
Project: 231828.0003.0000
Location: China Township, MI

Test Well: MW-16-04 Test Date: 4/13/16

AQUIFER DATA

Saturated Thickness: 23.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-16-04)

Initial Displacement: 1.064 ft Static Water Column Height: 109.9 ft

Total Well Penetration Depth: 109.9 ft Screen Length: 5. ft Well Radius: 0.08333 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 7.93E-5 cm/sec y0 = 0.7646 ft

MW-16-04 RISING HEAD SLUG TEST

Data Set: P:\...\MW-16-04 OUT.aqt

Date: 05/22/17 Time: 13:42:08

PROJECT INFORMATION

Company: TRC Environmental Corporation

Client: DTE EC BRPP CCR
Project: 231828.0003.0000
Location: China Township, MI

Test Well: MW-16-04 Test Date: 4/13/16

AQUIFER DATA

Saturated Thickness: 23.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-16-04)

Initial Displacement: 1.761 ft Static Water Column Height: 109.7 ft

Total Well Penetration Depth: 109.7 ft Screen Length: 5. ft Well Radius: 0.08333 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 4.108E-5 cm/sec y0 = 0.7851 ft

MW-16-05 FALLING HEAD SLUG TEST

Data Set: P:\...\MW-16-05 IN.aqt

Date: 05/22/17 Time: 13:42:57

PROJECT INFORMATION

Company: TRC Environmental Corporation

Client: <u>DTE EC BRPP CCR</u> Project: 231828.0003

Location: China Township, MI

Test Well: MW-16-05 Test Date: 4/13/16

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-16-05)

Initial Displacement: <u>0.905</u> ft Static Water Column Height: <u>130.7</u> ft

Total Well Penetration Depth: 130.7 ft Screen Length: 5. ft Casing Radius: 0.08333 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 4.258E-5 cm/sec y0 = 0.7426 ft

MW-16-05 RISING HEAD SLUG TEST

Data Set: P:\...\MW-16-05 OUT.aqt

Date: 05/22/17 Time: 13:43:26

PROJECT INFORMATION

Company: TRC Environmental Corporation

Client: DTE EC BRPP CCR
Project: 231828.0003.0000
Location: China Township, MI

Test Well: MW-16-05 Test Date: 4/13/16

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-16-05)

Initial Displacement: 1.668 ft Static Water Column Height: 130.7 ft

Total Well Penetration Depth: 130.7 ft Screen Length: 5. ft Casing Radius: 0.08333 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 2.125E-5 cm/sec y0 = 0.743 ft

MW-16-07 FALLING HEAD SLUG TEST

Data Set: P:\...\MW-16-07_IN.aqt

Date: 05/22/17 Time: 13:44:03

PROJECT INFORMATION

Company: TRC Environmental Corporation

Client: DTE EC BRPP CCR

Project: <u>231828.0003</u>

Location: China Township, MI

Test Well: <u>MW-16-07</u> Test Date: <u>4/13/16</u>

AQUIFER DATA

Saturated Thickness: 2. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-16-07)

Initial Displacement: <u>0.868</u> ft Static Water Column Height: <u>124.9</u> ft

Total Well Penetration Depth: 124.9 ft Screen Length: 5. ft Casing Radius: 0.08333 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0001236 cm/sec y0 = 0.7638 ft

MW-16-07 RISING HEAD SLUG TEST

Data Set: P:\...\MW-16-07 OUT.aqt

Date: 05/22/17 Time: 13:44:45

PROJECT INFORMATION

Company: TRC Environmental Corporation

Client: DTE EC BRPP CCR
Project: 231828.0003.0000
Location: China Township, MI

Test Well: MW-16-07 Test Date: 4/13/16

AQUIFER DATA

Saturated Thickness: 2. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-16-07)

Initial Displacement: 0.88 ft Static Water Column Height: 124.4 ft

Total Well Penetration Depth: 124.4 ft Screen Length: 5. ft Casing Radius: 0.08333 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 7.212E-5 cm/sec y0 = 0.7909 ft

2021 Slug Test Results

2021 Hydrualic Conductivity Results Summary DTE Electric Company Belle River Power Plant Bottom Ash Basins and Diversion Basin 4505 King Road, China Township, Michigan

Test	WC (ft)	K (cm/s)	K (ft/day)	Comment/K Geometric mean (cm/s)	K Geometric mean (ft/day)
MW-16-02 Slug In	85.8	NA	NA	Not a good match, use slug out test	NA
MW-16-02 Slug Out	85.8	4.2E-04	1.2	4.2E-04	1.2
MW-16-03 Slug In	123.1	9.8E-03	27.8	9.6E-03	27.4
MW-16-03 Slug Out	123.1	9.5E-03	26.9	9.65-03	
MW-16-06 Slug In	125.6	1.0E-04	0.28	1.0E-04	0.30
MW-16-06 Slug Out	125.6	1.1E-04	0.31	1.0E-04	
MW-16-08 Slug In	124.9	1.2E-05	0.03	1.1E-05	0.03
MW-16-08 Slug Out	124.9	1.1E-05	0.03	1.1E-05	
MW-16-09 Slug In	126.9	1.5E-04	0.43	1 55 04	0.43
MW-16-09 Slug Out	126.9	1.5E-04	0.43	1.5E-04	
MW-16-10 Slug In	135.3	3.6E-05	0.10	3.6E-05	0.10
MW-16-10 Slug Out	135.3	3.7E-05	0.10	3.0E-05	
MW-16-11A Slug In	127.3	6.1E-05	0.17	6.3E-05	0.18
MW-16-11A Slug Out	127.3	6.5E-05	0.18	0.3E-U5	

K = Hydraulic Conductivity

NA = Not applicable

WC = water column height in well

A 5' long by 1" diameter slug was utilized to complete slug tests in these wells in September 2021.

TRC October 2021

WELL TEST ANALYSIS

Data Set: P:_Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-02 In.aqt

Date: 10/29/21 Time: 11:44:26

PROJECT INFORMATION

Company: <u>TRC</u> Client: DTE

Location: Belle River PP
Test Well: MW-16-02
Test Date: 9/17/2021

AQUIFER DATA

Saturated Thickness: 12. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-02)

Initial Displacement: 1.503 ft Static Water Column Height: 85.8 ft

Total Well Penetration Depth: 5. ft Screen Length: 5. ft Casing Radius: 0.0861 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Bredehoeft-Papadopulos

 $T = 0.0006905 \text{ cm}^2/\text{sec}$ S = 3.692

Data Set: P:\ Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-02 Out.aqt

Date: 10/29/21 Time: 11:46:12

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-02
Test Date: 9/17/2021

AQUIFER DATA

Saturated Thickness: 12. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-02)

Initial Displacement: 1.32 ft

Total Well Penetration Depth: 5. ft

Casing Radius: 0.0861 ft

Static Water Column Height: 85.8 ft

Screen Length: <u>5.</u> ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined

 $T = 0.1533 \text{ cm}^2/\text{sec}$

Solution Method: Cooper-Bredehoeft-Papadopulos

S = 0.1

Data Set: P:_Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-03 In.aqt

Date: 10/29/21 Time: 11:52:09

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-03
Test Date: 9/17/2021

AQUIFER DATA

Saturated Thickness: 12. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-03)

Initial Displacement: <u>1.376</u> ft Static Water Column Height: <u>123.1</u> ft

Total Well Penetration Depth: <u>5.</u> ft Screen Length: <u>5.</u> ft Casing Radius: 0.0861 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 0.009782 cm/sec y0 = 1.113 ft

Data Set: P:\ Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-03 Out.aqt

Date: 10/29/21 Time: 11:53:59

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-03
Test Date: 9/17/2021

AQUIFER DATA

Saturated Thickness: 12. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-03)

Initial Displacement: 2.023 ft Static Water Column Height: 123.1 ft

Total Well Penetration Depth: <u>5.</u> ft Screen Length: <u>5.</u> ft Casing Radius: 0.0861 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 0.009488 cm/sec y0 = 1.215 ft

Data Set: P:_Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-06 In.aqt

Date: <u>10/29/21</u> Time: <u>11:57:18</u>

PROJECT INFORMATION

Company: <u>TRC</u> Client: DTE

Location: Belle River PP
Test Well: MW-16-06
Test Date: 9/17/2021

AQUIFER DATA

Saturated Thickness: 6. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-06)

Initial Displacement: 1.847 ft
Total Well Penetration Depth: 6. ft

Casing Radius: 0.0861 ft

Static Water Column Height: 125.6 ft

Screen Length: <u>5.</u> ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 0.0001002 cm/sec y0 = 1.449 ft

Data Set: P:\ Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-06 Out.aqt

Date: 10/29/21 Time: 11:58:41

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-06
Test Date: 9/17/2021

AQUIFER DATA

Saturated Thickness: 6. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-06)

Initial Displacement: 1.481 ft
Total Well Penetration Depth: 6. ft

Casing Radius: 0.0861 ft

Static Water Column Height: 125.6 ft

Screen Length: <u>5.</u> ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 0.0001063 cm/sec y0 = 1.271 ft

Data Set: P:_Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-08 In.aqt

Date: 10/29/21 Time: 12:36:01

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-08
Test Date: 9/16/2021

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-08)

Initial Displacement: <u>1.987</u> ft Total Well Penetration Depth: 7. ft

Casing Radius: 0.0861 ft

Static Water Column Height: 124.9 ft

Screen Length: <u>5.</u> ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined

Solution Method: Hvorslev

K = 1.199E-5 cm/sec

y0 = 1.791 ft

Data Set: P:\ Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-08 Out.aqt

Date: 10/29/21 Time: 12:38:13

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-08
Test Date: 9/16/2021

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-08)

Initial Displacement: <u>1.415</u> ft Total Well Penetration Depth: 7. ft

Casing Radius: 0.0861 ft

Static Water Column Height: 124.9 ft

Screen Length: <u>5.</u> ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 1.127E-5 cm/sec y0 = 1.279 ft

Data Set: P:_Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-09 In.aqt

Date: 10/29/21 Time: 12:41:12

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-09
Test Date: 9/16/2021

AQUIFER DATA

Saturated Thickness: 12. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-09)

Initial Displacement: 1.611 ft
Total Well Penetration Depth: 5. ft

Total Well Penetration Depth: <u>5.</u> π Casing Radius: 0.0861 ft

Static Water Column Height: 126.9 ft

Screen Length: <u>5.</u> ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 0.000148 cm/sec y0 = 1.458 ft

Data Set: P:\ Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-09 Out.aqt

Date: 10/29/21 Time: 12:43:28

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-09
Test Date: 9/16/2021

AQUIFER DATA

Saturated Thickness: 12. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-09)

Initial Displacement: 1.736 ft Static Water Column Height: 126.9 ft

Total Well Penetration Depth: <u>5.</u> ft Screen Length: <u>5.</u> ft Casing Radius: 0.0861 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 0.0001461 cm/sec y0 = 1.265 ft

Data Set: P:_Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-10 In.aqt

Date: <u>10/29/21</u> Time: <u>12:52:23</u>

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-10
Test Date: 9/16/2021

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-10)

Initial Displacement: 1.7 ft

Total Well Penetration Depth: 5. ft

Casing Radius: 0.0861 ft

Static Water Column Height: 135.3 ft

Screen Length: <u>5.</u> ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined

 $T = 0.005538 \text{ cm}^2/\text{sec}$

Solution Method: Cooper-Bredehoeft-Papadopulos

S = 0.001701

Data Set: P:\ Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-10 Out.aqt

Date: 10/29/21 Time: 12:54:58

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-10
Test Date: 9/16/2021

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-10)

Initial Displacement: 1.23 ft

Total Well Penetration Depth: 5. ft

Casing Radius: 0.0861 ft

Static Water Column Height: 135.3 ft

Screen Length: <u>5.</u> ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined

 $T = 0.005626 \text{ cm}^2/\text{sec}$

Solution Method: Cooper-Bredehoeft-Papadopulos

S = 0.004752

Data Set: P:\ Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-11A In.aqt

Date: 10/29/21 Time: 12:59:49

PROJECT INFORMATION

Company: <u>TRC</u> Client: DTE

Location: Belle River PP
Test Well: MW-16-11A
Test Date: 9/16/2021

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-11A)

Initial Displacement: 1.753 ft
Total Well Penetration Depth: 7. ft

Casing Radius: 0.0861 ft

Static Water Column Height: 127.3 ft

Screen Length: <u>5.</u> ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 6.051E-5 cm/sec y0 = 1.492 ft

Data Set: P:_Vision\DTE\2021 Slug Tests\Belle River PP\MW-16-11A Out.aqt

Date: 10/29/21 Time: 13:00:15

PROJECT INFORMATION

Company: TRC Client: DTE

Location: Belle River PP
Test Well: MW-16-11A
Test Date: 9/16/2021

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-16-11A)

Initial Displacement: 1.434 ft Static Water Column Height: 127.3 ft

Total Well Penetration Depth: 7. ft Screen Length: 5. ft Casing Radius: 0.0861 ft Well Radius: 0.25 ft

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 6.477E-5 cm/sec y0 = 1.103 ft

PROJ. NAME:	DTE Electric Company Belle River Power Plant			WELL ID:	MW-16-01	
PROJ. NO:	231828.0003	DATE INSTALLED: 3/17/2016	INSTALLED BY:	A. Knutson		CHECKED BY: C. Scieszka

ELEVAT	ION	DEPTH BELOW OR ABOVE	CASING AN	ND SCREEN	DETAILS		
(BENCHMAR	K: USGS)	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH P	·VC			
590.06		1.8 TOP OF CASING	PIPE SCHEDULE: 40				
↑			PIPE JOINTS: THREAD	ED O-RINGS			
			SCREEN TYPE: 2-INCH P	<u>VC</u>			
588.26	4111	0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCI	<u>H</u>			
		1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:		FROM 0 TO		
F		GROUT/BACKFILL MATERIAL					
83.8 NISER PIPE LENGTH		BENTONITE SLURRY	SURF. CASING DIAMETER:	IN. F	ROM TO	F1.	
93.8		GROUT/BACKFILL METHOD TREMIE		IIN. F	-ROW10	F1.	
RISE			WELL	DEVELOPM	IENT		
		84.0 GROUT	DEVELOPMENT METHOD:	AIR LIFT			
		BENTONITE SEAL MATERIAL	TIME DEVELOPING:	4 H	IOURS		
		TIME RELEASE PELLETS	WATER REMOVED:	120 G	SALLONS		
		89.0 BENTONITE SEAL	WATER ADDED:	0 G	SALLONS		
496.3		92.0 TOP OF SCREEN	WATER CLARITY BE		R DEVELOPMEN	Т	
STH		FILTER PACK MATERIAL		/ TURBID			
5.00 E		MEDIUM, WASHED SAND		<u>NN /GREY</u>			
SCREEN LENGT		mesion, withing said	CLARITY AFTER: CLEA				
<u>491.3</u> ▼		97.0 BOTTOM OF SCREEN	COLOR AFTER: NONE				
			ODOR (IF PRESENT): NONE	≣.			
		97.0 BOTTOM OF FILTER PACK	WATER	LEVEL SUMN	MARY		
		NA BENTONITE PLUG	MEASUREMENT (FE		DATE	TIME	
		<u></u> 5=52 : 200	DTB BEFORE DEVELOPING:	98.20 T	T/PVC 3/21/2016		
		BACKFILL MATERIAL	DTB AFTER DEVELOPING:	100.32 T	T/PVC 4/13/2016	845	
		NATURAL COLLAPSE	SWL BEFORE DEVELOPING:	12.92 T	T/PVC 3/21/2016		
			SWL AFTER DEVELOPING:	16.32 T	T/PVC 4/13/2016	845	
488.3		100.0 HOLE BOTTOM	OTHER SWL:	Т	T/PVC		
			OTHER SWL:		T/PVC		
NOTES:			PROTECTIVE CASING DETAILS				
			PERMANENT, LEGIBLE WELL LABEL ADDED? YES NO				
			PROTECTIVE COVER AND LOCK INSTALLED? ✓ YES ☐ NO				
			LOCK KEY NUMBER: 3120				

PROJ. NAME:	DTE Electric Company Belle River Power Plant				WELL ID:	MW-16-02
PROJ. NO:	231828.0003	DATE INSTALLED: 3/15/2016	INSTALLED BY:	A. Knutson		CHECKED BY: C. Scieszka

ELEVATI	ON	DEPTH BELOW OR ABOVE	CASING AN	D SCREEN DET	AILS	
(BENCHMARK	(: USGS)	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH P	<u>VC</u>		
588.94		2.7 TOP OF CASING	PIPE SCHEDULE: 40			
†			PIPE JOINTS: THREADE	ED O-RINGS		
			SCREEN TYPE: 2-INCH PV	<u>VC</u>		
586.27	$H \mid H$	0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCH	<u>t</u>		
		1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:	6 IN. FROM 4 IN. FROM		
Į.		GROUT/BACKFILL MATERIAL				
LENGI		BENTONITE SLURRY GROUT/BACKFILL METHOD	SURF. CASING DIAMETER:	IN. FROM	то_ то	
HISER PIPE LENGTH		TREMIE		INCOM	10_	
			WELL I	DEVELOPMENT		
		84.0 GROUT	DEVELOPMENT METHOD:	AIR LIFT		
		BENTONITE SEAL MATERIAL	TIME DEVELOPING:	4 HOUR	S	
		TIME RELEASE PELLETS	WATER REMOVED:	460GALLC	NS	
		89.0 BENTONITE SEAL	WATER ADDED:	0 GALLO	NS	
494.2		92.0 TOP OF SCREEN	WATER CLARITY BEI	FORE / AFTER DE	VELOPMEN	Т
GTH		FILTER PACK MATERIAL		TURBID		
COREEN LENGTH		MEDIUM, WASHED SAND	COLOR BEFORE: BROW CLARITY AFTER: CLEAR	<u>VN /GREY</u> R		
_489.2 ▼		97.0 BOTTOM OF SCREEN	COLOR AFTER: NONE			
			ODOR (IF PRESENT): NONE	<u>:</u> <u>-</u>		
		97.0 BOTTOM OF FILTER PACK	WATER	LEVEL CUMMADY	,	
		NA BENTONITE STATE	MEASUREMENT (FEI	LEVEL SUMMARY	DATE	TIME
		NA BENTONITE PLUG	DTB BEFORE DEVELOPING:	<u>, </u>	3/15/2016	
		BACKFILL MATERIAL	DTB AFTER DEVELOPING:		4/13/2016	9:24
		NATURAL COLLAPSE	SWL BEFORE DEVELOPING:		3/15/2016	
		TOTALE GOLLAR DE	SWL AFTER DEVELOPING:		3/18/2016	
486.2		100.0 HOLE BOTTOM	OTHER SWL:	18.77 T/PVC	4/13/2016	9:24
			OTHER SWL:	T/PVC		
NOTES:			PROTECTIVE CASING DETAILS			
			PERMANENT, LEGIBLE WELL LABEL ADDED?			
			PROTECTIVE COVER AND LOCK INSTALLED? ✓ YES ☐ NO			
			LOCK KEY NUMBER: 3120			

PROJ. NAME:	DTE Electric Company Belle River Power Plant					MW-16-03
PROJ. NO:	231828.0003	DATE INSTALLED: 6/1/2016	INSTALLED BY:	J. Reed		CHECKED BY: M. Powers

ELEVATION		DEPTH BELOW OR ABOVE	CASING AN	ID SCREEN DET	AILS		
(BENCHMARK: U	SGS)	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH P	<u>VC</u>			
590.66	_	2.6 TOP OF CASING	PIPE SCHEDULE: 40				
│			PIPE JOINTS: THREADE	ED O-RINGS			
			SCREEN TYPE: 2-INCH P	<u>vc</u>			
588.03		0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCH	<u> </u>			
		1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:	6 IN. FROM			
ЗТН		GROUT/BACKFILL MATERIAL BENTONITE SLURRY		IN FROM	1 TO	FT	
HISSER PIPE LENGTH		GROUT/BACKFILL METHOD	SURF. CASING DIAMETER:IN. FROMTO IN. FROM TO				
134.5		TREMIE	W				
			WELL	DEVELOPMENT			
		126.0 GROUT	DEVELOPMENT METHOD:	<u>AIR LIFT</u>			
		BENTONITE SEAL MATERIAL	TIME DEVELOPING:	4 HOUF	.s		
		TIME RELEASE PELLETS	WATER REMOVED: 60 GALLONS				
		129.0 BENTONITE SEAL	WATER ADDED:	0 GALL	ONS		
456.2 ¥		132.0 TOP OF SCREEN	WATER CLARITY BE	FORE / AFTER DE	EVELOPMEN	ΙΤ	
GTH E		FILTER PACK MATERIAL	CLARITY BEFORE: TURBID				
SOREEN LENGTH		MEDIUM, WASHED SAND		<u>r gray</u> HTLY TURBID			
			COLOR AFTER: VERY				
<u>451.2</u> ♥		137.0 BOTTOM OF SCREEN	ODOR (IF PRESENT): NONE				
		137.0 BOTTOM OF FILTER PACK					
			WATER	LEVEL SUMMAR	1		
		NA BENTONITE PLUG	MEASUREMENT (FE	ET)	DATE	TIME	
			DTB BEFORE DEVELOPING:	140.00 T/PV0		7:20	
		BACKFILL MATERIAL	DTB AFTER DEVELOPING:	140.00 T/PV0		14:30	
		NATURAL COLLAPSE	SWL BEFORE DEVELOPING:	16.06 T/PV0		7:20	
			SWL AFTER DEVELOPING:	15.32 T/PV0		14:30	
438.2		150.0 HOLE BOTTOM	OTHER DTB: OTHER SWL:	140.41 T/PV0		10:00	
NOTES:				VE CASING DETA			
No 126.						□ NO	
			PERMANENT, LEGIBLE WELL LABEL ADDED? YES NO PROTECTIVE COVER AND LOCK INSTALLED? YES NO				
			LOCK KEY NUMBER: 3120		23		

PROJ. NAME:	DTE Electric Company Belle River Power Plant				WELL ID:	MW-16-04
PROJ. NO:	231828.0003	DATE INSTALLED: 3/8/2016	INSTALLED BY:	A. Knutson		CHECKED BY: C. Scieszka

PROJ. NAME:	DTE Electric Company Belle River Power Plant					MW-16-05
PROJ. NO:	231828.0003	DATE INSTALLED: 3/4/2016	INSTALLED BY:	A. Knutson		CHECKED BY: C. Scieszka

ELEVAT	ION	DEPTH BELOW OR ABOVE	CASING AN	D SCREEN DE	ΓAILS		
(BENCHMAR	K: USGS)	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH P	<u>VC</u>			
590.82		2.5 TOP OF CASING	PIPE SCHEDULE: 40				
1			PIPE JOINTS: THREADE	ED O-RINGS			
			SCREEN TYPE: 2-INCH P	<u>VC</u>			
588.32		0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCH	<u> </u>			
	ПΠ						
		1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:	6 IN. FROM	<u>и 0</u> то	150 FT.	
		ODOUT/DAG//FILL MATERIAL		IN. FROM	ито	FT.	
H.		GROUT/BACKFILL MATERIAL BENTONITE SLURRY		IN EPO	4 TO	ЕТ	
THE LENGTH		GROUT/BACKFILL METHOD	SURF. CASING DIAMETER:	IN FROM	/TO	' ' ' ·	
141.5 K				IN. FROI	IN. FROM TO FT.		
		TREMIE	WELL DEVELOR		PMENT		
		128.0 GROUT	DEVELOPMENT METHOD:	AIR LIFT			
		BENTONITE SEAL MATERIAL	TIME DEVELOPING:		99		
		TIME RELEASE PELLETS	WATER REMOVED:				
		133.0 BENTONITE SEAL	WATER REMOVED: WATER ADDED:	0 GALL			
		133.0 BENTONTE SEAL	WATER ADDED.	U GALL	ONS		
449.3 ▼		139.0 TOP OF SCREEN	WATER CLARITY BEFORE / AFTER DEVELOPMENT				
			CLARITY BEFORE: <u>VERY TURBID</u>				
5.00 E		FILTER PACK MATERIAL	COLOR BEFORE: GREY				
SCREEN LENGTH		MEDIUM, WASHED SAND	CLARITY AFTER: CLEAR	<u>R</u>			
444.3 ▼		144.0 BOTTOM OF SCREEN	COLOR AFTER: NONE	<u>.</u>			
<u> </u>		THIS BOTTOM OF BOTTEEN	ODOR (IF PRESENT): NONE	<u>:</u>			
		150.0 BOTTOM OF FILTER PACK					
			WATER	LEVEL SUMMAR	Y		
		NA BENTONITE PLUG	MEASUREMENT (FE	ET)	DATE	TIME	
			DTB BEFORE DEVELOPING:	144.03 T/PV	3/4/2016		
		BACKFILL MATERIAL	DTB AFTER DEVELOPING:	147.16 T/PV	2 4/13/2016	9:55	
		WASHED SAND	SWL BEFORE DEVELOPING:		3/15/2016		
			SWL AFTER DEVELOPING:		3/18/2016		
444.3		150.0 HOLE BOTTOM	OTHER SWL:		2 4/13/2016	9:55	
			OTHER SWL:	T/PV			
NOTES:			PROTECTIVE CASING DETAILS				
			PERMANENT, LEGIBLE WELL LABEL ADDED? YES NO				
			PROTECTIVE COVER AND LOCK INSTALLED? ✓ YES ☐ NO				
			LOCK KEY NUMBER: 3120				

PROJ. NAME:	DTE Electric Company Belle River Power Plant				WELL ID:	MW-16-06
PROJ. NO:	231828.0003	DATE INSTALLED: 3/11/2016	INSTALLED BY:	A. Knutson		CHECKED BY: C. Scieszka

ELEVATION		DEPTH BELOW OR ABOVE	CASING AN	D SCREEN DET	AILS		
(BENCHMARK: US	SGS)	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH P	<u>VC</u>			
593.21	_	3.2 TOP OF CASING	PIPE SCHEDULE: 40				
↑ 			PIPE JOINTS: THREADE	ED O-RINGS			
			SCREEN TYPE: 2-INCH P	<u>VC</u>			
589.98	4	0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCH	<u> 1</u>			
		1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:	6 IN. FROM	I 0 TO		
RISER PIPE LENGTH		GROUT/BACKFILL MATERIAL BENTONITE SLURRY GROUT/BACKFILL METHOD	SURF. CASING DIAMETER:	IN. FROM			
<u>138.2</u>		TREMIE	WELL DEVELOPMENT				
		127.0 GROUT	DEVELOPMENT METHOD:	AIR LIFT			
		BENTONITE SEAL MATERIAL		4 HOUR	S		
		TIME RELEASE PELLETS	WATER REMOVED: 50 GALLONS				
		132.0 BENTONITE SEAL	WATER ADDED:	·	0 GALLONS		
455.0 V		135.0 TOP OF SCREEN	WATER CLARITY BE	FORE / AFTER DE	VELOPMEN	Т	
HES HES		FILTER PACK MATERIAL	CLARITY BEFORE: <u>VERY TURBID</u>				
5.00 N P P P P P P P P P P P P P P P P P P		MEDIUM, WASHED SAND		<u>VN /GREY</u>			
SCREEN LENGTH		MEDICIN, WYONED GARD	CLARITY AFTER: CLEAN				
450.0 ▼		140.0 BOTTOM OF SCREEN	COLOR AFTER: NONE				
			ODOR (IF PRESENT): NOT N	<u>MEASURED</u>			
		140.0 BOTTOM OF FILTER PACK	WATER	LEVEL SUMMARY	<u> </u>		
		NA BENTONITE PLUG	MEASUREMENT (FE	ET)	DATE	TIME	
			DTB BEFORE DEVELOPING:	135.07 T/PVC	3/8/2016		
		BACKFILL MATERIAL	DTB AFTER DEVELOPING:	142.85 T/PVC	4/13/2016	10:01	
		NA	SWL BEFORE DEVELOPING:	19.62 T/PVC	3/15/2016	14:30	
			SWL AFTER DEVELOPING:	14.90 T/PVC	3/18/2016	7:30	
450.0		140.0 HOLE BOTTOM	OTHER SWL:		4/13/2016	10:01	
			OTHER SWL:	T/PVC			
NOTES:				VE CASING DETA			
			PERMANENT, LEGIBLE WELL LABEL ADDED? YES NO				
			PROTECTIVE COVER AND LOCK INSTALLED? ✓ YES NO				
			LOCK KEY NUMBER: 3120				

PROJ. NAME:	DTE Electric Company Belle River Power Plant					MW-16-07
PROJ. NO:	231828.0003	DATE INSTALLED: 3/9/2016	INSTALLED BY:	A. Knutson		CHECKED BY: C. Scieszka

ELEVATION	DEPTH BELOW OR ABOVE	CASING AN	D SCREEN DETA	AILS						
(BENCHMARK: USGS	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH P	<u>VC</u>							
592.58	2.7 TOP OF CASING	PIPE SCHEDULE: 40								
│ ^{──} ↑ │ □│		PIPE JOINTS: <u>THREADE</u>	ED O-RINGS							
		SCREEN TYPE: 2-INCH P	<u>VC</u>							
589.89	0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCH	<u> 1</u>							
	1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:	6 IN. FROM	<u>0</u> TO	140 FT.					
			IN. FROM	то	FT.					
HTE	GROUT/BACKFILL MATERIAL BENTONITE SLURRY		IN. FROM	ТО	FT.					
PE LEN	GROUT/BACKFILL METHOD	SURF. CASING DIAMETER:	IN. FROM							
135.7 HISER PIPE LENGTH	TREMIE									
ω ω		WELL	DEVELOPMENT							
	125.0 GROUT	DEVELOPMENT METHOD:	AIR LIFT							
	BENTONITE SEAL MATERIAL	TIME DEVELOPING:	4 HOURS	S						
	TIME RELEASE PELLETS	WATER REMOVED:	120 GALLO	NS						
	130.0 BENTONITE SEAL	WATER ADDED:	0 GALLO	NS						
456.9 ¥	133.0 TOP OF SCREEN	WATER CLARITY BEI	FORE / AFTER DE	VELOPMEN	Т					
	EN TED DIOX MATERIA	CLARITY BEFORE: <u>VERY</u>	TURBID							
5.00	FILTER PACK MATERIAL	COLOR BEFORE: BROW	VN /GREY							
SCREEN LENGTH	MEDIUM, WASHED SAND	CLARITY AFTER: <u>CLEAI</u>								
451.9	138.0 BOTTOM OF SCREEN	COLOR AFTER: NONE	<u>.</u>							
		ODOR (IF PRESENT): NONE	<u>:</u> <u>:</u>							
	140.0 BOTTOM OF FILTER PACK	WATER	LEVEL SUMMARY	,						
	NA BENTONITE PLUG	MEASUREMENT (FEI		DATE	TIME					
	NA BENTONITE PLOG	DTB BEFORE DEVELOPING:	138.02 T/PVC							
	BACKFILL MATERIAL	DTB AFTER DEVELOPING:	141.19 T/PVC	4/13/2016	11:56					
	WASHED SAND	SWL BEFORE DEVELOPING:	14.66 T/PVC	3/15/2016						
		SWL AFTER DEVELOPING:	14.25 T/PVC	3/18/2016						
449.89	140.0 HOLE BOTTOM	OTHER SWL:	16.83 T/PVC	4/13/2016	11:56					
		OTHER SWL:	T/PVC							
NOTES:		PROTECTIVE CASING DETAILS								
		PERMANENT, LEGIBLE WELL		✓ YES	□ NO					
		PROTECTIVE COVER AND LC	OCK INSTALLED?	✓ YES	☐ NO					
		LOCK KEY NUMBER: 3120								

PROJ. NAME:	DTE Electric C	ompany Belle River Power Plant			WELL ID:	MW-16-08
PROJ. NO:	231828.0003	DATE INSTALLED: 3/10/2016	INSTALLED BY:	A. Knutson		CHECKED BY: C. Scieszka

ELEVATION	DEPTH BELOW OR ABOVE	CASING AN	D SCREEN DET	AILS	
(BENCHMARK: USGS)	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH PV	<u>VC</u>		
591.88	2.6 TOP OF CASING	PIPE SCHEDULE: 40			
│──↑ │ □│		PIPE JOINTS: THREADE	ED O-RINGS		
		SCREEN TYPE: 2-INCH PV	VC		
589.31	0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCH			
			=		
	1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:	6IN. FROM		
	GROUT/BACKFILL MATERIAL		IN. FROM	10	F1.
IGTH	BENTONITE SLURRY	SURF. CASING DIAMETER:	IN. FROM	то	FT.
LEN PE LEN	GROUT/BACKFILL METHOD	SURF. CASING DIAMETER:	IN. FROM	то	FT.
135.6 NPE LENGTH	TREMIE				
α		WELL I	DEVELOPMENT		
	125.0 GROUT	DEVELOPMENT METHOD:	<u>AIR LIFT</u>		
	BENTONITE SEAL MATERIAL	TIME DEVELOPING:	4 HOUR	S	
	TIME RELEASE PELLETS	WATER REMOVED:	125 GALLO	NS	
	130.0 BENTONITE SEAL	WATER ADDED:	0 GALLO	NS	
<u>456.3</u> ▼	133.0 TOP OF SCREEN	WATER CLARITY BEI	FORE / AFTER DE	VELOPMEN	Т
		CLARITY BEFORE: <u>VERY</u>	TURBID		
5.00	FILTER PACK MATERIAL	COLOR BEFORE: BROW	/N /GREY		
SOREEN LENGTH	MEDIUM, WASHED SAND	CLARITY AFTER: CLEAR	<u>R</u>		
451.3	138.0 BOTTOM OF SCREEN	COLOR AFTER: NONE	<u>.</u>		
		ODOR (IF PRESENT): NONE			
	140.0 BOTTOM OF FILTER PACK	WATER	LEVEL SUMMARY	,	
	NA DENTONITE DI LIO	MEASUREMENT (FEI		DATE	TIME
	NA BENTONITE PLUG	DTB BEFORE DEVELOPING:		3/11/2016	
	BACKFILL MATERIAL	DTB AFTER DEVELOPING:		4/13/2016	12:00
	WASHED SAND	SWL BEFORE DEVELOPING:	14.23 T/PVC	3/15/2016	14:30
		SWL AFTER DEVELOPING:	14.23 T/PVC	3/18/2016	7:30
449.3	140.0 HOLE BOTTOM	OTHER SWL:	15.79 T/PVC	4/13/2016	12:00
		OTHER SWL:	T/PVC		
NOTES:		PROTECTIV	VE CASING DETAI	LS	
		PERMANENT, LEGIBLE WELL	LABEL ADDED?	√ YES	☐ NO
		PROTECTIVE COVER AND LO	OCK INSTALLED?	✓ YES	☐ NO
		LOCK KEY NUMBER: 3120			

PROJ. NAME:	DTE Electric C	ompany Belle River Power Plan	t		WELL ID:	MW-16-09
PROJ. NO:	231828.0003	DATE INSTALLED: 6/2/2016	INSTALLED BY:	J. Reed		CHECKED BY: M. Powers

ELEVATION	DEPTH BELOW OR ABOVE	CASING AN	D SCREEN DETA	AILS			
(BENCHMARK: USGS)	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH PV	<u>VC</u>				
590.80	2.5 TOP OF CASING	PIPE SCHEDULE: 40					
│ ^{──} ↑ │ □┃		PIPE JOINTS: THREADE	ED O-RINGS				
		SCREEN TYPE: 2-INCH P	<u>/C</u>				
588.28	0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCH	<u>I</u>				
	1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:	6 IN FROM	0 TO TO			
	GROUT/BACKFILL MATERIAL				,		
NGTH	BENTONITE SLURRY	SURF. CASING DIAMETER:	IN. FROM	то	FT.		
IPE LE	GROUT/BACKFILL METHOD		IN. FROM				
ER PIPE LENGTH	TREMIE	14/=11					
α		WELL	DEVELOPMENT				
	130.0 GROUT	DEVELOPMENT METHOD:	AIR LIFT				
	BENTONITE SEAL MATERIAL	TIME DEVELOPING:	7 HOURS	3			
	TIME RELEASE PELLETS	WATER REMOVED:	30 GALLO	NS			
	133.0 BENTONITE SEAL	WATER ADDED:	0 GALLO	NS			
452.4 V	136.0 TOP OF SCREEN	WATER CLARITY BEI	FORE / AFTER DE'	VELOPMEN	Т		
		CLARITY BEFORE: TURB	<u>ID</u>				
5.00	FILTER PACK MATERIAL	COLOR BEFORE: GRAY	•				
SOREEN LENGTH	MEDIUM, WASHED SAND	CLARITY AFTER: <u>VERY</u>	TURBID				
447.4	141.0 BOTTOM OF SCREEN	COLOR AFTER: GRAY					
		ODOR (IF PRESENT): NONE					
	141.0 BOTTOM OF FILTER PACK						
			LEVEL SUMMARY		TIME		
	NA BENTONITE PLUG	MEASUREMENT (FEI	140.00 T/PVC	6/7/2016	12:00		
	DACKELL MATERY	DTB AFTER DEVELOPING:	140.00 T/PVC	6/8/2016	10:25		
	BACKFILL MATERIAL	SWL BEFORE DEVELOPING:	7.00 T/PVC		12:00		
	NATURAL COLLAPSE	SWL AFTER DEVELOPING:	117.42 T/PVC	6/8/2016	10:25		
438.4	150.0 HOLE BOTTOM	OTHER SWL:	16.76 T/PVC	6/9/2016	15:13		
		OTHER DTB:	144.30 T/PVC	6/9/2016	15:13		
NOTES:		PROTECTIV	VE CASING DETAI	LS			
		PERMANENT, LEGIBLE WELL	LABEL ADDED?	√ YES	☐ NO		
		PROTECTIVE COVER AND LOCK INSTALLED? ✓ YES ☐ NO					
		LOCK KEY NUMBER: 3120					

PROJ. NAME:	DTE Electric C	ompany Belle River Power Plan	t		WELL ID:	MW-16-10
PROJ. NO:	231828.0003	DATE INSTALLED: 6/6/2016	INSTALLED BY:	J. Reed		CHECKED BY: M. Powers

ELEVAT	ION	DEPTH BELOW OR ABOVE	CASING AN	D SCREEN D	DETAILS					
(BENCHMAR	K: USGS)	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH P	<u>VC</u>						
592.26		3.0 TOP OF CASING	PIPE SCHEDULE: 40							
<u> </u>			PIPE JOINTS: THREADE	ED O-RINGS						
			SCREEN TYPE: 2-INCH P	<u>VC</u>						
589.25	41 14	0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCH	<u> 1</u>						
		1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:		ROM 0 TO					
돈		GROUT/BACKFILL MATERIAL		IN ED	2014 - TO					
LENG.		BENTONITE SLURRY GROUT/BACKFILL METHOD	SURF. CASING DIAMETER:	IN. FR	ROM TO	F1.				
0.841		TREMIE		IIN. FR	TO_	F1.				
RISE			WELL	DEVELOPME	NT					
		137.0 GROUT	DEVELOPMENT METHOD:	<u>AIR LIFT</u>						
		BENTONITE SEAL MATERIAL	TIME DEVELOPING:	4.5 HC	OURS					
		TIME RELEASE PELLETS	WATER REMOVED:	85 GA	ALLONS					
		142.0 BENTONITE SEAL	WATER ADDED:	60 GA	ALLONS					
444.3		145.0 TOP OF SCREEN	WATER CLARITY BE		R DEVELOPMEN	ΙΤ				
ВТН		FILTER PACK MATERIAL		TURBID						
SCREEN LENGTE		MEDIUM, WASHED SAND		GRAY						
			COLOR AFTER: DARK	TURBID GRAY						
439.3 ♦		150.0 BOTTOM OF SCREEN	ODOR (IF PRESENT): NONE							
		150.0 BOTTOM OF FILTER PACK								
				LEVEL SUMM						
		NA BENTONITE PLUG	MEASUREMENT (FE		DATE	TIME				
			DTB BEFORE DEVELOPING:		PVC 6/9/2016 PVC 6/9/2016	7:45				
		BACKFILL MATERIAL	DTB AFTER DEVELOPING: SWL BEFORE DEVELOPING:		PVC 6/9/2016 PVC 6/9/2016	16:50 7:45				
		NA	SWL AFTER DEVELOPING:		PVC 6/9/2016 PVC 6/9/2016	16:50				
439.3		150.0 HOLE BOTTOM	OTHER SWL:		PVC					
100.0			OTHER SWL:		PVC					
NOTES:			PROTECTI	VE CASING DE	ETAILS					
			PERMANENT, LEGIBLE WELL	LABEL ADDE	D? VES	□ NO				
			PROTECTIVE COVER AND LOCK INSTALLED? ✓ YES ☐ NO							
			LOCK KEY NUMBER: 3120							

PROJ. NAME:	DTE Electric C	ompany Belle River Power Plan	t		WELL ID:	MW-16-11
PROJ. NO:	231828.0003	DATE INSTALLED: 6/7/2016	INSTALLED BY:	J. Reed		CHECKED BY: M. Powers

ELEVATION		DEPTH BELOW OR ABOVE	CASING AN	D SCREEN DET	AILS				
(BENCHMARK: US	SGS)	GROUND SURFACE (FEET)	TYPE OF RISER: 2-INCH P	<u>VC</u>					
591.54		2.5 TOP OF CASING	PIPE SCHEDULE: 40						
│ ^{──} ↑	7		PIPE JOINTS: THREADE	ED O-RINGS					
			SCREEN TYPE: 2-INCH P	<u>VC</u>					
589.03		0.0 GROUND SURFACE	SCR. SLOT SIZE: 0.01-INCH	<u> 1</u>					
		1.0 CEMENT SURFACE PLUG	BOREHOLE DIAMETER:	6 IN. FROM					
		GROUT/BACKFILL MATERIAL		IN. FROM	ІТО	F1.			
ИСТН		BENTONITE SLURRY	SURF. CASING DIAMETER:	IN. FROM	тото	FT.			
IPE LEI		GROUT/BACKFILL METHOD	GOTT : OAGING BIAWETER.	IN. FROM					
T39.5		TREMIE							
<u> </u>			WELL	DEVELOPMENT					
		130.0 GROUT	DEVELOPMENT METHOD:	AIR LIFT					
		BENTONITE SEAL MATERIAL	TIME DEVELOPING:	3 HOUR	S				
		TIME RELEASE PELLETS	WATER REMOVED:	84 GALLO	ONS				
		135.0 BENTONITE SEAL	WATER ADDED:	60 GALLO	ONS				
452.0		137.0 TOP OF SCREEN	WATER CLARITY BE	FORE / AFTER DE	VELOPMEN	IT			
_			CLARITY BEFORE: <u>VERY</u>	TURBID					
5.00		FILTER PACK MATERIAL	COLOR BEFORE: DARK	GRAY					
SCREEN LENGTH		MEDIUM, WASHED SAND	CLARITY AFTER: <u>VERY</u>	TURBID					
447.0		142.0 BOTTOM OF SCREEN	COLOR AFTER: <u>GRAY</u>	, -					
			ODOR (IF PRESENT): NONE						
		150.0 BOTTOM OF FILTER PACK	14/4777	LEVEL CURREACT	,				
		NA DENTONITE DI LIC	MEASUREMENT (FE	LEVEL SUMMARY	DATE	TIME			
		NA BENTONITE PLUG	DTB BEFORE DEVELOPING:	141.36 T/PVC		12:35			
		BACKFILL MATERIAL	DTB AFTER DEVELOPING:	142.00 T/PVC		15:45			
		WASHED SAND	SWL BEFORE DEVELOPING:	9.65 T/PVC		12:35			
			SWL AFTER DEVELOPING:	116.00 T/PVC	6/9/2016	15:45			
447.0		150.0 HOLE BOTTOM	OTHER SWL:	16.67 T/PVC	6/21/2016	7:45			
			OTHER SWL:	T/PVC	;				
NOTES:			PROTECTIVE CASING DETAILS						
			PERMANENT, LEGIBLE WELL	LABEL ADDED?	✓ YES	□ NO			
			PROTECTIVE COVER AND LC	OCK INSTALLED?	✓ YES	☐ NO			
			LOCK KEY NUMBER: 3120						

PROJ. NAME: DTE Electric Company Belle River Power Plant

PROJ. NO: 265996.0003 DATE INSTALLED: 5/12/2017 INSTALLED BY: Jake Krenz

CHECKED BY: C. Scieszka

BECHTEL Beile River

B-21

BECHTEL Belle River

B-25

OUNN 18-1	X		ol Women, commission			#I	Xeria anno	all and a second	. ~	CATIC	N.	N.8 E.9			***************************************		GROL			585.		2000		and and an original	**********	y.Vii.		SOAS AND COME.	RECOVERY	walki C	CATE DRILLED: 11-20-73
		SHEAR (NO	STREN	ustrii.									<u></u>		~		ELEV	'Alas	(IN	OTHER LABORATORY TESTS	E		vn	91		محت	FOOT		. KEC		9-251 <u>1</u> 0°
			'30, FT,				H RETT.	(2)(3) (1) (2)(3)	TURE OF E	CONT XRY W MITS	TENT T.) (PL	-(L,)		(LB5	./CL	, PT			MEGRA STS	43		OR	SAM	PLE	PRES	SLRE		S 6083	d d	DESCRIPTION
٥		500 10	00 150	00 20	00	1	20	30	40 1	50 60	70	<u>80</u>	٦'n	50 T	60	7 0	80 9	010	-	007	Γ̈́	ĵ	٦	20	0 6	<u> </u>	0 10	0	Ť	τ_{λ}	black clayey Topsoil (OH)
						Ш			_	Ш	1	_	╢.	_	1	1	_	4	_			-	-	24						Δ	firm to stiff, mottled brown, silty Cla (CL) trace of sand. plastic, gray, silty, some fine sand very soft gray silty Clay (CH)
															l		ŀ				Ν̈́	20	2								very soft gray silty Clay (CH)
20							7		1	П	T		11	T	T	T	T	П	٦		TAKEN	20	2							//	plastic, dark gray sandy <u>Clay</u> (CL) some
1		 		-		H	\dashv	+	╁	H	\dashv	╫	╁	\dashv	+	╁	╁	\vdash	\dashv		SAMPLES		8			_				//	pebbles. soft, gray silty Clay (CH)
40					<u> </u>		_	_	1	\perp	4	_	4	4	4	+	\perp		\dashv			40			-						and the second s
																					RBED		2							8	
																ı					UNDISTURBED	- 1	L 8							4	soft to plastic gray silty Clay (CL)
60		1					_	_	Ť	П	1		11	7	1	†	†	П	٦			60	9							1	some fine sand
								+	+	-	-	-	╁	┪	+	╁	+	\vdash	\dashv		2		1	11	 - -		<u> </u>				med., gray, silty some sand & gravel
80					11		4	_	\bot		-	_	╢	4	4	4	+					80	1	12		_	 				med., gray, silty trace of sand, a few pebbles
									1			\perp					L						1	17							
															İ								- 1	13 14							
100						-	\sqcap	1	+	T	H	+	1	7	\dagger	+	+	H	H			100	Ţ	16		1					
		+	 	ļ		-	$\vdash \vdash$	_	+	+-	╟┼	+	┪	\dashv	+	+	+	H	H				-	16	 	-	-				
120						_	Н	_	\bot	-			-	4	+	+	4	-	Н			120	J	18 17	<u> </u>	-			-		
								_			Ц	_	4	_		_	1						\$	12 11_	ļ	<u> </u>	<u> </u>				med. gray silty Clay (CH)
										ļ				-									7	₽ ≛_	<u> </u>	Ļ		100-		Ħ	med. gray silty Clay (CR) Slight to low plasticity, dark gray, clayey Silt (CL-ML)
140		1						1	1	1	П	T			7	T						140		Γ	Γ		Γ		93		138.5-160.5ft Shale, black, slightly micaceous, highly weathered to a depth of 140.75ft, crumbles easily.
						╟╴	\vdash	+	╅	+	\vdash	十			\dashv	+		\vdash						-	╁╌	┢	 		97		
160					ļ	╂-		+	+	┼-	$\vdash \vdash$	+	-	_	+	+	-	-	-			160		-	-	╀	-		"		Bottom of Hole-Elevation-425.4
13				<u> </u>	ļ	_			\perp			_ .			_	1	1	_						ļ_	_	_	<u> </u>	<u> </u>	┦┃		-Depth-160.5ft
1N FEET																						180									
	Γ																					150									No gain or loss of water
ОЕРТН	-	_	ÌТ	┢	†	╟	H	十	+	╁		┪			1	1	T	1								<u> </u>	1		1		For Water Table information consult Section 4.1.3.
500					 	╢	Н	\dashv	╌	+-	H	+	-	-	-	+	+	╁╌	-			200		╂	-	╁	 	-	-		4,62,201, 41,813.
	<u> </u>	<u> </u>		ļ	ļ	-	\sqcup		-	+		4	-	Ц		-		↓_	<u> </u>				_	╂-	-	┞-	-	-			
520	L				<u> </u>													<u> </u>				220		L	L						
									-		ll					-		***************************************									-				
			T	†	1		П	1	\top		П			П					1						Ī	Τ]		
240			ļ		 	╢╌	H	+	-	+	\vdash	+	1		+	1	+	╁┈	┼─	1		240	\vdash		╁	\vdash	†-	\vdash	1		
	-		<u> </u>	1	<u> </u>				+	+	\vdash	+				+	-	╀	-					-	╀	╀	-	\vdash	1		
260	_		ļ		<u> </u>	L	1		1	1		_				4	-	1	<u> </u>			250	L	<u> </u>	-	╀	ــ	1	-		
																	Ì														
																		Γ	Γ				Γ		Γ	T					
280	 	-		ļ	1	╬	H		1	\dagger		┪	7		\vdash	+	\dagger	†	T			280	-	1	T	1	<u> </u>	-	1		
	L	 		ļ	-	╂-	-	\square	-	+		-	4	-	\vdash	_!	-	+-					┝	+	╀	+	+-	+	-		
300	L				<u> </u>	$\downarrow \downarrow$	L	Ц	_	_		_			Ц	4	_	_	_			300	L	╀-	_	_	1_	 -	,		
					ĺ																									ŀ	
	厂					\prod			7										Ţ												
320	·	-				╁╌		H	+	\dagger	\Box	十	-	<u> </u>		+	\dagger	t	t			320	T	-	╁		+		1	ļ	
	\vdash	+-		┼	-	╬	+	╁┼		+	Н	-	-	\vdash		+	+	+	╂	1			_	+	+	+	+-	╁	1		Hole backfilled with bentonite slurry in soil and cement grout in rock
340	<u>_</u>			—	-		-		_			1	4	_	Ш		4	_	 	\parallel		340	,	+	+	1	-	-	-		
					1																		L					L			
									***************************************				1			Ţ	T													-	
			1	†	T^{-}	╫	1	T	1	+	\top	\dashv	-			+	+	T	T	1				T	1	1		T			
	L	1	<u> </u>	.L		[ــــــــــــــــــــــــــــــــــــــ	لسل			اا		لسـ	_	<u></u> 1					J L		J.	L		<u>. i</u>	1	_1			т	SOIL BORING NO. 22

B-29

BECHTEL Belle River

BECHTEL Beile River

8-55

BECHTEL Belle River

Selle River

8-67

BECHTEL Belle River

SOIL BORING NO. 109

BECHTEL Balle River B-75

BECHTEL Belle River

E-87

SOIL BORING NO, 123 BECHTEL Balle River

SOIL BORING NO. 128

BECHTEL Belle River

BECHTEL elle i er

	- indian	en Stopmain							<u> pertuga</u>	L	,OCAT	rton:	N E	13, 5,	061 006		-	GR(EL.I	CALC TAY	ON ON	598.	.6 E		**************************************		<u> </u>		ethiologian com			CATE DRILLED. 3-28-74
	SHEARING STRENGTH {LBS./SQ.FT.} 0 500 1000 1500 2000					LOCATION: E 5 MOISTURE CONTENT (X OF DRY WT.) ATTERBERG LIMITS (PL-LL) 0 10 20 30 40 50 60 70 80						L)	0ENSI (LBS,/CL				n. el.) est se			WASSER T		NO. BLOWS PER FOOT OR SAMPLE PRESSURE 0 20 40 60 80 100 120						WEO.	SHEET 1 OF 1 DESCRIPTION		
l	1	3	T	1	500	000	٦٢	Ϋ	Ť		Ť	Ť	ΪΪ		Ï		Ť	1	T	011		T	1	3	11		, 80	T	Ť	Ď	Black, clayey tepsoil
			 	 	_	+	╁	+	+	Н	+	╁	╁┤	-	\vdash	-	\dashv	_	+	\dashv		TAKEN		<u> </u>	12 15		_	\dashv	1		Firm, brown & gray, silty, sangy clay (CL), trace of pebbles Soft, gray, silty clay (CH), trace
	20		╁		╂	+	╢	+	╂-	H	+	+	\vdash		-		+	-	+	\dashv		S TA	20	[]				+	-		of sand
l			-	<u> </u>	╀		- -	_	╄	\vdash	_	+	-		F	\sqcup	4	+	+-	_		SAMPLES		4 2			_	_	_		
1	40		<u> </u>		<u> </u>	<u> </u>	- -		<u> </u>			_			L			_	Ш					2 3					_		
		-																L				TURB		3 3							
ı							***************************************															UNDISTURBED	l I	2 2							
	60						7[T	П	T					П	1	Ť				Ş	60	2 2					٦		
l					I^-		ŀ	+	+		7	-	T		-		+		T					2			\dashv	1	1		Bottom of hole - Elevation - 528.6
	80				 	-	╁	+	+		-	+-	H		-		+	+	+-				80		-		\dashv	+			- Depth - 70.0 ft
		···········	ļ	-	ļ	-	┪┝	-	+	\dashv	_	_	\dashv	_	-	\vdash	+	_	-					P(07**	<u> </u>		+	+	_		No gain or loss of water
	100		ļ	ļ	ļ	ـــــ	4	-	_	Ц	-	1-	\sqcup	_	L	-	-	\downarrow					100					_	_		For Water Table information consult
			<u> </u>		ļ			_	_		-	_	Ш		_		_	1													Section 4.1.3.
	120																***************************************														
							\mathbb{I}																120								
l									Ì	П	T						1			٦							1				
1	140		 		<u> </u>		┪	+	1	\vdash	+	+	H			$\vdash \uparrow$	\forall	+					140				\dashv	-	1		
1		 -	 		-	-	╁	+	+	H	+	+	H	-		\vdash	+	+	╂╢	-						-	+		\dashv		
1	140		ļ		-	-	╬	-	-		+	+	-	4	-	-	4.	+	\dashv	_			160				-	+	_		
FEET			ļ		ļ		- -	_			_	4		_			4	_	11	_							_	_	_		
ZZ F	180		<u> </u>				╢				1						1						180								
DEPTH							li																						7		
1											T		П					T													
1	200		╁		I^-		╢	T	-	1	1	╁	H	_			+	十	T				200			_	-	十	-		
l					-	+	╢	╁	-	\vdash	╁	+-		-	-	+	+	+		\dashv						\dashv	\dashv	+	1		
	220		-	 	╁		┪┠	+	-	\dashv	_	+	\vdash	-	H	+	+	+	\vdash	-			220		-		\dashv	+	-		
			ļ	ļ	 	-	┩┡	-	+	\dashv	-	-		\dashv		-	+	┿	\mathbb{H}	4							_	+			
	240				<u> </u>	ļ	╢	4			_	1		_		_	\downarrow	_		_			540				_		_		
l																															
	260			İ													-									-					
	- 00										Ī	T	П										260								
			T				╁	-	П	\dashv	T	+	-	1	-	_	十	┪		\dashv				-		1	\dashv	-	┪		
	280	-	<u> </u>			╁	┪	╅	\vdash	\dashv	╁	+	\vdash	1		\vdash	+	+	$\dagger \dagger$	\dashv			280			+	-	_	-		
			 			-	╢	╬	+	\dashv	+	 	\vdash	4	_	-	+		H	\dashv							-	_			
1	300		-				- -	\bot	\sqcup	\sqcup	_	-		4		_	4	1					300				4	4	_		
			ļ				4									-		1		╝									╛		
l											7	***************************************																			
	320						\mathbb{T}	T	П		***************************************		П					7	П	٦			320								
							1	†-	H	\Box	-		Н	\exists	Н	\top	+	1	Ħ	1						1	+	\top	1		
	340						╁	+	+	\dashv	+	+	 	-		+	-	-	H	\dashv			340	-		\dashv	+		-		
			 			+	╬	+	H	-	+	+	\vdash	-		+	+	-	H	\dashv			ļ				+	- -	4		
	}		-				4	4-	+-	-		+	$\vdash \vdash$	4		+	+	+	+	\dashv								+	-		Hole backfilled with Quik-Gel and natural soil
	Į		<u> </u>			1							Ц		Ц				Ш		L	aad							_		<u> </u>
ı																															SOIL BORING NO. 148

BECHTEL Belle River B-111

N 14,000 LOCATION: E 8,000 GROUND ELEVATION 591.5 DATE DRILLED: 4-5-74 DENSITY 40 50 60 70 80 90100110 5 7 4 4 SHEET 1 OF 1 SHEARING STRENGTH NO. BLOWS PER FOOT OR SAMPLE PRESSURE MDISTURE CONTENT (% OF DRY WT.) ATTERBERG LIMITS (FL-LL) 0 10 20 30 40 50 60 70 80 (LBS,/SQ.FT.) DESCRIPTION

topsol

firm to stiff, brown, silty clay (CL)

very stiff, trace gravel

plastic to firm, gray

soft, gray, silts clay (CR)

Bottom of Hole - Elevation - 521.5 DESCRIPTION 500 1000 1500 2000 8 14 20 SAMPLES UNDISTURBED 무 Bottom of Hole - Elevation - 521.5 - Depth - 70.0 ft. 80 100 120 No gain or loss of water For Water Table information consult Section 4.1.3. 140 160 160 180 200 200 220 240 260 280 300 300 340 Hole backfilled with Quik-Gel and soil SOIL BORING NO._ BECHTEL Belle River

9/1/77 DATE DRILLED: 9/1/77 N 7113 E 11639 CROLND ELEVATION 005(IV (UBS./CU. FT.) 505(154 2 50 60 70 60 90 100 1100 12 2 S-EET ____ 0F_____ NO. BLOWS PER FOOT OR SAMPLE PRESSURE MOISTURE CONTENT (X OF DRY WT.) ATTERBERG LIMITS (PL-LL) 0 10 20 30 40 50 60 70 60 SHEAR(NG STRENGTH (LB5./SQ,FT,) DESCRIPTION Description

Description

Do. 8.* Topsell, &x. brown, dry

O. 8.*4.0 Clayer Silt, yellow to med.

brown, med. dense, dry, trace sand,

trace fine to corarse gravel; routs

(M.)

4.0-17.0' Silty Clay, dx. brown and

gray, mottled, med. stiff to vary

stiff, med. pisaticity, moint, trace

sand, trace fine to coarse gravel (Cl.)

9.0' Med. brown

13.5' Med. stay

17.0-30.0' Clay, med. gray, soft, high

plasticity, moint to wet, trace silt,

trace sand, trace fine gravel (CM)

Anotrom of Hels. Depth 30.0'

Elevation 558.5 500 1000 1500 2000 Hole backfilled with cuttings. 100 12 160 220 300 SOIL BORING NO. B-24

BECHTEL Belle River

9/1/77 DATE DRILLED: 9/1/77 # 6921 Z 11501 GROUND BLEVATION 587.5 DENSITY (LBS./CU. FT.) \$500 53 43 3 LOCATION: SHEARING STRENGTH S-CET 1 OF 1 HOISTURE CONTENT
(% OF DRY MY.)
ATTERBERG LIMITS (PL-LL)
0 10 20 30 40 50 60 70 80 NO, BLOWS PER FOOT OR SAMPLE PRESSURE (LBS./SQLFT.) \$00 1000 1500 2000 DESCRIPTION Hole backfilled with cuttings. 100 120 280 300 340 SOIL BORING NO. B-26

BECHTEL Belle River

DUNN 1978 9/2/77 OATE ORILLED: 9/2/77 H 6539 E 12425 GROUND **ELEVATION** SHEARING STRENGTH HDISTURE CONTENT (% OF DRY MT,) ATTERBERG LIMITS (FL-LL) 0 10 20 30 40 50 60 70 80 S-6227 1 0F 1 NO. BLOWS PER FOOT OR SAMPLE PRESSURE 500 1000 1500 2000 DESCRIPTION

O-1.0' Topsoil, dk. brown, silty, fine to med. gravel, dry (GM)

1.0-5.0' Claysy Silt, dk. brown, med. dense to dense, dry, trace sand, trace fine gravel (ML)

5.0-30.0' Silty Clay, dk. brown, hard to very stiff, dry, med. plasticity, trace sand, trace fine to med. gravel (CL)

13.5' Moist, dipping parting in sample, med. brown with med. gray filling, with roots

19.0-28.5' Med. gray, stiff

23.5' green-brown and gray, mottled 22.5-30.0' Med. gray, med. stiff

Bottom of Hole: Depth 30.0'

Elevation 558.2 DESCRIPTION 22 620 Hole backfilled with cuttings. 100 100 120 140 160 200 220 260 280 300 340 SOIL BORING NO. B-30

BECHTEL Balle River

N 6348 LOCATION: E 12890 9/1/77 DATE DRILLED: 9/1/77 600.0 GROUND ž ELEVATION SHEARING STRENGTH SHEET 1 OF 1 HOISTURE CONTENT (% OF DRY WT.) ATTERBERG LIMITS (PL-LL) 0 10 20 30 40 50 60 70 80 NO. BLOWS PER FOOT OR SAMPLE PRESSURE (LBS,/SQ,FT.) 500 1000 1500 2000 DESCRIPTION 20 40 60 80 100 DESCRIPTION

0-1.0 Topsoil, dk. brown, silty, dry, sandy fill with coarse graval

1.0-6.0 Clayer Silt, green brown, maddense, dry, trace sand (M.)
6.0-30.0 Silty Clay, green brown, very stiff, alight plasticity, moiat, trace sand, trace fine gravel (CL)

13.5 Med. gray, stiff to mad stiff, mad plasticity
28.5-30.0 Med. to high plasticity
Bottom of Hole: Depth 30.0 Blevation 570.0 Hole backfilled with cuttings. 100 100 120 120 140 180 220 240 300 320 SOIL BORING NO. B-32

BECHTEL Balla River

9/2/77 DATE DRILLED, 9/2/77 8 6156 5 13349 CROUND ELEVATION LOCATION SEET 1 OF 1 SHEARING STRENGTH (LBS,/50,FT.) MOISTURE CONTENT (% OF DRY MT..) ATTERSERS LIMITS (PL-LL) 0 10 20 30 40 50 60 70 60 CORE A ND, BLUKS PER FOOT OR SAMPLE PRESSURE 0 20 40 60 60 100 DESCRIPTION 500 1000 1500 2000 Hole backfilled with curtings. 120 DEPTH 200 220 240 260 SOIL BORING NO. 3-34 BECHTEL Belle River

LOCATION: \$ 13:11 9/2/77 DATE DESILED: 9/2/77 SHEARING STRENGTH (LBS./SO.FT.) MOISTURE CONTENT
(# OF DRY NT.)
ATTERSENG LIMITS (FL-LL)
0 10 20 30 40 50 40 70 80 S-EET 1 OF 1 ND, BLOWS PER FOOT OR SAMPLE PRESSURE 00 1000 1500 Z000 0 20 40 60 80 103 DESCRIPTION OESCRIPTION

0-0.4 Iopscil dc. brown dry
0.4-14.0' Sitty Elay, dc. brown and
8fey, mottled, very stiff to med.
stiff, slight plasticity, moist,
trace sand, trace fine gravel (CL)
3.3-5.0' Scattered stringers of
control of the companie
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0.0 Med. brown
1.0-0. Hole backfilled with cuttings, 140 SOIL BORING NO. B-36 SECHTEL Belle River

DUNKTER ⊒ 5774 £ 14272 9/6/77 DATE DRILLED: 9/6/77 GROUND ELEVATION LOCATIONs__ DENSITY (LB5,/CU, FT.) 5 6 7 2 2 2 40 50 60 70 80 90100110 53 2 3 2 CORE RESTHER S-EET __1 OF __1___ SHEARING STRENGTH {LBS./50,FT,} HOISTURE CONTENT (% OF DRY WT.) ATTERSERG LINITS (PL-LL) 10 20 30 40 50 60 70 80 DESCRIPTION 500 1000 1500 2000 20 40 60 80 100 OESCRIPTION

0-0.3 'topool' GR. brown, noist

0.5-13.5' Silty Clay, ned. brown and
gray, motified, ned. stiff, ned.
plasticity, trace sand, trace fine
gravel (CL)
6.0-8.5' Med. brown, very stiff
8.5-13.5' Med. brown, at the
13.5-30.0' Clay, ced. gray, hed.
stiff, high plasticity, noist, trace
stift (righ)
23.5-28.5' Very soft, noist to wet
28.5-30.0' Soft
Settom of Holes Depth 30.0'
Elevation 561.2 Hole backfilled with cuttings. 100 120 120 150 DEPTH 220 SOIL BORING NO. 5-38 BECHTEL Belle River

9/6/77 DATE DRILLED: 9/6/77 GROUND ELEVATION DENSITY (LBS./CU, FT.) 40 50 60 70 80 90100110 637 3 3 S-EET 1 DF 1 SHEARING STRENGTH (LBS./50.FT.) HOISTURE CONTENT
(% OF DRY WT.)
ATTERBERG LIMITS (P.-L.)
0 10 20 30 40 50 60 70 80 Z 0 20 40 60 63 100 DESCRIPTION 500 1000 1500 2000 0-0.4 Topsoil, dx. brown, dry 0.4-17.5? Silvy Clay, ned. brown, ned. stiff to very stiff, ned. plasticity, moist, trace sand, trace fine gravel (CL) 13.5-30.6° Clay, ned. gray, soft to very soft, high plasticity, noist to wet, trace siit (CR) Bottom of Hole: Depth 30.0' Elevation 560.2 Nole backfilled with cuttings. 120 160 200 220 240 260 340 SOIL BORING NO. B-40 BECHTEL Balle River

N 5355 E 12253 9/6/77 DATE DRILLED: 9/6/77 589.9 LOCATION: SHEARING STRENGTH (LBS./SO.FT.) HOISTURE CONTENT (% DF DRY WT.) ATTERSERG LIMITS (PL-LL) 0 10 20 30 40 50 60 70 80 CCAE RE SYMBOL S-EET _1_OF__1_ NO, BLOYS PER FOOT OR SAMPLE PRESSURE 1000 1500 2000 20 40 60 176 2 20 20 DESCRIPTION Hole backfilled with cuttings. 120 DEPTH 260 SOIL BORING NO. 3-42 SECHTEL Balls River

oil:	/Projec	ł Nam-	15				Date Drilling Star	ted:	Data f	Orillina	Complet		Page 1	of 2 Number:
acinty	200			Company	Pollo Div	er Power Plant	2/29/1		Date		9/16	cu.		31828.0003
rillina	Firm:	E Ele	ecure	Company	Drilling Met		Surface Elev. (ft)		Elevation		Total D	epth (Borehole Dia. (
		tock [Orillin	a		Sonic	588.17		591.30	5740750	TATTO	20.0		6/4
oring					off road to th	e S, W of bottom ash basin			001.0		Drilling			0, 1
	4455.7	o =	4000	5546.02			Logged By - A. Driller - A. Gold						TSi 1	5000
41.00	own/Cit		41,443,4	County:		State:	Water Level Obs						1011.	Jocc
			A	5-28-01-0	Clair	1774	While Drilling:		te/Time	4/40/	40.00.40	¥		(ft bgs) (ft bgs) 14.5
SAM	ina To	wisi	пр	SI. (Jian	MI	After Drilling:	Da	te/Time	4/13/	10 00,45		Бери	(II bgs) 14.5
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			LITHOLOGI DESCRIPTION H GRAVEL mostly of a gravel few fine say	ON lay, little to some		aray /	SOSN CL'ML	GRAPHIC LOG	WELL DIAGRAM		OMMENTS
S	60		5—	CLAY r brown (Change Change	/1), mois nostly cla 10YR 5/3 to dark g to soft at	e gravel, few fine sand, medium stiff. y, trace fine to coars), moist, stiff. yray (10YR 4/1), very t 8.0 feet. avel, dark gray (10YF	e gravel, high pl	asticity					4-inch d ground soil bori 6-inch d install m Original due to d Redrille survey l	liameter casing fro surface to termin ng, over-drilled w fiameter casing to nonitoring well. boring abandone compromised screet d and installed abdocation noted abdo 0 feet of original
S	50		15—	(10YR 5	/3), very	soft at 10.0 feet.								
S	100		20-	Change	to dark ç	gray (10YR 4/1) at 20).0 feet.			CL				
			30-											
S	100		35-											
			40 -											

	MPLE	T	70	WELL CONSTRUCTION LOG	w	ELL		MW-16-01 age 2 of 2
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	100		45-	CLAY mostly clay, high plasticity, dark gray (10YR 4/1), moist, soft.				
6 ST	100		50-					
7 CS	100		55-					
8 CS	80		65 —		CL			
9 CS	100		70 – 75 –				NA VA	
			80-					
10 CS	100		85—					
			90	SAND mostly fine sand, dark gray (10YR 4/1), saturated.				
11 CS	100		95 —		SP			
			100	End of boring at 100.0 feet below ground surface.				

acility/Project Nar				Date Drilling Started:	Date		ELL Comple		Page 1 of 2 Project Number:
DIF		Company Belle Riv	er Power Plant	3/14/16	Date		5/16		231828.0003
Orilling Firm:	.iectiic	Drilling Me		Surface Elev. (ft)	TOC Elevation		-	Depth (ft bgs) Borehole Dia. (ir
	Drillin	77.00	Sonic	586.27	588.9		and the second	100.0	
			road, N of bottom ash basins.	Personnel				Equip	100
: 471409.06 I	- 1362	5991 78		Logged By - A. Knul Driller - A. Goldsmit					TSi 150cc
ivil Town/City/or	1.9 m2 to 10.00	County:	State:	Water Level Observa	ations:				
China Town	shin	St. Clair	MI	While Drilling: After Drilling:	Date/Time Date/Time	4/13/	16 09:2		Depth (ft bgs) Depth (ft bgs) 16.07
SAMPLE	Jimp	Ot. Olan		Pater Brining.	Dutorimo	1 10	10 00.2		50ptil (11 593)
AND TYPE RECOVERY (%) BLOW COUNTS	DEPTH IN FEET		LITHOLOGIC DESCRIPTION			nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
S 80 S 100	10 - 15 - 20 - 25 -	plasticity, dark go stiff. Change to no gr	ay, few silt, few coarse ray (10YR 4/1) mottled avel at 7.0 feet.	with brown (10YF		CL			Continuous sampling with 4-inch diameter casing fro ground surface to terminus soil boring, over-drilled with 6-inch diameter casing to install monitoring well.

		11	30		W	ELL	NO.	MW-16-02 Page 2 of 2
NUMBER AND TYPE	RECOVERY (%) 교	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	100		45-	CLAY mostly clay, few silt, few coarse gravel, high plasticity, dark gray (10YR 4/1), moist, very soft.	CL			
6 CS	100		55	SILTY CLAY mostly clay, little to some silt, few fine sand, few fine to coarse gravel, high plasticity, dark gray (10YR 4/1), very soft.				
7 CS	50		65-		CL- ML			
8 CS	100		75-					
9 CS	100		80 — - - - 85 —					
			90-	CLAYEY SILT mostly silt, some clay, few fine sand, few coarse gravel, low plasticity, dark gray (10YR 4/1), moist, very soft.	ML- CL			
10 CS	100		95-	SAND mostly fine to coarse sand, dark gray (10YR 4/1), saturated. Change to fine sand at 96.0 feet.	sw	A K !		
			100	End of boring at 100.0 feet below ground surface.				

Facili	ty/Projec			2	1 /			Date Drilling Started	d:	Date D	Orilling	Complet	ed:	Page 1 Project	Number:
5		LE EI	ectric	Company		ver Power Pla	nt	5/25/16	Tess			1/16			31828.0003
Drillin	g Firm:	took	Drillin		Drilling M	ethod: Sonic		Surface Elev. (ft) 588.03	100	Elevatio 590.66	2.400		Depth (150.0	ft bgs)	Borehole Dia. (in) 6/4
Borin					W of haul r	oad, N of bottom a	sh basins.	Personnel		590.00	,	Drilling			0/4
N: 4	71391.7	78 E:	1362	6202,49				Logged By - J. Re- Driller - A. Goldsm						TSi 1	50cc
Civil '	Town/Ci	ty/or Vi	lage:	County:		State:		Water Level Observ While Drilling:		s: ite/Time				Denti	ı (ft bas)
_	nina T	owns	nip	St.	Clair	M	it	After Drilling:	16.0	42.00.00	6/8/1	6 14:30	. 1		(ft bgs) <u>12.82</u>
SAN	/IPLE														
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET				HOLOGIC CRIPTION				nscs	GRAPHIC LOG	WELL DIAGRAM	С	OMMENTS
1 CS	100		5— 5— 10—	trace gr	CLAY me	ostly clay, som to medium pl ttling, moist, r	lasticity, d	v fine to medium lark gray (10YR v tiff to stiff.	sand 4/1) v	d, with	CL- ML			4-inch of ground soil bori 6-inch of	ous sampling with liameter casing from surface to terminus ng, over-drilled with liameter casing to nonitoring well.
2 CS	100		 15 	CLAY	mostly cl	(10YR 5/1) at ay, few silt, tra ty, gray (10YR	ace to few	fine to medium ist, soft to mediu	sand m sti	<i> J</i>					
3 CS	100		20	Change	e to trace	to few fine to	coarse s	and at 25.0 feet.							
			30 —	onange	7 10 11 400			and at 2500 1550.			CL				
4 CS	100		35 —												
			40 —	Change	e to trace	fine to coarse	e sand at	41.5 feet.							

Checked By: M. Powers

SAM	IPLE							Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	100		45-	CLAY mostly clay, few silt, trace fine to coarse sand, medium plasticity, gray (10YR 5/1), moist, soft to medium stiff.				
			50—					
6 CS	90		55-		CL			
			60-	Change to stiff at 60.5 feet. Change to medium stiff at 62.0 feet.				
7 CS	100		65	SANDY CLAY mostly clay, little to some sand, few silt, gray (10YR 5/1), moist, soft to medium stiff. CLAY mostly clay, few silt, few fine to coarse sand, gray	CL			
			70-	(10YR 5/1), moist, stiff. Change to coal fragments present at 67.5 feet. Change to no coal fragments present at 68.0 feet.	CL			
8 CS	90		75-	1-inch thick interval of silty fine to coarse sand at 75.0 feet.				
			80	SANDY SILT mostly silt, little to some fine to medium sand, gray (10YR 5/1), moist, medium dense. CLAY mostly clay, few silt, few fine to coarse sand, low to medium plasticity, gray (10YR 5/1), moist, stiff.	ML			
9 CS	100		85-					
			90 —	Change to medium soft at 90.0 feet.	CL			
10 CS	100		95 —	Change to few fine gravel from 94.0 to 95.0 feet. Change to trace fine gravel, medium stiff to stiff at 95.0 feet.				
		6	100-					

SAN	MPLE							Page 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
11 CS	100		105-	CLAY mostly clay, few silt, few fine to coarse sand, trace fine gravel, medium plasticity, gray (10YR 5/1), medium stiff to stiff.				
12	100		110-	Change to low plasticity, soft to medium stiff at 111.0 feet.	CL			
12 CS	100		120-					
13 CS	100		125 —	SANDY CLAY mostly clay, little to some fine to medium sand,	CL			
			130-	few silt, trace to few fine gravel, low to medium plasticity, gray (10YR 5/1), moist, medium stiff. SILTY SAND mostly fine to medium sand, little silt, gray (10YR 5/1), moist, loose.	SM			
14 CS	90		135	SAND mostly fine to medium sand, trace silt, gray (10YR 5/1), moist, loose.	SP	1111		
			140	SILTY SAND mostly fine to medium sand, little silt, few clay, gray (10YR 5/1), moist, loose. SAND mostly fine to coarse sand, trace to few silt, trace to few clay, dark gray (10YR 4/1), moist to wet, loose.	SM			
15 CS	100		145		sw			
			150	SILT mostly silt, few clay, trace coarse sand to fine gravel, gray (10YR 5/1), dry to moist, dense to very dense. SHALE weathered shale bedrock, dark gray. End of boring at 150 feet below ground surface.	ML			
			155-					

	100	Name E Ele		Company	Balla Div	er Power Plant	Date Drilling Starte	d: Date		Comple		1 4 4	t Number: 31828.0003
rilling Fi		L LIE	CUIC	Company	Drilling Me		Surface Elev. (ft)	TOC Elevat			Depth (ft bgs)	Borehole Dia. (in
		ock E	rillin	q		Sonic	587.50	590.5	107.0	100	130.0	00 2200	6/4
oring Lo		3.10		T	of road, S of	f bottom ash basins.	Personnel			Drilling	Equip	ment:	
1: 4708	393.74	E:	1362	5876.34			Logged By - A. Kr Driller - A. Goldsm					TSi 1	50cc
ivil Tow				County:		State:	Water Level Obser	The state of the s					
China	а То	wnsh	qi	St.	Clair	MI	While Drilling: After Drilling:	Date/Time Date/Time	4/13/	16 09:3	Y	Dept	h (ft bgs) h (ft bgs) <u>13.9</u>
SAMPL	_							771, 4072					
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	CL AV		LITHOLOG DESCRIPTI	ON		nscs	GRAPHIC LOG	WELL DIAGRAM	c	COMMENTS
S	80		5—	gray (10	YR 4/1)	ay, few coarse grave mottled with brown (avel at 1.0 feet.	ll, high plasticity, da 10YR 5/3), very sti	ark ff.				4-inch ground soil bo 6-inch	uous sampling with diameter casing fror I surface to terminus ring, over-dilled wid diameter casing to monitoring well.
5 1	100		15—	100000		t 10.5 feet. gray (10YR 4/1), ver	y soft at 12.0 feet.						
3 1	100		25-						CL				
s 1	100		35-										

Checked By:

	9	T	R C	WELL CONSTRUCTION LOG	W	ELL		MW-16-04 Page 2 of 3
SAM	1PLE							
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
S	100		45	CLAY mostly clay, high plasticity, dark gray (10YR 4/1), very soft.				
SS	100		55	Change to few coarse gravel at 60.0 feet.	CL			¥ **
r S	100		65—					
B.S.	100		75-	SILTY CLAY mostly clay, little to some silt, trace fine sand, medium plasticity, dark gray (10YR 4/1), very stiff.	CL- ML			
.5				SILT mostly silt, trace to few fine sand, non plastic, dark gray (10YR 4/1), saturated, stiff.	ML			
			80	SAND mostly fine sand, few medium to coarse sand, dark gray (10YR 4/1), moist. SANDY CLAY mostly clay, some fine sand, high plasticity,	SP			
S	100		85—	dark gray (10YR 4/1), moist. SILTY CLAY mostly clay, some silt, high plasticity, dark gray (10YR 4/1), stiff.	CL- ML			
				CLAYEY SILT mostly silt, some clay, low plasticity, dark gray (10YR 4/1), stiff.	ML- CL			
			90 -	SILTY CLAY mostly clay, some silt, high plasticity, dark gray (10YR 4/1), stiff.				
0 \$	100		95-		CL- ML			
			100	CLAY mostly clay, high plasticity, dark gray (10YR 4/1), very		1	# 1	

SAN			RC		W	ELL		/IW-16-04 age 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
11 CS	100		105-	CLAY mostly clay, high plasticity, dark gray (10YR 4/1), very soft.	CL			
1			110-					
12 CS	100		115-	SILT mostly silt, few fine sand, nonplastic, dark gray (10YR 4/1), saturated, stiff.	ML			
			120 —	SAND mostly fine sand, dark gray (10YR 4/1), saturated.				
13 CS	100		125		SP			
+			130	End of boring at 130.0 feet below ground surface.				
			135 —					
			140-					
			145 —					
			150 —					
			155					

									4		ELL		Page 1	of 3
acilit	y/Projec			2000		A STATE OF THE STATE OF	Date Drilling Starte	ed:	Date I	100	Complet	ted:	100	t Number:
>=:III:==		EE	ectric	Company		ver Power Plant	3/3/16	Too	Flouration	17-10-1	/16	Conth (31828.0003
rilling	g Firm:	1 . 1	- :::::-		Drilling Me		Surface Elev. (ft)	100	Elevatio		Total I	эертп (150.0		Borehole Dia. (in
Soring			Orillin	g naul road, W.d	of diversion l	Sonic	588.32 Personnel	4	590.82			Equip		6
				6342.79	or diversion i	Sasiii.	Logged By - A. K Driller - A. Golds				Drinning.	, Equip	TSi 1	50cc
	Town/Cit			County:		State:	Water Level Obse	rvations						
Ch	ina To	ownsl	ain	St.	Clair	MI	While Drilling: After Drilling:		te/Time te/Time	4/13/	16 09:5	5 1		h (ft bgs) h (ft bgs) 14.37
	1PLE													
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			LITHOLOG DESCRIPT	TION			nscs	GRAPHIC LOG	WELL DIAGRAM	C	COMMENTS
11 055	80		5—	gravel, very sti CLAY dark gra hard. Change	high plas ff. mostly cla ay (10YR e to no gr	AVEL mostly clay, for sticity, dark grayish be ay, few fine to coars 4/1) mottled with be avel, very stiff at 4.0 gray (10YR 4/1), ve	prown (10YR 4/2), lee gravel, high plas rown (10YR 5/3), m D feet.	noist, ticity, toist,		CL			ground soil boil 6-inch	uous sampling with diameter casing fron I surface to terminus ring, over-drilled with diameter casing to monitoring well.
22 SS	100		15—	Change	e to medi	um stiff at 26.0 feet.				CL				
4 CS	100		35-	Chang	e to very	soft at 28.0 feet.								

C. Scieszka Checked By:

	9.	T	RC	WELL CONSTRUCTION LOG	w	ELL		MW-16-05 Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	100		45-	CLAY mostly clay, high plasticity, dark gray (10YR 4/1), moist, very soft.	CL			
6 ST	100		50-	SILTY CLAY mostly clay, little to some silt, medium plasticity, dark gray (10YR 4/1), very soft. CLAY mostly clay, high plasticity, dark gray (10YR 4/1), moist, very soft.	CL- ML			
7 CS	100		55 —		CL			
			60-	Change to few fine to coarse gravel at 60.0 feet.				
8 CS	100		65-	Change to medium stiff at 65.0 feet. Change to stiff at 67.5 feet.				
q			70	SILTY CLAY mostly clay, some silt, few fine to coarse gravel, high plasticity, very dark gray (10YR 3/1), very stiff.				
cs	100		75 —	Change to low plasticity, black (10YR 2/1), hard at 77.0 feet.	CL-			
10 CS	60		80 — - - 85 —	Change to few to little fine sand at 85.5 feet.	ML	***************************************		
			90 -	CLAY mostly clay, few coarse gravel, high plasticity, dark gray (10YR 4/1), moist, very soft.	-			
11 CS	100		95—	Change to medium stiff at 93.5 feet.	CL			
			100	Change to soft at 97.5 feet.				

SAN			RO		W	ELL NO	D. MW-16-05 Page 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	COMMENTS
12 CS	100		105-	CLAY mostly clay, few coarse gravel, high plasticity, dark gray (10YR 4/1), moist, soft.			
			110-				
13 CS	100		- 115—				
			120— - - -		CL		
14 CS	100		125—				
N N			130-				
15 CS	100		135	CLAYEY SILT mostly silt, some clay, medium plasticity, dark gray (10YR 4/1), wet, medium stiff.			
			140	SHALE dark gray (10YR 4/1), dry.	ML- CL		
16 CS	90		145—	sain graf (10 11) 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/			
			150	End of boring at 150.0 feet below ground surface.			
			- 155 —				

acilit	y/Projec			Company	Belle Riv	ver Power P	lant	Date Drilling Started	t	Date D		Complet			t Number: 31828.0003
Orilling	Firm:		20110	Company	Drilling Me		ionit.	Surface Elev. (ft)	тос	Elevatio	MANUFACTURE DE	MISCHAEL STREET	Depth (ft bgs)	Borehole Dia. (in)
			Drillin			Sonic		589.98		593.21	1		140.0		6
				of road conn	ecting to ha	ul road, E of div	ersion basin.	Personnel Logged By - A. Kn Driller - A. Goldsm				Drilling	Equip	ment: TSi 1	50cc
Civil T	own/Cit	y/or Vil	age:	County:		State:		Water Level Observ		: te/Time				Depti	n (ft bgs)
Ch	ina To	ownsh	nip	St.	Clair		MI .	After Drilling:			4/13/	16 10:01	_ ¥		n (ft bgs) _14.45
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			DE	THOLOGIC SCRIPTION				nscs	GRAPHIC LOG	WELL DIAGRAM	С	OMMENTS
1 S	50		5—	Sand, b	rown (10 mostly cla with brow	YR 5/3), mo	vist, dense. sticity, dark /3), moist, v							ground soil bor 6-inch	ious sampling with diameter casing fron surface to terminus ing, over-drilled with diameter casing to nonitoring well.
2 S	100		15—	Change ▼Change	to dark to very	gray (10YR soft at 13.0	4/1), stiff at feet.	12.0 feet.							
3 :S	100		25 —								CL				
4	100		30												
			40 —												

hecked By C. Scieszka

	G.	T	RO	WELL CONSTRUCTION LOG	W	ELL		MW-16-06 Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	100		45 —	CLAY mostly clay, few coarse gravel, high plasticity, dark gray (10YR 4/1), moist, very soft.	TANK Y			
6 CS	100		55—		CL			
7 CS	100	-	65 —					
-			70-	SILTY CLAY mostly clay, some silt, medium plasticity, dark gray (10YR 4/1), moist, medium stiff.	CL- ML			
ы			-	SAND mostly fine sand, few coarse sand, dark gray (10YR 4/1), moist.	SP			
8 CS	100		75-	SILTY CLAY mostly clay, some silt, medium plasticity, dark gray (10YR 4/1), moist, medium stiff.			VA VA	
9 CS	80		85—		CL- ML			
			90 -	CLAY mostly clay, high plasticity, dark gray (10YR 4/1), moist, very soft.				
10 CS	70		95 —		CL			
			100-					

600			RO		w	ELL		WVV-16-06 Page 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
11 CS	100		105	CLAY mostly clay, high plasticity, dark gray (10YR 4/1), moist, very soft.				
			110-		CL			
12 CS	100		115-					
			120-					
13 CS	100		125	SILTY CLAY mostly clay, some silt, medium plasticity, dark gray (10YR 4/1), moist, medium stiff.	CL- ML			
			130-	SILT mostly silt, dark gray (10YR 4/1), saturated, very soft.	ML			
14 CS	100		135 —	SHALE dark gray (10YR 4/1), hard, brittle.	ML			
			140	End of boring at 140.0 feet below ground surface.				
			145 — - - - - 150 —					
			155—					
14 CS			-					

acility	//Projec						Date Drilling Starter	d:	Date (1	Complet	ted:	Page 1	of 3 ot Number:
		EEle	ectric	Company		er Power Plant	3/8/16				/16			31828.0003
rilling	Firm:				Drilling Me		Surface Elev. (ft)		Elevatio				(ft bgs)	Borehole Dia. (ii
	200	tock [Sonic	589.89		592.58	3		140.0		6
oring	Location	on: 32	6 feet S	of road conn	ecting to hau	ul road, E of diversion basin.	Personnel Logged By - A. Kr	nutson			Drilling	Equip	ment:	
: 47	0233.4	7 E:	1362	6858.79			Driller - A. Goldsm						TSi 1	50cc
vil T	own/Cit	y/or Vil	age:	County:		State:	Water Level Obser		e/Time				Dane	b /# b \
Chi	ina To	ownsh	qip	St.	Clair	MI	While Drilling: After Drilling:		e/Time	4/13/	16 11:56	3		h (ft bgs) h (ft bgs) <u>14.1</u>
SAM	_													
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			LITHOLOGIC DESCRIPTIO	N			nscs	GRAPHIC LOG	WELL DIAGRAM	c	COMMENTS
	60		5	(10YR !	5/3) mottle	ay, few coarse gravel, ed with dark gray (10\ gray (10YR 4/1) mottle	/R 4/1), very stiff.		3)				4-inch ground soil bo 6-inch	uous sampling with diameter casing fro I surface to terminu ring, over-drilled wit diameter casing to monitoring well.
	100		15-	10000		gray (10YR 4/1) at 11 , very soft at 13.0 fee								
6	100		25 —							CL				
6	100		35-											

SAN	PLE		RC				F	Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	100		45-	CLAY mostly clay, few coarse gravel, high plasticity, dark gray (10YR 4/1), moist, very soft.	CL			
6 ST	100		50 —					
7 CS	100		55 —	SILTY CLAY mostly clay, little silt, high plasticity, dark gray (10YR 4/1), moist, soft.	CL- ML			
8 CS	100		65	CLAYEY SILT mostly silt, little to some clay, few fine to coarse sand, low plasticity, dark gray (10YR 4/1), moist.	ML- CL			
cs	100		-	SAND mostly fine to coarse sand, dark gray (10YR 4/1), moist, loose. CLAYEY SILT mostly silt, little to some clay, few fine to coarse sand, low plasticity, dark gray (10YR 4/1), moist. SILTY CLAY mostly clay, little silt, high plasticity, dark gray	ML- CL			
9 CS	100		70-	(10YR 4/1), moist, soft. Change to few coarse gravel at 70.0 feet.				
			80-					
10 CS	100		85 —		CL- ML			
			90-					
11 CS	100		95—					
			100-					

SAM			RO		VV	CLL		MW-16-07 age 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
12 CS	100		105 -	SILTY CLAY mostly clay, little silt, high plasticity, dark gray (10YR 4/1), moist, soft.				
1			110-					
13 CS	80		115		CL- ML			
			120-					
14 CS	100		125-					
İ			130-	SILT mostly silt, no plasticity, dark gray (10YR 4/1), saturated, loose.	ML			
15 CS	100		135—	SHALE dark gray (10YR 4/1), brittle, hard.				
			140	End of boring at 140.0 feet below ground surface.				
			145—					
			150					
			155—					1

				Company		ver Power Plant	Date Drilling Start			3/10	Complet	ed:	Page 1 of 3 Project Number: 231828.0003
Drilling	g Firm:	tock	Drillin	o.	Drilling Me	ethod: Sonic	Surface Elev. (ft) 589.31	100	Elevation 591.88			eptn (140.0	ft bgs) Borehole Dia. (in)
Boring		100000000000000000000000000000000000000		7	nnecting to I	haul road, E of diversion be	sin. Personnel	1	001.00		Drilling		
V: 47	70002.9	00 E:	1362	6846.85			Logged By - A. In Driller - A. Golds						TSi 150cc
Civil T	own/Cit	y/or Vi	llage:	County:		State:	Water Level Obse While Drilling:		: te/Time				Depth (ft bgs)
_	ina To	owns	hip	St.	Clair	MI	After Drilling:		te/Time	4/13/	16 12:00		Depth (ft bgs) 13.19
SAN	IPLE												
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			LITHOLOG DESCRIPT	ION			nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
				plasticit	WITH GR. ty, dark g very stiff.	AVEL mostly clay, li ray (10YR 4/1) mott	ittle coarse gravel, led with brown (10	high YR 5/3	3),	CL			Continuous sampling with 4-inch diameter casing from ground surface to terminus soil boring, over-drilled with 6-inch diameter casing to install monitoring well.
1	50		5-	CLAY mottled	mostly cl I with bro	ay, high plasticity, d wn (10YR 5/3), mois	ark gray (10YR 4/1 st, very stiff.)					is an inclinary well.
I			10-	Change ▼	e to dark	gray (10YR 4/1), ve	ry soft at 10.0 feet	ko .		13.88			
2 CS	100		15-										
			20-										
3 CS	100		25 —							CL			
			30-										
4	100		35-										
			40-										

SAM			R C					MW-16-08 age 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	100		45-	CLAY mostly clay, high plasticity, dark gray (10YR 4/1), moist, very soft.				
			50 —					
6 CS	100		55—		CL			
			60-		CL			
7 cs	80		65—					
			70	SILTY CLAY mostly clay, some silt, few coarse gravel, high plasticity, dark gray (10YR 4/1), moist, soft.				
8 CS	100		- 75-				1/1 1/1	
			80-					
9 CS	100		85-		CL- ML			
			90-					
10 CS	60		95-					
			100 —					

SAM	IPLE						P	age 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
11 CS	100		105-	SILTY CLAY mostly clay, some silt, few coarse gravel, high plasticity, dark gray (10YR 4/1), moist, soft. Change to few fine sand at 105.5 feet.				
12 CS	100		110-	Change to no sand at 110.0 feet.	CL- ML			
13 CS	100		125					
14 CS	100		135	SILT mostly silt, dark gray (10YR 4/1), saturated, very soft. SHALE dark gray (10YR 4/1), brittle, hard.	ML			
			140	End of boring at 140.0 feet below ground surface.				
			150—					

acilit	y/Projec						Date Drilling		ŧ	Date Dr	100	196.50	ed:	1000	Number:
		EE	ectric	Company		ver Power Plant		/16				/16			1828.0003
Orilling	g Firm:	Caralla I	S. 101	2	Drilling M		Surface Elev		1	Elevation	(ft)	P. V.		Section 1	Borehole Dia. (in
orino			Drillin	g m ash basins,	F of haul re	Sonic	588.2 Personnel	8		590.80			150.(Equit	oment:	6
l: 47	1284.4	5 E:	1362	6365.84	L of fidal fi		Logged By Driller - A.						- ago	TSi 15	0cc
ivil T	own/Cit	y/or Vi	lage:	County:		State:	Water Level While Drilli			/Time				Depth	(ft bgs)
Ch	ina To	owns	nip	St.	Clair	MI	After Drillin	-			3/9/1	6 15:13	1	Depth	
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			LITHOL DESCRI	OGIC PTION				nscs	GRAPHIC LOG	WELL DIAGRAM	CC	OMMENTS
				sand, tr	CLAY me	ostly clay, little to ew fine gravel, low st, stiff.	some silt, few fin plasticity, dark g	e to co	oarse n brow	m l	CL- ML			4-inch dia ground s soil borin 6-inch dia	us sampling with ameter casing fro urface to terminu g, over-drilled with ameter casing to unitoring well.
6	75		5-			ay, few silt, trace ty, gray (10YR 5/1		rse sa	and,						The state of the s
			10-												
S	85		15-	<u>¥</u>											
			20-												
S	100		25-								CL				
5	100														
			30-	Change	e to trace	e to few fine grave	I at 30.0 feet.								
S	100		35-												
			40-												

SAN	/PLE							Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	SOSN	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	100		45 — 50 — 55 — 60 —	CLAY mostly clay, few silt, trace to few fine to coarse sand, trace to few fine gravel, medium plasticity, gray (10YR 5/1), moist, soft. Change to soft to medium stiff at 50.0 feet.				
6 CS	100		70-	Change to soft at 70.0 feet.	CL			1
7 CS	100		80-	Change to medium stiff to stiff at 80.0 feet. Change to stiff at 85.0 feet.				

SAM	IPLE							age 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
8 CS	75		105-	CLAY mostly clay, few silt, trace to few fine to coarse sand, trace to few fine gravel, medium plasticity, gray (10YR 5/1), moist, stiff. Change to medium stiff at 105.0 feet.				
9 OS	80		110-					
			120		CL			
			125-					
10 CS	100		130					
1			135-	SAND mostly fine sand, trace silt, dark gray (10YR 4/1), moist, loose.				
			140-	SAND WITH GRAVEL mostly fine to coarse sand, little to	SP			
11 CS	80		145—	some fine to medium gravel, trace to few silt, trace to few clay, dark gray (10YR 4/1), moist to wet, loose.	sw	D a 0		
			150	SHALE weathered, gray (10YR 5/1), brittle. End of boring at 150.0 feet below ground surface.				
			155					

Facility	y/Projec							Date Drilling Sta		Date I		Comple		700	: Number:
Deillin -	D7 Firm:	EE	ectric	Company	Belle Riv	ver Power	Plant	6/2/1 Surface Elev. (f		C Elevatio		/16	Donth (ft bgs)	31828.0003 Borehole Dia. (in)
Drilling		tock l	Orillin	a	Drilling Me	etnoa: Sonia		589.25) 10	592.26			150.C	100	6
Boring				9 naul road, W/N	W of divers		2	Personnel		002.20			Equip		-
N: 47	0532.5	4 E:	1362	6417.00				Logged By - J. Driller - A. Gold						TSi 1	50cc
	own/Cit			County:		State:		Water Level Ob	servation						
Ch	ina To	ownsl	nip	St.	Clair		MI	While Drilling: After Drilling:		ite/Time ite/Time	6/9/1	6 07:45	Ţ		(ft bgs) (ft bgs) <u>15.30</u>
SAM	PLE					1								1	
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET				ITHOLOG ESCRIPTIO				nscs	GRAPHIC LOG	WELL DIAGRAM	С	OMMENTS
1 :S	50		5— - - - - - -	CLAY in dark gra	mostly cla	ay, few silt wn (10YR	, trace to fe 4/2), moist	ew fine to coarse, medium stiff to	e sand, stiff.					ground soil bor 6-inch	ous sampling with liameter casing from surface to terminus ng, over-drilled with liameter casing to nonitoring well.
2 SS	90		15— 	Change Change	e to gray e to soft t	(10YR 5/1 o medium) at 11.0 fe stiff at 12.0	et.) feet.							
3 CS	95		25 — 	Change	e to soft a	at 25.0 fee	t.				CL				
4	100		30 —	Change	e to dark	gray (10Y	R 4/1) at 3:	nedium stiff at 3 2.0 feet.	0.0 fee	L					
4 cs	100		35 — - - - 40 —	Change	e to soft a	at 35.0 fee	t.								

	2	T	RO	WELL CONSTRUCTION LOG	w	ELL		MW-16-10 Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	100		45	CLAY mostly clay, few silt, trace to few fine to coarse sand, dark gray (10YR 4/1), moist, soft.				
6 CS	100		55-		CL			
7 CS	100		65					
8 CS	100		70	CLAY WITH SAND mostly clay, little fine to coarse sand, few silt, trace gravel, dark gray (10YR 4/1), moist, very stiff. Change to few to little medium to coarse sand, low to medium plasticity, stiff at 75.0 feet.	CL			
			80-	CLAYEY SAND mostly fine to coarse sand, some clay, dark grayish brown (10YR 4/2), moist, medium dense. SAND mostly fine to medium sand, dark grayish brown (10YR)	sc			
9 CS	100		85-	4/2), moist, loose.	SP			
10 CS	100		90-	SANDY CLAY mostly clay, little to some fine to coarse sand, few silt, medium plasticity, dark grayish brown (10YR 4/2), moist, medium stiff to stiff.	CL			
			100	CLAY WITH SAND mostly clay, little fine to coarse sand, few silt, medium plasticity, dark grayish brown (10YR 4/2), moist, medium stiff to stiff.	CL			

SAM	PLE							Page 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
11 CS	100		105-	CLAY WITH SAND mostly clay, little fine to coarse sand, few silt, medium plasticity, dark grayish brown (10YR 4/2), moist, medium stiff to stiff.	CL			
12			110	SANDY CLAY mostly clay, little to some fine to coarse sand, few silt, medium plasticity, dark grayish brown (10YR 4/2), moist, medium stiff. SAND mostly medium to coarse sand, dark gray (10YR 4/1), moist, loose.	CL SP			
12 CS	100		115	CLAY mostly clay, little sand, few to little silt, dark gray (10YR 4/1), moist, stiff.				
13 CS	95		125					
			130		CL			
14 CS	95		135-					
15 CS	50		140 —	CDAVELLY SULT. months with name fire to accord ground for				
55			150	GRAVELLY SILT mostly silt, some fine to coarse gravel, few clay, few sand, low to medium plasticity, dark gray (10YR 4/1), moist, soft. SILTY CLAY hard, dark gray (10YR 4/1), hardpan, brittle. SHALE dark gray. End of boring at 150.0 feet below ground surface.	ML CL- ML			
			155—					
			160-					

acility		t Name		Componi	Pollo Di	ver Power Plant	Date Drilling Starte 6/3/16	ed: Da	ate Drilling	Complete	d:		Number: 1828.00	003
Drilling	Firm:	EER	ecinc	Company	Drilling Me		Surface Elev. (ft)	TOC Elev		Total De	epth (ft		Borehole D	
		tock I	Drillin	g	2000	Sonic	589.03		1.54	100000	150.0 6			
Boring	Location	on: S	of haul	road, W of di	version basi	1.	Personnel Logged By - J. R	and		Drilling I	Equipn	nent:		
N: 47	0251.3	4 E:	1362	6438.92			Driller - A. Golds					TSi 15	Осс	
Civil T	own/Cit	y/or Vil	lage:	County:		State:	Water Level Obse While Drilling:	ervations: Date/Tir	me			Depth	(ft bgs)	
Ch	ina To	ownsl	nip	St.	Clair	MI	After Drilling:		me <u>6/21/</u>	16 07:45	Ā	Depth		14.47
SAM	PLE													
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			LITHOLOG DESCRIPT			nscs	GRAPHIC LOG	WELL DIAGRAM	CC	DMMEN	TS
I S	50		5— 	to med	mostly cl ium plast	ay, few silt, trace to icity, dark grayish but grayish but gravel at 8.0 feet.	few sand, few grav rown (10YR 4/2), m	el, low noist, stiff.				4-inch die ground s soil borin 6-inch die	us sampling ameter casin urface to ten g, over-drille ameter casin onitoring well	ng from minus ed with ng to
S	70		 15 			(10YR 5/1) at 12.0 f avel at 13.0 feet.	feet.							
5	90		20	Chang	e to medi	um stiff at 21.0 feet			CL					
			30-											
4:5	90		35 — -	Chang	e to soft	o medium stiff at 34	4.5 feet.							
			40-											

Checked By:

	2		RC		W	ELL		WW-16-11 Page 2 of 3
SAM	/IPLE					L		
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
5 CS	90		45 —	CLAY mostly clay, few silt, trace to few sand, medium plasticity, gray (10YR 5/1), moist, soft to medium stiff.				
			50-	Change to medium stiff at 49.0 feet.				
6 CS	100		55-					
			60-	Change to soft at 60.0 feet.				
7 CS	100		65 —					
			70-	Change to trace gravel, soft to medium stiff at 70.0 feet.				
8 CS	100		75—	Change to medium stiff at 75.0 feet.	CL			
			80-					
9 CS	90		85-					
			90					
10 CS	90		95—	Change to medium stiff to stiff at 95.0 feet.				
			100-					

SAM	IPI F		RO		W	ELL		MVV-16-11 age 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
11 CS	85		105-	CLAY mostly clay, few silt, trace to few sand, trace gravel, low to medium plasticity, gray (10YR 5/1), moist, medium stiff to stiff.				
12 CS	80		110-	Change to medium stiff at 110.0 feet.				
			120 —		CL			
13 CS	85		125-					
14 CS	90		130-					
		ć.	140	SANDY CLAY mostly clay, some fine sand, few silt, dark gray (10YR 4/1), moist. CLAY mostly clay, few silt, trace to few sand, trace gravel, low	CL			
15 CS	90		145—	to medium plasticity, gray (10YR 5/1), moist, medium stiff. SHALE dark gray.				
		9 11	150	End of boring 150.0 feet below ground surface.				
			155—					

Drilling Firm: Stock Drilling Sonic Sep.5 Sep	Facili	ty/Proje						Date Drilling Starte		ate Drilling		ed: Proje	1 of 2 ect Number:
Stock Drilling Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence. Roring Location: North of feet oil tank number 2, between berm and fence with the feet oil tank number 2, between 2, be	Detre			ectric	Company								231828.0003
Boding Location: North of fuel oil tark number 2, between berm and fence. Personnel Logged By - J. Krenz Driller - A. Goldsmith TSI 150Cc Criol Town/Citylor Village. County: St. Clair MI State: Water Lovel Observations While Drilling: DaterTime After Drilling: DaterTime St. Clair LITHOLOGIC DESCRIPTION See Solve State LITHOLOGIC DESCRIPTION COMMEN Drillir			Dem		Drilling M			77 - 77 - 77	5-7-6-16-63	75000 41	5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12.500.00	
Logged By - J. Krenz Driller - A. Goldernith Driller - A. Goldernith St. Clair St. Clair MI MI Alter Drilling: Date-Time After Drilling: Date-Time A	Borin				~	mhor 2 hot		A CONTRACTOR OF THE PARTY OF TH	59	1.66		11111111111	6
County: China Township St. Clair St. Clair MI Meter Descriptions White Distinct After Drilling: Destrine After Drilling: Destrine After Drilling: Destrine After Drilling: Destrine After Drilling: Destrine After Drilling: Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft bgs) Depth (ft b	BOLILI	y Locali	on. iv	orar or r	uei oli talik ilui	mber 2, bet	ween berm and lence.	Logged By - J. K			Drilling		150cc
China Township SMMPLE SMMPLE LITHOLOGIC DESCRIPTION LITHOLOGIC DESCRIPTION COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN Continuous sampling Grayish brown (10YR 4/2), motified with dark yellowish brown (10YR 4/6), medium sliff, moist, plant roots to 0.5 feet. Change to high plasticity, gray (10YR 5/1), soft at 19.0 feet. CLA CLA To A To To To To To To To To	Civil '	Town/Ci	ty/or V	illage:	County:		State:	Water Level Obse	ervations:	me			
LITHOLOGIC DESCRIPTION Service of the service of t			owns	hip	St. (Clair	MI				/17 08:38		
CLAY mostly clay, trace gravel, medium plasticity, dark grayish brown (10YR 4/2), motited with dark yellowish brown (10YR 4/6), medium stiff, moist, plant roots to 0.5 feet. Confinuous sampling d-inch dameter cash grayish brown (10YR 4/6), medium stiff, moist, plant roots to 0.5 feet. Confinuous sampling d-inch dameter cash graying d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-inch d-	O/ 11												
grayish brown (10YR 4/2), mottled with dark yellowish brown (10YR 4/6), medium stiff, moist, plant roots to 0.5 feet. Continuous semings of the plant roots to 0.5 feet. Continuous seming	AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			DESCRIPT	ION		nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
Change to high plasticity, gray (10YR 5/1), soft at 19.0 feet.	S	90			grayish	brown (1	IOYR 4/2), mottled w	ith dark yellowish b	k orown			4-inch ground soil bo 6-inch	diameter casing from d surface to terminute oring, over-drilled with diameter casing to
S 70 30 CL CL S 100 S0 - S0 - S0 - S0 - S0 - S0 - S0	S	60		10-	_								
S 100 S 100	S	70		20-	Change	to high (plasticity, gray (10YI	R 5/1), soft at 19.0	feet.				
S 100 50 - S 100 S	Ì			30 —						CL			
50 100 50 - S 100 S	S	70		-									
50-				40-									
5 100	5	100		4									
				50 —									
	6	100		-									
				60 —									

SAI	MPLE							Page 2 of 2
NUMBER AND TYPE		BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
CS	100		1	CLAY mostly clay, trace fine to medium gravel, high plasticity, gray (10YR 5/1), medium stiff, moist.				
1			70-	Change to few fine to coarse gravel at 70.0 feet.				
8 CS	100							
			-					
			80-	Change to trace fine sand at 80.0 feet.				
9 CS	90							
			90-					
10 CS	70		-					
CS	.70.							
			100-		CL			
11 CS	100							
			110-					
			-					
12 CS	100							
4			120-					
13	100							
,0				Change to trace medium to coarse gravel at 126.0 feet.				
			130-					
14 CS	60			SILT mostly silt, trace clay, dark gray (10YR 4/1), dense,			10.00	
15	100		140	saturated. SILTY CLAY mostly clay, some silt, few to little fine to coarse	ML CL-			
15 CS	100		+	gravel, medium to low plasticity, dark gray (10YR 4/1), moist, medium stiff, inclusions of shale bedrock.	ML	XX	H	
			2	BEDROCK shale, weathered, gray (10YR 4/1). End of boring at 142.0 feet below ground surface.				

		TF	70			SOIL BOI	RING LOG		вог	RING		SB-16-01 Page 1 of 3
acility	//Projec			Company	C.	ver Power Plant	Date Drilling Starte			/16	ed:	Project Number: 231828.0003
rilling	Firm:				Drilling Me		Surface Elev. (ft)	TOC	Elevation (ft)	Total D	A STATE OF THE STA	bgs) Borehole Dia. (ir
		tock [*		Sonic	588.69	3			50.0	6
				E connecting 3276.67	road off hau	l road, E of bottom ash basins.	Personnel Logged By - A. Kr Driller - A. Goldsn			Drilling	Equipn	TSi 150cc
ivil T	own/Cit	y/or Vill	age:	County:		State:	Water Level Obser While Drilling:		: e/Time			Depth (ft bgs)
Ch	ina To	ownsh	nip	St.	Clair	MI	After Drilling:		e/Time			Depth (ft bgs)
SAM	PLE						THE MAN AND THE					17.7
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			LITHOLOG DESCRIPTI	NC			nscs	GRAPHIC LOG	COMMENTS
	50		5-	fine sar (10YR : CLAY	nd, high p 5/3), mois mostly cla	AVEL mostly clay, little plasticity, dark gray (10\) st, very stiff. ay, trace fine sand, high h brown (10YR 5/3), mo	'R 4/1), mottled plasticity, dark	with I	prown	CL		Continuous sampling with 4-inch diameter casing fro ground surface to terminus soil boring, over-drilled with 6-inch diameter casing to to depth.
6	100		10-			at 10.0 feet. and, dark gray (10YR 4/	1), very soft at	13.0 fo	eet.			
	100		20-							CL		
			30-									
S	100		35 -									
Sign												

	SOIL BORING LOG BORING NO. SB-16-01 Page 2 of 3						
NUMBER SAND TYPE BLOW COUNTS		RECOVERY (%) HG BLOW COUNTS DEPTH IN FEET		LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	COMMENTS
5 CS 6 ST	100	ш	45-	CLAY mostly clay, high plasticity, dark gray (10YR 4/1), moist, very soft.	CL		
7 CS	100		55—	CLAY WITH SAND mostly clay, little fine to coarse sand, high plasticity, dark gray (10YR 4/1), moist, very soft. CLAY mostly clay, high plasticity, dark gray (10YR 4/1), moist, very	CL/		
8 CS	100		65	SANDY SILT mostly silt, little to some fine to coarse sand, few clay, low plasticity, dark gray (10YR 4/1), moist, stiff.	CL		
9 CS	100		70-	CLAY mostly clay, few fine to coarse gravel, dark gray (10YR 4/1), moist, medium stiff. Change to no gravel, soft at 72.5 feet.			
10 CS	100		80-	Change to few coarse gravel at 80.0 feet.	CL		
11 CS	100		90 —				
			100-				

BORING NO. SB Page SAMPLE							
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION CLAY mostly clay, few coarse gravel, dark gray (10YR 4/1), moist,	nscs	GRAPHIC LOG	COMMENTS
12 CS	100		105-	soft.			
			110-				
13 CS	100		115—		CL		
-			120-				
14 CS	100		125 —				
			130-				
15 CS	100		135—	SILT mostly silt, few fine sand, non plastic, dark gray (10YR 4/1), moist.	ML		
			140 —	SHALE dark gray (10YR 4/1), dry.			
16 CS	100		145 —	STALE VAIN GIAY (TOTA 4/1), VIIV.			
			150	End of boring at 150.0 feet below ground surface.			
			155 —				ů.

Boring B-1									
Drilling Start Date:	12/8/2020	Boring Depth (ft):	100						
Drilling End Date:	12/9/2020	Boring Diameter (in.)	4.25						
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby	Shelby Tube, Grab Sample					
Drilling Method:	Sonic	GW During Drilling (ft bgs):		-					
Drilling Equipment:	600T	GW After Drilling (ft bgs):		-					
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	592.8						
Logged By:	Brian Ares	Northing, Easting (MI State Plane):	471073.109	13626167.862					

				rorting, Eusting (Mr State Faire).		
DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
0	592.8			Lean CLAY - brown, hard, dry	4.5	Gravel road at surface
	587.8	6'/7'	B-1-1 (3')	Gravely SAND - brown, poorly graded, fine gravel, coarse sand, silt, dry	4.5	
	507.0					
			B-1-2 (6')	Lean CLAY - brown, hard, dry		
	_	100%	B-1-ST-1			
10	582.8	3'/3'	B-1-3 (10')	Same as above	4.5	
15	577.8	6'/7'	B-1-4 (15')	Very stiff from 14 to 16 ft.	2.5	
				Lean CLAY - Gray, soft - medium stiff, moist	0.5	
20	572.8	100%	B-1-ST-2			
			B-1-5 (22')	Same as above	0.5	
25	567.8	6'/6'	B-1-6 (25')			

Boring B-1								
Drilling Start Date:	12/8/2020	Boring Depth (ft):	100					
Drilling End Date:	12/9/2020	Boring Diameter (in.)	4.25					
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelb	y Tube, Grab Sample				
Drilling Method:	Sonic	GW During Drilling (ft bgs):		-				
Drilling Equipment:	600T	GW After Drilling (ft bgs):		-				
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):		592.8				
Logged By:	Brian Ares	Northing, Easting (MI State Plane):	471073.109	13626167.862				

DEPTH (ft) ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
30 562.8	4'/9'		Lean CLAY - Gray, soft - medium stiff, moist	< 0.5	
35 557.8 -	75%	B-1-7 (34') B-1-ST-3		< 0.5	
40 552.8	4'/8'	B-1-8 (40')	Same as above		
45 547.8 - - -	2'/4'	B-1-9 (48')	Same as above	< 0.5	

ring B-1 Drilling S	tart Date	: 12/8/2020	Boring Depth (ft):	100	
Drilling E			Boring Diameter (in.)	4.25	
Drilling C			Sampling Method(s):		Tube, Grab Sample
Drilling 1		Sonic	GW During Drilling (ft bgs):		-
Drilling E		: 600T	GW After Drilling (ft bgs):		-
Driller	Name:	Joe Lary III	Ground Surface Elev. (ft):		592.8
Logge	ed By:	Brian Ares	Northing, Easting (MI State Plane):	471073.109	13626167.862
				_ ~	1
DEPTH (ft)	ELEVATION (II)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
50 542			Lean CLAY - Gray, soft - medium stiff, moist	< 0.5	
55 537		B-1-10 (52')			
	50)% B-1-ST-4			
	_	B-1-11 (59')	Same as above	0.5	1
60 532		/6' B-1-12 (63')		0.5	
65 527	7.8		Same as above	0.5	
		10'	Consistency increases to stiff	1.0	

Lean CLAYwith Sand - Gray, medium stiff - stiff, moist

0.5

1.5

B-1-13 (74')

B-1-14 (80')

75 517.8

1'/5'

Boring B-1									
Drilling Start Date:	12/8/2020	Boring Depth (ft):	100						
Drilling End Date:	12/9/2020	Boring Diameter (in.)	4.25						
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby	Shelby Tube, Grab Sample					
Drilling Method:	Sonic	GW During Drilling (ft bgs):		-					
Drilling Equipment:	600T	GW After Drilling (ft bgs):		-					
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	592.8						
Logged By:	Brian Ares	Northing, Easting (MI State Plane):	471073.109	13626167.862					

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
80 5	12.8	25%	B-1-ST-5	Lean CLAY with Sand - Gray, medium stiff - stiff, moist		
			B-1-15 (82')			
	_			Becomes very stiff, trace coarse-fine gravel	2.0	
85 5	07.8	3'/6'	B-1-16 (85')			
			B-1-17 (87')	Becomes stiff, no gravel	1.5	
90 50	02.8				1	
		2'/8'				
95 4	97.8		B-1-18 (94')		1	
		0%				Shelby tube sample attempted, near zero recovery
100 4	92.8	100%	B-1-ST-6	Boring Terminated @ 100'		Borehole grouted with grout mixture - Grout 20% solids Pumpable Bentonite

Boring B-2									
Drilling Start Date:	12/9/2020	Boring Depth (ft):	99						
Drilling End Date:	12/10/2020	Boring Diameter (in.)	4.25						
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelb	y Tube, Grab Sample					
Drilling Method:	Sonic	GW During Drilling (ft bgs):		-					
Drilling Equipment:	600T	GW After Drilling (ft bgs):		-					
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):		592.0					
Logged By:	Brian Ares	Northing, Easting (MI State Plane)	470971.736	13625830.745					

		1			
DEPTH (ft) ELEVATION (ft)		SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
0 592.0	1'/1'	B-2-1 (1')	Fat CLAY - brown, hard, some fine gravel and coarse	4.5+	Gravel road at surface
	100%	B-2-ST-1	sand, dry		
			Becomes lean	4.5	
5 587.0	4'/4'	B-2-2 (5')		4.5	
	1000/	D 2 CT 2			
	100%	B-2-ST-2			
			Same as above		
10 582.0	3'/3'	B-2-3 (10')			
		B-2-4 (12')	Lean CLAY - gray, very stiff, dry	2.0	•
15 577.0	8'/8'	B-2-5 (18')			
20 572.0)				
			Becomes soft - medium stiff, moist	0.5	
25 567.0	7'/7'	B-2-6 (24')		0.5	
	\dashv			0.5	
	100%	B-2-ST-3			

Boring B-2									
Drilling Start Date:	12/9/2020	Boring Depth (ft):	99						
Drilling End Date:	12/10/2020	Boring Diameter (in.)	4.25						
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby	Tube, Grab Sample					
Drilling Method:	Sonic	GW During Drilling (ft bgs):		-					
Drilling Equipment:	600T	GW After Drilling (ft bgs):		-					
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):		592.0					
Logged By:	Brian Ares	Northing, Easting (MI State Plane)	470971.736	13625830.745					

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
30 56	62.0	8'/8'	B-2-7 (32')	Lean CLAY - gray, soft, wet	< 0.5	
35 55	57.0				< 0.5	
40 55	52.0		B-2-8 (40')	Becomes moist	< 0.5	
	_	10710	. ,		< 0.5	
45 54	47.0		B-2-9 (46')	Becomes soft-stiff	1.0 < 0.5	
		100%	B-2-ST-4			
50 54	42.0	4'/4'	B-2-10 (50')		0.5	

Boring B-2							
Drilling Start Date:	12/9/2020	Boring Depth (ft):	99				
Drilling End Date:	12/10/2020	Boring Diameter (in.)	4.25				
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample				
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-				
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-				
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	592.0				
Logged By:	Brian Ares	Northing, Easting (MI State Plane)	470971.736 13625830.745				

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
55	537.0	8'/8'	B-2-11 (54')	Sandy Lean CLAY - gray, stiff, moist	1.0	
60	532.0		B-2-12 (60')	Same as above	1.0	
65	527.0	6'/6'	B-2-13 (64')		1.0	
	_ _ _	100%	B-2-ST-5	Some coarse gravel (69' - 74')	1.5	
70	522.0	6'/6'	B-2-14 (70')		1.5	
75	517.0		B-2-15 (75')	Lean CLAY with Sand - gray, stiff, moist	1.0	
80	512.0	8'/8'	B-2-16 (80')		1.0	

Boring B-2				
Drilling Start Date:	12/9/2020	Boring Depth (ft):	99	
Drilling End Date:	12/10/2020	Boring Diameter (in.)	4.25	
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample	
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-	
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	592.0	
Logged By:	Brian Ares	Northing, Easting (MI State Plane)	470971.736	13625830.745

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
	_			Lean CLAY with Sand - gray, stiff, moist	1.0	
85	507.0	4'/4'			1.0	
			B-2-17 (86')			
		100%	B-2-ST-6			
90	502.0	5'/5'	B-2-18 (91')	Becomes very stiff	2	
	_				2	
				Same as above	2.5	
95	497.0	3'/3'			2.5	
			B-2-19 (96')			
99	493.0	100%	B-2-ST-7	Boring Terminated @ 99'		Borehole grouted with grout mixture - Grout 20% solids Pumpable Bentonite

Boring B-3					
Drilling Start Date:	12/10/2020	Boring Depth (ft):	99		
Drilling End Date:	12/11/2020	Boring Diameter (in.)	4.25		
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby	Tube, Grab Sample	
Drilling Method:	Sonic	GW During Drilling (ft bgs):		-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-		
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	592.0		
Logged By:	Brian Ares	Northing, Easting (MI State Plane	471223.201	13625788.558	

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
0	592.0	171'	B-3-1 (1')	CDAVITY V GAND		Gravel road at surface
		100%	B-3-ST-1	GRAVELY SAND - tan, well graded, mostly coarse to fine gravel and coarse sand		
				Lean CLAY - brown, trace fine gravel, hard, dry	4.5	
5	587.0	4'/4'	B-3-2 (5')		4.5	
		100%	B-3-ST-2			
10	582.0			Becomes very stiff	2.5	
10			B-3-3 (10')		2.5	
	_	7'/7'		Becomes medium stiff	0.5	
15	577.0		B-3-4 (15')		0.5	
				Transition to moist	0.5	
20	572.0	6'/6'				
20	572.0		B-3-5 (20')		0.5	
					0.5	
					0.5	
25	567.0	5'/5'	B-3-6 (25')		0.5	

Boring B-3				
Drilling Start Date:	12/10/2020	Boring Depth (ft):	99	
Drilling End Date:	12/11/2020	Boring Diameter (in.)	4.25	
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample	
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-	
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	592.0	
Logged By:	Brian Ares	Northing, Easting (MI State Plane	471223.201	13625788.558

887			Trottining, Eusting (in State Faint	•	13023700.330
DEPTH (ft) ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
_	100%	B-3-ST-3	Lean CLAY - gray, medium stiff, moist		
30 562.0	4'/4'	B-3-7 (30')		0.5	
			Same as above	0.5	
35 557.0	8'/8'	B-3-8 (35')		0.5	
40 552.0		B-3-9 (40')	Same as above	0.5	
	6'/6'				
45 547.0		B-3-10 (45')		0.5	
_	100%	B-3-ST-4			
50 542.0		B-3-11 (50')	Same as above	0.5	
_ _	7'/7'			0.5	
55 537.0		B-3-12 (55')		0.5 0.5	

Boring B-3				
Drilling Start Date:	12/10/2020	Boring Depth (ft):	99	
Drilling End Date:	12/11/2020	Boring Diameter (in.)	4.25	
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample	
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-	
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	592.0	
Logged By:	Brian Ares	Northing, Easting (MI State Plane	471223.201	13625788.558

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
				CLAY - gray, medium stiff, moist		
60 5	532.0	8'/8'	B-3-13 (60')		0.5	
					0.5	
					0.5	
65 5	527.0	4'/4'	B-3-14 (67')	Sandy Lean CLAY - gray, very fine - fine sand and silt, some fine gravel, moderate grading, moist		
		0%				Shelby tube sample attempted - no recovery
70 5	522.0	3'/3'	B-3-15 (70')	Lean CLAY with Sand - gray, stiff - very stiff, moist	2.0	anomped no recovery
				Same as above	1.5	
75 5	517.0	4'/4'	B-3-16 (75')	Same as above	1.5	
		100%	B-3-ST-5			

Boring B-3				
Drilling Start Date:	12/10/2020	Boring Depth (ft):	99	
Drilling End Date:	12/11/2020	Boring Diameter (in.)	4.25	
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby	Tube, Grab Sample
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-	
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	592.0	
Logged By:	Brian Ares	Northing, Easting (MI State Plane	471223.201	13625788.558

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
				Lean CLAY with Sand - gray, stiff - very stiff, moist	1.5	
80	512.0		B-3-17 (80')		1.5	
		9'/9'			2.0	
85	507.0		B-3-18 (85')		1.5	
				Same as above	2.0	
90	502.0	5//5'	B-3-19 (90')		2.0	
	_			Same as above	2.0	
95	497.0	4'/4'	B-3-20 (95')		1.5	
99	493.0	100%	B-3-ST-6	Boring Terminated @ 99'		Borehole grouted with grout mixture - Grout 20% solids Pumpable Bentonite

Boring B-4				
Drilling Start Date:	12/11/2020	Boring Depth (ft):	99	
Drilling End Date:	12/14/2020	Boring Diameter (in.)	4.25	
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample	
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-	
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	586.0	
Logged By:	Brian Ares	Northing, Easting (MI State Plane)	470431.940	13626386.593

DEPTH (ft) ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
0 586.0	071'		Lean CLAY - brown, very stiff, dry		
_	0%				Shelby tube sample attempted from 1-3', no recovery
5 581.0	0.5'/4'		Same as above	2.5	Very little recovery. This assessment comes from verbal description from drilling crew
_	100%	B-4-ST-1			
			Becomes hard	4.5	
10 576.0		B-4-1 (10')	Lean CLAY - gray, stiff, dry	1	
_	6'/6'	B-4-2 (12')			
_				1	
15 571.0		B-4-3 (15')	Becomes medium stiff, moist	0.5	
_	6'/6'			0.5	
20 566.0		B-4-4 (20')		0.5	
_		D-+-+ (20)	Same as above		
_	6'/6'			0.5	
25 561.0	0/0	B-4-5 (25')		0.5	

Boring B-4				
Drilling Start Date:	12/11/2020	Boring Depth (ft):	99	
Drilling End Date:	12/14/2020	Boring Diameter (in.)	4.25	
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample	
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-	
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	586.0	
Logged By:	Brian Ares	Northing, Easting (MI State Plane)	470431.940	13626386.593

	<u> </u>	$\overline{}$			ER	
(ft)	ELEVATION (ft)	RECOVERY (ft.)	Ą		PENETROMETER	RKS
DEPTH (ft)	EVA	COV	SAMPLE		NET	REMARKS
DE	E	RE	\mathbf{S}^{V}	MATERIAL DESCRIPTION	PE	2
	_	100%	B-4-ST-2	Lean CLAY - gray, medium stiff, moist		
				Same as above	0.5	
30	556.0		B-4-6 (30')			
		6'/6'			0.5	
					0.5	
			B-4-7 (34')			
35	551.0		B-4-8 (36')	SILTY SAND - gray, mostly very fine - fine sand and silt, some fine gravel, well graded, moist		
				Lean CLAY - gray, medium stiff, moist		
		6'/6'			0.5	
40	546.0		B-4-9 (40')			
				Same as above	0.5	
		6'/6'			0.5	
45	541.0		B-4-10 (45')		0.5	
			D-4-10 (43)			
		100%	B-4-ST-3			
	_			Same as above		
50	536.0		B-4-11 (50')		0.5	
					0.5	
		7'/7'				
	_				0.5	
55	531.0		B-4-12 (55')		0.5	
			D 7 12 (33)			

Boring B-4							
Drilling Start Date:	12/11/2020	Boring Depth (ft):	99				
Drilling End Date:	12/14/2020	Boring Diameter (in.)	4.25				
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample				
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-				
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-				
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	586.0				
Logged By:	Brian Ares	Northing, Easting (MI State Plane)	470431.940	13626386.593			

DEPTH (ft) ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
			Lean CLAY - gray, medium stiff, moist	0.5	
60 526.0	6'/6'	D. 110 (65)			
00 320.0		B-4-13 (60')		0.5	
-	51/51		Same as above	0.5	
65 521.0	3/3	B-4-14 (65')		0.5	
-	100%	B-4-ST-4			
-			Same as above		
70 516.0	-	B-4-15 (70')			
-	8'/8'				
75 511.0	7	B-4-16 (75')	Lean CLAY with Sand - gray, stiff - very stiff, moist	1.5	
-	7			1.5	
				2.0	
80 506.0	5'/5'	B-4-17 (80')		2.0	

Boring B-4							
Drilling Start Date:	12/11/2020	Boring Depth (ft):	99				
Drilling End Date:	12/14/2020	Boring Diameter (in.)	4.25				
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample				
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-				
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-				
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	586.0				
Logged By:	Brian Ares	Northing, Easting (MI State Plane)	470431.940 13626386.593				

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
				Lean CLAY with Sand - gray, stiff - very stiff, dry	1.5	
85 50)1.0	5'/5'	B-4-18 (85')		2.0	
		100%	B-4-ST-5		1.0	
90 49	96.0	5'/5'	B-4-19 (90')	Same as above	1.0	
					1.5	
95 49	91.0	3'/3'	B-4-20 (95')	Same as above		
99 48	— — 37.0	100%	B-4-ST-6	Boring Terminated @ 99'	1.5	Borehole grouted with grout mixture - Grout 20% solids Pumpable Bentonite

Boring B-5				
Drilling Start Date:	12/14/2020	Boring Depth (ft):	99	
Drilling End Date:	12/14/2020	Boring Diameter (in.)	4.25	
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby	Tube, Grab Sample
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-	
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):		591.3
Logged By:	Sean Karoly	Northing, Easting (MI State Plane)	470218.324	13626779.118

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
0	591.3	0.75'/1'		Lean CLAY - light brown, little gravel, little sand, hard,	4.0	
	_	- 50%	B-5-ST-1	moist Lean CLAY - gray, very stiff - hard, moist	2.0	
5	586.3	4'/4'			3.5	
	_				> 4.5	
	_		B-5-1 (7')	Fat CLAY - gray to brown, some fine gravel, medium stiff - very stiff	2.5	
10	581.3	7'/7'			0.5	
					0.5	
	_ _		B-5-2 (14')		1.0	
15	576.3			Lean CLAY - gray, medium stiff, moist	0.5	
	_ _ _	7'/7'			0.5	
20	571.3				0.5	
	_	51/0	B-5-3 (21')	Same as above	0.5	
25	566.3	5'/6'			0.5	
		100%	B-5-ST-2		0.5	

Boring B-5							
Drilling Start Date:	12/14/2020	Boring Depth (ft):	99				
Drilling End Date:	12/14/2020	Boring Diameter (in.)	4.25				
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample				
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-				
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-				
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	591.3				
Logged By:	Sean Karoly	Northing, Easting (MI State Plane)	470218.324	13626779.118			

DEPTH (ft)	BECOVERY (#)	KECOVEKY (II.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
			B-5-4 (29')	Lean CLAY - gray, medium stiff - stiff, moist		
30 561	3				1.0	
	7'	'/7'	B-5-5 (32')		1.0	
35 556	3				1.0	
				Same as above	1.0	
	57/	'/5'	B-5-6 (37')		0.5	
40 551.3	3				0.3	
	+			Same as above		
			B-5-7 (42')		1.0	
		'/6'				
45 546.3	3				1.0	
	\perp		B-5-8 (46')			
	100	00%	B-5-ST-3		1.0	
				color transition to darker gray		
50 541.3		'/4'			0.5	1 cm sand seam observed
			B-5-9 (52')	Becomes stiff	1.5	

Boring B-5				
Drilling Start Date:	12/14/2020	Boring Depth (ft):	99	
Drilling End Date:	12/14/2020	Boring Diameter (in.)	4.25	
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample	
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-	
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	591.3	
Logged By:	Sean Karoly	Northing, Easting (MI State Plane)	470218.324	13626779.118

DEPTH (ft) ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
55 536.3	- 8'/8'	B-5-10 (57')	Lean CLAY - dark gray, medium stiff - stiff, moist	1.0	
60 531.3			Lean CLAY with Sand - dark gray, trace fine and coarse gravel, medium stiff - stiff, moist	0.5	Some fine black gravel observed
- - -	6'/6'	B-5-11 (62')		0.5 1.0	
65 526.3	100%	B-5-12 (66') B-5-ST-4		1.5	
70 521.3			Same as above	1.0	
75 516.3	9'/9'	B-5-13 (72')		1.0	
_		B-5-14 (77')		1.5	

Boring B-5							
Drilling Start Date:	12/14/2020	Boring Depth (ft):	99				
Drilling End Date:	12/14/2020	Boring Diameter (in.)	4.25				
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample				
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-				
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-				
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	591.3				
Logged By:	Sean Karoly	Northing, Easting (MI State Plane)	470218.324	13626779.118			

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
80	511.3			Lean CLAY with Sand - dark gray, trace fine and coarse gravel, stiff - very stiff, moist	1.0	
	_	9'/9'	B-5-15 (82')		2.0	
85	506.3		B-5-16 (86')		1.0	
	_	100%	B-5-ST-5			
90	501.3			Same as above	2.5	
	_	8'/8'	B-5-17 (92')		2.5	
95	496.3		B-5-18 (96')		2.0	
99	492.3	100%	B-5-ST-6 B-5-19 (99')	Boring Terminated @ 99'		Borehole grouted with grout mixture - Grout 20% solids Pumpable Bentonite

Boring B-6								
Drilling Start Date:	12/15/2020	Boring Depth (ft):	99					
Drilling End Date:	12/15/2020	Boring Diameter (in.)	4.25					
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample					
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-					
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-					
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	589.3					
Logged By:	Sean Karoly	Northing, Easting (MI State Plane):	470018.376	13626852.319				

DEPTH (ft) ELEVATION (ft)		RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
0 589.	.3	1'/1'		GRAVEL - light gray to gray, mostly coarse and fine gravel and		
	-	50%	B-6-ST-1	Lean CLAY - gray to brown, trace gravel, very stiff - hard, moist		
					3.0	
		3.5'/4'			4.5	
5 584.3	.3	3.374	B-6-1 (5')		3.5	
	-		ζ- /			
					3.0	
				Lean CLAY - gray, very stiff, moist		
		100%	B-6-ST-2		3.0	
	_				3.0	
10 579.	.3		B-6-2 (10')		3.0	
		7'/7'		Becomes medium stiff - stiff	1.0	
	_					
					0.5	
15 574	.3		B-6-3 (15')		0.5	
				Same as above		
		4'/4'			0.5	
					0.5	
20 569.	.3		B-6-4 (20')	Same as above	0.5	
					1.0	
		7'/7'			0.5	
25 564.	.3		B-6-5 (25')			
					1.0	

Boring B-6							
Drilling Start Date:	12/15/2020	Boring Depth (ft):	99				
Drilling End Date:	12/15/2020	Boring Diameter (in.)	4.25				
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample				
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-				
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-				
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	589.3				
Logged By:	Sean Karoly	Northing, Easting (MI State Plane):	470018.376 13626852.319				

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
		100%	B-6-ST-3	Lean CLAY - gray, medium stiff - stiff, moist		
30	559.3		B-6-6 (30')	Same as above	0.5 0.5	
35	554.3	9'/9'	B-6-7 (35')		0.5 0.5	
40 :	549.3	9'/9'	B-6-8 (40')	Same as above	0.5	
45	544.3	100%	B-6-9 (45') B-6-ST-4		0.5	

Boring B-6				
Drilling Start Date:	12/15/2020	Boring Depth (ft):	99	
Drilling End Date:	12/15/2020	Boring Diameter (in.)	4.25	
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample	
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-	
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-	
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	589.3	
Logged By:	Sean Karoly	Northing, Easting (MI State Plane):	470018.376	13626852.319

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
50 539	9.3		B-6-10 (50')	Lean CLAY - gray, medium stiff - stiff, moist Color transition to darker gray	1.0	
		9'/9'			1.0	
55 534	4.3		B-6-11 (55')	Lean CLAY with Sand - gray, stiff, moist	1.0	
60 529	9.3		B-6-12 (60')		1.0	
		9'/9'		Same as above	1.5	
65 524	4.3		B-6-13 (65')		1.5 1.5	
		100%	B-6-ST-5			
70 519	9.3		B-6-14 (70')	Same as above	1.0	
					1.5	
75 514	4.3	9'/9'	B-6-15 (75')		1.5	
			в-0-13 (/3)		1.5	

Boring B-6							
Drilling Start Date:	12/15/2020	Boring Depth (ft):	99				
Drilling End Date:	12/15/2020	Boring Diameter (in.)	4.25				
Drilling Company:	Cascade Drilling	Sampling Method(s):	Shelby Tube, Grab Sample				
Drilling Method:	Sonic	GW During Drilling (ft bgs):	-				
Drilling Equipment:	600T	GW After Drilling (ft bgs):	-				
Driller Name:	Joe Lary III	Ground Surface Elev. (ft):	589.3				
Logged By:	Sean Karoly	Northing, Easting (MI State Plane):	470018.376 13626852.319				

DEPTH (ft)	ELEVATION (ft)	RECOVERY (ft.)	SAMPLE	MATERIAL DESCRIPTION	PENETROMETER	REMARKS
				Lean CLAY with Sand - gray, stiff, moist		
8	509.3	-	B-6-16 (80')		1.5	
		9'/9'			1.5	
		-				
8.	5 504.3	- -	B-6-17 (85')	Becomes very stiff	2.0	
		100%	B-6-ST-6			
				Becomes stiff		
9	499.3	-	B-6-18 (90')	becomes sum	1.5	
					1.5	
		8'/8'				
9.	5 494.3		B-6-19 (95')	Some gravel observed	1.5	
9	9 490.3	100%	B-6-ST-7 B-6-20 (99')	Boring Terminated @ 99'		Borehole grouted with grout mixture - Grout 20% solids Pumpable Bentonite

APPENDIX F – 1970s LABORATORY TEST RESULTS

SUBSURFACE INVESTIGATION AND FOUNDATION REPORT

BELLE RIVER
UNITS 1 & 2
JOB 10539
VOLUME 2 OF 2

GEOLOGY AND SOIL PROPERTIES

P. H. COOK AUG 3 1 1978

AUGUST 1976

BECHTEL ANN ARBOR, MICHIGAM

TABLE OF CONTENTS

VOLUME 2 OF 2

	Page
APPENDIX C GOLDBERG-ZOINO LABORATORY TEST RESULTS	
Summary of Laboratory Test Results	C -1
Unconfined Compression Tests	C-271
Laboratory Vane Shear Tests	C-343
Unconsolidated-Undrained Triaxial Compression Tests	C-355
Consolidated-Undrained Triaxial Compression Tests	C-385
Consolidated-Drained Triaxial Compression Test	C-453
Consolidation Tests	C-455
Grain Size Distribution and Plasticity Chart	C-597
Permeability Tests	C-645
Compaction - Gradation Tests	C-655
APPENDIX D SOIL TESTING, RECLAIM HOPPER	D-1

Appendix C

	PROJECT: BELLE RI	RIVER	PLAN	PLANT UNITS I	SIBI					FILE	FILE NO. 1255
		MARY	OF L	LABORATORY		TEST	RESULTS	ILTS	SHE	DATE. SHEET	E Jan. 1974 OF
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	OL!	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	l	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		ຸ ວິ	AND
B7/28	Jar Sample	129.5 to 131.0	64								
			H64.1								See plot
B7/30	Jar Sample	38.88 D 140.33	65								
	low plasticity (CL-ML)		S/H 65.1								See plot
		-									
											:
		-									
·											

		E RIVER	PLAN	VER PLANT UNITS	SIGI					FILE	125
	TABLESUN	SUMMARY	OF L	ABORATORY		TEST	RESULTS	JLTS	SH	DATE SHEET	E an. 1974
	IDENTIFICATION		TEST NO.	ā	PROPERTIES	S	ST	STRENGTH	CONSOLI	SOLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	OEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	<u>:</u>	· 33	AND
B10/30	Jar Sample	141.3	99								
	Silty CLAY; sandy, dark gray,	1	SH 66.1								See plot
	IOW prasticity (OL-1ML)										
			i								
			,								

	PROJECT: BELLE R	RIVER		PLANT UNITS	SIBI						FILE	255
	TABLE SUMMA	MARY	OF L	ABORATORY	i :	TEST	RESULTS	JLTS		D/ SHEET	DAT ET	E July 1974 OF
	IDENTIFICATION		TEST	ď	PROPERTIES	S	ST	STRENGTH	ТН	CONSOLI- DATION	OC.I-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	.	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	MAX. SHEAR STRESS (PSF)	69	, ³ 3	AND
15/2	1.6' Recovery; say 3.0' to	3.0- 5.0	119									
	4.6 depth	3.3-	Saved									
	Silty CLAY, greyish brown,	3.6-	W119.1	25.5		67						
	moderate to high plasticity	3.7	ТV									TV=1.00tsf
	(CL)	3.7- 4.1	r119.01	25.4		101	UU	8.0	2386			Oc=475 psf
			L.1 19.1	23.6	45 21							
		1- . 2	W119.2	4 .		97						
		4.2	$\Lambda ext{I}$									TV=1.20tsf
		4.2- 4.5	Saved								i	
		8										
												:
	-											

	DRO.IFCT. BELLE	RIVER	PLAN	PLANT UNITS	SIBI					FILE	NO. 1255
		MARY	OF L	LABORATORY	i	TEST I	RESULTS)LTS	SHEET	ET	OF
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	ST	STRENGTH	CONSOLI-	OLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	60	ເ ລິງ	AND REMARKS
15/4	1,3' Recovery; say 8,0' to 9,3'	8.0- 10.0	120								
1	depth	8.1- 8.4	saved								
	Silty CLAY, dark gray, stiff	8.4	ΤV								TV=0,70 tsf
	consistency, moderate to highly plastic (CL)	8.4- 8.6	W120.1	31.2		90					
		8.6- 8.9	U120, 1	31.1		93	U	6.0 125	l>=		
		8.6-	L120, 1	31.5	44 19						
	Sample includes about 5% fine	6*8	$\Lambda.\mathrm{L}$								TV=0.61 tsf
	(subrounded to subangular in	9.0- 9.4	saved								
	shape)										
										·	
		:		,							
										<u>.</u>	

	PROJECT BELL	BELLE RIVER		PI ANT LINITS	T & T					9 113	NO 1255
0.00		SUMMARY	1 ~	ABORATORY	ORY	TEST	RESULTS	JLTS	SHEFF	DATE	
- D.C	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH	CONSOLI	Š - - -	OTHED TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	I	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS (PSF)	<u> </u>	, 3°	AND
15/6	1.2' Recovery; say 18.0' to 19.2' depth	18.0- 20.0	121								5 5 5 5 5
		ا نا	L 121. 1	35.0	42 20						
	istency, mo	18.1- 18.4	U 121. 1	34.1		87	Ü	5.0 508			@20% strain s= 546 psf
.	to inguiy prastic (CL)	18.4- 18.5	W121. 1	36. 1		83					
		18.5	ΛŢ								TV=0.284sf
		18.8- 18.9	W121.2	36.3		83					
		18.9	$\Lambda ext{T}$								TV7-0 22+0£
	•										

	PRO FCT - BELLE	BELLE RIVER		PLANT UNITS I	SIBI				F	NO. 12	8
		MARY	OF L	ABORATORY	l	TEST	RESULTS	LTS	D/ SHEET	DATE TOTAL OF	974
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	- OTHER TESTS	ESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TWL TWP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	90 °C	AND	S#S
15/14	2, 5! Recovery; say 58.0! to	58.0- 60.5	125								
	oo. 5. deptu	3	ľ								
	Silty CLAY, dark grey, firm to sliff consistency, moder-	58.7 58.7- 58.9	Saved W125.1	23.4							
	ately plastic (CL)	58.9	ΛI							TV = 0.	46tsf
	Sample includes about 15% fine	58.9-	Saved								
	to coarse sand grains (subrounded to subangular in	2-	1125.1	22.5		104	Ŋ	15.2 106	2	@ 20% s s =1260 1	strain psf
	shape)	\sim	1.125.1		34 18	26					
	Note: Void occurs along	_	W125.2			103					
	1, 3' of sample	59.7	ΛI							TV = 0.	61tsf
		60.0- 60.4	Saved								
	•										
										·	
					:	-		·			
			i 					r.		, i	

35 7,426.4	PROJECT: BELLE RI	RIVER		PLANT UNITS I	SIBIE						FILE	10. 1255
· Barden ay	TABLE SUMMA	MARY	OF L	ABORATORY	_	EST	RESULTS	LTS		D/ SHEET	DATE ET	JULY I
	IDENTIFICATION		TEST NO.	Р	PROPERTIES	S	ST	STRENGTH	H	CONSOLI-	OL!-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	€ SH ST % (F	MAX. SHEAR STRESS (PSF)	ေခ	, °	AND
18/3	2.4' Recovery; say 20.0' to	20.0- 22.5	176									
	mdan + 77	20.1-	Sarred									
	Silty CLAY, dark grey, soft to firm consistency, moderate	. 🕁 .	W176.1	39.1		82						
	to high plasticity (CL)	20.6	ΛT									TV=0,26tsf
		20.6- 20.9	T176.0-1	39.9		83	UU	0.6	411			0c-2448psf
	ine b-	20.6- 20.9	L1%.1	38.3	44 21							•
	rounded to subangular in shape)	20.9 - 21.2	Saved									
		21.2- 21.4	W176.2	32.1		88						
		21.4	TV									TV=0.26tsf
		21.7- 22.0	Saved									
		22. 0- 22. 4	Saved									
				ŕ								

:01	PROJECT: BELLE	E RIVER	PLANT	IT UNITS	TEIS					1 1 1 1	. NO 1255
			OF.	_	ATORY	TEST	RESULTS	JLTS	Q	DATE	April
BC -	IDENTIFICATION		TEST NO.		PROPERTIES	ES	ST	STRENGTH	CONSOLI	105 -	OTUED TESTS
SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	J	3 8	ATTERE	G DRY UNIT WEIGHT	TEST	MAX. SHEAR STRESS		ပိ	AND
18/6	Sitly CLAY; gray, firm to		۲	(%)	a a	P (PCF)	_	% (PSF)			REMARKS
	stiff consistency, moderateh 50.		W3	3.5. ×							
		50.5	ΤV								TV=0.38tsf
	Sample includes about 5% coarse sand and fine grayel	50.5 tc 50.8	save 345.1								
	size particles (subrounded	51.2 to 51.4	W345.	24.6		86					
	co supangular III snape)	41	ΤV								TV=0.50tsf
		51.4 to 51.7	T345.0.7	31.0		92	UU3	0 827			. 1
		51.4 to 51.7	1345.1	29.6	39 18		-				
							-				
					:						
							 				
							 				
							-		 	 	
				1							
							-				

	DBO FCT BELL	BELLE RIVER		PL ANT LINITS	TRIS					L	FII F	NO 1255
		SUMMARY	OF	LABORATORY	9	EST	RESULTS	LTS		D/ SHEET		July 1974 0F
	IDENTIFICATION		TEST NO.	а.	PROPERTIES	S	ST	STRENGTH	OD	CONSOLI	 	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	L	·		AND REMARKS
18/7	2.4 Recovery; say 60.0' to 62.4' denth	60.0 62.5	346									
	Silty CLAY, Sandy, dark	60.6	TV				-	:	-			TV=0.46 tsf
	gray, firm to stiff consistency,	60.6- 61.0	saved									
	(CL)	61.0 61.3	1.346.1	2.02	26 16							
	Sample includes about 30% fine to coarse SAND and	61.4- 61.6	W346,2	19.9		109						
	fine gravel size particles	61.6	ΛI									TV=0.65 tsf
	shape)	61.6- 62.0	saved									
											<u>. </u>	
											ļ	
								·				

	PROJECT: BELLE RI	RIVER		PLANT UNITS	SIBI					FILE	NO. 1255
	TABLE SUMMA	MARY	OF L	OF LABORATORY		TEST	RESULTS	LTS	SHEE	DAIE ET	OF
	IDENTIFICATION		TEST NO.	<u>a</u>	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION		OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	တိ		AND REMARKS
18/10	1.3' Recovery; say 88.0' to	88.0- 90.0	179								
	09.5. deptn	88.4	ΛI								TV=1,3 tsf
	Silty CLAY, sandy, gray, very	1 4	W179.1	22.9		66					
		88.7- 88.8	W179.2	21.9		98					
	Sample includes about 25% fine	88.8	ΤV								TV=1, l tsf
	to coarse SAND and fine Gravel size particles (subrounded to	88.8- 90.1	L179.1	17.3	29 15						
	subangular in shape)	88.8- 90.1	T179, 0.1	17.3		110	ΩΩ	15.0 2863		0	Oc=6336 psf
		:									
										7.	

a more		ā	ā	TO DI ANT LINITS	0 1						12.0	1255
	TABLE SUMMA		OF L	ABORATORY	2	TEST	RESULTS	JLTS		D/ SHEET	DATE	
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	ES	ST	STRENGTH		CONSOL I- DATION	NO	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	- 1	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT (PCF)	TEST TYPE	STR STR	MAX. SHEAR STRESS (PSF)	°	່ນ	AND
18/11	Jar Sample	103.5- 105.0	430									
	Silty SAND, subrounded to		S430.1									See plot
	subangular fine to coarse Sand											
	plastic fines (SM-SW)		-									
							·					
						·						
				·							<u> </u>	

-25-	PROJECT BELLE	BELLE RIVER		PLANT UNITS	SIGI						FILE	VO. 1255
		MARY	OF L	ABORA	BORATORY TE	ST	RESULTS	JLTS		SHEET	DATE	0F
	IDENTIFICATION		TEST NO.	ď	PROPERTIE	S	ST	STRENGTH	TH	CONSOLI DATION	OLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	OEPTH (FEET)	l	NAT WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	» %	MAX. SHEAR Stress (PSF)	မေ	, °	AND REMARKS
18/12	1.7' Recovery; say 108.0' to	108.0- 110.0	181									
		108.2-	1 181 1	2.4.2	66 77							
	Silty CLAY, grey, stiff consistency, moderate to	108.2- 108.5-	T181. 1.1	, 4	7	87	CU	5.9	1952			<u>C</u> c=3744psf
	highly plastic (CL)	5- . 6	W181 . 1	32.3		90						
		108.6	ŢΥ									TV=0.7Itsf
	Sample includes lenses/layers	· 0	T181. 1. 2	31.0		95	CU	6.2	2601			Oc=7488psf
	of Silty Sand, subrounded to	$108.6_{-108.9}$	T181. 1.3	30.7		62	no	6.8	4088			$\overline{0c}$ =15120psf
	subangular fine to medium Sand grains with about 40%	108.9- 109.3	Saved									
	non-plastic fines (SM)	3-	W181.2	26.8		94						
	Layers/lenses comprise ±30%	109.4	ΛI									TV=0.51tsf
	or total sample below 105.9. depth											
												,

	PROJECT: BELLE R	E RIVER		PLANT UNITS I	SIBE					FII F	NO 1255
		SUMMARY	OF L	ABORATORY	₹	TEST	RESULTS	LTS	DA SHEET	DATE	Jul
	IDENTIFICATION		TEST NO.	А	PROPERTIES	S	STR	STRENGTH	CONSOLI	- - - - -	OTUED TESTS
BORING Sample	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST 6	MAX. SHEAR STRESS % (PSF)	<u></u> .	ر د ،	AND
18/16	Jar Sample	139.5- 141.0	431				1				
	Silty SAND, gravelly; about		S431. 1				-				See plot
	particles (3/4" max. size),										
	subrounded to subangular fine to coarse Sand grains, about										
	15% non-plastic fines (SM)										
							-				
							-				
							_				
					_					<u> </u>	
										-	
										_	

			נול ל	SINO	1 0 1 0	1	(ن ا		12	
TABLE	SUMMA	MARY	OF L	ABORALORY	AIORY I	ESI	RESULIS	LIS	SHEET		0F
IDENTIFICATION			TEST NO.	ው	PROPERTIES	ES	ST	STRENGTH	DATION	. 1	OTHER TESTS
SOIL DESCRIPTION	_	DEPTH (FEET)	l	NAT. WATER CONTENT	ATTERBERG LIMITS TWL TWP	S DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	မ	Cc .	AND REMARKS
		3.0-	290								
Silty CLAY, dark greyish	rish	3.4- 3.6	W290. I	25.7		95					
brown, very stiff consistency moderate to high plasticity	istency icity	3.6	ΛL								TV=1.15tsf
(CT-CH)		3.6-	Saved								
Sample includes about 10%	10%	3.9-	Saved								
ine to coarse sand and tine gravel size particles (sub-	a ilne sub-	4.2-	2 062M	31.4		87					
rounded to subangular in shape)				ł							TV=1.13tsf
	1									•	
	<u> </u>										
	_1										
	- 										
	. 										
	·•										
	·• · · · · · · · · · · · · · · · · · ·										
	· • · · · · · · · · · ·										
						,					
	-					_					

	PROJECT BELLE R	RIVER		PLANT UNITS	SIBI						1 1 1 1	NO 1255
		IMARY	OF L	ABORATORY		TEST	RESULTS	JLTS		SHEE	DATE ET	E July 1974
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH	F	CONSOL	2 - - -	OTHER TESTS
BORING SAMPLE		DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	S DRY UNIT WEIGHT (PCF)	TEST	S1 81 81 81 81 81 81 81 81 81 81 81 81 81	MAX. SHEAR STRESS (PSF)	မ	, °,	AND
19/3	1.8' Recovery; say 18.0' to 19.8' depth	18.0- 20.0	262									
		18.1- 18.5	L292.1	40.2	49 24							
	Silty CLAY, gray, soft to firm	18.5- 18.6	W2 92.1	39.1		85						
	plasticity (CL-CH)	18.6	TV									TV=0.27 tsf
		18.6- 19.0	saved									
		19. 1- 19. 3	W2%.2	35.3	 	83						
		19.3	St						-			TV = 0.23 tsf
		19.4- 19.7	saved									
					<u>:</u>							
										-		
							-				<u> </u>	
				-								
						·						

NO. 1255	1 E 131V	OTHER TESTS	AND REMARKS			TV=0.80tsf			TV=0.73tsf							
<u> </u>	DA SHEET	CONSOLI- DATION	ນ					_		_						
	S	SO PA	မ													_
	LS	STRENGTH	MAX. SHEAR STRESS (PSF)													
	RESULTS	STRE	TEST 6 TYPE %								, , - 					
Ì			DRY UNIT TE WEIGHT TY (PCF)		103			103							,	
	TEST	LES	SERG DI		1-1							 		ļ ——		
SIBE	TORY	PROPERTIES	ATTERE LIMI WL			. '										
T UNITS	LABORATORY	<u> </u>	NAT. WATER CONTENT (%)		23.1			22.2								
PLANT	•	TEST NO.		207	W297. 1	ΤV	Saved	W 297. 2	ΛI	Saved						
BELLE RIVER	MARY		DEPTH (FEET)	68.0-	68.4- 68.5		68.5-	69.2- 69.3	69.3	69.3-						
BELLE		IDENTIFICATION	SOIL DESCRIPTION		Silty CLAY, grey, stiff	consistency, moderate plasticity (CL)	100 mm 100	fine to coarse Sand and fine	gravel size particles (sub- rounded to subangular in	shape)						
			BORING	10 /8	2/21											

	PROJECT BELLE R	E RIVER		PLANT UNITS	BISH						FILE NO 1255
DB	TABLE SUMMA	IMARY	OF L	ABORATORY		TEST	RESULTS	JLTS	D, SHEET	DATE	E_July_1974_ OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH	CONSOLI	-LNO ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	I	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		, ₂	AND
19/9	1.9' Recovery; say 78.0' to 79.9' depth	78.0- 80.0	298					0 0 0 0 0			
		78.2- 78.6	saved								
	Silty CLAY, gray, stiff	-9	W298, 1	21.4		106					
	consistency, moderate plasticity (CL)	78.7	$_{ m TV}$								TV=0.63 tsf
		78.7- 79.0	L298.1	24.4	33 17						
		5	saved								
	Sample includes about 15% fine	6-	W2982	24.9		101					
	size particles (subrounded to	79.7	$_{ m TV}$:							TV=0.67 tsf
	subangular in shape)										
:											
			·								

	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBI					3	12
	TABLE SUMMA	IMARY	OF L	ABORATORY	TORY T	EST	RESULTS	LTS	D/ SHEET	DALE	0F
,	IDENTIFICATION		TEST NO.	a .	PROPERTIES	S	STI	STRENGTH	CONSOLI-	- - -	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	° ခ	ره ٠	AND REMARKS
19/11	1.8' Recovery; say 100.0' to	100.0- 102.0	300								
		100.5	ΤV					·			TV-0.43tsf
	Silty CLAY, grey, firm	100.5	W30Q.1	22.7		100					
		100.6-	Saved								
		3.	W300.2	27.3		94					
	Sample includes about 13% fine to coarse Sand and fine	101.4	ΤV		_						TV=0.42 tsf
	gravel size particles (subrounded to subangular	101.4- 101.7	Saved								
	in shape)										
			!								

	PROJECT: BELLE R	E RIVER		PLANT UNITS	日 B I S					15	FILE NO. 1255
	TABLE SUN	SUMMARY	OF L	LABORATORY	١.	TEST	RESI	RESULTS	SH	DATE SHEET	E July 1974 OF
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH	CON	CONSOLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TOL TOP	G DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	<u> </u>	ÿ	AND
19/12	1.9' Recovery; say 118.0'	118.0- 120.0	301							<u> </u>	
		118.4-	W 301. 1	35.1		78					
	consistency, moderate to		ΛI								TV=0, 551sf
	high plasticity (CL)	F18.5- 118.9	Saved								·I
	Sample includes few thin lenses/lavers of SILT sand:	3	W301.2	41.4		80					
	(ML) comprising ±5% of total	119.3	ΛT								TV-0 68tsf
		119.3- 119.6	Saved								3
						1	†				

ON TEST PROPERTIES STRENGTH DATION OPPTH WATER LIMITS WINT TEST & STRENGTH DATION ('%) WATER LIMITS WINT TYPE % STRENGS 133.5 6.7 (%) WL WP (PCF) TYPE % STRENGS DEST SAME ON THE STRENG THE STRENG THE STRENGS ON THE STRENGS OF CO. ON THE STRENGS	·	E : :	E RIVER	7 7	TINU TI	▎▕▍▏		בייו	J.		FILE I	γο. Jaπ
SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION TEST SOIL DESCRIPTION THE STERNOR THE STERNOR TOWN TOWN THE STERNOR TOWN TOWN TOWN THE STERNOR TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN		IABLE SU	MMART	٦ ا	ABORA	l		200	2	SHE		0F
SOIL DESCRIPTION MATERIAL ALIBERS WAXE	IDENTIFICATION		TEST NO.	Δ.	ROPERTIE	S	STR	ENGTH	CONS DATI	OCLI- ON	OTHER TESTS	
13.5 67 20 20 20 20 20 20 20 2	BORING		DEPTH (FEET)	_	NATER WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)			įi	, °2	AND REMARKS
Clayey SILT: dark yray, \$5/11 See (CL-ML) Silight to low plasticity (CL-ML)	B22/29	Jar Sample	LO	29								
		Clayey SILT; dark gray,	1 1	S/H 57.1								
		slight to low plasticity (CL-ML)										
									٨			
			<u> </u>									

	PROJECT: BELLE	E RIVER		PLANT UNITS	SIBП						FILE NO.	10. 1255
		MARY	OF L	ABORA	BORATORY TE	ST	RESULTS)LTS		D/ SHEET	DATE	April 1974 OF
	IDENTIFICATION		TEST NO.	Ф	PROPERTIES	S	ST	STRENGTH		CONSOLI- DATION		OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	STR STR	MAX. SHEAR STRESS (PSF)	ိမ	C +	AND REMARKS
25/1	Silty CLAY, grayish brown,	3.0 to 5.0	266									
	very stiff consistency, highly		ΛŢ									TV=0.4ltsf
	presuc (CII)	4.0 to 4.3	save 266.1								1-2	
	Sample includes about 5% hard subrounded gravel size	to	W266.1	24.1		100						
	particles	4.5 to 4.8	U 266. 1	22.4		108	Ω	5.0 3.	456			
	Note: upper 1.0' of sample	4.5 to 4.8	1266.1	24.5	59 23			:				
	מזמנת הפת (א ממון :)	4.8	ŢΥ									TV=1.8tsf
									· .			

	PROJECT BELLE RI	E RIVER		TINI1 F	PLANT UNITS I B IT					Ē	FII F NO	1255
		SUMMARY	, –	ABORATORY	TORY 1	TEST	RESULTS	ILTS	0,	DATE	:김	_ ~ _
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH) ပင် 	CONSOL	 -	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TUL TOP	S DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	<u> </u>	ű	1 .	AND REMARKS
25/3	1.9' Recovery; say 18.0' to	18.0- 20.0	268							-		
	disturbed (WASH??)	2	Saved									
	Silty CLAY, grey, firm	3	W268.1	39.1		80						
	consistency, moderate to high plasticity (CL-CH)	19.3	ŢΛ								TV=0.	0.30tsf
		5	Saved									
		19.6- 19.7	W268.2	38.1		81						
		19.7	ΤV								TV=0.).27tsf
							ļ <u> </u>					
		·										
						•	-					

SAMPLE SUMMARY OF LABORATORY TEST RESULTS SHEEFT OF		PROJECT: BELLE RI	RIVER	PLAN	T UNIT	PLANT UNITS I BI					FILE	NO. 1255
FEET NOTE TEST PROPERTIES STRENGTH CONSOLI- LEET NOTE NOTE NATION ATTERBERG ORY (FEET) LEET NOTE NATION (C.C.) LEET NOTE NATION ATTERBERG ORY (FOC) LEET NATION (C.C.) LEET NATION (C				_	ABOR4		1	RESL	LTS	SHE	ET.	OF.
SEPON SEPTIMENT LINES OF STREET SET SHEET SET SHEET SET SHEET 1	IDENTIFICATION		TEST NO.	Ъ	ROPERTIE	S	STI	RENGTH	CONS	SC.	OTHER TESTS	
28.0-269 28.1-28-ed 28.5-3-ed 28.7-3-ed 28.7-3-ed 28.7-3-ed 28.7-3-ed 28.7-3-ed 29.1-29.1-3-ed 29.3-7-12691 31.0 25 16 59.1-29.3-6 102 59.3-7-12691 31.0 25 16 59.1-3-6 102 59.3-6 102 59.3-7-12691 31.0 25 16 59.1-3-6 102 59.3-6 102 59.3-7-12691 31.0 25 16 59.1-3-6 102 59.3-7-12691 31.0 25 16 59.1-3-6 102 59.1-3-6 102 59.3-7-12691 31.0 25 16 59.1-3-6 102 5				1	NATER WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE			Cc +	AND REMARKS
% fine 28.7 wx69.1 18.1 111	+		0.0	569								
28.7 W2691 18.1 111		Silty CLAY, Sandy, dark grey,	7 ∞	Saved								
11 30% fine 28.7 TV TV=0.27ts; fine 28.7 TV TV=0.27ts; fine 28.7 TV TV=0.27ts; fine 29.1 Saved 29.1 TV=0.25 ts	· · · · · · · · · · · · · · · · · · ·	soft to firm consistency, moderately plastic (CL)	.5- 8.7	W269.1	18.1		-					
fine 28,7- 29,1- 29,1- 29,3 W26,2 22.6 102 29,3 TV 29,3 TV 29,3 TV 29,3 TV 29,7 T26,1 31.0 25 16 slightly slightly		Sample includes about 30% fine		ΛŢ								V=0.27ts
r in 29.1- 29.1- W269.2 22.6 102 TV 29.3 TV TV-0.25 is 29.7 TZ691 31.0 25 16 TV-0.25 is slightly	·	to coarse SAND and fine	2.6	Saved					-			
rs of 29.3 TV TV=0.25 ts TV=0.25		Graver size particles (sub- rounded to subangular in	7.5	W269.2	1.		0					
rs of 29.3- 129.7 12691 31.0 25 1 12 ±10% slightly		shape)	6	TV								V=0.25 ts
ng ±10% slightly		few thin lenses/layers of	.3	1.249.1		-						
Note: Entire sample slightly disturbed	-	throughout comprising ±10%			4							
Note: Entire sample slightly disturbed		of total										
		Note: Entire sample slightly disturbed										
	т —				-							
					-							
												
	т —											

TABLE SUMMARY OF LABORATORY TEST RESULTS SHEET LOF		PROJECT: BELLI	BELLE RIVER	PLAN	PLANT UNITS I	SIBI				<u> </u>	FILE NO	. ".
Comparison TEST PROPERTIES STRENGTH CONSOLITION SOIL DESCRIPTION DEPTH CONTENT TEST STRENGTH CONTENT STRENGTH STRENGTH CONTENT STRENGTH STR					ABORA		ST	RESL	LTS	D SHEET	ATE	PF
Soll Description Depth Water Atteres Swear S		IDENTIFICATION		TEST NO.	d	ROPERTIE	S	STI	RENGTH	CONSOL		THER TESTS
Silty CLAY, dark gray, firm 48.3 - 48.5 - 48.5 - 48.5 - 48.5 - 48.5 - 48.5 - 48.5 - 48.5 - 48.5 - 48.5 - 48.5 - 48.5 - 48.5 - 48.8 - 48.8 - 49.5 - 49.5 - 49.4 -	BORING		DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST				AND REMARKS
48.3- 48.7- 48.8 TV 48.8- 49.2- 49.4- 49.4- 49.4- 49.4- 49.4- 49.4- 49.8- 49.4- 49.8- 49.4- 49.8- 49.4- 49.8- 49.4- 49.8- 49.8- 49.4- 49.8- 49.	25/6		48.0- 50.0									
48.8 TV 80 TV 17.1 TV 17.2 TV			48.3- 48.7	saved								
48.8 TV TV=0.37t 48.8 TV		Silty CLAY, dark gray, firm	7- 8	W271. I	7.		80					
48.8- 49.2 saved 49.4- 49.4- 49.8 L271 38.0 39 19 A9.4- A9.4- A9.6 A9.4- A9.6 A9		plastic		ΤV							Ţ	=0,3.7 t
49, 24 WZ71.2 34.6 82 TV		((1))	∞'`.	saved								
49.4 TV 49.8 L271 38.0 39 19 1		Sample includes about 15% fine	49,2- 49,4	W271.2	i _		82					
49.4- 49.8 L271.1 38.0 39 1		size particles (subrounded to		ΤV							Ţ	V=0.30 t
		subangular in shape)	49.4- 49.8	L271.1								
						·						
							,					
									•			

	PROJECT: BELLE R	E RIVER	PLAN	T UNIT	PLANT UNITS I B II						F11.F	NO 1255
		SUMMARY	OF L	ABORATORY	TORY 1	TEST	RESULTS	JLTS		SHE		E July 1974 OF
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	ES	ST	STRENGTH	一	CONSOLI	<u> </u>	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	S DRY UNIT WEIGHT (PCF)	TEST TYPE	SH SH	MAX. SHEAR STRESS (PSF)	မိ	, o	AND
25/7		58.0-	272									
	Silty CLAY, grey, firm to	58.4- 58.5	W272. 1	24.1		98						
	stiff consistency, moderate plastiticy (CL)	58.5	ŢΛ									TV=0.45 tsf
		58.5- 58.8	Sayed							-		
	Sample includes about 15% fine to coarse Sand and fine	59923	W272.1	24.4		66						
	gravel size particles (subrounded to subangular in	59.3	ΤV									T17-0 E010f
	shape)	-	Saved				 		-			1
										 		
				-								
										 		
												
										_		

BORING SAMFLE 25/10 1.8' Recovery; Say 88.0' to 89.8' depth Silty CLAY, dark gray, stif consistency, moderately plastic (CL) Sample includes about 20% Coarse to fine sand and fine	z	SUMMARY OF LABORATO	- 50	000	1	1				DATE	: April 1974
	z		J	ABORAIORY		TEST	RESULTS	LTS	SHEET	<u> </u>	1 1
	z		TEST NO.	<u>-</u>	PROPERTIES	S	ST	STRENGTH	CONSOLI	- ZZ	OTHER TESTS
01,10		БЕРТН (FEET)	l	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	°a	رد ،	AND REMARKS
	88.0' to	88.0 to	275								
Silty CLAY, consistency, plastic (CL) Sample inclu		88.1to 88.4	save 275.1								
consistency, plastic (CL) Sample inclu		88.4 to 88.6	W275.1	19.7		106					
plastic (CL) Sample inclu	dark gray, stiti moderately	88.6	TV	***						`	TV=0.74tsf
Sample inclu		88.6to 88.9	save 275.2								
	•	88.9 to 89.2	T 275.0.	22.5		104	חח.	11.0 2213			
gravel sized particles	י דוופ	88.9 to 89.2	1275.1	21.4	36 19						
(subrounded shape)	(subrounded to subangular in shape)	2 to 4	WZ75.2	22.3		103					
			ΤV								TV=0.80tsf
	.										
	America Service										

TABLE SUMMARY OF	50 MM.	1ES NO N 277 T V T TV Savec	OF LABORATORY TEST PROPER WATER CONTENT (%) WL 277 TV TV aved aved 277.2 36.4	ERTIE WP WP WP	ST DRY DRY EIGHT PCF)	STRENG STRENG TYPE % S	STRENGTH ST & SHEAR ST & STRESS PE % (POE)	SHEET CONSOLI DATION	DATE	
## Soll OESCRIPTION DEPTH NO.	(FEE) (FEE) (FEE) 120. 118. 118. 119. 119. 119. 119.	TEST NO. 277	PROF WATER WATER CONTENT WATER CONTENT WATER 18.4	ERTIE ENTIE ED P	DRY JNIT EIGHT PCF)	STE	MAX. MAX. SHEAR STRESS		- NO.	OTHER TESTS AND
SOIL DESCRIPTION CFEET CONSTRUCTORY, grey, stiff CONSTRUCTORY, moderate to high plasticity (CL-CH) CONSTRUCTORY CL-CH) CONSTRUCTORY CL-CH CONSTRUCTORY CL-CH CONSTRUCTORY CL-CH CONSTRUCTORY CONS	(FEE) (FEE) (FEE) (FEE) (FEE) (FEE) (118. (118. (119. (119. (119. (119.		WATER CIONTENT CIONTE	M M M M M M M M M M M M M M M M M M M		TY PE	MAX. SHEAR STRESS	_	2	OTHER TESTS
25/12 2.4' Recovery; say 118.0' to 118.0. 120.4' depth Silty CLAY, grey, stiff consistency, moderate to high plasticity (CL-CH) high plasticity (CL-CH) Sample includes about 5% fine to medium Sand grains (subrounded to subangular in 119.4 Saved shape) shape) 119.8 TV	118. 118. 118. 118. 119. 119. 119.	277 W277.1 TV Saved Saved	∞ 4		22			e°	ů, S	REMARKS
Silty CLAY, grey, stiff consistency, moderate to high plasticity (CL-CH) Sample includes about 5% fine to medium Sand grains (subrounded to subangular in shape) shape) 119. 6 119. 7 119. 0 119. 6 119. 8 119. 7 119. 8 11	118. 118. 119. 119. 119. 119.	W277.1 TV Saved Saved								
consistency, moderate to high plasticity (CL-CH) high plasticity (CL-CH) 118.7 TV 118.7 TV 119.0 Saved fine to medium Sand grains (subrounded to subangular in 119.4 Saved shape) shape) 119.8 TV 119.8 TV	118. 119. 119. 119.	TV Saved Saved WZ7.2								
Sample includes about 5% 119.0 Saved fine to medium Sand grains (subrounded to subangular in shape) Sample includes about 5% 119.0 Ing. 4 Saved (subrounded to subangular in shape) 119.0 Saved 119.4 Saved 119.4 Saved 119.8 TV	118. 119. 119. 119. 119.	Saved Saved WZ77.2				-				TV=0.70tsf
n 119.0- 119.4- 119.5 WZ77.2 119.8 TV	119. 119. 119.	Saved WZ77.2								
n 119.4- 119.5 WZ7.2 119.8 TV	n 119.	W277.2								
ω					82					
	٠.		-			-				TV=0 68tsf
					_	 				12200
						<u> </u>				
						-				
						<u> </u>				

19	DF 17	ES STRENGTH CONSOLI- OTHER TESTS	G DRY TEST & SHEAR CO TYPE STRESS GO CC REMARKS		TV=0.88 tsf			TV=1.4 tsf		104 CU 15.0 1100		TV=1,13 tsf	103 CU 15.0 H25	TV= 1.3 tsf		108 CU 15.0 2400			
NT UNITS I 8 II	BORATORY	PROPERTIES	NAT. ATTERBERG WATER LIMITS CONTENT LIMITS (%)		25.4	25.4		23.9	2 23.9	.123.0	23.0 53 24		23.9		3 21.9	3 22.3			
RIVER PLANT	ARY (TEST NO.	DEPTH (FEET)	3. 5. 5 1	3.7 TV	3.7 W1.1	3.7 to save 4.0	4.0 TV	4.0 W1.	4.0 to Tl.1.	4 0 to L.l. l.		4.3 to	T	4.7 W1.	4.7 to 5.0 Thl.			
DECT BELLE	SUMI	IDENTIFICATION	SOIL DESCRIPTION (F	ery 1.6', say 3.5' to 5.1'	depth 3		<u> </u>	Includes about 15% subangular to subrounded fine gravel and	coarse sand particles	7, 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4	4, 7	4			<u>1</u>		
			BORING SAMPLE	B26/2															

	PROJECT: BELLE RI	RIVER	1	PLANT UNITS I	SIBI					١	FILE	NO. 12
		IMARY	OF L	ABORATORY		TEST R	RESULTS	LTS		D SHEET	DATE ET	Jan. 1974 OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	STE	STRENGTH	\vdash	CONSOLI	 	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	OEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	AX. AR ESS e		• 30	AND REMARKS
B26/3	1.5' Recovery; say 8.0' to 9.5' depth	8.0 to 10.0	2									
		8.2	TV	31.5								TV=0.9 tsf
	Silty CLAY; dark gray, moder-	8.2	W2.1	31.5								
	ately to highly plastic, firm consistency (CL-CH).	8.3 to 8.7	save 2.1									
	Includes about 10% subangular	8.7	TV	33.0							[-	TV=0.6 tsf
	to subrounded fine gravel size		W2.2	33.0								
	particles and ±5% line to coarse sand size particles.	8.8 to 8.9	L2.1	32.0	50 22							
		8.9 to 9.2	save 2.2									
		9.2	ŢΛ	32.7							7	TV=0.4 tsf
		9.2	W2.3	32, 7								
												
											-	

	PROJECT: BELLE	BELLE RIVER	1	PLANT UNITS	вівп					FILE NO.	NO. 1255
	TABLE SUMMA	IMARY	OF L	ABORATORY	. :	TEST	RESULTS	JLTS	SHEET	TAN E	OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI	N-	OTHER TESTS
BORING SAWPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX E SHEAR STRESS % (PSF)	• ә	رد ٠	AND REMARKS
B26/5	1.2' Recovery; say 18.0' to	18.0 to 20.0	3								
		18.0 to	T3.13	35.7		986	CU	15.2 2175			
	Silty CLAY, gray, soft consis-	18.3	TV	35.9							TV=0.17 tsf
	(CL-CH)	18.3	W3.1	35.9							
	Includes about 15% subangular	18.3 to 18.7	T3.12	35.3		86	CU	10.7 839			
	to subrounded fine Gravel and coarse Sand particles	18.7 to 19.0	r3.1.1	35.4		89	CU	15.1 676			
		19.0	ΤV	35.6							TV=0.24 tsf
		19.0	W3.2	35.6							
				_							
								:			
		٠									
				-							
										ļ	

	PROJECT BELLI	BELLE RIVER		PLANT UNITS I	SIBI					FILE	NO. 1255
	TABLE SUMMA	MARY	OF L	ABORATORY		TEST (RESULTS	ILTS	SH	DATE SHEET	E Jan. 1974 OF
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	ST	STRENGTH	CON	CONSOL!- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	, eo	۰ 3 3	AND REMARKS
B26/9	1.9' Recovery; say 38.0' to	38.0 to 40.0	5								
	Silty CLAY: grav. soft to firm	38.4	ΤV	40.6							TV=0.20 tsf
	highly	38.4 to	W5. 1	40.6							
		38.5 to 38.8	save 5.1								
_		38.8	ΔŢ	39.5					·		TV=0.23 tsf
		38.8 to 38.9	W5. 2	39. 5							
		38.9 to 39.3	שו	.l	: :			:			
		39.3	ŢV	36.0							TV=0.3¢ tsf
		39.3.to 39.4	W5.3	36.0							
			US.1	36,6		98	n	1.6 443			
		39.4 to 39.8	L. 5.1	36.6	38 20						
					-						

	PROJECT: BELLE TABLE SUMN	ELLE RIVER		PLANT UNITS	BORATORY T	EST	RESULTS	JLTS	FI DV	FILE NO. DATE Ja	No. 1255 Jan. 1974
	NO		TEST		PROPERTIES		ST	STRENGTH	CONSOLI	- IN	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		, o	AND
B26/11	Silty CLAY: dark gray, firm	48.0 to 50.0	9								
	consistency, highly plastic (CL)	48.0 to	save 6.1								
	Sample includes about 20%	48.3	TV	31.0							TV=0.28 tsf
	coarse to fine sand grains	48.4 48.4	W6.1	31.0						2000-2423	
	in shape)	48.4 to 48.7	save 6.2								
		48.7	TV								TV=0.32 tsf
		48.7 to 49.0	T6.1.3	30.0		93	CU	4.6 2206			
		49.0	TV	36.3							TV=0.29 tsf
		49.0 to 49.1	W6.2	36.3							
		49.1 to 49.4	T6.12	36.5		98	CU	3.9 1222			
		49.4	$\Lambda \mathbf{I}$	34.5							TV-0.33 tsf
		49.4 to 49.5	W6.3	34.5							
		49.5 to 49.8	T6.11	36.1		88	CU	3.8 896			
		49.5 to 49.8	L6.1	36.1	41 21						

	PROJECT: BELLE	RIVER	PLAN	PLANT UNITS	IBI					FILE	NO. 1255 Jan. 1974
	TABLE SUMMA	MARY	OF L	ABORATORY	TORY T	EST	RESULTS	ILTS	SHEET	ĒŢ	0F
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES	S	ST	STRENGTH	CONSOLI	OLI- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	I	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	e ₉	C C	AND REMARKS
B26/17	1.0' Recovery; say 78.0' to	78.0 to 80.0	9								
	12.0 depth	78.2	TV	25.1							TV=0.46
	Silty CLAY, dark gray, firm to stiff consistency.	78.2	W9.1	25.1							
	highly plastic (CL)	78.2 to 78.5	U9.1	24.8	;	101	Þ	12.0 580			
	Includes about 35% subangular	78.2 to 78.5	L9.1	24.8	36 20						
	to subrounded fine Gravel and coarse Sand particles	78.5	TV	25.8							TV=0.52 tsf
		78.5 to 78.6	W9.2	25.8							:
		78.6 to	save 9.1								-
		78.9	TV	25.0							TV=0.38 tsf
		78.9 to 79.0	W9.3	25.0							

N TEST PROPERTIES STRENGTH CONSOLUTION NEET CONTENT LIMITS NEEDLES STRENGTH CONSOLUTION OF THE CONTENT LIMITS NEEDLES STRENGTH CONSOLUTION OF THE CONTENT LIMITS NEEDLES STRENGTH CONSOLUTION OF THE CONTENT LIMITS NEEDLES STRENGTH CONSOLUTION OF THE CONTENT LIMITS NEEDLES STRENGTH CONSOLUTION OF THE CONTENT LIMITS NEEDLES STRENGTH CONSOLUTION OF THE CONTENT LIMITS NEEDLES STRENGTH CONSOLUTION OF THE CONTENT LIMITS NEEDLES STRENGTH CONSOLUTION OF THE CONTENT LIMITS NEEDLES STRENGTH CONTENT NEEDLES STRENGTH CO		PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBIE					"	H F	NO 1255
DENTIFICATION TEST PROPERTIES STRENGTH CONTON		 	MA		ABOR/	ATORY I	ST	RESL	LTS		SHEE	ATE	July 197
SAMPLE SOIL DESCRIPTION DEPTH WATER ATTERERS SWEAR		IDENTIFICATION		TEST NO.	<u> </u>	ROPERTIE	S	STI	RENGT		CONSO	l	THER TESTS
Silty CLAY, dark grey firm to 128.0 128.1 128.2 130.4 depth 128.2 130.4 depth 128.3 131.3 34.0 90 Cu 3.4 4652 128.3 131.3 128.5 86 Cu 4.5 2442 128.4 128.4 131.3 135.4 39.2 128.4 128.8 128.9 128.8 128.9 128.9 128.9 128.9 128.9 128.9 128.9 129.7 129.8 129.7 129.8 130.2			DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT	TEST	1		မိ		AND
Silty CLAY, dark grey firm to 128.4- stiff consistency, moderate 128.8 T13.12 35.6 to highly plastic (CL) 128.8 T13.13 35.4 39 21 Bottom third of sample and and non-plastic Silt particles 128.8- to 1/4" thick) 129.7 TV 27.5 129.8 W13. 3.7.5 129.8 W13. 129 120.8 W13. 129	76	overy 2.4°; say 128.0° 4° depth		13									
Stiff consistency, moderate to highly plastic (CL) 128.4- To highly plastic (CL) 128.8- Bottom third of sample includes 30 to 40% fine Sand and non-plastic Sitt particles occurring in thin layers (1/16" 129.7 TV 27.5			·	ᆌ	4,				4	1652			T c=16.704nsf
to highly plastic (CL) 128.4 13.1 35.4 39. 21 128.8 128.8 128.8 128.8 128.8 128.8 128.9 128.8 128.9 128.8 128.9 128.8 128.9 128.8 128.9 128.8 128.9 128.8 128.9 128.8 128.9		grey firm to moderate	4. %	ائــ	5.		98.	D	5	644			Tr=8357 nef
Bottom third of sample 128.8 - 128.9 128.9			128.4- 128.8	L13. I	5	2							
128.8- TV 32.1 TV=0. 129.7 TV 27.5 TV=0. 129.8 W13.3 27.5 S S S S S S S S S S S S S S S S S S S			128.8- 128.9	3	2.								
129.7 TV 27.5 TV=0. 129.8 W13.3 27.5 S			128.8- 128.9	TV	2.								.60ts
8 W13. 3 27. 5				TV	7.								0=
2 T13 1.1 22. 9 96 CU 15. 0 4500			1 &	3	7.								
			- 2	, :	2	,	96		0.	500			<u> 7</u>
								 					1840111
		· .										-	
												-	
												 	
								-					
								_			<u> </u>	<u> </u>	

SUMMARY OF L	ARY OF L	'l	: < _	OF LABORATO	5 Z	TEST	RESI	RESULTS	SHE	FILE POATE SHEET	FILE NO. 1255 DATE July 1974 T
DENIL	DENTIFICATION			۵	PROPERTIES	ES	ST	STRENGTH	DAT	CONSOLI- DATION	OTHER TESTS
SOIL DES	DESCRIPTION	DEPTH (FEET)	J	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT (PCF)	TEST	MAX. E SHEAR STRESS % (PSF)	0	30	AND REMARKS
1.4' Recover 4.9' depth	Recovery; say 3.5' to depth	3.5-	302								
•	,	3.6- 4.0	Saved								
Silty CLAY; stiff consiste	stiff CLAY; greyish brown, stiff consistency, moderate	4.0- 4.2	W302,1	24.2		66					
to high pla s ti	to high plasticity (CL-CH)	4.2	$_{ m TV}$								TV=0.87 tsf
Sample includes about 5%	des about 5%	4.2- 4.5	Saved								;
sized particle	sized particles (subrounded	4.5- 4.8	T302.2	24.9		103	ΩΩ	8.0 2099			
to subangular in shape)	r in shape)	4.5- 4.8	1302.1	23.1	48 24						
					i						
	-										
:											
	_				-						

B.0° to DEPTH TEST NATE NO. B.0° to 10.0 30.3 B.0° to 10.0 30.4 B.0° to 10.0 B.0° to 10.		PROJECT BELLE R	F RIVER		PI ANT INITS	E 4 7							1255
SOIL DESCRIPTION SOIL DESCRIPTION (FEET) — WATER CONTENT 1.7 Recovery; Say 8.0° to 9.7° depth Silty CLAY, grayish brown, firm to stiff consistency, highly plastic (CL-CH) Sample includes about 10% Sample includes about 10% Sample includes about 10% Sample includes about 10% Sample includes about 10% Sample includes about 10% Sabe base of the gravel size particles (subrounded 9.2 to 303.2 9.4 W33.2 33.5 9.4 TV			AMARY	OF L	ABORA	ORY	TEST	RESULTS	ILTS		0/0 TREET	DATE	PA P
SOLL DESCRIPTION 1.7 Recovery; Say 8.0 to 10.0 30.3 1.7 Recovery; Say 8.0 to 10.0 30.3 2.7 depth 8.1 to 30.3 3.1 8.4 to 30.3 3.2 8.6 to 30.3 3.4 8.6 to 30.3 3.5 8.6 to 30.4 3.6 8.9 to 30.4 3.7 30.4 3.8 5.0 to	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	STI	STRENGTH		CONSOLI	100	OTUGO TOTO	
1.7 Recovery; Say 8.0' to 10.0 303 9.7 depth 8.1 to save 8.4 to w3331 31.5 8.5 to w3331 31.5 8.6 to w3331 30.6 8.6 to w3331 30.6 8.7 to w3331 30.6 8.8 to w3331 30.6 8.9 to w3331 30.4 51 8.5 to w3331 30.4 51 8.5 to w3331 30.4 51 8.5 to w3332 33.5 9.4 TV 9.4 TV 9.4 TV 9.4 TV 9.5 to w3332 9.6 to w3332 9.7 to w3332 9.8 to w3332 9.9 to w3332 9.0 to w3332 9.0 to w3332 9.0 to w3332 9.0 to w3332 9.0 to w3332	BORING SAMPLE		DEPTH (FEET)	ļ	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT	TEST	N SH	MAX. SHEAR STRESS	e°	· °°	OTHER LESTS AND REMARKS
8.1 to save 8.4 303.1 8.4 to 8.4 to 8.5 to 7.8 8.6 to 8.9 to save 9.2 303.2 9.2 to 9.4 TV 9.4 TV 9.4 TV 9.4 TV	27/4	1.7 Recovery; Say 8.0' to	8.0 to 10.0	303								†	
8.4 to W303.1 31.5 8.6 www.y. 8.6 TV 8.6 to W303.1 30.6 8.9 wavel 8.9 to save 9.2 303.2 9.4 TV 9.4 TV 8.6 to 9.4 to wavel 8.9 to save 9.2 to 9.4 to wavel 8.9 to save 9.2 wavel 8.9 to save 9.2 wavel 8.9 to wavel 8.		7. / depth	8.1 to 8.4	save 303.1									
9. 8. 6 TV 8. 6 to 10% 8. 9 U303.1 30.6 8. 9 to save 9. 2 303.2 9. 2 to 9. 4 W303.2 33.5 9. 4 TV		Silty CLAY, grayish brown,		W303.1	ᆲ		88				-		
8.6 tb U303.1 30.6 8.9 U303.1 30.6 8.9 U303.1 30.4 51.2 8.9 to save 9.2 303.2 33.5 9.4 TV		firm to stiff consistency, highly plastic (CL-CH)	8.6	TV							-		TV=0.66+ef
ded 8.9 L33.1 30.4 51 2 8.9 to save 9.2 303.2 9.4 W303.2 33.5 9.4 TV		Sample includes about 100		U303, 1	-1		94	n	20.0	1772		0.0	@15.0% strain s=1722psf
ded 8.9 to save 9.2 303.2 9.2 to 9.4 W303.2 33. 9.4 TV		coarse sand and fine gravel			•	2							
9.2 to 9.4 W303.Z 33. 9.4 TV		size particles (subrounded to subangular in shape)		save 303.2									
			9.2 to 9.4	W303. Z	3.		87						
			9.4	ŢΛ									TV=0.47tsf
									1				
											<u> </u>		
										_		 	
										\vdash			
										 			
										 			
								-			 	-	

	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBI					FE	FILE NO. 1255
	TABLE SUMMA	¥	OF L	LABORATORY	TORY T	EST	RESULTS	LTS	SH	SHEET) F
	IDENTIFICATION		TEST NO.	d	PROPERTIES	:S	ST	STRENGTH	CON	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	s eo	Ce +	AND REMARKS
27/10	2.4' Recovery: Sav 33.0' to	33.0 to 35.5	306								
	35, 4' depth	1 to	save 306.1								
		4 to 6	W30.6.1	37,9		84					,
	consistency, moderately	9	st								TV=0.3ltsf TV _R =0.09tsf
	plastic (CL)	<u>ş</u> .	G06.1	38.6					1016	. 44	
		0 to 3	1306.1		41 22						
		t 0	37306.1								specific grav- itv=2.73
		3 to	save 306.2								
		o to	W30 6. 2	36.3		86					
		8 to 2	save 306.3								
			1								
											·

SUMMARY OF LABORATORY TEST RESULTS SHEET		PROJECT: BELLE R	E RIVER		PLANT UNITS	SIBI					<u>u</u>	NO 1255
DENTIFICATION TEST	lui-regge		MARY	OF L	ABOR,	ATORY	rest	RESI	JLTS	iu I	DATI	July
1.9 Recovery; say 53.0° to 55.0° 308 1.9 Recovery; say 53.0° to 55.0° 308 1.9 Recovery; say 53.0° to 55.0° 308 1.9 Recovery; say 53.0° to 55.0° 308 1.0° 1.		IDENTIFICATION		TEST NO.		ROPERTI	ES	ST	RENGTH	CONS	125	יים דיים דרים דרים דרים דרים דרים דרים ד
1.9° Recovery; say 53.0° to 53.0° 54.9° depth 53.0° 53.1° 53.0° 53.1° 53.1° 53.1° 53.1° 53.1° 53.1° 53.1° 120 53.7° 170 53.7° 170 53.7° 170 53.7° 170 54.0° 120	BORING			·	NATER WATER	ATTERBER LIMITS	G DRY UNIT	TEST		, ,	3	AND
1.9 Recovery; say 53.0° to 55.5° - 308			LI LI		(%)	መ ገመ		TYPE		9	, 0	REMARKS
12 12 12 13 15 15 15 15 15 15 15	27/14	ry; say	\circ	308								
### 13.6 12.0		The state of the s	٦.	saved								
ate plasticity (CL)		gray, stiff consistency, low to	9.5	W308, 1	3.		7					
coarse about 10% 54.0- coarse SAND and fine 54.4 saved 54.4 saved 54.4 saved 54.4 saved 54.4 saved 54.5 W382 25.9 98 size particles articles 54.5 W382 25.9 98 54.5 W382 25.9 98 54.7 TV 54.8 TV 54.		moderate plasticity (CL)										TV=0.78 tsf
unded to subangular in 54.5 W208.2 25.9 98 unded to subangular in 54.5 W208.2 25.9 98 54.5 138.1 24.2 32 17 54.7 TV 54.7 TV 54.7 TV 1AY, gray, firm tency, moderate ity (CL) includes about 15% fine se SAND grains unded to subangular in		fine to coarse SAND and fine	\circ	saved								
9. change to LAY, gray, firm tency, moderate ity (CL) se SAND grains anded to subangular in		gravel size particles subrounded to subangular in	54.4- 54.5	W308.2	5.		98					
9° change to LAY, gray, firm tency, moderate ity (CL) sincludes about 15% fine se SAND grains anded to subangular in		shape)		1.308.1	4							
At 53.9 change to Silty CLAY, gray, firm consistency, moderate plasticity (CL) Sample includes about 15% fine to coarse SAND grains (subrounded to subangular in shape)				TV		1		_				TV=0.34 tsf
At 53.9° change to Silty CLAY, gray, firm consistency, moderate plasticity (CL) Sample includes about 15% fine to coarse SAND grains (subrounded to subangular in shape)												
consistency, moderate plasticity (CL) Sample includes about 15% fine to coarse SAND grains (subrounded to subangular in shape)		At 53.9 change to Silty CLAY, gray, firm										
Sample includes about 15% fine to coarse SAND grains (subrounded to subangular in shape)		consistency, moderate plasticity (CL)										
to coarse SAND grains (subrounded to subangular in shape)		Sample includes about 15% fine										
shape)		to coarse SAND grains (subrounded to subangular in										
		shape)										
											-	
		-										

	PROJECT: BELL!	RIVER	PLAN	T UNIT	BELLE RIVER PLANT UNITS I & II					FILE	FILE NO. 1255
	TABLESUN	SUMMARY	OF L	LABORATORY		TEST	RESULTS	JLTS	SHE	DAT SHEET	E 3419 1773 0F
	IDENTIFICATION		TEST NO.	Р	PROPERTIES	S	ST	STRENGTH	CONSOLI	SOLI-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	69	, ₂	AND REMARKS
27/17	Jar Sample	68.5- 70.0	432								
	Clayey SILT, Sandy, dark		S/H 432.1								See plot
	gray, low plasticity (CL-ML)										
	m						·				
	to coarse Sand and line Gravel size particles (subrounded to										
	subangular in shape)						······································				
\											
			,								
V											

	PROJECT BELLE RI	RIVER		PLANT UNITS I	SIBH						FLE	FILE NO. 1255
	TABLE SUMMA	MARY	OF L	ABORATORY	TORY T	EST	RESULTS	JLTS		D/ SHEET	DATE	E April 1974 OF
	IDENTIFICATION		TEST NO.	۵	PROPERTIES		ST	STRENGTH	E	CONSOLI- DATION	OC.	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	S.S. >	MAX. SHEAR STRESS (PSF)	မ	رد ،	AND REMARKS
27/24	Silty CLAY, sandy; gray,		313									
	stiff consistency, moderately 103.	103.2tc 103.5	save 313.1	·								
		5	TV							!		TV=0.61tsf
	Sample includes about 25%	5 to 7	W313, 1	27.4		86						
	and fine gravel sized	7 to 1	save 313.2									
	particles (subrounded to subangular in shape)	10 4. 2 to 104. 5	C313, 1	33,9						0.910	. 30	
		104.2 to 104.5	1.313, 1	31,1	43 25							
			SC313.1									specific gra- vity=2.74
									-			
								100				

	DBO IECT. BELLE	F RIVER		HINI: H	T & T STINIT TND IG					1 1 1	FILE NO 1255
D.P.				ABORATORY	TORY 1	TEST	RESULTS	JLTS	D/ SHEET	DATE	Jul J
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	ST	STRENGTH	CONSOLI	SOLI-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	ļ	WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. E SHEAR STRESS % (PSF)	<u> </u>	, ₂ 0	AND
27/26	1.5' Recovery; say 113.0' to 114.5' depth	113.0- 115.0	314								
	Silty CI AV Grant		ΤV								TV=0.16 tsf
	gray, mode		W314. 1	34.6		89					
	plasticity (CL) Sample includes few thin	113.6- 114.4	S314. 1	21.4							See plot
	lenses/layers of Silty SAND (± 1/8" thick) comprising ±										
	10% of total					,,					
	At 113.6' change to -										
	_ r										
	non-plastic fines (SM-SP)										
							-				
					-						
				-							

prog van	PROJECT: BELL	BELLE RIVER	1	PLANT UNITS	SIBE					FILE NO.	
		IMARY	OF L	ABORATORY	TORY T	EST	RESULTS)LTS	D SHEE	DATE JU	5July 1974 OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	-INC	OTHER TESTS
BORING	SOIL DESCRIPTION	OEPTH (FEET)	-	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ပိ	, ₂	AND REMARKS
27/30	2.4' Recovery; say 129.0' to 131.4' depth; upper 0.8'	129.0- 131.5	315								
		129.1- 129.4	Saved								
	Silty CLAY, grey, stiff	5-	W315.1	34.0		84					Clay portion
	consistency, moderate plasticity (CL)	129.9- 130.1	L315.1	34.3	40 21						
	Sample includes Silty fine Sand	130.2	ΛĬ								TV=0.75tsf
		130.2- 130.6	Saved								
	comprising about 10% of total sample	130.6- 131.1	Saved								
		1,5	W315.2	24. 1		66					Silty Sand and Clay portion
					-						
										1	

27 Marying	PROJECT BELLE R	E RIVER		TINE L	PI ANT INITS T A T						
	 	SUMMARY		LABORATORY	TORY	TEST	- RES	RESULTS	č	DATE	2
	IDENTIFICATION		TEST		1 🗠	ES	ST	STRENGTH	CONSC	CONSOLI-	0F
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	WATER CONTEN	ATTERBERG LIMITS	G DRY UNIT WEIGHT	4 T	MAX. • SHEAR STRESS		NO S	OTHER TESTS AND
28/3	1.2' Recovery; say 5.0' to 6.2' depth	5.0-	183	8	d 3	(PCF)	_	% (PSF)			
	1 A V	5.0- 5.3	saved								
	stiff consistency, moderate to	5,3- 5,5	W18.3.1	33.3		95					
	(CL)		ΤV								TV=1,30 tsf
		5.8	saved								
		5.8- 6.1	U183.1	25.3		100	ū	4.0 1981			
		,_	1.183.1	25.5	47 2.	· 60					
							-				
			·								
							-		 		
				1		1	1		-		

lon trace	PROJECT BELLE RI	E RIVER	1	PLANT UNITS	SIBI					FILE	NO. 1255
		SUMMARY	OF L	ABORATORY	ORY T	EST	RESULTS	LTS	HS.	DATE SHEET	E July 1974 OF
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	STI	STRENGTH	CON	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		ຸ່ິນ	AND REMARKS
28/9		28.0- 30.0	186								
		28. 1- 28. 4	saved								
	SHIY CLAY, dark gray, soft consistency, moderate to	28.4- 28.5	W186, 1	40.0		80					
	highly plastic (CL)	28.5	ΤV						PILA:		TV=0.20 tsf
		28.5- 28.8	saved								
		28.8- 29.1	U186, 1	38.0		84	ם	7.0 42	70		
		28.8- 29.1	L186,1	39.5	42 20						
		29. 1- 29. 3	W186.2	41.4		78					
		29.3	ΛL								TV=0.20 tsf
		29.3-	saved								
								:			
									ļ		
		,									
							1				

	PRO JECT BELLE	E RIVER		PLANT UNITS	SIBI					12.	FILE NO. 1255
	 	SUMMARY	OF L	LABORATORY	-	EST	RESULTS	LTS	SHEET	ET _	빙
	IDENTIFICATION		TEST NO	۵	PROPERTIES	S	ST	STRENGTH	CONSOLI-	OL!	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	69	• 30	AND REMARKS
28/15	2.1' Recovery: say 58.0' to	58.0-	189								
		ו או.							٠.		
	Silty CLAY, dark gray, firm consistency, moderate	ميميا	W189.1	25.5		98					
	plasticity (CL)		ΛL					:			TV=0.38 tsf
	Sample includes about 15%	59.0- 59.3	saved								
	fine to coarse SAND grains (subrounded to subangular	59, 3- 59, 4	W189.2	25.1		66					
	in shape)	59.4- 59.7	saved								
		59.7	ΛL								TV=0.43 tsf
	.										
	-4										

	PPO IFCT. BELL	BELLE RIVER	1	PLANT UNITS I	TRIS					FIL	FILE NO. 1255
		SUMMARY	OF L	ABORATORY	RY	TEST	RESULTS	LTS	S	DATE SHEET	E July 1974 OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	000	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	I	NATER WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	SS (°	, 3 ₀	
28/23	2.1 Recovery, say 98.0 to	98.0- 100.0	193							·	
	100.1 depth	98.1- 98.4	saved								
	Silty CLAY, gray, stiff	4- 5	W193, 1	23.0	·	104					
	high plasticity	98.5	TV								TV=0.71 tsf
	(CL) Sample includes about 15%	98.5- 98.9	saved								
	fine to coarse SAND grains (subrounded to subangular	2-3	W193.2	23.8		86					
:	in shape)	99.3	TV								TV=0.93 tsf
		99.3- 99.6	saved								,
											-
,									_		
								:			

	DBO LECT BELLER	F RIVER	NA IG		PI ANT LINITS T & T						1	FILE NO 1255
		MARY	OF L	ABORATORY	TORY I	TEST	RESULTS	JLTS		D/ SHEET	DATE ET	E July 1974 OF
	IDENTIFICATION		TEST NO.	a	PROPERTIES	<u> </u>	STI	STRENGTH	Ξ	CONSOLI	OLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	STS %	MAX. SHEAR STRESS (PSF)	မ	Cc +	AND REMARKS
30/3	Jar Sample	6,0-	433									
	Silty CLAY, dark grayish		L433.1	22.4*	55 25				***			
	brown, high plasticity (CH)			·								
	*Note. Water content taken									-		-
لب بد	from unsealed jar sample		,								-	
								i				
							·					
								:				
							·					
												
					·							

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	T: B			TINO	PLANT UNITS I B II					E 1	FILE	125
		SUMMARY	OF L	LABORATORY		TEST	RESULTS	LTS	•	D/ SHEET	DATE JU	11V 1912
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	ES	STI	STRENGTH	Sa	CONSOLI	-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	I	NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	S DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS (PSF)		ű	 	AND
30/6	Jar Sample	18.5- 20.0	434							-	-	
	Silty CLAY, dark grayish brown, moderate to highly		W434. I	37.7								
	plastic (CL.*CH)											
	*Note: Water content taken									<u> </u>		
	itoiii uusealeu jar sample											
							<u> </u>					
	•											
										-	-	
		-									-	
											ļ	
	· · · · · ·											
							-					

(

	PROJECT: BELL	E RIVER	7 PLAN	T UNIT	BELLE RIVER PLANT UNITS I B IT					1 1 1	F NO 1255
0.85	1	AMARY	OF L	ABORATORY	ATORY	TEST	- RESI	RESULTS	ď	DATE	July
	IDENTIFICATION		TEST	_	PROPERTIES	IES	ST	STRENGTH	NO.	CONSOL 1-	0
BORING	SOIL DESCRIPTION	DEPTH (FEFT)		NAT.*	ATTERBERG LIMITS	RG DRY UNIT	<u> </u>	MAX. SHEAR			<u> </u>
				(%)	መ ገመ	P (PCF)	TYPE	% (PSF)			REMARKS
30/12	Jar Sample	53.5- 55.0	435								
	Silty CLAY, grey, moderate		W435.1	* 24. 7						<u> </u>	
	plasticity (CL)									_	
	Sample includes about 20%										
	(subangular to subrounded in										
	snape)										
	*Note: Water content taken from unsealed jar sample										
	•								<u> </u>		
							-				
				-							
							-				
							-				
							-				

255 197∔	FSTS	RKS											
12. IZ. July 1	· I	AND		See plot									
FILE I DATE SHEET	CONSOLI-	, 22											
HS	CON												
15	STRENGTH	MAX. SHEAR STRESS (PSF)		-									
RESULTS	STRE	TEST €											
TEST R		DRY UNIT EIGHT											
B	_	ATTERBERG LIMITS WL WP											
PLANT UNITS I & I	ā	WATER CONTENT	1										
PLA	line		436	S/H 436.1									
SUMMARY		DEPTH (FEET)	68.5-										
PROJECT: BELLE	DENTIFICATION	SOIL DESCRIPTION	Jar Sample	Silty CLAY, Sandy, gray	Sample includes about 25%	fine to coarse Sand and fine Gravel size particles (sub-	rounded to subangular in	snape)					
		BORING	30/15										

	PROJECT: BELLE	BELLE RIVER		PLANT UNITS I	SIBIE						ڔٙۅٳ	55
		MARY	OF L	ABORATORY		TEST	RESULTS	ıLTS		D/ SHEET	TE JULY 0	거 내
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH		CONSOLI-	;	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	_	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		90°C		AND REMARKS
30/21	Jar Sample	98.5- 100.0	437									
	Silty fine SAND, uniform fine		S 437. 1								See plot) t
	Sand grains with about 15% non										*************	
	pidatic tities (DIVI)											
									:			
												:

FILE NO. 1255 DATE July 1974 LTS SHEET OF	ΙĒ	WAX. SHEAR STRESS 0 Cc. REMARKS % (PSF)		See plot									
T RESULTS	STR	DRY UNIT TEST WEIGHT TYPE (PCF)											
T UNITS I B II ABORATORY TEST	PROPERTIES	ATTERBERG LIMITS WL WP											
PLANT UNITS OF LABORAT	TEST NO.	WATER CONTENT (%)	438	438.1									
BELLE RIVER F		DEPTH (FEET)	118.5	S									
PROJECT BELLE TABLE SUM	NO	SOIL DESCRIPTION	Jar Sample	COLD CANTO CONTRACT TO	subangular fine to medium Sand	grains, about 15% non-plastic fines (SM)			·				:
		BORING SAMPLE	30/25										

	PROJECT BELL	BELLE RIVER PLANT UNITS I	PLAN	TINU	д B I S					F	FILE NO. 1255
		SUMMARY	OF L	LABORATORY	RY	TEST	RESULTS	LTS	SHE	DATE. SHEET	E_Iuly 1974
	IDENTIFICATION		TEST NO.	٥	PROPERTIES	S	ST	STRENGTH	CONSOLI	OLI-	=
BORING	SDIL DESCRIPTION	OEPTH (FEET)	I	NATER WATER CONTENT (%)	ATTERBERG LIMITS TWL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	L	ပိ	AND
32/3	Jar Sample	6.0- 7.5	439								
	Silty CLAY, dark grayish		W439, 1	* 20.3							
	brown, moderate to highly plastic										
	(CL-CH)										
	*Note: Water content taken						-				
	irom unsealed jar sample										
									·		
									·		

	PROJECT: BELLI	E RIVER	PLAN	T UNIT	BELLE RIVER PLANT UNITS I & II				FIL	0. 1255
		SUMMARY	OF L	LABORATORY	TORY T	TEST	RESULTS	ILTS	DATE. SHEET	re July 1974 OF
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	STI	STRENGTH	CONSOLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	l	NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY Unit Weight (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	၁၁ ၀ခ	AND REMARKS
32/7	Jar Sample	23.5- 25.0	440							
	Silty CLAY, dark grayish		W440, 1	37.9						
·	plasticity									
	(CL-CH)									
	*Note: Water content taken from unsealed iar sample									

	PROJECT: BELLE RI	E RIVER		T UNIT	PLANT UNITS I B IT					FILE	NO. 1255
	TABLE SUI	SUMMARY	OF L	ABOR/	ABORATORY	TEST	RESULTS	LTS	H	DATE SHFFT	E July 1974
	IDENTIFICATION		TEST NO.	٩	PROPERTIES	ES	STR	STRENGTH	CONSOLI		
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT	⊒ <u></u>	MAX. SHEAR STRESS	<u> </u>	Z ű	OTHER TESTS AND REMARKS
32/10	Jar Sample	38.5- 40.0	441		!		1				
	Silty CLAY, gray, moderate		1.441.1		44 10	6					
	to nign plasticity (CL)										
							-				
							-				
							-				
										 	
										 	
	, <u>, , , , , , , , , , , , , , , , , , </u>										
							<u> </u>				
									-		

	PROJECT: BELL	E RIVER	PLAN	T UNIT	BELLE RIVER PLANT UNITS I & IL						FILE NO.	NO. 1255
	1	SUMMARY	OF L	LABORATORY	ATORY T	TEST I	RESULTS	LTS		D/ SHEET	DATE	July 1974 OF
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	ST	STRENGTH		CONSOLI	iz	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	<u> </u>	စိ	ن	AND
32/20	Jar Sample	88.5- 90.0	442									
	Silty CLAY, gray, moderate		L42.1		36 17							
	Sample includes about 10% fine to coarse Sand grains								ļ			
	(subrounded to subangular in shape)											
										ļ		
											-	
								-				
,												

~	PROJECT: BELL	BELLE RIVER		PLANT UNITS	П B I S.					1111	NO 1255
	TABLE SUN	SUMMARY	OF L	ABOR/	ABORATORY .	TEST	RESULTS	JLTS	ָ ער ער		July 19
	IDENTIFICATION		TEST		PROPERTIES	ES	ST	STRENGTH	CONSOLI	- J.	
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	ı	NAT. WATER CONTENT	ATTERE	G DRY UNIT	TEST	MAX. SHEAR STRESS		3	AND
	1 4	4		(%)	a D D	\neg		% (PSF)			REMARKS
33/3 %	; 6 	10.5	280				·				
	Silty CLAY dark orev firm	8.1- 8.4	Saved								
	to bigh placticity, CT CTN	8.5	WZ80_1	30.6		92					
	(H)-T) (hinging hinging)		ΤV								TV = 0.78tsf
	Sample includes about 5% fine to medium Sand grains (sub-	8 8 8	Saved			-					
	rounded to subangular in	8.8	TV								TV = 0.68tsf
	*Note This seems label	8.8-	1,280,1	31.6	48 25						
	B33/2, 8'-10'6''	1	W280.2	33.3		89					
											
										ļ	
										<u> </u>	

r.e	PROJECT: BELLI	BELLE RIVER		PLANT UNITS	SIBI					FILE	NO. 1255
	TABLE SUMMA	IMARY	OF L	LABORATORY	١.	TEST	RESULTS	JLTS	SHE	DATE EET	E0F
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	OLI-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS TWL TWP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	60	ر _{د +}	AND REMARKS
33/5		18.0- 18.5	282								
	Silty CLAY, gray, firm consistency, moderate to high	18.2- 18.5	Saved								
	plasticity (CL)	18.5- 18.6	W282.1	34.7		86					
	Sample includes about 5% fine	18.6	ΛI								TV=0.29 tsf
	to coarse sand grains (sub- rounded to subangular in	18.6- 19.0	1.282.1	37.6	43 23						
	shape)	19.7- 19.8	W282.1	36.2		84					
	Note: This sample and 33/9	19.8	ΛT								TV=0.32 tsf
		19.8- 20.3	Saved								
								÷			

	PROJECT: BELLE R	E RIVER		PLANT UNITS	SIBI						FILE NO 1255
		SUMMARY	OF L	LABORATORY	١.	TEST	RESULTS	JLTS	SH	DATE SHEET	E_Iuly 1974_OF
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH	CON	CONSOLI-	OTHED TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT	TEST	MAX. SHEAR STRESS % (PSF)	<u></u>	, s	AND REMARKS
33/7*	2.1' Recovery, say 28.0' to 30.1' depth	28.0- 30.5	281						_		
		28. 1- 28. 4	save						-		
	Silty CLAY, gray, soft to firm consistency, moderate to high	28.4- 28.6	W281.1	40.3		81					
ļ	plasticity (CL)	28.6	ΛL								TV=0.20 tsf
			T281.1.1	39.0		82	CU	13.4 73	6		0c=1440 psf
		.3	T281, 1, 2	39.7		82	CU	4.6 %6	١,0		0c=2880 psf
	Sample includes about 5% fine to medium Sand grains	29.3- 29.4	W281.1	37.7		83					
	(subrounded to subangular in shape)	29.4	ΛI					:			TV=0.26 tsf
	-	<u>4</u> -7-	1281.13	38.3		84	CU	6.3 152			0c=5760 psf
		29.4- 29.7	1.281.1	38.7	46 22						
	B33/4, 28:-30:6'										
							<u> </u>				
							<u> </u>				

Lizza w	PROJECT: BELLE	RIVER		PLANT UNITS	SIBIL				" '	FILE	9
	TABLE SUMMA	MARY	OF L	ABORATORY	⊢	EST	RESULTS	1LTS	D. SHEET	DATE	OF 191
	IDENTIFICATION		TEST NO.	٩	PROPERTIES	S	STI	STRENGTH	CONSOLI	<u> </u> 2	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	° a	, °	AND
33/9%	2. 1: Recovery; say 38. 0: to 40. 1: depth	38.0- 40.5	283								
		38.3- 38.6	Saved						:		
	consistency, moderate to high	6 - 7	WZ83, 1	36.8		85					
	plasticity (CL)	38.7	ΛI								TV =0.27tsf
		38.7-	T283.1.1	37.4		83	11.)	862 6 9			<u>0</u> c=1728psf
		38.7-	T283, 1.2	1 ,		2,7.7.	<u>1</u> 1				
	* Note: This sample labeled		T283:13	36.2		98	CC	2			<u>O</u> c=6912psf
	381-	39.1- 39.5	L283.1	37.2	43 23						
		39.5-	W7283.2	37.3		85					
		39.6	ΛI								TV = 0.28tsf
		39.6- 39.9	Saved								
		39.9	St								TV=0.35tsi TVr=0.09tsf
									1		
				·							

(

	PROJECT: BELLE	RIVER		PLANT UNITS	SIBI					FILE	FILE NO. 1255
	TABLE SUMMA	IMARY		ABORATORY	_	EST	RESULTS	LTS	SH	SHEET	- 0F
	IDENTIFICATION		TEST NO.	a.	PROPERTIES	S	ST	STRENGTH	CON	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	ss eo	• °2	AND REMARKS
33′11*	1.9' Recovery; say 48.0' to 49.9' denth	48.0- 50.5	284								
		48.1- 48.4	saved						·		
	Silty CLAY, dark gray, firm to stiff consistency, moderate	48.4- 48.5	W284.1	45.1		76					
	to high plasticity	48.5	ΛL								TV = 0.30 tsf
	Sample contains about 10%	48.5- 48.8	saved				 -				
	fine to coarse SAND grains (subrounded to subangular	48.8- 49.0	1.284.1	41.8	48 25						
	in shape)	49:8-	saved								
		49.3- 49.4	W284.2	34.5		81					
	* Note: Inis sample labeled B33/6 48'-50'6''										
									-		
	,	i									
						·					
									-		

ON TEST PROPERTIES TION (FEET) — CONTENT LIMITS WEIGHT IN (FEET) — CONTENT LIMITS WEIGHT IN (PCF) TY		PROJECT: BELLE RIV	ELLE RIVER	1 1 -	PLANT UNITS	I B II	EST	RESULTS	LTS	PI DV	FILE NO. DATE Jan	NO. 1255 Jan. 1974 OF
Soil Description Depth Wate Limits Wight Limits Limits Limits Wight Limits Li				ŀ		. 별	; [ST	STRENGTH	CONSOLI		
Soil Description CFET Ware Limits With the constitution CFET CONTENT CON		וסבונה וכשונה		Ö Ö	-		֓֞֝֟֝֟֝֟֝֟֟֝֟֝֟֟֝֟֟֝֟֟			_	Z	OTHER TESTS
Silty CLAY; dark grayish brown mottled with blue gray, highly plastic; hard consistency with a blocky structure. Soil includes 5 to 10% coarse Sand and fine Gravel size Bacto Bac	BORING SAMPLE		DEPTH (FEET)		NAT. WATER CONTENT (%)		DRY UNIT WEIGHT (PCF)		MAX. SHEAR Stress % (PSF)	ဝ	رد .	AND REMARKS
8.5 W17.1 25.3 8.6 to 8.9 L17.1 24.9 49 24 8.6 to 8.9 U17.1 24.3 8.6 to 8.6 to W17.1 24.2 8.6 to W17.2 26.3 9.0 ST 26.3 9.0 ST 26.3 9.0 ST 26.3 9.0 ST 27.3 9.9 TV 27.3	B38/3	Silty CLAY; dark grayish	8.0 to 10.0									
8.5 TV 25.3		brown mottled with blue gray, highly plastic; hard consistency	8.5		5.		·					
8.6 to 8.9 L17.1 24.9 49 24 8.6 to 8.9 U17.1 24.3 102 8.6 to UR17.1 24.2 8.6 to H17.1 24.2 9.0 W17.2 26.3 9.0 ST 26.3 9.1 to save 9.5 U17.1 27.3 9.9 TV 27.3		with a blocky structure.	8.5	ΛI	5.							TV=2.4 tsf
8.6 to 8.9 UI7.1 24.3 102 8.6 to UR17.1 24.2 103 8.6 to H17.1 24.2 9.0 W17.2 26.3 9.0 ST 26.3 9.1 to save 3.5 9.5 TV 27.3 9.9 TV 27.3		rse	&6 to 8.9	L17.1		2						
8.6 to R17.1 24.2 103 8.6 to H17.1 26.3 9.0 W17.2 26.3 9.1 to save 3.5			8.6 to 8.9	U17.1			102	Ū	3.0 2123			
8.6 to H17.1 8.9 H17.1 9.0 W17.2 26. 9.1 to save 9.5 17.1 9.6 W17.3 27. 9.9 TV 27.		angular in shape)	8.6 to 8.9	Մ <u>Է</u> լ7. 1			103	꾟	7.0 761			
W17.2 26. ST 26. save 17.1 W17.3 27. TV 27.			8,6 to 8,9	H17.1								see plot
ST 26. save 17.1 W17.3 27. TV 27.			9.0		26.					1		
save 17.1 W17.3 27. TV 27.			9.0	ST	Ι.							$TV=2.1_{tsf}$ $TV_{\tilde{\mathbf{T}}}$ 1.1
W17.3 27. TV 27.			9.1 to 9.5	اہ خا								7.
TV 27.			9.6		27.							
			9.9	ΤV	7.							TV-2.1 tsf
									:			

E NO. 1255	OF	OTHER TESTS	AND REMARKS					TV=1.1 tsf			see plot		specific gravitv=2.71		TV=0.9 t sf						
FILE	SHEET	CONSOLI- DATION	, ₀				-					1.19				-		 	 -		_
	SH	CON	69									. 770							 _		_
	TS	STRENGTH	MAX. SHEAR STRESS (PSF)						0 1506	ļ											
	RESULTS	STRE	TEST E			-	+	-	D 4,							+		 	+	\dashv	\dashv
	ST RE		DRY UNIT TE WEIGHT TY (PCF)				\dashv		1 96		 -										
l l	TES	TIES				+	+			2		-		\vdash		\dagger			+		\dashv
В Н	FORY	PROPERTIES	ATTERBERG LIMITS WL WP							46 2											
T UNITS	LABORATORY	P. P.	WATER WATER CONTENT -				28.6	28.6	28.5	28.5		29.0		28.8	.I	0.07					
PLANT	OF L	TEST		×-		1001	W18.1	$_{ m TV}$	U18.1	L18.1	1718	0.18		0 81M	2,07	A Y S	18.2				
RIVER	14		DEPTH (FEET)	13.5 to	13. 8, to	T	14.2	14.2	14.3 to	14.3 to	0		14.6	14.7		14.	1.71				
BELLE	TABLE SUMMA	NO	SOIL DESCRIPTION	1.8 Recovery; say 13.5 to	th; upper 0.2'	disturbed		Silty CLAY; dark grayish brown, highly plastic, stiff		coarse	Sand and fine Gravel size narticles (subrounded to	subangular in shape)	(CL-CH)								
			BORING	B38/4																	

LE NO.	0F	ОТН	AND C REMARKS															
ĽΩ	SHEET	DATION	၁ ° ခ					- +										
	RESULTS	STRENGTH	MAX. T & SHEAR STRESS E % (PSF)															
1 1	1	S	DRY UNIT TEST WEIGHT TYPE (PCF)									-	_,					
1 🖽	TORY TEST	PROPERTIES	ATTERBERG LIMITS WL WP		48 19		/											
T UNITS	LABORATORY	ă	NAT. WATER CONTENT (%)		37.6	37.6					·	-				_		-
P.A	OF L	TEST	·	0	1 1-1	W19.1								_	-		 <u></u>	4
RIVER	SUMMARY		DEPTH (FEET)	23.5 to	23.7 to 24.1													
PROJECT: BELLE		NO	SOIL DESCRIPTION	Recovery 0.71; av 23.51 to		200	Silty CLAY, dark gray, nguny plastic (CL-CH)	Note: Entire sample	greatly disturbed									
			BORING SAMPLE	4/8ca	2/254													

	PROJECT: BELLE	E RIVER	Ł	PLANT UNITS	SIBI					FILE	VO. 12;
		SUMMARY	OF L	ABORATORY	1	EST	RESULTS	רדא	SHI	DATE SHEET	E_Jan, 1974
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	STI	STRENGTH	CONSOLI	SOL!-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	OEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	s eo	. °°	AND REMARKS
B38/8	0.8' Recovery; say 33.5' to	33.5 to 35.5	20								
	to 34, 3' depth	34.1	W 20. 1	35.7							
	Silty CLAY, dark gray,	34.1 to 34.3	L20.1	36.3	48 20						
	highly plastic (CL-CH)										
	Note: Entire sample greatly										
	aisturbea						-				
											

		BELLE RIVER		PLANT UNITS	SIBI				FILE	S.
		MARY	OF L	ABORATORY		TEST	RESULTS	LTS	DA SHEET	DATE Jan. 19(= ETOF
	DENTIFICATION		TEST NO.	۵	PROPERTIES	S	STI	STRENGTH	CONSOLI	OTHER TESTS
BORING	SGIL DESCRIPTION	DEРТН (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	^ວ ວ °	AND
B38/12	Recovery; say 53.5' to	53.5 to 55.5	22							
	55.5	53.6	W22.1	33.7						
	Silty CLAY, dark grayish	53.6	ΤV	33.7						TV=0.36 tsf
	Œ	53.6 to 54.0	save 22.1							
		54.0	7.22 W	33.1						
	(CL-CH)	54.0	ΛL	33.1						Tv=0.41tsf
		54.1 to 54.4	U22.1	33.4		96	n	5.0 985		
		54. 1 to 54. 4		2	44 21					
		54.1 to 54.4	H22.1							See plot
				33.5						
		54.5	ΛŢ	33.5						TV=0.44 tsf
		5.45 to 54.9	save 22.2							
						·				

	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBII						FILE	FILE NO. 1255
		MARY	OF L	٥	BORATORY T	EST	RESULTS	JLTS		SHEET	ET	OF
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	ST	STRENGTH	Ŧ	CONSOLI	SP.I-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	ĺ	NAT. WATER CONTENT	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT (PCF)	TEST TYPE	* %	MAX. SHEAR STRESS (PSF)	မ	Cc .	AND REMARKS
B38/16	0.6' Recovery: say 73.5' to	73.5 to 75.5	24									
	74. I' depth	73.6	$_{ m TV}$	43.5				·				TV=0.27 tsf
	Silty CLAY, dark gray,	73.6	W24.1	43.5								
	highly plastic, soft to firm consistency (CH)	73.7 to 74.0	U24.1	41.3		79	Ω	4.8	704			
		73.7 to 74.0	L24.1	41.3	55 24	J				* *		
į		73.7 to	H24.1									See plot
		74.0 to	C24. 1	36.0						.935	.33	
		74.0 to										specific gravity=2.72
		74.0 to	W 24. 2	40.7								
						-						
	·											
		:										

E NO. 1255 Fe Jan. 1974		OTHER TESTS	AND REMARKS		TV=0.78 tsf			TV=0.82 tsf	,	7 67	TVP = 0.55 tsf					See plot			
FILE	SHEET	CONSOLI- DATION	ິນ				_								_				_
	SH	OS VA	00													_	-		_
	TS	STRENGTH	MAX. SHEAR STRESS (PSF)										14.0 603	17,4 548					
	RESULTS	STRI	TEST E										U]	-5	á				
	ST R		DRY UNIT WEIGHT (PCF)									. تري	104	105					
ІВП	TE	PROPERTIES	ATTERBERG LIMITS W												33 19				
UNITS	ABORATORY	1	NAT. WATER CONTENT (%)		14.4	14.4		17.8	17.8		22.8	22.8	22.2	,	2.				
PLANT	OF LA	TEST		2.7.		W25.1	save 25.1	ΛI	W25.2	save 25.2	St	W25.3	1.25.1	F-25.1		H25.1	`		
RIVER	MARY		DEPTH (FEET)	83.5 to	83.7	83.7	83.7 to 84.1	84.1	84.1	84.2 to 84.6	84.6	84.6	84.6 to	84.6 to	84.6 to 85.0	84.6 to 85.0			
BELLE		NO	SOIL DESCRIPTION	1.5' Recovery; say 83.5' to	5.0' depth	12 27 4 77	gray, moderate plasticity,	stiff consistency (CL)	Includes ±10 % medium to	angular to subrounded Gravel	size particles (1/4 to 1 smc)							•	
			BORING	B38/18															

SUMMARY OF LABORATORY TEST RE TEST PROPERTIES N (FEET) — CONTENTS 3.0 to 113.0 to 26 113.0 to 115.0 26 113.3 WZ6.1 34.5 PROFE TITE Sand 113.7 WZ6.2 32.2 PROFE TITE 113.7 WZ6.2 32.2 PROFE TITE 114.1 TV 33.1 PROFE 114.1 WZ6.3 WZ6.3 WZ6.3 WZ6.3 PROFE 114.1 WZ6.3 WZ6.3 WZ6.3 WZ6.3 PROFE 114.1 WZ6.3 WZ6.3 WZ6.3 WZ6.3 PROFE 114.1 WZ6.3 WZ6.3 WZ6.3 WZ6.3 PROFE 114.1 WZ6.3 WZ6.3 WZ6.3 WZ6.3 WZ6.3 PROFE 114.1 WZ6.3 WZ6.3 WZ6.3 WZ6.3 WZ6.3 WZ6.3 PROFE 114.1 WZ6.3 WZ6.3 WZ6.3 WZ6.3 WZ6		PROJECT: BELLE RI	E RIVER	1	PLANT UNITS	日 B I S						FILE	NO. 1255
TEST PROPERTIES LIMITS					ABOR			RESI	JLTS		D/ SHEET	DATE ET	E Jan. 1974 OF
Soll DESCRIPTION (FEET) 1.9' Recovery; say 113.0' to 115.0 26 114.9' depth 118.3 TV 34.5 Silty CLAY; gray, moderately to highly plastic, soft to firm 113.3 WZ&L 34.5 Consistency (CL-CH) Includes about 5% fine Sand 113.7 TV 32.2 Includes about 5% fine Sand 113.7 TV 33.1 Includes about 6% fine Sand 113.7 TV 33.2 Includes about 6% fine Sand 113.7 TV 33.1 Ind. 1 TV 33.1 I		IDENTIFICATION		TEST NO.	ď	ROPERTIE	<u>S:</u>	18	STRENGTH	Ŧ	CONSOLI- DATION	0LI-	OTHER TESTS
1.9' Recovery; say 113.0' to 115.0	BOR!NG SAMPLE		DEРТН (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	j	MAX. SHEAR STRESS (PSF)	ů ů	• °°	AND
113.3 TV 34.5 8 113.3 WZ&1 34.5 8 113.7 Save 82.2 8 113.7 TV 32.2 8 113.7 WZ&2 32.2 8 113.7 WZ&2 32.2 8 113.7 WZ&2 33.1 8 114.1 WZ&3 33.1 8 114.1 WZ&3 33.1 92 U 6. 114.6 UZ&1 31.9 45.25 U 6. 114.6 TV 114.6 TV 114.6 1 114.6 TV 114.6 1 1 114.6 TV 1 1 1 114.6 1 1 1	B38/24	Recovery;											
113.3 WZ6.1 34.5 8 113.3 to save 113.7 7 113.2 8 113.7 TV 32.2 8 113.4 113.7 to save 113.1 8 114.1 126.2		21 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7		ΤV	4.								TV=0.32 tsf
113.7 TV 32.2 113.7 TV 32.2 113.7 W26.2 32.2 113.7 W26.2 32.2 113.7 W26.2 32.2 113.7 W26.2 32.2 114.1 Z6.2 114.1 W26.3 33.1 114.1 W26.3 33.1 114.6 U26.1 31.9 45.25 114.6 U26.1 31.9 45.25 114.6 TV 114.6 TV 114.6 TV 114.6 TV		to highly plastic, soft to firm		W26.1	4.					_			
113.7 TV 32.2 8 113.7 113.7 113.7 113.7 113.7 114.1 114.1 126.2 114.1 </th <th></th> <td>consistency (CL-CH) Includes about 5% fine Sand</td> <td></td>		consistency (CL-CH) Includes about 5% fine Sand											
7 W26.2 32.2		size particles	ا.	TV	2								TV=0.48 tsf
to save 1				W26.2	2.								
1 TV 33.1			to 1										
1 W26.3 33.1 66. to 0.26.1 31.9 92 U 6. to 1.26.1 31.9 45.25 U 6. to 1.26.1 31.9 45.25 U 6. to TV				ΤV	3.								TV=0.44 tsf
to by the control of					3.								
to L26.1 31.9 45 25 to L26.1 by L26.1 to L26.1 t					l :		26	'n	0	500			
to H26.1 6 TV 6 TV 6 TV 6 TV 7 TV 7 TV 7 TV 7 TV			_	L26.1		5 2							
4 TV 6				H26.1									See plot
				TV									TV=0.52 tsf

	VIA TOTA OCT	RIVER	PLANT	T UNITS	18 I S					FILE	FILE NO. 1255
	TABLE SUM	SUMMARY	P.	LABORATORY	ļ 1	TEST 1	RESULTS	LTS	SHEET		OF
	NO		TEST NO.	۵	PROPERTIES	ES.	ST	STRENGTH	CONSOLI- DATION	- S	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	ů	Cc	AND REMARKS
B38/30	Jar Sample	138.5 to	69								
	Silty SAND; subrounded to		S/H 69.1								See plot
	Subangular line to coalse. Sand grains, about 30% non-										
	plastic fines (SM)										
						-					
						-					
				_							
						_					
				-		<u> </u>					
			_			-					
				-		-	_				

	PROJECT: BELLE RI	E RIVER	3	PLANT UNITS	SIBIE						FILE	FILE NO. 1255
	TABLE SUMMA	IMARY	OF L	ABORATORY	TORY T	EST	RESULTS	JLTS		D/ SHEET	DATI	Jan. 1974 OF
	IDENTIFICATION		TEST NO.	Р	PROPERTIE	S	18	TRENGTH		CONSOLI- DATION	- I	OTHER TESTS
BOR!NG SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	N SH	MAX. SHEAR STRESS (PSF)	မိ	ů	AND
B41/2	1.1' Recovery; say 4.0' to	4.0 to 6.0	28		-							
	o. I. depth	4.1	W28.1	33.6	-							
	Silty CLAY; olive gray motfled 4.1	4. 1	$\Lambda ext{L}$	33.6								TV=1.0 tsf
	with yellowish brown, highly plastic, very stiff consistency	4.1 to 4.4	save 28.1									
	throughout	4.4	W 28. 2	31.1								
	. s	4.4	TV	31.1								TV=1.1 tsf
	Sand and fine Gravel size particles (subrounded to sub-	4.5 to 4.8	U28.1	29.4		94	Þ	5.0 1	024			
		4.5 to 4.8	$\sigma_{ m p} \approx 1$	29.4		95	ďμ	9.0	974			
	(CH)	4.5 to	 L28.1	29.4	63 28							
		4.5 to	H28.1									See plot
		4.8	W283	39.5								
		4.8	$_{ m ST}$	39.5								TV=1.4 tsf $TV_R=1.0 tsf$
		4.9 to	save 28.2									

	PROJECT BELLE	RIVER	PLANT	IT UNITS	SIBI					3	VQ. 1255
	TABLE SUMMA	MARY	OF L	LABORATORY	⊢	EST	RESULTS	LTS	SH	DATE SHEET	E Jan. 1974 OF
	IDENTIFICATION		TEST NO.	<u>В</u>	PROPERTIES	S	ST	STRENGTH	CON DAT	CONSOLI- DATION	OTHER TESTS
BOR!NG SAMPLE	SOIL DESCRIPTION	DEРТН (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		رد ٠	AND REMARKS
B41/5	1.2' Recovery; say 10.0' to	10.0 to	29								
	11,2' depth	10.3	$\Lambda ext{L}$	29.0		·		-			TV=1.25 tsf
	Silty CLAY, grayish brown,	10.3	W29. 1	29.0	:						
	highly plastic (CL-CH)	10.3 to 10.7	save 29.1								
	Includes about 15% subangu l ar	10.7	$\Lambda ext{L}$	27.5							TV=1.43 tsf
	to subrounded fine Gravel	10.7 to	W29.2	27.5							
	J	10.8 to	C 29. 1	29.					662.	, 23	
		10.8 to	1.621	29.	46 23						
		11.1 to	W 29.3	28.9							
					!						
										ļ	
									<u> </u>		
		-									

ŧ

	PROJECT: BE	BELLE RIVER		PLANT UNITS	SIBI					FILE	40. IZ
		SUMMARY		ABORA	BORATORY T	EST F	RESULTS	LTS	D/ SHEET	DATE ET	E Jan. 1974 OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH	CONSOLI	OLI- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	ео	. °	AND REMARKS
B 41/7	Silty CLAY, dark gray,	20.0 to 22.0	30								
	highly plastic; soft to firm consistency throughout	20.5	W30.1	39.7							
	(CL-CH)	20.5	$_{ m TV}$	39.7							TV=0.28 tsf
		20.6 to 20.9	U30.1	39.2		83	U	3.0 338			
		20.6 to 20.9	L30.1	39.2	47 24						
		20.6 to 20.9	H30.1								See plot
		21.0 to	C30.1	38.1					1.055	. 34	
		21.0 to	3G30.1								Specific gravity=2,70
		21.1	W30.2	39.4							
		21.1	$\Lambda extbf{L}$	39.4							TV=0.30 tsf
		21.1 to 21.5	save 30.1		*.						
		21.5	W30.3	38.2							
		21.5	ΤV	38.2							TV=0.30 tsf
											•

FILE NO.	E1 OF	E OT E	Cc. REMARKS		TV=0.30 tsf				TV=0.28 tsf				TV=0.32 tsf										
	SHE	DATION	60																	<u> </u>			
OH II OUG	01.13	STRENGTH	MAX. SHEAR STRESS (PSF)								15.0 696					İ							
	7 F S	1	. TEST 47 TYPE)				-				n c			-		-	_				<u> </u>	-	
100	ES	ES	16 DRY UNIT - WEIGHT P (PCF)			<u> </u>	-	_			98	2.1			-		-		<u> </u>		-	+	
1 8 I	ORY	PROPERTIES	ATTERBERG LIMITS WL WP									45	,										
UNITS	ABORATORY	g	NAT. WATER CONTENT (%)		36.6	;	36.6		35.6	ري ا		36.0		. 1	36.1								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. г	TEST NO.		-	7.T		W31.1	save	т.V	2 1 2/1/2	• .	.		ŀ	6 G	31.2							
RIVER	SUMMARY		DEPTH (FEET)	to		30 4 +0	3	30.5 to	30.8	30.8 to	30.9 to	30.9 to	21.2		31.3 31.3 to	31.6		11.47			į		
T: B	TABLE SUM	IDENTIFICATION	SOIL OESCRIPTION		1.7' Recovery; say 50.0' to 31.7' depth		; ;	Silty CLAY, gray, firm consistency, highly plastic		Includes about 5% subangular	to subrounded coarse Sand particles	restriction () (1 of earm)	disturbed										
			BORING		B41/9																		

	PROJECT: BELL	BELLE RIVER		PLANT UNITS	SIBII						FILE	NO. 125
	TABLE SUI	SUMMARY	OF L	ABORATORY	TORY T	EST	RESULTS	ıLTS	•	SHEET	DATE	E Jan. 1974
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	F	CONSOLI	-INC	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	-	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	STS ST	MAX. SHEAR STRESS (PSF)	° မ	° ° °	AND
B41/11	1.1' Recovery; say 40.0' to	40.0 to 42.0	32					Ī				
·		40.2	TV	16.8								TV=0.30 tsf
	Silty CLAY, sandy, very	40.2	W32. 1	16.8			-					
	m <u>t</u>	40.2 to 40.6	save 32.1					i				
		40.6	ST	16.5								TV=0.34 tsf TV=0.28 tsf
		40.6	W32.2	16.5								-
	(CL-SC)	40.6 to 41.0	U32.1	16.0		118	D D	20.0	884			@15.0% strain s = 648 psf
		40.6 to 41.0	L32.1	16.0	. 20 12				·			
		to	S/H 32.1									See nlot
							-					
-							ļ					
							-			 		
							ļ			 		
							-					
						1	-		1	1	1	

	BELLE	RIVER	PLANT	T UNITS	БІВП					FILE	NO. 1255 Jan. 1974
	 	MAF	OF L	ABORATORY	⊢	EST F	RESULTS	LTS	SHEET		1 11
	IDENTIFICATION		TEST	ā	PROPERTIES	S	ST	STRENGTH	CONSOLI	- - -	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	စ	, _u	AND REMARKS
P41/13		52.0 to			1						
	1.5' Recovery; say 52.0' to 63.5' denth: unner 0.3'	52.3	7.7 V.T	47.5							TV=0.21 tsf
		52.3 to	1.0011	,							
	Silty CLAY, gray, soft to	52.4 to	save	4		76					
		52.7	ľV	45.5							TV=0.23 tsf
	(CL-CH)	52.7 to	W33_2	45, 7							
		53.0 to	33	46.					1.235	.35	
		53.0 to	200	.1	7 2 2 2 2						
		53.2	33. ST	٠ لـ	4						$\frac{\text{TV}=0.45}{\text{TV}}=0.45$
		53.2 to	_	J							
						_					
								:			
		5		_							

	PROJECT: BELL	BELLE RIVER		PLANT UNITS I	SIBI						FILE NO. 1255
	TABLE SUN	SUMMARY	OF L	ABORATORY	TORY T	EST	RESULTS	JLTS	SHEET	ET	TOF
	IDENTIFICATION		TEST NO	Ь	PROPERTIES	S:	ST	STRENGTH	CONSOLI- DATION	OL!-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	-	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		رد ،	AND REMARKS
B41/17	1.0' Recovery; say 72.5' to	72.5 to 74.5	35								
	<pre>/3.5' depth; upper 0.1' is 'wash' disturbed sample (?)</pre>		W 35. 1	17.1							
	Silty CLAY, sandy, dark	72.8	TV								TV=0.15 tsf
		72.9 to 73.2	T35.0.1	19.6	:	105	מת]	14.0 454			
	rily as pockets of Silty fine	72.9 to 73.2	L35.1	19.6	25 15		,				
	Sand (±30% of sample) (CL-SC)	to	S/H 35.1								See plot
	Also 5% to 10% Gravel size	73.3	C35.1	26.7					269.	. 21	
		73.3	SC 35. 1		•						Specific Gravity=2.68
					:			:			
									•		

·	PROJECT: BELLE R	E RIVER	PLAN	PLANT UNITS	SIBI						1 = 1	NO 1255
		SUMMARY	OF L	LABORATORY		TEST	RESULTS	JLTS		CHEET	DATE	Ian
	IDENTIFICATION		TEST NO.	٩	PROPERTIES		ST	STRENGTH	-	CONSOLI		OTUGB 15010
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS	G DRY UNIT	TEST	STR STR	MAX. SHEAR STRESS	e° °	. 33	OLDER LESTS AND REMARKS
B41/23	Silty CLAY, dark gray,	101.0to 103.0	37		İ						1	
	moderate plasticity, firm consistency (CL);	101.3	TV	23.2								TV=0,46 tsf
	includes 10% to 15% fine to coarse Sand and fine Gravel	101.3	W37, 1	23.2	·							
	size particles	101.3to	save 37.1									
		101.8	${ m TV}$	25.4								TV=0.62 tef
		8	W372	25,4								킑
		to 3	U37.1	26.4		66	D	10.0 5	34	-		
		$101.9 ext{ to}$ 102.3	137.1	26.4	34 20							
		to 3	H37.1		-		<u> </u>			-	0,2	See plot
												4
	•				-				-		-	i,
										-		
										<u> </u>		
											-	

	PROJECT BELLE	RIVER	PLANT	T UNITS	SIBI					FILE	NO. 1255
	TABLE SUMMA	IMARY	OF L	ABORA	BORATORY T	EST F	RESULTS	LTS	SHEET	ETALE	OF-
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	STI	STRENGTH	CONSOLI	SLI-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. E SHEAR STRESS % (PSF)	o a	C _c +	AND REMARKS
B41/25	7 say 112.0' to	112.0 to	38								
	113.7' depth	112.3		20.9							TV=0.65 tsf
	Silty CLAY, dark gray, stiff	112.3 to 112.4	W3 & 1	20.9							
	plastic (CL)	112.4 to	save 38.1								
	Includes about 35% subrounded	. 7	ΤV	24.0					:		TV=0.60 tsf
	to subangular fine Gravel and coarse Sand particles	112.7 to	W38.2	24.0							
	•	113.0 to	C3& 1	24.2					. 642	. 18	
		٠.	L38, 1	24.2	29 19	104					
		. ~	ΤV	19.4							TV=1.0 tsf
		<u>`</u> " ٿا	W38.3	19.4							
			save 38.2								
								:			
							<u> </u>				:

Name		PROJECT BELLE RI	E RIVER	PLAN	PLANT UNITS I	SISH					FIE	10. 125
SOL DESCRIPTION TEST STRENGTH CONTENT TEST SHERN TEST				_	ABOR	RY]	ZES L	ıLTS	SHE	DAT	Jan. 197 OF
SOIL DESCRIPTION CFFT1	n line	IDENTIFICATION		TEST NO.	Р	ROPERTIE	S	STI	RENGTH	CONS	OLI-	OTHER TEST
13.1 Recovery; say 130.0 to 132.0 40 131.1 depth 130.2 TV 14.7 14.7 130.2 M40.1 14.7 14.7 130.2 M40.1 14.7 130.2 M40.1 14.7 130.2 M40.2 10.9 130.6 M40.2 10.9 124 U 13.6 U 13.8 U 13.8 U 13.8 U 13.8 U U U U U U U U U	BORING		DEPTH (FEET)	l	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST			U	AND REMARKS
130.2 TV 14.7 TV=0.5 130.2 W40.1 14.7 T TV=0.5 130.6 W40.2 10.9 T24 U 8.0 1749 130.6 U40.1 13.8 25 17 130.6 to S/H 130.9 to C40.1 11.3	B41/29	Recovery; say	130.0 to 132.0									
130.2 W40.1 14.7 180.2 to save 130.2 to save 130.6 to 40.1 13.8 124 U 8.0 174 130.9 130.6 to 5/H 13.8 25 17 130.9 to 131.1 240.1 11.3 131.1 2740.1 11.3 131.1 2740.1 11.3 131.1 2740.1 131.1 2740.1 130.9 to 131.1 2740		131.1' depth	_ :	ΛŢ	तं							=0.50 t
130.2 to save 130.2 to save 130.6 130.6 140.1 13.8 124 U 8.0 1749		Clayey SAND, gravelly, dark grav: about 35% fine to coarse	· - 1	W40.1	4.							
130.6 W40.2 10.9 130.6 tc 130.9 U40.1 13.8 124 U 8.0 1749 130.9 L40.1 13.8 25 17 130.9 to 130.9 tc 130.9 tc 131.1 S240.1 131.1 S240.1 131.1 S240.1		Sand particles and ±10% sub-	130.2 to 130.6	save 40.1								
30.6 tc 13.8 124 U 8.0 1745 130.9 130.9 130.6 tc 130.6 tc 130.6 tc 130.9 130.9 tc 13		fines of low plasticity	9.6									
SyH See plo See plo School 11.3 See plo School		(GC-SC)	lo š.		γ.		7	U	.0 174			
0 S/H See plo See plo C40.1 11.3			130.6 to 130.9	L40.1	ش	5 1						
9 to C40.1 11.3			130.6 to	S/H 40.1								
9 to sc40.1 Specific ity = 2 Specific ity = 2 Specific ity = 2 Specific ity = 2 Specific ity = 2 Specific ity = 2 Specific ity = 2 Specific ity = 2 Specific ity = 3 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 4 Specific ity = 5			6.	C40.1	•					.370	60.	
			σ.	SC40.1		٠						
				:								
										·		
						-						

Ĺ

	H H H H H H H H H H H H H H H H H H H	RIVER		PLANT UNITS	日 8 1 8					FILE	NO. 125
	TABLE SUMMA		OF L	ABORATORY	ORY T	EST F	RESULTS	LTS	SHEE	DATE	Jan. 1974 OF
	IDENTIFICATION		TEST	٦	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	<u> </u>	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	69	رد ٠	AND REMARKS
B48/2	0.9' Recovery; say 3.0' to	3.0 to 5.0	198								
	3.9' depth	3, 1	ΤV	32.4							TV=0.68 tsf
		3.1 to 3.2	W 198.1	32.4							
	brown mottled light gray,	3.2 to 3.5	L1%1	27.3	63 24						
	highly plastic (CH)	3.2 to 3.5	U198.1	27.3		97	Þ	3.2 1466			
	Sample includes 5-10%	3,5	$\Lambda \mathbf{I}$								TV=1.18 tsf
	medium to coarse Sand grains (subrounded to sub-	3.5 to	save 198.1								
	angular in shape)										
				ļ 							
		<u> </u>									

		03/20	TIMA IO	TIMITE	1 d					Ī	FILE NO 1255
	TABLE SU	! 2	OF L	ABORA	ORY	TEST	RESULTS	LTS	ัด	DATE SHEET	TE Jan. 1974 OF
	IDENTIFICATION		TEST NO.		PROPERTIES	S	ST	STRENGTH	SOO	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		• °°	
B48/4		8.0 to 10.0	199								
	Silty CLAY; dark grayish	8.5 to 8.7	H199.1								See plot
	brown, very still consistency, moderately to highly plastic	8.7	TΥ	27.5							TV=1.23 tsf
	(CT-CH)	8.7 to 8.8	W 199.1	27.5							
	Sample includes about 5%	8.8 to 9.1	save 199. 1			97					
	to su	9.1	ΛŢ	28.9							TV=1.23 tsf
	snape)	9.1 to 9.2	W 199.2	28.9							
		9.2 to 9.5	save 199.2								
			ΛI								TV=1, 43 tsf
		9.5 to	save 199.3								
											
											

PROPERTIES STRENGTH CONSTITUTION TEST PROPERTIES STRENGTH CONSTITUTION TEST PROPERTIES STRENGTH CONSTITUTION TEST PROPERTIES STRENGTH CONSTITUTION TEST TANKE NOT TEST STAPPED TEST TANKE NOT TEST STAPPED TEST TANKE NOT TEST STAPPED TEST TANKE NOT TEST STAPPED TEST TANKE NOT TEST STAPPED TEST TANKE NOT TEST TANKE NOT TEST TANKE NOT TEST TANKE NOT TEST TANKE NOT TEST TANKE NOT TEST TANKE NOT TEST		PROJECT: BELLE RI	E RIVER	1	PLANT UNITS I	SIBI						FILE	NO. 125
DENTIFICATION TEST PROPERTIES STRENGTH CONSOLITION TEST SHEER PATION TEST SHEER PATION TEST SHEER PATION TEST SHEER SHEER PATION TEST SHEER					ABOR/	ATORY T	ST	RESI	JLTS		SHE	DAT ET	E Jan. 1974 OF
Recovery 2.3; say 18.0† to 20.0 20.0 20.0 20.3† depth; upper 0.4† 18.3 17.0 20.0 20.3† depth; upper 0.4† 18.3 17.0 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.2 20.3† depth; upper 0.4† 18.3 17.0 20.1 20.1 20.1 20.2 20.3† depth; upper 0.4† 18.4 20.1 20.1 20.1 20.1 20.1 20.2 20.3† depth; upper 0.4† 20.2 20.3† depth; upper 0.4† 20.2 20.3† depth; upper 0.4† 20.2 20.3† depth; upper 0.4† 20.2 20.3† depth; upper 0.4† 20.2 20.		IDENTIFICATION		TEST NO.	А	ROPERTIE	S	ST	REN	этн	CONS	-i NC	OTHER TESTS
B.0 to 200 200 200 200 200 200 200 200 200 200 200 200 200 34.4 18.3 TV 34.4 200 18.3 TV 34.4 200	BOR!NG SAMPLE		DEPTH (FEET)		NAT. WATER CONTENT (%)			TEST		MAX. SHEAR Stress (PSF)	ပိ	ů	AND REMARKS
18.3 TV 34.4	B48/6	Recovery 2.3; say 18.0; to	\sim 0	200									
ic 18.3 to 34.4 18.4 18.4 18.4 to save 18.4 to save 18.7 to 200.1 32.8 90 CU 6.5 928 18.7 to 19.1 to 19.1 to 19.2 to 19.2 to 19.5		disturbed	18.3	ŢV	اہا								TV=0.26 tsf
18.4 to save 18.7 TV			V .	W200.1									
18.7 TV 18.7 to 19.1 T20.11 32.8 19.1 TV 19.1 TV 19.2 to 19.2 to 19.5 TV 19.5 to 19.		m	1 1	save 200.1									
18.7 to 1200.1 32.8 90 CU 6.5 928 18.7 to 1200.1 34.3 47 25 19.1 TV 32.7				TV	:								TV=0.49 tsf
18.7 to 1200.1 34.3 47.25 89 19.1 to 19.2 w200.2 32.7 89 CU 4.5 130-130-130-130-130-130-130-130-130-130-		sample includes about 5% coarse Sand grains (sub-). —	T200.1.1	2.		90	D		876			
19.1 TV 32.7 19.1 to wzxx.2 32.7 19.2 tc rzxxx.1 34.1 19.5 TV 34.1 19.6 to wzxx.3 34.1 19.9 Tzxxx.1 35.6 88 CU 10.6 157		rounded to subangular in shape)	7	1.200. 1	4	7 2							
to wzw.2 32.7 89 CU 4.5 130. Ty 34.1 89 CU 10.6 157 to wzw.3 34.1 to Tzw.1.3 35.6 88 CU 10.6 157				${ m TV}$	2.								TV=0.42 tsf
to T200.1.2 34.2 89 CU 4.5 130. TV 34.1			to 2	W200.2	2.								·
to w200.3 34.1 88 CU 10.6 157 8			ر. د	T200.1.2	4.		89		l • I	30			
to wxxx.3 34.1 88 CU 10.6 157			19.5	TV									TV=0.38 tsf
to T200.1.3 35.6 88 CU 10.6 157			ţ		4,								
			to	T200.1.3	5.			CU	0	57			

	PROJECT: BELLE R	E RIVER	1	PL ANT LINITS	T & T &					9 119	E NO 1255
		AMARY	OF L	ABORATORY	ORY T	EST	RESULTS	LTS	0.	DAT	Ш
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	ST	STRENGTH	750	CONSOL I-	OTHED TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	I	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS (PSF)		33	
B48/10		38.0 to 40.0	202								
	39.5' depth; Upper 1.0' disturbed	38.4	ŢΛ	40.4							TV = 0.10 tsf
	1	38.4 to 38.5	W2021	40.4							
	Silty CLAY, dark gray to very dark gray, soft consistency,	39.0	ΛŢ								TV = 0.15 tsf
	highly plastic (CL-CH)	39.0 to	save 202.1								
		2 to	C202.1	38.8			-		1.02	27 . 33	
	-	39.2 to 39.4	.202.1	38.8	47 24				1	-	
		39.2 to 39.4	SC202, 1								Specific Gravity=2, 73
		39.2 to 39.4	8202.1	38.8		82					
		39.4	$_{ m TV}$	40.0							TV = 0.25 tsf
		39.4 to v	W 202.2	40.0							
				·							

	PROJECT: BELLE R	E RIVER		PLANT UNITS	SIBП					FILE	E NO. 1255
	TABLE SU	SUMMARY	OF L	ABORATORY	TORY T	EST	RESULTS	JLTS	SHEE	DATE EET	E
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH	CONSOLI		OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS (PSF)		نې	AND
B48/14	2.0' Recovery; say 60.0' to	60.0 to 62.6	204								
	62.6' depth. Upper 0.4' depth disturbed	60.4 to 60.7	save 204.1								
			ΤV	26.0	i						TV = 0.34 tsf
		~ ∞	W 204. 1	26.0							
	plastic (CL)	60.8 to	L204.1	26.3	34 16						
	rse	8 to	UU 204. 1	26.3		66	UU 1	5.0 746			
	Sand and fine Gravel size		'TV	25.8							TV = 0.42 tsf
			W 204.2	25.8							
		61.2 to 61.5	U204.1	25.2		100	U 1	5.0 745			
		• [ΤV	25.3							TV = 0.38 tsf
		61.5 to 61.6	W204.3	25.3							
		61.6 to 61.9	save 204.2								
											

	U - 300	DIVED	N A	STINII TNA IG	T & T &					FILE	40. 1255
	TABLE SUMMA		OF L	ABORATORY	ORY T	EST	RESULTS	LTS	D. SHEET	DATE	Jan. 17/4 0F
	NO		الٰہٰٰٰٰر	<u>a</u>	PROPERTIES		STI	STRENGTH	CONSOLI	- N	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	_	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		د د د	AND REMARKS
B48/18	ery; say 78.0° to	78.0 to 80.0	206								
	79.5' depth	78.1	ΛŢ	25.6							TV=0.56 tsf
	Silty CLAY; dark gray, stiff	78.1 to 78.2	W 206.1	25.6							
	consistency, moderately to highly plastic (CL)	78.2 to 78.5	save 206.1								
	Complete shout 150%	5 to	L206.1	25.6	36 18						
	coarse Sand and fine Gravel	78.6	$_{ m TV}$	25.6							TV=0.70 tsf
	size particles (subrounded to subangular in shape)	78.6 to	w 206.2	25.6							
	·	78.7 to	save 206.2	.1		100					
		0.62	ΛŢ	26.0							TV=0.73 tsf
		79.0 to	W 206.3	26.0							
		79.1 to 79.4	save 206.3	<u> </u>							
			ΤV								TV=0.63 tsf
							النسجور				
	-										

	PROJECT: BELLE	RIVER	PLANT	T UNITS	1 & II					FILE	FILE NO. 1255
	TABLE SUMMA	MARY	OF L	LABORATORY	.	TEST F	RESULTS	LTS	SHEET	בול 	0F
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	STE	STRENGTH	CONSOLI- DATION	S.T.	OTHER TESTS
BORING	SOIL OESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	e e e	Ce .	AND REMARKS
B48/20	1.3' Recovery; say 88.0' to	88.0 to 90.0	202								
	-	to	W207. 1	44.51							
	very	ţ	W 207.2								
	istency, highly	to	1.207.1	28.2	41 25						
	(CT-CH)										
	Sample includes ±10% coarse										
	particles (subrounded to										
	subangular)										
	Note: Entire sample much disturbed										

FILE NO. 1255	ETOF	N OTHER TESTS	AND	REMARKS		TV=0.45 tsf			TV=0.54 tsf			TV=0.56 tsf			TV=0.52 tsf									
	SHEE	CONSOLI		ŝ	-																			
	RESULTS	STRENGTH	MAX.	8				11.4 4410		11.5 2017				11.8 2880	+-									
		ST	Y T TEST	TYP				7 CU		99 CU			-	96	-	+				-	+	1		
пві	TORY TEST	PROPERTIES	ATTERBERG DRY	WL WP				.6		6	36 19	1			\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\									
T UNITS	ABORATORY	ā	NAT	CONTENT		27.5	27.5	27.6		0 70	2 7	26	2,5	0 0	97	24.0	3 24.0					4		_
PLANT	OF L	TEST			208	ΛŢ	w 208.1		ΛL	1 [È			70007	TV	to W208	tosave						4
RIVER	AAR			JEPIH (FEET)	98.0 to 100.0	98.4	98.4 to	98.5 to	98.9	98.9 to		2.66	99.2 to	99.3 99.3 to	9.66	9.66		~	ł					
E I I I BEI I E	TABLE	2		SOIL DESCRIPTION	2.0' Recovery; say 98.0' to		disturbed	ay, firm	in consistency, rately to highly plastic		includes 15-20%	coarse sand and inc Gravel size particles	(subrounded to subangular											
		سبوي والدريسية والمراقع والمراقعة والمراقعة والمراقع والمراقع والمراقعة والمراقع والمرا		BORING	B.48/22																			

	BELLE BELLE	RIVER	PLANT	T UNITS	BISI					FILE	NO. 1255
		MARY	OF L	ABORATORY	TORY T	EST	RESULTS	LTS	SHEET	DATE	E Jan. 1974. OF
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	STR	STRENGTH	CONSOLI DATION	SOLI- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NATER WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	o e s	Cc +	AND REMARKS
48/24		108.0 to 110.0	509								
	Silty CLAY; dark gray soft to	108.6	ΛT	9*52							TV=0.26 tsf
		108.6 to 108.7	W209.1	25.6							
		108.7 to 109.1	save 209.1								
	to fine Sand and fine Gravel	109,1	ΛŢ	23.0				!			TV=0.31 tsf
	particles (subrounded to sub- angular in shape)	109.1 to 109.2	W209.2	23.0							
	ر د د	109.6 to 110.0	sav e 209.2								
					·						
				:							
											:
		: :									

	PROJECT: BELLE RI		PLAN	VER PLANT UNITS I	SIBI					FILE NO.	NO. 1255
	TABLE SUMMA	IMARY	OF L	ABORATORY		TEST F	RESULTS	LTS	SHEET	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0F
	IDENTIFICATION		TEST NO.	Р	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	N-I-N	OTHER TESTS
BORING	SOLL DESCRIPTION	SEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	° a	رد ٠	AND REMARKS
B48/26	2.1''Recovery; say 118.0' to 120.1' depth	118.0 to 120.5	210								
		118.1	$\Lambda ext{L}$	33.2							TV = 0.43 tsf
	Silty CLAY, gray, medium to stiff consistency, moderate to	118.1 to 118.2	W 210 . 1	33.2							
		118.2 to 118.5	save 210.1								
	des about 5% fine to	118.5 to 118.9	save 210.2								
	coarse Sand sized particles (subrounded to subangular in	118.9	$\Lambda ext{L}$	32.8			-		_		TV = 0.51 ts
		118.9 to 119.0	w210.2	2							
		to 4	8210.1	32.9		91					
		. 1	S/H 210.1								See Plot
		119.4	$\Lambda m L$	33.0							TV = 0.60 tsf
		119.4 to 119.5	W210.3	33.0							
		119.5 to 119.9	save 210.3								
							7				
										,	

	PROJECT: BELLE R	E RIVER		PLANT UNITS	SI8 I					11 11	NO 1255
		SUMMARY	OF L	OF LABORATORY	1	TEST	RESI	RESULTS	D/SHEFT	DATE	DATE March 1974
3	IDENTIFICATION		TEST NO.	٦	PROPERTIES	S	ST	STRENGTH	CONSOLI-		21331 03010
BORING SA#PLE	SOIL DESCRIPTION	DEРТН (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		, °,	AND AEMARKS
B49/2	2.1' Recovery; say 6.0' to 8.1' depth	6.0 to 8.0	132							1	
		6.5	$_{ m TV}$	29.3							TV=1.6 tsf
		6.5 to 6.6	W132. 1	29.3							
	Silty CLAY, grayish brown,	7.1	ΛI	28.8							TV=1.4 tsf
	plastic (CL-CH)	1 to 2	W132. 2	28.8							
		7.2 to 7.6	8132. 1	28.0		95					
		7.6	TV								TV=1.85 tsf
	Sample includes about 15-20%	6 to	1.132, 1	26.2	50 17						
	size particles (subrounded to	6.0 to 8.1	MC132.1	28.1						ΧIP	XdryMax=116 Wart=16.5
	subangular in shape)										
							<u> </u>				

	U - 100	91/10	TNA	PINIT	F 9 7					1 H	NO 1255
	TABLE SIL		בון ה ה	7000	1 ×a C	T23	OF 11120	3 ± 11			Jan
				לב ב ב ב ב ב ב ב ב	-	_	1636) - -	SHE	EET	0F
	IDENTIFICATION		TEST NO.	a.	PROPERTIES	S	ST	STRENGTH	CONSOLI	SOLI- ION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	s 60	° °2	AND REMARKS
B49/3	Silty CLAY; dark grayish	13.0 to	133								
	brown, firm to stiff consistency, highly plastic	13.2	m TV	29.0							TV=0.73tsf
	(CL-CH)	13.2 to	W133, 1	29.0			:	:			
	-	to	save 133.1			92					
		13.7	ΤV								TV=0.53tsf
		13.7 to	C133, 1	33,3					.823	. 26	
		13.7 to	L133. 1		47 23						
		13.7 to	ESI33. 1								
		14.0	LΥ	31.3							TV=0.42tsf
		14.0 to	W133, 2	31,3							
		14.1 to 4.4	save 33.2								
		14,4	ΓV	30.4							TV=0.45tsf
		14.4 to	W133.3	30.4							
		14.5to	save 133.3								

	PROJECT: BELLE	RIVER	4 1	PLANT UNITS	SIBIL					FILE	No. 1255
	TABLE SUMMA	MARY	OF L	ABORATORY	-	EST	RESULTS	LTS	SH	SHEET	0F
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH	CON	CONSOL!- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	R SS Go	, ₀	AND REMARKS
B49/4	ery; say 23.0 to	23.0 to 25.0	134								
	24.9' depth	23.1	ΤV	32.2							TV=0.34 tsf
	Silty CLAY; grayish brown,	23.1 to 23.2	W 134.11	32,2							
	·1y	to	save 134.1								
		23.5	ΤV								TV=0.37 tsf
		23.5 to 23.9	save 134.2								
		23.9	TV	34.0							TV=0.41 tsf
		23.9 to 24.0	W 134.2	34.0							
		24.0 to 24.3	U134.1	34.0		90	Þ	6.0 1028			
		24.0 to 24.3	L 134, 1	32.8	42 22						
		24.4	$_{ m TV}$								TV=0.42 tsf
		24.4 to 24.8	save 134, 3								
		24.8	TV	34.0							TV=0.37 tsf
		24.8 to 24.9	W 134.3	34.0							

	PROJECT: BELLI	BELLE RIVER	1 1	PLANT UNITS	SIBI					FILE	FILE NO. 1255
	TABLE SUN	SUMMARY	OF L	⋖	BORATORY T	EST	RESULTS	LTS	SH	SHEET_	OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH	CON	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		, °2	AND REMARKS
49/6	1.9' Recovery; say 43.0' to 44.9' depth	43.0- 45.0	136								
	Silty CIAV. dank gradish	1 - . 2	W136.1	39.9							
	brown, firm consistency,	43, 5	TV								TV=0.42tsf
	highly plastic (CH-CL)	43.8- 43.9	W136.2	35.2	_						
	Sample includes ±5% coarse Sand grains (subrounded to	43.9-	T13612	46.3		75	CU	2.9 135	56		Gc=3744psf
	subangular in shape)	43.9- 44.2	L136.1	45.5	53 22						
	Lower portions of sample	44. 2	$\Lambda m L$	45.7							TV=0.37tsf
	appear to be "sensitive", i.e. became soft and sticky on	44.2- 44.3	W136.3	45.7							
	remolding	44.3- 44.7	T136.1.1	43.5		78	CU	5.8 92	71		Oc=1872psf
		44,3-	E I ኤ.u	44 9		77	C11	4.7.193	928		<u>G</u> c=7488psf
		- 6 + +	 	*			}				
							-				
	:								1		

	PROJECT: BELLE R	E RIVER		PLANT UNITS	ПВIS					FILE	FILE NO. 1255
	TABLE SUMM	MARY	OF L	⋖	BORATORY T	EST	RESULTS	JLTS	D/ SHEET	DATE	E
- P.C.	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH	CONSOLI	- NOO	OTHER TESTS
BORING	SOIL OESCRIPTION	DEPTH (FEET)	l	or ⊨	ATTERBEI LIMITS	DRY UNIT WEIGHT	TEST	0,		رد .	AND
B49/7	1.9' Recovery; say 53.0' to	53.0 to 55.0	137	(%)	_ _	(PCF)		% (PSF)			
	54.6' depth	53.2	TV	25.9							TV = 0.34 tsf
	Silty CLAY, dark gray, medium to stiff consistency, moderately	53.2 to 53.3	W 137.1	25.7							
		53.3 to 53.7	save 137.1								
	Sample includes about 15% fine to coarse Sand particles	53.7 to 54.1	8 137.1	25.0		97					
	(subrounded to subangular in shape)	54.1 to 54.4	S/H 137.1								See Plot
		54.4	TV	25.9							TV = 0.65 tsf
		54.4 to 54.6	W 137.2	25.9							
		54.5 to 54.9	save 137.1								

	PROJECT BELLE	RIVER	PLANT	T UNITS	SIBI					FE	Vo. 125
				ABORATORY	-	EST F	RESULTS	LTS	SHEET	DATE	Jan. 17
	IDENTIFICATION		TEST NO	Ь	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	- - 	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	69	Cc .	AND REMARKS
B49/9	1.5' Recovery; say 73.0' to	73.0 to 75.0	139								
	74.5' depth	73.1	ΤV	25.7							TV=0.68 tsf
	Silty CLAY, sandy; dark	73.1 to 73.2	W 139.1	25.7							
	gray, stiff consistency, moderately plastic (CL)	73.2 to 73.5	save 139.1			66					
	Samula includes +30%	73.5	ΤV	24.1							TV=0.75 tsf
	coarse Sand and fine Gravel	73.5 to 73.6	W139.2	24.1			-				
	size particles (subrounded to subangular in shape)	73.6 to	save 139.2								
		73.9	$_{ m TV}$								~
		73.9 to	U139.1	25.6		100	Þ	20.0 251	3		@ 15% strain s=2254 psf
		73.9 to 74.3	L139.1	18.2	33 22						
	•	74.3	ΛŢ	22.8							TV=0.76 tsf
		74.3 ta 74.4	W 139.3	22.8							
				· · · - (
	:										

	PROJECT: BELL	BELLE RIVER	1 I	PLANT UNITS	вівп					FILE	NO. 1255
	TABLE SUN	SUMMARY	OF L	ABORA	BORATORY T	EST 8	RESULTS	LTS	SHEE	DAIE ET	0F
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	ST	STRENGTH	CONSOLI	OL!-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	ı	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	69	ر _{د ۲}	AND REMARKS
B49/1]	B49/11 1.5' Recovery; say 93.0' to	93.0 to 95.0	141		:						
	94.5' depth	93. 1	ΛI	26.6							TV = 0.62 tsf
	Silty CLAY; dark gray, stiff	93.1 to 93.2	W141.1	26.6							
	consistency, moderately plastic (CL)	93.2 to 93.5	save 141.1			86					
	S. mm. 1. inc. 1.300 ± 200	93.5	TV	26.2							TV = 0.70 tsf
	Sand and fine Gravel size	93.5 to 93.6	W 141.2	26.2							
	particles (subangular to subrounded in shape)	93.8 to 94.0	C141.1	1 .					0.701	0.20	
		93.8 to 94.0	L141.1	24.3	37 22						
		to	SC141.1								Specific Gravity=2.68
		94.0	TV	27.0							TV = 0.68 tsf
		to	W 141.3	27.0							
		94.1 to 94.5	save 141.2			·					

	n - 190	01//0		P STIMIL TIME O	100						14	1255
	TABLE SUMMA	= =	OF L	ABORATORY	RY T	EST	RESULTS	JLTS		SHEET	DATE	Jan
	IDENTIFICATION		TEST NO.	Р	PROPERTIES	S	ST	STRENGTH	Ŧ	CONSOLI	- - - - - - -	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	S +	MAX. SHEAR STRESS (PSF)	ů	٠ ي	AND
B49/13	1.6' Recovery; say 113.0' to	113.0 to 115.0										
	114.6' depth	113.1	${ m TV}$	29.3								V=0.55 tsf
	Silty CLAV candy dank and	113.1 to 113.2	W143.1	29.3								
	stiff consistency, moderately	113.2 to 113.5	T43.1.3	29.2		93	CU	11.1	4132			
į		113.5	$_{ m TV}$								 	TV=0.62 tsf
	Sample includes about 25% coarse Sand and fine Gravel	113.5 to 113.8	T H3. 1.2	28.7		95	CU	11.8	2426			
	0	8	$_{ m TV}$	28.1								IV=0.64 tsf
		113.8 td 113.9	W143.2	28.1								
		113.9 td	T 143. 1.1	24.0		100	CO	12.7	1787			
		9 to 2	L143_1	24.0	33 22							
		114.2	ŢV	28.7								TV=0.64 tsf
		114.2 to	W143.3	28.7	-					 ,		
		114, 3 to 114, 6	save 143.1									
												i i i
											*	
	:											
							1		1		1	

	PROJECT: BELLI	BELLE RIVER		PLANT UNITS I	SIBI					" '	FILE NO.	NO. 1255
	TABLE SUMMA	IMARY	OF L	ABORATORY	TORY T	EST	RESULTS	JLTS		D/ SHEET	4 H	0F
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	<u> </u>	ST	STRENGTH		CONSOLI		OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		၀	رو ب	AND REMARKS
50/4	ry; say 18.0° to	0 to	84									
	deptil - distalbed	18.7 to 19.0	saved							<u> </u>		
	Silty CLAY, gray, moderate to	19.0 to 19.1	W84.1	34.6		84						
			TV						-,		1	TV = 0.13tsf
	Note: Entire sample disturbed] to 4	1.84.1	34.6	45 20					·	·	
				,								

ANT UNITS I BILLABORATORY TE
NAT.* WATER CONTENT (%)
*∞
ļ
]
'
1
Î

(

(

(

TABLE SUMMARY OF LABORATORY TEST RESULTS SHEET	:O. 1	PROJECT: GREENWOOD		ENERGY C	ENTER	CENTER UNITS	283				FILE	E NO. 1323
Solit OESCRIPTION CEPT Control of the control			AMARY		ABOR/		EST.	RESI	ULTS	T.	DAT	E
Soll Description 1.91 Recovery; say 28.0 to 28.0 to 28.0 to 29.9 depth 28.1 to 28.5 to 29.3 to 28.5 to 29.3 to 28.5 to 29.3 to 28.5 to 28.5 to 29.4 to 28.5 to 28.5 to 28.5 to 29.5 to 29.4 to 28.5 to 28		IDENTIFICATON		TEST NO.	٩	ROPERTIE	S	ST	RENGTH	NOS.	SOLI-	OTOTA GALLET
Silty CLAY, gray, firm 28.1 to 28.0 to 28.1 to 28.1 to 28.1 to 28.1 to 28.1 to 28.1 to 28.2 to 29.3 to 29.4 depth 28.5 to 28.5 t			DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT		1			OI HER TESTS AND REMARKS
Silty CLAY, gray, firm Consistency, moderate plasticity (CL) 28.4 by 85.1 35.2 by 45.2 by 85.1 37.2 by 44.2 by 85.2	-	ery; say	l									
Silty CLAY, gray, firm 28.5 to consistency, moderate 28.5 to plasticity (CL) 28.6 to m85.1 35.2 88 CU 13.1 842 65.2 28.6 to m85.2 34.3 3.0 88 CU 14.5 1050 65.2 28.6 to m85.2 34.3 3.0 88 CU 14.5 1050 65.2 29.4 to m85.2 34.3 39 18 77 U40.1718 65.2 29.4 to menolding 29.4 to m95.2 4.5 18 75 U 2.4 197 75 U 2.4 197 75 U 2.4 197 75 U 2.9 4 to menolding 29.7 L85.1 45.7 51 18 75 U 2.4 197 75 U 2.4 197 75 U 2.9 4 to menolding 29.7 L85.1 45.7 51 18 75 U 2.4 197 75 U 2.9 4 to menolding 29.7 L85.1 45.7 51 18 2 29.7 185.1 51.7 51 29.7 51.7 51 29.7 51.7 51 29.7 51.7 51.7 51.7 51.7 51.7 51.7 51.7 51		1	[3]	85.	5			VS	443] 0
28.6 to 13.1 34.2		Silty CLAY, gray, firm	ارب	k85. 1	7-		84			1.002		dr e
28.6 to 28.9 T85.1 33.0 88 CU 13.1 842		plasticity (CL)	5 to 6	W85.1	5.							
28.6 to 28.9 T85.12 33.1 90 CU 14.5 1050 0 CE = 28.9 TV = 29.0 W85.2 34.3 9 18 TV = 29.4 tc 29.7 T85.1 45.7 51 18 TE = 29.7 T85.1 T85.1 45.7 51 18 TE = 29.7 T85.1			., প.	T85.1.	3			CU	3, 1			
th 29.1 to 29.1 to 29.1 to 29.1 to 29.1 to 29.1 to 29.1 to 29.1 to 29.4 to 29.4 to 29.7 to 29.			ু প	T85.12			90	CŪ	4.5			= 2880
th 29.1 to 29.4 L85.2 34.3 39 18 86 CU 14.0 1718 07c = 5 29.4 to 29.7 L85.1 45.7 51 18 75 U 2.4 197 07c = 5 29.4 to 29.7 L85.1 45.7 51 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				ശി	4.			-				V = 0.28
th 29.1 to 29.4 T85.1.3 34.3 86 CU 14.0 1718			4	10	4	9 1						
29.7 U85.1 45.8 75 U 2.4 197 29.7 L85.1 45.7 51 18 29.7 L85.1 45.7 51 18		Below 29.4' depth e becomes softer, more	to 4		4.		98	CG	0 171			#1
tc I.85.1 45.7 51 18			to	U85.1	ιΩ			Þ	4 19			네 -
			to t	∞								
					 			<u> </u>				
								<u> </u>				
								-				
								 				

	PROJECT: BELLE	E RIVER	PLANT	T UNITS	SIBП						FILE NO.	NO. 1255
		SUMMARY		ABORA	BORATORY T	EST	RESULTS	LTS		DA SHEET	DATE	. OF
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES	S	STR	STRENGTH		CONSOLI- DATION	SKI-	OTHER TESTS
BOP!NG Sample	SOIL DESCRIPTION	OEPTH (FEET)	1	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	rest TYPE	SHE SHE STR	MAX. SHEAR STRESS (PSF)	е°	رو ٠	AND REMARKS
8/09	2.0' Recovery	38.0 to	86									
		38.1 to 38.4	T86.01	46.2		74	UU 4	0	643			Oc = 3456 psf
	consistency, highly plastic (CH)	38.4 to	W86.1	47.6		7.1						
		38.5	ΓV									TV = 0.39 tsf
		38.5 to 38.9	C86. 1	51.6					- 1	383 0.	.55	
		38.5 to 38.9	SG%.1	1						-		Specific Gravity = 2, 75
		38.9 to 39.2	U86.1	51.3		20	Z U	. 0	550			
		38.9 to 39.2	L86.1	51.2	55 23							
		39.2 to 39.3	W86.2	48.6		7.1		,				
		39.3 to 39.6	saved									
											-	
					í				Š.			

E

	PROJECT: BELLE RI	E RIVER		PLANT UNITS	SIBI					FILE	5 - 12
	1	SUMMARY	OF L	ABORATORY	NTORY TI	EST	RESULTS	JLTS	SHE	DATE SHEET	E July 1974
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	STI	STRENGTH	CONSOLI	-INO	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	_	NATER WATER CONTENT (%)	ATTERBERG LIMITS W. W.P.	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	<u> </u>	, y	AND
50/10	1.8 Recovery; say 48.0 to	48.0 to 50.0	87								
	49.8' depth	48.1 to 48.4	V87. 1	25.9			VS rVS	518 484			St = 1.1
	Silty CLAY, sandy, gray, firm	48.5	W87.1	25.9		96					
	moderately	48.6 tc 48.8	k87.1	6.92		97			. 730		sieve/hydrometer see plot
		48.9	W87.2	24.2		67					
	o% fine and		TV	24.2							TV = 0.41 tsf
		0 to 3	U87. 1	23.6		66	I U	5.0 527			
	aximun	49.0 to 49.3	L87.1	23.4	36 16						
		49.3 to 49.6	T87.0.1	23.2		100	UU 1	5.0 721			Oc = 4320
								:			
							-				
							$\left \right $			1	

	DDO ISCT. BELLE	RIVER	PLAN	PLANT UNITS	SIBIL				ш.	FILE	NO. 1255
			0F L	ABORATORY	-	EST F	RESULTS	LTS	DA SHEET	DATE	0F
	NO		TEST	۵	PROPERTIES	S	ST	STRENGTH	CONSOLI		OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	° ә	, °,	AND REMARKS
50/12	ery; say 58.0° to	58.0 to 60.0	88								
	59.9' depth	58.1 to 58.5	saved								
	Silty CIAV sandy orav firm	58.5	W88.1	23.8		66					
	stency, moderately	58.5	TV	23.8							TV = 0.53 tsf
		58.6 to 58.9	U88.1	25.8		66	Þ	9.0 1008			
	Sample includes about 20% fine to coarse Sand particles	58.6 to 58.9	L88.1	24.5	39 18						
		59.0	W88.2	24.8		97					
	1/2 inch maximum size	59.0	ΛI	24.8							TV = 0.54 tsf
		59.1 to 59.4	T88.0.1	24.3		101	UU	10.0 1132		Ť	0c = 4608 psf
		59.4 to 59.8	saved								
	,			ļ							
		:									
	•										
						-			<u></u>		

(

(

(

247/11.000	PROJECT: BELLE R	E RIVER		PLANT UNITS	SIBI					Ē	FILE NO.	1255
	TABLESUN	SUMMARY	OF L	ABORATORY		TEST	RESULTS	JLTS		D/ SHEET	DATE	0F
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH		CONSOLI	 	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	_	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		ů		AND REMARKS
50/14	1.9' Recovery; say 68.0' to	68.0 to 70.0	89									
		68.0 to 68.4	saved									
	Silty CLAY, sandy; gray, firm to stiff consistency moderately		W89. I	27.3		93						
	plastic (CL)	68.4	TV	27.3							T.V =	. 0. 48 tsf
	Sample includes 20 to 25% fine	68.5 to 68.9	saved									
	to coarse Sand particles and subrounded to subangular	69.0 to 69.2	L89.1	27.9	43 18							
	Gravel size particles	69.2	W89.2	29.5		94						
		69.2	TV	29.5							<u>Τ</u> ν =	0.54 tsf
		69.3 to 69.7	saved									
										-		
										•		
						,						
									<u> </u>	 		
												·

	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBIE					FILE	NO. 1255
		MARY	OF L	ABORATORY	TORY T	EST	RESULTS	ILTS	SHEET	DAIE ET	0F
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	 	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ů	ນ	AND REMARKS
50/16	1.9: Recovery; say 78.0' to	78.0 to 80.0	06								
		to	saved								
	Cilta OI V Cilta to	78.5	W90.1	27.7		95					
	e	78.5	ΤV	27.7							TV = 0.56 tsf
	-	78.6 to 78.9	U90.1	27.9		95	D	10.0 1271			
	Sample includes 10 to 15% fine to coarse Sand particles and	78.6 to 78.9	L90.1	27.9	39 20						
	subrounded to subangular	79.0	W90.2	27.8		92					
	maximum size	79.0	$\Lambda ext{L}$	27.8							TV = 0.63 tsf
		79.1 to	saved								

	PROJECT: BELLE RI	RIVER	B 1	PLANT UNITS	SIBП					FILE	NO. 1255
ر <u>توجيع ميارية</u>	TABLE SUMMA	MARY	OF L	ABORATORY	TORY TI	EST	RESULTS	ILTS	SHEET	DAIE	0F
	IDENTIFICATION		TEST NO.	d	PROPERTIES	Ş	STI	STRENGTH	CONSOLI	N. I-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	မ	Cc .	AND REMARKS
50/18	1.9: Recovery, say 88.0' to	88.0 to 90.0	16								
		88.3 to 88.6	T91.1.1	28.0		26	CO	14.6 1923			<u>0</u> c =3456 psf
		88.6	W91. 1	27.6	:	95					
		88.6	ΛT	27.6							TV = 0.59 tsf
	c	88.7 to 89.0	T91.1.2	27.6		26	CU	11.7 2590	:		Č c =6912 psf
	plasticity (CL)	88.7 to 89.0	L91.1	29,5	39 23						
	Sample includes 20 to 25% fine	89.0	W91.2	27.0		95					
		89.0	ΤV	27.0							TV = 0.69 tsf
			T91.1.3	27.6		96	CO	11.8 3989			0 c =13,824psf
	particles	89.5 to 89.8	saved								
					:						
										\neg	

	PROUPOT: BELLE	E RIVER	PLANT	T UNITS	SIBI					ι · c	FILE	0N. 1255
	 -	SUMMARY	OF L	4	BORATORY .	TEST	RESI	RESULTS		SHEET	DAIE.	0F
1	IDENTIFICATION		TEST	٩	PROPERTIES	ES	ST	STRENGTH	ТH	CONSOLI- DATION	-	OTHER TESTS
	SOIL DESCRIPTION	DEPTH (FEET)		WATER CONTENT (%)	ATTERBER LIMITS TUL TU	RG DRY UNIT - WEIGHT P (PCF)	TEST TYPE	· %	MAX. SHEAR Stress (PSF)	၀	ÿ	AND REMARKS
1	2.3' Recovery; say 20.0' to	20.0 to 22.3"	108									
	First on C:77	20.1 to 20.5	saved									
	Silty CLAY; gray, very stiff	20.5	W 108.1	31.1		95						
	consistency, moderate to	20.5	ΤV				.					V = 1.2 tsf
	ngu prasticity (CL - CII)	20.5 to 20.9	11081	30.3		92	D	4.0	2737			
	NOTE: Consistency of soil	20.5 to 20.9	L1081	30.9	49 2	0						
	decreases within lower nalt of sample with no visible	20.9 to 21.0	W108.2	30.4		6						
 -	signs of disturbance	21.2 to 21.5	T 108.0.1	31.1		92	UU	8.0	1591		0	Oc = 2016 psf
		21.5 to 21.6	∞	3 31.4		91						
		21.6	>									TV = 0.7 tsf
———		21.6 to	sa ved						,			
											<u> </u>	
				-						·		
1												

	PROJECT: BELLE RI	RIVER		PLANT UNITS I	вівп						FILE	NO. 1255
	TABLE SUMMA	MARY	OF L	ABORATORY	TORY T	EST	RESULTS	JLTS		SHEET	ET	E
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	<u>S</u>	ST	STRENGTH	тн	CONSOLI- DATION	OLI- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	, °	MAX. SHEAR STRESS (PSF)	6 e	, °	AND REMARKS
52/4	ry; say 28.0' to	28.0 to 30.5	109									
	30,5' depth	28.2 to 28.5	saved									
	Silty CLAY, gray, firm	5	W 109. 1	32.5		89						
	plasticity (CL)	28.6 to 28.9	U 109. 1	31.8		94	Ω	9.0	489			
	Sample includes lenses or	28.6 to	L109.1	29.4	35 18							
	layers of non-plastic sandy Silt (about 15% of total sample)	28.9 to 29.2	V 109.1	30, 5			VS rVS		568			St = 2.1
		3	W 109.2	30.5		89						
		29.4 to 29.7	saved									
	depth - is Silty CLAY (CL-CH)	29.8	W 109.3	41.3		62						·
		29.9 to 30.2	C 109, 1	40.5						1.013	0.45	
		9 to	SC 109. 1									Specific Gravity = 2.70
		29.9 to 30.2	L109.2	40.5	49 20							
		!						Ì				

	MA A LIAM	RIVER	PI ANT	T UNITS	SISH				Ξ	ġ	1255
	TABLE SUMMA		OF L	ABORATORY	-	EST F	RESULTS	LTS	D/ SHEET	DATE OF	
	IDENTIFICATION		TEST NO.	ā	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION		OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	وه رد		AND REMARKS
E2 / 6	ry; say 48.0' to	48.0 to	1 1 1								
0/76	50.4 depth	48.1 to	T111.11	22.1		101	CU]	10.2 15159		0c = 2	160psí
	•		W111.1	22.9		66			·		
	consistency, non-plastic to slightly plastic (ML)	48.4	ΛI	22.9						TV = 0	.27 tsf
		48.5 to 48.8	T111.12	22.7		99	CI	15.0 17508		$\vec{\sigma}_{\rm C} = 4$	320psf
		48.8 to 49.1	T11113	22.1		104	CO	13.3 27777		0 <u>c</u> = 8	8640psf
	Becomes more plastic with depth,	49.1	W111.2	21.5		103					
	.5 depth-change to	49.1	ΤV	21.5						TV = 0	.35 tsf
	Silty CLAY, sandy; dark	49.2 to 49.5	U111.1	25.2		100	Ū	2,5 317			
		49.2 to 49.5	L111.1	25.2	22 18						
		49.5	W111.3	23.6		101					
	ith	49.5	$\Lambda ext{L}$	23.6						TV = 0	.73 tsf
	pieces to 1/4 inch maximum	49.6 to 49.8	V111.1	23.6			VS rVS	2160 1950		$\mathbf{St} = 1.$	1
			·								

******	PROJECT: BELLE RI	E RIVER		PLANT UNITS	SIBI						FILE	FILE NO. 1255
	TABLE SUN	SUMMARY	OF L	ABORATORY		TEST	RESULTS	JLTS		D/ SHEET	DATE	E0F
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES	S	ST	STRENGTH	ТН	CONSOLI	-INO	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	* %	MAX SHEAR Stress (PSF)	မ	, °°	AND REMARKS
52/7	2.4' Recovery; say 58.0' to	58.0- 60.4	112									
		58.2 - 58.5	saved									
	Silty CLAY; sandy, very	5 -	W1121	16.0		112						
	dark gray, very stiff	58.6	ŢV									TV = 1.10 tsf
	plasticity (CL)	58.6- 58.9	K12.1	15.1						0.411		sieve/hydro- meter see plot
	Sample includes about 30 - 35%		U112.1	13.0		116	U	0.9	1799			
	fine to coarse subrounded to rounded Sand grains; also		11121	12.9	23 14							
	about 10 - 15% Gravel pieces	59.3 - 59.7	saved						 			
	1-1/2" max. size)	59.7	W112.2	14.6		115						
		59.7	ΤV									TV = 1.20 tsf
							<u> </u>					
											·	-
								:				
								:				

	PROJECT: BELLE RIV	RIVER	PLANT	T UNITS	вівп					FE	FILE NO. 1255
	1	SUMMARY	OF L	ABOR/	BORATORY T	EST !	RESULTS	LTS	D/ SHEET	DATE	e
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	ST	STRENGTH	CONSOLI DATION	OLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	I	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	۰ə	Cc -	AND REMARKS
52 /8	1.5' Recovery; say 68.0' to 69.5' depth	68.0 to 69.5	113								
		68.2	W 113. L	14.5		111					
	Silty CLAY, sandy, very dark	68.2	TV								TV = 1.0 tsf
		68.2 to 68.5	U113.1	14.2		115	Ω	13.0 1677			
		68.2 to 68.5	<u>1.113,1</u>	13.8	24 14						
	Includes about 30% fine to	68.6	W113.2	14.3							
	coarse rounded to subrounded Sand grains, and about ±10%	68.6	ΤV								TV = 1.2 tsf
	9.6	69.0 to 69.4	T 113.0.1	16.2		111	UU	15.0 1891			$\mathbf{G_C} = 5184 \text{ psf}$
		69.4	W 113.3	19.4							
		69.4	ΤУ								TV = 0.8 tsf
			Section 1	,		£.					

Contract of the Contract of th	PROJECT: BELLE R	E RIVER	1	PLANT UNITS	SIBI						E NO 1255
	TABLE SU	SUMMARY	OF L	ABORATORY		TEST	RESULTS	JLTS	V.	DATE	
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH	500	CONSOLI-	Order order
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS	G DRY UNIT WEIGHT	TEST TYPE	MAX. SHEAR STRESS		3	
52/9	2.5: Recovery; say 78.0' to 80.5' depth	78.0 to 80.51	114			+		(101)			
		78.2 to 78.5	saved								
	Silty CLAY; gray, stiff	5 to	W1141	23.3		105			-		
	consistency, moderately plastic (CL)	19	$_{ m TV}$								TV = 0.5 tsf
	Sample includes about 20%		T 114.0.1	21.8		105	חח	14.0 115	2		5760 p
	fine to coarse Sand and fine	6 to	L,114,1	23.5	35 18						
	to subrounded)	9 to	W114.2	22. 1		106					
			TV								TV = 0 8 tsf
		0 to	saved								
			saved								
		× to	W114.3	21.9		103					
		79.8	ŢV								TV = 0.95 tsf
									ļ		
			<u> </u>					! !			

	PROJECT BELLE	RIVER	PLANT	T UNITS	SIBI					FILE	NO. 1255
	1		OF L	ABOR4	BORATORY T	EST	RESULTS	ILTS	D. SHEET	DAIE ET	0F
	IDENTIFICATION		TEST NO.	a.	PROPERTIES	S	STI	STRENGTH	CONSOLI	- - - -	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ဝမ	ູ່ນ	AND REMARKS
52/10	2.5' Recovery; say 88.0' to	88.0 to 90.5	115								
21	an conf	88.2 to 88.5	saved								
	Silty CLAY; sandy, gray,	5	W 115.1	26.7		97					
	stiff consistency, moderate		U115.1	27.2		97	D	8.0 243	Ŋ		
		88.6 to 88.9	1.31.1	26.4	39 18						
	Sample includes 25 to 30%	89.0	W 115.2	26.4		96					
	fine to coarse Sand size	89. 1 to	V 115.1	26.4			VS rVS	1662 1529	2		St = 1.1
	subangular Gravel particles	89.5 to 89.8	saved					į			
		8.68	W115.3	27.0		95					
		89. 9 to 90.3	saved								
	-										
							į				

	PROJECT: BELLE RI	RIVER		PLANT UNITS	SIRI					FILE	FILE NO. 1255
	TABLE SUMMA	MARY		ABORATORY	TORY T	EST	RESULTS	LTS	SH	SHEET	C 0F
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	STF	STRENGTH	CON	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	l	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	R SS eo	, ₂	AND REMARKS
52/12	2.5' Recovery; say 108.0' to	108.0- 110.5	117						į		
		108.1 - 108.5	saved					:			
		108.5	W117.1	29.7		83					
	to stiff consistency, moderate to high plasticity (CL)	108.5	TV					·			TV = 0.55 tsf
	100' 4:20	108.5 - 108.8	saved								
		108.8 - 109.1	saved	;							
	rounded Sand grains	109.1	W117.2	35. 1							
		109.1	ŢΥ								TV = 0.35 tsf
		109.3 - 109.6'	T 117.0.1	35.8		87	uu	3.0 1596	9		Oc = 7632 psf
		109.3 - 109.6	L117.1	36.2	46 22						
		109.6 - 109.9	saved								
		110.0	W117.3	35.5		87					
		110.0	TV					-			TV = 0.51 tsf

Note Content	DRING		YOVE	ПС	ARORATORY		TEST F	RESULTS	LTS	STEET	 	ET 0F
IDENTIFICATION NOT ALTERED DATE DATE	N.G		MART	<u> ال</u>	מלא לי		5	212	ENGTH	CONSC		7011
Soil Description Depth Whit Althere Difference	9 2	IDENTIFICATION				ROPERILE	2	1		DATIO	Z	OTHER TESTS
Silty CLAY, grey, moderate plasticity (CL) Sample includes about 20% fine to coarse Sand grains (subrounded to subangular in shape)	IPLE	1	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE		မ	٥, د	REMARKS
L567.1 34 1	-			267								
plasticity (CL) Sample includes about 20% fine to coarse Sand grains (subrounded to subangular in shape)	 	ilty CLAV orev. moderate		L567.1		4						
Sample includes about 20% fine to coarse Sand grains (subtrounded to subangular in shape)) <u>P</u>	lasticity (CL)										
fine to coarse Sand grains (subrounded to subangular in shape)	S	ample includes about 20%										
in shape)	щ <u>:</u>	ine to coarse Sand grains subrounded to subangular										
	1	n shape)										
							_					
							-					
											L	
							-					
							-					
								-				

	PROJECT BELL	BELLE RIVER		PL ANT UNITS	FATS					1 1 1 1 1	= NO 1255
		SUMMARY	_	ABOR/	OR	EST	RESULTS	JLTS	H		i lu
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	ST	STRENGTH	CONSOLI	SCI-	OTHEB TESTS
BORING SAMPLE	SOIL DESCRIPTION	ОЕРТН (F E ET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT	TEST TYPE	MAX. E SHEAR STRESS		ပိပ	AND REMARKS
53/3	1.7' Recovery; say 19.0' to 20.7' depth	19.0 to 21.0	96								į
		19.2 to 19.5									
	Silty CLAY, gray, stiff	19.5	W96.1	32.0		87					
	high plasticity (CL-CH)	ις,	TV				i				TV = 0.58 tsf
		19.6 to 19.9	U96.1	31.8		88	U 5	.0 1156			
		19.6 to 19.9	L96.1	31.7	49 20						
		20.0	W96.2	32. I		87					
		20.0	TV								TV = 0 65 tof
		20.1 to 20.4	T%.0.1	32.2		91	UU 8	9 1425			= 2405
										<u> </u>	
									-		

	PROJECT: BELLE R	RIVER		PLANT UNITS I	SIBI						1 1 1 1 1 1	NO 1255
		IMARY	_	ABOR/	RY	TEST	RESULTS	ILTS		SHE		
	IDENTIFICATION		TEST NO.	a.	PROPERTIES	S	ST	STRENGTH		CONSOLI- DATION	- NC	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	١	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	A SHE STR STR	MAX. SHEAR STRESS (PSF)	ိမ	, ,	AND
53/4	1.8' Recovery; say 29.0' to 30.8' depth	29.0 to 31.0 29.1 to 29.4	97 saved									
	Silty CLAY, gray, firm to stiff consistency moderate to bigh		W97.1	42.5		77						
		5 6 to 9	TV U97. 1	42.5		80	1	5.0 10	1006			TV = 0.53 tsf
		29.6 to 29.9	L97.1	41.1	49 22				<u> </u>			
		30.0	W97.2	38.8		91						
			TV	38.8								TV = 0.47 tsf
		1 to	T97.0.1	34.2		88	עט 2	. 4 97	73	·		0c = 3024 psf
		30.4 to	saved									
·												
											ì	

	PROJECT: BELLE	RIVER		PLANT UNITS I	SIBIE					"	FILE	NO. 1255
***	TABLE SUMMA	MARY	OF L	ABORATORY		TEST F	RESULTS	LTS	7.	D/ SHEET	DATE	0F
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	STI	STRENGTH		CONSOLI- DATION		OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	ı	WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	X. AR ESS Go		رد ٠	AND REMARKS
53/5	1.7' Recovery; say 39.0' to	39.0 to 41.0	86									
	40.7' depth	39. I to 39. 4	saved									
	Silty CLAY, sandy, gray, firm	39.4 to 39.5	W98.1	26.3		26						
		39.5	TV	26.3						····	Ξ	TV = 0.49 tsf
		39.5 to 39.8	C98.1	30.9			-		0.8	872 0.	35	
	sample includes 20 to 30% coarse to fine Sand and fine	5 td 8	€98.1								S C	Specific Gravity = 2,72
	Gravel size particles (subrounded to subangular in	ა to 2	L98.1	30, 5	39 20							
	shape)		k98.1	30.2					0	732	, O.	Sieve Hydro- meter see obt
			saved							ļ	-	
		40.1 to 40.2	W98.2	29.6		92						
		40.2	${ m TV}$	29.6					· ·			TV = 0.34 tsf
		40.2 to 40.6	saved									
									-			

	PROJECT: BELLE	RIVER		PLANT UNITS I	SIBI						9 113	NO 1255
	TABLE SUMMA	MARY	OF L	ABORATORY	TORY I	FST	RESULTS	JLTS		D/ SHEFT	DATE	July 1974
	IDENTIFICATION		TEST NO.	٩	PROPERTIES	ξS	ST	STRENGTH	一	CONSOLI	- I Z	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	ļ	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	S DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS (PSF)		ိမ	ů	AND
53/6	1.5' Recovery; say 49.0' to 50.5' depth	49.0- 51.0	66									
	1	49.1	W99.1	36.2		89						
	, moder	49.2- 49.5	1199, 1	27.9		94	ŢŢ	14.9 5	561			
	piastic (CL)	49.2- 49.5	L99.1	27.8	43 18							
	Sample includes 15 to 20% fine to coarse Sand size particles	49.6	W99. 2	27.3		94						
	and subrounded to subangular	49.7- 50.0	V99. 1	27.3			VS rVS		200	540 340		
	Braver stee preces	~	Saved								 	
	Sample slightly disturbed throughout											
			-									
								5				
												٠
											 	
						·						

OL		- 1					:				
DBE	TABLE SUM	SUMMARY	레	PLANT UNITS	181]				FILE	NO. 1255
RG	NO		1/0	LABORALORY		ST	RESULTS	LTS	S	DATE SHEET	E0F
- ZC	_		ON I	٥	PROPERTIES	S	STR	STRENGTH	SS	CONSOL!-	
	SOIL DESCRIPTION	DEPTH (FEET)	1	œ <u>≒</u>	ATTERBERG LIMITS	DRY UNIT		MAX. SHEAR			OTHER TESTS
53/9	2.5' Recovery; say 79.0' to	79.0 to		(%)	₩ _L ₩	(PCF)	TYPE	STRESS % (PSF)	o a s	Cc	REMARKS
	81.5' depth		101					į			
3500		4 r	W1011	27.6		26					
LATI	firm to stiff consistency,	3 5	V1011	27.9		95	VSr VS	1371 1025			St : 1 2
	moderately plastic (CL)	4 4	U101.1	27.9		95	U 6.	0 1275			
	Sample includes about 15%	3 7	11011	28.0	39 21						
	Gravel size particles	3 3	saved								
	-	3	saved								
				 .						+-	
		<u> </u>				-	-				
			-	+-	-	+	-				
				+							
			-							-	
									-	-	
									-	-	
							-		+-		
						-	-	-	-	+-	
					-	-	_				
			-	-	-		_		+	+	
			-	+		1	4				

	BELLE	RIVER	PLANT	T UNITS	SIGH					FILE	NO. 1255	
		MAR	OF L	ABORATORY	TORY T	EST F	RESULTS	LTS	SHEET	1	0F	· ·
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	STF	STRENGTH	CONSOLI- DATION		OTHER TESTS	
BORING	SOIL DESCRIPTION	DEPTH (FEET)	j	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ů	, ₂	AND	·
E 2 /12	Recovery; say 109.0' to	109.0-	104									
21/00	111.5 depth	\ !					<u> </u>					1
	Cilty CIAV. dark orav. stiff	109.5 - 109.7 -	wio41	20.0		108						1
			ΤV					·			TV = 0.68 tsf	
	plasticity (CL)	109.7 -	11041	20.5	29 15							
	Sample includes about 15% fine to coarse Sand and fine	110.0-	saved							+		
	Gravel size particles	110.4 - 110.5	W104.2	20.1		107						
	shape)		ΤV								$\Gamma V = 0.85 \text{ tsf}$	
		110, 5' -	saved									-
				<u></u>								Т
												1
	·											
						-						- 4
												ì

	PROJECT: BELLE RI	RIVER	PLAN	PLANT UNITS I	SIBI					FILE NO.	9
	TABLE SUMMA	MARY	OF L	ABORATORY		TEST	RESULTS)LTS	D/ SHEET	DATE ET	OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH	CONSOLI	_	OTHER TESTS
BOR!NG SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	J	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)			AND
53/12	Jar Sample	116.0	268								
	Silty CLAY, grey, moderate plasticity (CL)		L568.1		36 19						
	Sample includes about 15% fine										
	to coarse SAND and fine Gravel size particles (subrounded to										
	subangular in shape)										
		-		-:							
								_			
					-						

Ex risa Mag	PROJECT: BELL	BELLE RIVER		PLANT UNITS	SIBI					FILE	NO. 1255
	TABLE SUR	SUMMARY	OF L	ABOR/	BORATORY T	EST	RESULTS	JLTS	SHEE	DATE	0.5
	IDENTIFICATION		TEST NO.	d	PROPERTIE	ES.	ST	STRENGTH	CONSOLI	-	OTHER TESTS
BORING SAMPLE	SOIL DESCR	DEPTH (FEET)	ı	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		•	AND
54/4	1.8' Recovery, say 53.0' to 54.8' depth	53.0 to 55.0	397								
		53.2 to 53.5	F397.1.1	23.6		102	Ę	10.74838			0c = 2160 nef
		53.2 to 53.5	r397.0.1	24.4		66	ΩΩ	0			= 4320
	consistency, signtly plastic to non-plastic (CL - ML)	53.2 to 53.5	1.397. 1	22.8	21 17						
		53.5 to 53.6	W397. 1	25.7							
		53.6	TV		;					(,	TV=0.36 tsf
	Silty CLAY sandy very dark gray, firm to stiff consistency,	53.6 to 53.9	T397.14	22.6		101	CI	14.9 1430	-	Ç	0e = 2160 psf
	moderately plastic (CL)	.0	T397. L2	232		102	CI	14.8 2022		Ò	0c = 4320 psf
		53. 9 to 54.2	1397, 1, 3	23.5		102	CO	13.8 3867		Ģ	0 c = 8640 psf
	about 15% fine to coarse sand size particles and subrounded	Ö	W397.2	23.3							
	angular gravel size	54.3 to 54.6	1397. 1. 5	24.0		100	Cn	10.6 2805	-	10	oc = 6480 pst
	ביתרת	54.3 to 54.6	1.397. 2	24.0	31 18				·		
		54.6	ΤV								TV = 0.47 tsf
										-	
							-				
										1	

	PROJECT: BELLE R	E RIVER		PLANT UNITS	ПВIS					1111	NO 1255
	TABLE SUN	SUMMARY	OF L	ABORATORY	ATORY T	EST	RESULTS	JLTS	SHE	DATE	
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	ST	STRENGTH	CONSOLI	- L	OTUED TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERB LIMIT	DRY UNIT WEIGHT	TEST	MAX. SHEAR STRESS	မ	, ,	AND
				(%)	መ ገመ	(PCF)	115	% (PSF)			REMARKS
54/5	2.0' Recovery	58.5 to	308								
		58.6 to	1								
		58.9	saved							4	·
	Silty CLAY, sandy, gray, firm to stiff consistency, moderately	58.9	W398.1	25.2		93					
		58.9	TV	25.2							4
	Sample includes about 20% fine	0 to	000	,			 				1
		γ) (1358 C	42.4		66		5.0 768		4	Tc = 4464 psf
		5 to	U398.1	25.8		66	U 1	1.0 557	<u></u>		
		59.3 to 59.6	.398.1	26.2	38 17					-	
		59.6	W 398.2	27.5		92				-	
			Ì	,						-	
		59.7 to	Λ T	6.77			U	1100		7	TV = 0.55 tsf
		- 1	7398.I	27.5	ì	92		>			••
		60.3 s	aved				_				
							_			 	
										+-	
				 			 			-	
							 			+	
	4	-									
		- 	 -				+		+	+	
			1	1		1	-			_	

	BELLE BELLE	RIVER	PLAN	PLANT UNITS	вівп		:		<u> </u>	FILE	1255
			OF L	ABORATORY	TORY T	EST	RESULTS	ILTS	D SHEET	DATE ET	July 1974 OF
	IDENTIFICATION		TEST	۵	PROPERTIES	S	STI	TRENGTH	CONSOLI DATION		OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT WATER CONTENT (%)	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS 9% (PSF)	° a	. ° °	AND REMARKS
54/6	2.0' Recovery	63.0 to 65.0	399								
		63. 1 to	I399.0.1	26.1		98	ממ	13.0 796			$\overline{0_c} = 5040 \text{ psf}$
	saudy, gray, mininistency, moderately	63.4 to 63.5	W 399. 1	24.3		92					
		63.5	$_{ m TV}$	24.3				·		[[7]	TV = 0.46 tsf
	Sample includes about 25% fine to coarse Sand and fine Gravel		C399.1	26.0					0.6960.	24	
		63.5 to 63.8	SC 399.1							<i>J</i> ₂ O	Specific Gravity = 2, 71
	Subaligurat til strape)	63.5 to 63.8	k399.1	27.2		98			. 724	7	Seve/hydrometer See plot
		63.5 to 63.8	L399.1	26.0	36 18						
			T399, 1.1	26.4		98	CU	12.0 1362		Ç	$\overline{\mathbf{O}}_{c} = 2448 \text{ psf}$
		64.1 to 64.2	W 399.2	25.0		98					
		64.2	$\Lambda ext{L}$	25.0				·			TV = 0.52 tsf
		64.2 to 64.5	T399.12	25.2		98	CU	12.1 2008			Oc = 4896 psí
		64.5 to 64.8	T399, L3	25.8		86	CO	11.6 2929			<u>õc</u> = 9792 psf
		64.8	TV					·			TV = 0.48 tsf
				í	3			4			

	PROJECT: BELLE RI	E RIVER		PLANT UNITS	SISH					FILE	F NO 1255
	TABLE SUN	SUMMARY	OF L	ABORATORY	TORY 1	-EST	RESULTS	JLTS	J.	ü	E
	IDENTIFICATION		TEST NO.	ā	PROPERTIES	ES	ST	TRENGTH	S S	CONSOLI-	OTHED TESTS
BORING Sample	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS (PSF)		ن	AND REMARKS
54/7	2.0' Recovery	0 to 0	400					•	_	ļ	
	Silty CLAY, sandv, grav, stiff	_	V 400.1	26.3			VS	13	88		St = 1, 5
	moderately plastic	to	W 400, 1	26.3		96					
			TV	26.3							TV = 0.58 tsf
		ದ	7400.1	25.9		98	U 8	7 6.	88		
	Gravel size particles (sub- rounded to subangular in shape)	68.5 to 68.8	.400,1	26.2 3	7 18						
		ţ	[400, 0, 1	25.9		86	נו ממ	2.0 11	84		Oc = 5112 psf
		69.1 to 69.2	w 400.2	22.5	, , , , , , , , , , , , , , , , , , ,	102					
		69.2	$_{ m TV}$	22.5							TV = 0.54 tsf
		to	saved								
		69.8	TV								TV = 0.56 tsf
			· · · ·								
							 		-		

	PROJECT BELLE	RIVER	PLANT	T UNITS	SISI					FILE	NO. 1255 Hilly 1974
		MARY	OF L	ABORA	BORATORY T	TEST	RESULTS)LTS	SHEET	ETALE	
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	- - -	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	l	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	60	C .	AND REMARKS
54/8	2.0' Recovery	73.0 to	403								
		to									
	gray, stiff	to	saved								
	moderately	Т	W401.1	38.9		81					
	plastic (CL)	73.4	ΤV	38.9							TV = 0.54 tsf
	Sample includes about 10% fine	73.4 to 73.7	saved								
	lense	to	C.40]	38.3					0,982	0.41	
		73.7 to	SC401.								Specific Gravity=2.73
	···	73.7 to 74.0	L.401.1	31.6	45 21						
		73.7 to 74.0	k 401, 1	31,6		06			0.851		sieve/Indrameter see plot
		74.0 to 74.1	W401: 2	30.		89					
		74.1	ΛŢ								TV = 0.50 tsf
		74.1 to 74.7	saved								
								7 P. C. C. C. C. C. C. C. C. C. C. C. C. C.			

	PROJECT: BELL	BELLE RIVER PLANT UNITS I	PLAN	T UNIT	пвіз				ii.	O.	1255
	TABLE SUMMA	IMARY	OF L	LABORATORY		TEST	RESULTS	LTS	D/ SHEET	11E	F
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES	S	ST	STRENGTH	CONSOLI DATION		OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TYPE	MAX. SHEAR STRESS % (PSF)	0 д	Cc. REN	AND REMARKS
58/5	Jar Sample	6.0'	295								
	Silty CLAY, dark greyish brown, moderate to high		L 562. 1		42 19						
	plasticity (CL)	ı.						•			ı
						. 01					
									·		

PROJECT: BELLE RIVER PLANT UNITS I B II TABLE SUMMARY OF LABORATORY TEST RESULTS IDENTIFICATION SOLL DESCRIPTION SOL					
1					
56:					
1.562					
-					

SUMMARY OF LABORATORY TEST RESULTS SHEET No. Test Properties Strength Consolir		BELLE	RIVER		PLANT UNITS I	BISI				FILE	Ö
Soll Description Test Properties STRENGTH CONSOLIDATION Control of the control of th		` 	4		ABORA	i	ŀ	RESL	LTS	DA SHEET	OF OF
Soil Description Jar Sample Silty CLAY, Sandy, low to moderate plasticity (CL) Sample includes about 35% fine Sand grains Soil Description Warre Liwits Warrenger of Street Warrenger Liwits Warrenger of Street Warrenger Country Warrenger Liwits Warrenger of Street Warrenger Liwits Warrenger Street Warrenger Street Warrenger Liwits Warrenger Street Warrenger Street Warrenger Liwits Warrenger Street Warrenger Street Warrenger Street Warrenger Liwits Warrenger Street Warren				TEST	٥	ROPERTIE	န္	ST	RENGTH	CONSOLI- DATION	OTHER TESTS
Jar Sample Silty CLAY, Sandy, low to moderate plasticity (CL) Sample includes about 35% fine Sand grains	BORING		DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)			၁၁ ၀ခ	82
CLAY, Sandy, low to crate plasticity (CL) ple includes about 35% Sand grains	58/10	Jar Sample	45.0'	•							
fine Sand grains fine Sand grains	-	Silty CLAY, Sandy, low to		L564. 1		7 1					
fine Sand grains		moderate plasticity (CL)									
		Sample includes about 32.0 fine Sand grains									
									:		
											·
				-4							
									;		

TABLE SUMMARY OF LABORATORY TEST RESULTS		PROJECT: BELLE RI	E RIVER		PLANT UNITS	SIBI						FILE	9
CEPTH CONTRICATION CEPTH CONTRICATION CEPTH CONTRICATION CEPTH CONTRICATION CEPTH CONTRICATION CEPTH CONTRICATION CEPTH CONTRICATION CEPTH CONTRICATION				_	ABOR/		ST	RESL	JLTS		DA SHEET	DATE	JULY I
Use Soil Description (Feet) — What Content Limites (Support of Support	IDENTIFICATION		TEST NO.	ď	ROPERTIE	S	ST	RENGT		CONSOLI- DATION	OL!-	OTHER TESTS	
Silty CLAY, Sandy, gray, moderately plastic (CL) Sample includes about 45% fine to coarse Sand grains (Subrounded to subangular in shape)	3ORING SAMPLE		DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)				မိ	, °,	AND REMARKS
y, L5651 34 1 59% ar ar	8/13	Jar Sample	0	9									
Sample includes about 45% fine to coarse Sand grains (Subrounded to subangular in shape)		Silty CLAY, Sandy, gray,		L565.1		4 1					-		
(Subrounded to subangular in shape)		Sample includes about 45%											
in shape)		fine to coarse Sand grains (Subrounded to subangular											
		in shape)											
									:				
						,							
							-						
		:		3									
										, <u>.</u>			

	PROJECT: BELL	BELLE RIVER	4 1	PLANT UNITS I	SI8 II					FILE	FILE NO. 1255
	TABLE SUMMA	IMARY	OF L	LABORATORY		TEST	RESULTS	LTS	S	SHEET	0F
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES	S	ST	STRENGTH		CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	. ss e _o	, ος	AND REMARKS
58/17	Jar Sample	80.01	566								
	Silty CLAY, dark gray, moderate to high plasticity		1.566.1		43 20					÷	
	(CL)										
									:		

	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBI					FILE	FILE NO. 1255
		MARY	OF L	ABORA	BORATORY T	EST	RESULTS	LTS	D/ SHEET	DAIE	E0F
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S:	STI	STRENGTH	CONSOLI	OLI- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	I	NATER WATER CONTENT (%)	ATTERBERG LIMITS TOL TOP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	°e °	C c +	AND REMARKS
B59/3	1.8' Recovery; say 18.0' to	18.0 to 20.0	92								
		18.1 to 18.4	saved								
	Silty CLAY, gray, firm to stiff	18.4 to 18.5	W76.1	32.1		83					
	moderate to high	18.5	ΛL	32.1							TV = 0.58 tsf
		18.5 to 18.8	V 76. 1	32.8			SA	1260			
		18.8 to 19.1	U76. 1	32.8		06	Ω	6.9 1056			
		18.8 to 19.1	L76.1	l .	48 20						
		19.1 to	W76.1	31.6		96					
		19.3	ΛI	31.6							TV = 0.56 tsf
		19.3 to 19.7	saved								
			-								
								A	, ,		
			, r								
								,			

	PROJECT: BELLE RI	RIVER		PLANT UNITS	SIBI						FILE	FILE NO. 1255
	TABLE SUMMA	MARY	OF L	ABORATORY	ATORY T	EST 1	RESULTS)LTS		SHEET	ET	0F
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH		CONSOL!- DATION	SN:	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	STI	MAX. SHEAR STRESS (PSF)	° 9	رد ٠	AND REMARKS
59/5	1.9' Recovery; say 38.0' to	38.0 to 40.0	78									
	.5' disturb-	38.6 to 38.7	W78.1	26.7		94						
		38.7	TV	26.7								TV - 0.46 tsf
	sandy, gray, firm	38.7 to 39.0	U78.1	26.2	,	66	ī	4.9	929			
	consistency, moderately plastic (CL)	38.7 to 39.0	L78.1	26.2	38 18							
	ides 20 to 25% fine	39.0 to 39.3	saved									
	-	39.3 to 39.4	W78.2	25.6		96						
		39.4	$\Lambda extbf{I}$	25.6								TV = 0.47 tsf
		39.4 to 39.7	V 78. 1	25.6			SA	-	637			
		÷				1						

	PROJECT: BELLE RI	RIVER	4 1	PLANT UNITS	пвіз					FILE	No. 1255
····	TABLE SUMMA	IMARY	OF L	ABORA	BORATORY T	EST	RESULTS	LTS	SHEET	CTAIL	0F
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	- - -	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	6 о	ر ق	AND REMARKS
59/7	1.5' Recovery; say 58.0' to	58.0 to 60.0	80								
	6	58.1 to 58.4	saved								
	Silty CLAV sandy dark oray	58.4 td 58.6	W80.1	25.0		100	_				
		58.6	TV	25.0							TV = 0.49 tsf
	erately plastic (CL)	58.6 td 58.9	U80.1	26.3		86	Ω	8.0 835			
	Sample includes 20 to 25% coarse to fine Sand and fine	58.6 to 58.9	L80.1	24.5	36 18						
	Gravel size particles	58.9 to 59.0	W80.2	4		102					
	shape)	59.0	ŢΥ	24.1							TV = 0.51 tsf
		59.0 to 59.3	V80.1	24.1			$_{ m rVS}^{ m VS}$	73 4 (969)			
									·		
				3				hic		10 m	

(

TABLE SUMMARY OF LABORATORY TEST RESULTS SHEET		PROJECT: BELLE RI	E RIVER		PLANT UNITS	181	1 1				FILE	No. 1255 July 1974
SOLU DESCRIPTION TEST PROPERTIES STRENGTH COUNCIL					ABOR/	ı		RESL	JLTS	SHEE		OF
Solid Cescription Cepth Warra Altrenser Survey Sample Clayer Sample		IDENTIFICATION		TEST NO.	d	ROPERTIE	S	ST	RENGTH	CONSC	NI-	OTHER TESTS
Clayey SAND, subrounded to subangular fine to coarse Sand and fine Gravel size particles with 35 to 40% low to moderately plastic fines (SC)	BORING	l	OEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE		a	رد ٠	AND REMARKS
d	6/69			9								
and fine Gravel size particles and fine Gravel size particles with 35 to 40% low to moder- ately plastic fines (SC)		Clayey SAND, subrounded to										
ately plastic fines (SC) ately plastic fines (SC)		subangular fine to coarse Sand										
ately plastic fines (SC) Comparison of the co		with 35 to 40% low to moder-										
		ately plastic fines (SC)										
										-		
	i i											

Name		PROJECT: BELLE	E RIVER		PLANT UNITS I	I B I S					١	FILE NO	5. L2
Comparison Test Properties Strength Consolidation Test Consolidation Consolida					ABORA		EST	RESL	JLTS		D SHEET	ATE	July 1974 OF
Santyle Solid Description Perty Water Alterese Sweak		IDENTIFICATION		TEST NO.	d	ROPERTIE	S	ST	RENGTH		ONSOL	┝	OTHER TESTS
Silty CLAY, grey, moderate plasticity (CL) Sample includes about 10% fine to coarse Sand size particles (subrounded to sub-angular in shape)	BORING		DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE		1	۰	7	AND
about 10% about 10% and size anded to sub-	59/11	Jar Sample	. I	570									
about 10		Silty CLAY, grey, moderate		L570.1		7 1				·			
nd size nded to		plasticity (CL)										<u> </u>	
nded to		fine to coarse Sand size											
		nded to											
							, ,	***	, ,	33	· ·		

,

	PROJECT: BELLE RI	E RIVER		PLANT UNITS I	SIBI						FILE	10. 12
		SUMMARY	OF L	ABORATORY	TORY T	EST	RESULTS)LTS	;	D, SHEET	DATE ET	Jan. 1974 OF
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	ST	STRENGTH		CONSOL!- DATION	-i-N	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	l	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	K SHI STR STR	MAX. SHEAR Stress (PSF)	69	CC	AND REMARKS
B60/1	Jar Sample	5.0 to 6.5	20									
	Silty CLAY; dark gray, highly		L70.1	27.3	50 20							
	plastic (CL-CH)		H70.1								. 02	See plot
B60/2	Jar Sample Silty CLAY: dark grav.	10.0 to 12.5	7.1									
	moderately to highly plastic		L71.1	28.0	44 19							
			H71.1								ړې	See plot
B60/3		19.0 to 20.5	72									
	Silty CLAY; dark gray, moderately to highly plastic		1.72.1	30.3	43 19							
	(CL)		H72.1								53	See plot
B60/5	Jar Sample	27.0 to 28.5	73		·							
	Silty CLAY; dark gray, highly		L73.1	34.3	48 20							
			H73.1								υ	See plot

	PROJECT: BELLE	RIVER	1	PLANT UNITS	SIBI					FILE	NO. 1255
	TABLE SUMMA	MARY	OF L	Ø	BORATORY T	TEST F	RESULTS	LTS	D/ SHEET	DATE ET	Jan. 1974 OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	STI	STRENGTH	CONSOLI	-INC	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		Cc +	AND
B60/2		8.0 to 10.0	42								
	stiff to very stiff consistency, highly plastic	8.0 to 8.3	save 42.1								
		8.3	ΤV	28.3							TV=1.ltsf
		8.3 to 8.4	ν42. l	28.3							
	to subrounded line Gravel and coarse Sand grains	8.4 to 8.7	save 42.2								
		8.7 to 9.0	T42.1.3	28.9		96	CU	5.3 1336		-	
		8.7 to	T42,1,3F	L.,		86	55	11.6 1751			Remolded sample
		0.6	ΛI	29.0			1				TV=0.88tsf
		9.0 to 9.1	W42.2	29.0							
		9.1 to	T42.12			95	CU	5.2 882			
		9.1 to 9.4	T42.1.2E	29.		66	CIB	0.8			Remolded sample
		9.4 to 9.7	1175L			94	n:	3.6 530			•
		9.4 to 9.7	742 1.IR	أسينا		96		15.0 875			Kemolded sample
			ΛL	29.7	•						TV=1.1tsf
:		9.7 to 9.8	W42.3	29.7							
		9.8 to	C42.1	30.0	7	×	- A		787	23	Specific Gravity=2,71
		9.8 to 10.0	L42. 1	29.7	53 26						

ļ.,	PROJECT: BELLE RI	RIVER	L	PLANT UNITS	SIBI						FILE	NO. 1255
		IMARY	OF L	ABORATORY		TEST	RESULTS	JLTS	;	D. SHEET	DAT ET	DATE March 1974
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES		ST	STRENGTH	표	CONSOLI	-INO	OTHER TESTS
BOR!NG Sample	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	w %	MAX. SHEAR STRESS (PSF)	မိ	Ce +	AND
B60/3	2.0 Recovery; say 17.0' to 19.0'17. depth. Upper 0.5' dishirbed	17.0 to 19.0	43									
		17.5	ΤV	29.9						-		TV=0.27 tsf
	Silty CLAY, dark gray, medium 17.	17.5 to 17.6	W43. 1	29.9								
	to stiff consistency, moderately plastic (CL)	17.6 to 18.0	U43. 1	24.3		105	n	20.0	1143			@15.0%strain s=1029 psf
		17.6 to 18.0	U _r 43. 1	24.3		103	Ur	20.0	1053			@15.0%strain s=879 psf
	ine	17.6to 18.0	L43.1	24.3	39 21							
	rounded to subangular in shape)	18.0	TV	19.2								TV=0.87 tsf
		18.0 to 18.1	W43.2	19.2								
		18.1 to 18.3	k43.1	26.1	_							
		18.1 to 18.3	H43.1		:							See plot
		18.6	TV	19.5								TV=0.46 tsf
		18.6 to 18.7	W43.3	19.5								
		18.7 to 19.0	save 43. l									
							<u> </u>					

	PROJECT BELLE R	E RIVER	1	PLANT UNITS	T & T &						1	NO 1255
		SUMMARY	OF L	ABORATORY	ORY	TEST	RESULTS	JLTS		0.1	DATE	. [a]
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	ST	STRENGTH	E	CONSOLI	100	OTUED TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEРТН (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	- S S	MAX. SHEAR STRESS (PSF)	e°	· ° °	AND ARKS
B60/4	2 C C C C C C C C C C C C C C C C C C C	21.0 to 23.0	44					1			1	
Manife to the state of the stat	to 22.8' depth	-:	$_{ m TV}$	31.8								TV=0.52 tsf
		1 to 2	W44. 1	31.8								
	Silty CLAY, grayish brown, stiff consistency, highly plastic	21.2 to 21.5	T44.L3	31.0		94	CU	3.8	2658			
	(CL-CH)		ΤV	30.9								TV=0, 71 tef
	Sand	to	W44.2	30.9							 	:
	and line Gravel particles	21.9 to 22.3	T44.1.1	30.4		94	E	6.7	380			
		21.9 to 22.3	1441	30.4	43 17		├ ──					
		3	ΤV	29.9								TV=0.68 tsf
		to	W44.3	29.9						-		
		22.4 to 22.8	T44.1.4	30.6		95	CU	7.6	588			
		·										
							 					
										-		
							1		1		1	

	PROJECT: BELLE	RIVER	1 1	PLANT UNITS	SIBП			į		FILE A	NO. 1255 Jan. 1974
	TABLE SUMMA	MARY	OF L	ABORATORY	-	EST	RESULTS	JLTS	SHEET	ETA	
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	OLI- ON	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	ł	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	69	, °°	AND REMARKS
B60/5	ery; say 25.0' to	25.0 to 27.0	45								
		25.1	TV	34.8				!			TV=0.53 tsf
	Silty CLAY; gray, moderate to high plasticity, firm to stiff	25.1	W45.1	34.8							
	consistency	25.2 to 25.6	save 45.1								
		25.6	ΤV	35.5						-	TV=0.55 tsf
		25.6	W45. 2	35.5							
		25.7 to 26.1	147.1	١,		98	11	4.0 1002	•		
		25.7 to 26.1	145. 1		51 22						
		2.92	ΛŢ								
		2.92	W45.3	36.3							
		26.2 to 26.5	save 45.2								
		26.5	$\Lambda ext{T}$		·						TV=0.50 tsf
			,								

	PROJECT BE	BELLE RIVER		PLANT UNITS T	A 1 A T						1	1255
		SUMMARY	OF.	LABORATORY	RY T	EST	RESULTS	ILTS		7000	DATE) 1 1 1 1
	IDENTIFICATION		TEST	٩	PROPERTIES		STI	STRENGTH	一	CONSOLI	-	
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT	TEST	MAX. E SHEAR STRESS	A K SS:	6° (7	OTHER TESTS AND REMARKS
9/09		30.0- 32.0	46					İ	-	-	+	
	Silty CLAY, gray, firm to	30.1- 30.4	Saved							-		
	plasticity (CL-CH)		W46. 1	40.4		81					-	
		30.4	ΛL									TV=0.47tsf
		100	046. I	35.0		88	þ	3.7 15	22	 		
		30.5- 30.8	L46 1	34. 7	48 25	_	<u></u>				 	
		0	V46. l	34.0			VS	10	000			
		31.3	ŢΛ									TV=0 40tsf
								<u>.</u>				
											-	
											-	
							-		-	-	-	
											-	
										-	+	
					·		-			+-	+	
										-	-	
		,									-	
									1	-	4	

SUMMARY OF LABORATORY TEST RESULTS SHEET	<u> </u>	PROJECT: BELLE R	E RIVER		PLANT UNITS	SIBI						F NO 1255
DENTIFICATION TEST PROPERTIES STRENGTH CONTROL			MMARY	OF L	ABOR/	ORY	EST	RESI	JLTS	Ü	DAT	Jan
Booking Soil Description Ciptra Water and Marker Day Register Soil Countries Water and Middle Ciptra Countries Water and Middle Ciptra Countries Water and Middle Ciptra Countries Ciptra Cipt		IDENTIFICATION		TEST	۵	ROPERTI	ES	ST	RENGTH	NO.	SOLI	
B60/8 1.7' Recovery; say 40.0' to 42.0 48 41.7' depth Silty CLAY; dark gray, moder-40.1 TV 23.6 Silty CLAY; dark gray, moder-40.1 TV 23.6 To nsistency (CL-CH) To no nsistency (CL-CH) To to to ave a tet to high plasticity, firm 40.2 to save 40.0 TV 33.7 Includes about 10% Silty fine 40.6 TV 33.7 Sand occurring as pockets or 40.6 W48.2 33.7 Hones 1/8" to 3/8" long To to to to to to to to to to to to to to			DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT				ن	OTHER TESTS AND REMARKS
Silty CLAY; dark gray, moder-40.1 to ate to high plasticity, firm 40.2 to was read at a to high plasticity, firm 40.2 to was read at a to high plasticity, firm 40.2 to was read at a to high plasticity, firm 40.2 to was read at a to high plasticity, firm 40.2 to was read at a following spockers or lanched a poot to was read at a formal as pockers or with a following was pockers or was read at a following with a following was read at a following with a following was read at a following with a following was read at a following with a following was read at a following with a following was read at a following with a following was read at a following with a following was read at a following with a		ery;		48					•	_		
any Carl; dark gray, moder 40.1 to an on sistency (CL-CH) (10.2 to save 48.1) (20.2 to save 48.1) (20.2 to save 48.2) (20.2 to save 40.2 to save 40.2 to save 40.2 to save 40.2 to save 40.2 to save 40.2 to save 40.2 to save 40.2 to save 40.2 to save 40.2 to save 40.2 to save 40.3 si long 40.1 to save 41.1 to save 41.2 to save 41.2 to save 41.2 to save 41.2 to save 41.2 to save 41.2 to save 41.2 to save 41.2 to save 41.3 to sav			1	ΓV	3.							TV=0.46 tsf
Includes about 10% Sity fine 40.6 48.1 40.6 48.1 40.6 48.1 40.6 48.1 40.6 48.1 40.6 48.2 40.6 48.2 40.6 48.2 40.6 40.6 40.6 40.6 40.6 40.6 40.7		ate to high plasticity, firm	⊸ ત્રાં	W48.1	. 4							
fine 40.6 TV 33.7		o nsistency (CL-CH)		save 48.1								
40.6 W482 33.7 40.7 to 44.8		Includes about 10% Silty fine Sand occurring as pockets or	9	ΤV	3							TV=0.40 tsf
to U48.1 39.7 47 25		lenses 1/8'' to 3/8'' long	.6	W48.2	3.	i						
to L48.1 39.7 47 25			\ - 	U48, 1			83		0 3			
TV 41.4 TV TV 41.4 TV TV TV TV TV TV TV TV TV TV TV TV TV			~ ~!	L48.1	اء	2						
W48.3 41.4 Image: Control of the co			. 1	ΓV	•							TV=0.40 tsf
to save 48.2 TV TV TV TV TV TV TV TV TV TV TV TV TV				W48.3	_;							
5 TV TV			to	save 18.2								
			5	ΓV								TV=0.33 tsf

PORING SOIL DESCRIPTION B60/9 1.9' Recovery; say 45.0' to 46.9' depth Silty CLAY, sandy, dark gray, firm to stiff consistency, highly plastic (CL) Includes about 30% subangular to subrounded fine Gravel to coarse Sand size particles		PLANT	T UNITS	SISHI	!				FILE	FILE NO. 1255
s soil C 1.9' Recover 46.9' depth 46.9' depth Firm to stiff plastic (CL) Includes abor to subrounde coarse Sand	SUMMARY	OF L	ABORA	BORATORY T	EST	RESULTS	LTS	SHEE	DAT	٦ <u>'</u>
Seole Control of the state of the subrounder coarse Sand		TEST NO.	P	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	OL!-	OTHER TESTS
1.9' Recover 46.9' depth Silty CLAY, firm to stiff plastic (CL) Includes aborto subrounde coarse Sand	F 5	.	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	° 9	, °)	AND REMARKS
Silty CLAY, sandy, dark grafirm to stiff consistency, his plastic (CL) Includes about 30% subangulate to subrounded fine Gravel to coarse Sand size particles	47.0	49								
Silty CLAY, sandy, dark grafirm to stiff consistency, his plastic (CL) Includes about 30% subangulate to subrounded fine Gravel to coarse Sand size particles	45.1	ΛŢ	25.9							TV=0.45tsf
firm to stiff consistency, his plastic (CL) Includes about 30% subangulators to subrounded fine Gravel to coarse Sand size particles	45.1 to 45.2	W49.1	25.9							
Includes about 30% subangula to subrounded fine Gravel to coarse Sand size particles	45.2 to 45.5	T49.1.3	26.0		102	CII	8.5.2510			
coarse Sand size particles		T49.12	27.0		98	CU	8.2 1499			
		ΤV	25.4							TV=0.50tsf
	45.8 to 45.9	W49.2	25.4							
	45.9 to	749,11	26.6		99	CU	2.9 1267	,		
	45.9 to 46.3	149.1	24.8	38 16						
	46.3	TV	25.3							TV=0.52tsf
		W 49. 3	25.3							
	46.4 to	save 49. I								
										,

(

	PROJECT: BELLE R	E RIVER	4	PLANT UNITS	SIBI						13	FILE NO. 1255
	TABLE SUMMA	IMARY	OF L	ABORATORY		TEST	RES(RESULTS		D/ SHEET	DATE	E July 1974 OF
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	ES	ST	STRENGTH	HT	CONSOLI	S - - -	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	İ	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT (PCF)	TEST	, , , , , , , , , , , , , , , , , , ,	MAX. SHEAR STRESS (PSF)	မ	υς	AND
60/10	1.7 Recovery; say 50.0 to 51.7 depth; upper 0.5 disturbed	50.0- 52.0	50									
		50.3- 50.4	W50, 1	29.3								
		50.5- 50.9	saved									
	Silty CLAY, dark gray, firm consistency, moderate	50.9	$\Lambda ext{L}$									TV=0.36 tsf
	plasticity (CL)	50.9- 51.2	<u>U</u> 50, 1	25.5		100	ņ	15.2	12.55			20% str
		50.9- 51.2	L50 1	25.7	34 16	9		· ·				7
	Sample includes about 10% fine to coarse SAND and fine	51.2- 51.3	W50.2	25.9		97						
	gravel size particles (subrounded to subangular in	51.3	TV									TV=0.42 tsf
	shape)	51.3- 51.6	v5a1		-		rVS rVS		1950 1050			
	Few thin (± 1/16"thick) lenses/			.								
	layers of SILT, grey,non- plastic (ML)appear throughout											
	comprising 5% of total sample											
										 		

	DBO IFCT BELL	BELLE RIVER	1	PLANT UNITS	SIBI					FILE	i li
		SUMMARY	OF L	ABORATORY		EST F	RESULTS	ILTS	SHE	DAT SHEET	E March 1974 OF
	IDENTIFICATION		TEST NO.	Ā	PROPERTIES	S	ST	STRENGTH	CONSOLI	SOLI-	OTHER TESTS
BOR!NG SAMPLE	SOIL DESCRIPTION	ОЕРТН (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		, °2	AND REMARKS
B60/11	1.8' Recovery; say 55.0' to	55.0 to 57.0	51								
		55. 1	ΛI	25.9							TV=0.33 tsf
	Silty CLAY, dark gray, moder- ate plasticity, firm to stiff	55.1 to 55.2	W51.1	25.9			·				
	consistency (CL)	55.2 to 55.5	save 51.1								
	Includes about 20% medium to	55.5	TV	24.8							TV=0.63 tsf
	angular to subrounded gravel	55, 5 to 55, 9	U51.1	24.8		103	D	24.0 1407			@15.0% strain s=1299 psf
	size particles (1/4" to 1" size)	55. 5 to 55. 9	$\sigma_{ m pSl}$. 1	Ι.		103	Ur	20.0 10.02	2)		$@_{s^{1}}^{15}_{8}$
		55.5 to 55.9	L51.1	24.8	33 18						
		96.0	TV	25.9							TV=0.50 tsf
		96.0	W51.2	25.9							
	ī	56.1 to 56.4	k51.1	25.5							
		56. 1 to 56. 4	S/H .51.1							·	See plot
		56.4	TV	2 5. 9							TV=0.46 tsf
		56.4	W51.3	25.9							
	1	56.4 to 56.7	save 51.3								

	PROJECT: BELL	BELLE RIVER		PLANT UNITS I	SIBI		ŀ			FILE N	FILE NO. 1255
		SUMMARY	OF L	LABORATORY		TEST	RESULTS	JLTS	D/ SHEET	DATE_ T	Jan. 1974
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI	 -	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	° မ		AND
B60/12	0.5' Recovery; say 60.0' to	60.0 to 62.0	52								
	60.5 depth	60.0 to 60.2		28.9							
	Silty CLAY dark aratt	60.2	W52.1	27.9							
	moderate plasticity (CL)	60.2 to 60.4	152.1	27.9	36 18						
	Entire sample disturbed										
							ļ				
·										_	
			·		·						

	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBIL				Ē	FILE NO. 1255
		MARY	OF L	ABORA	BORATORY T	EST F	RESULTS	LTS	SHEET	0F
	DENTIFICATION		TEST NO.	d	PROPERTIES	S	STF	STRENGTH	CONSOLI	OTHER TESTS
BORING SAWPLE	SOIL DESCRIPTION	DEPTH (FEET)	۱	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ა _ე	AND REMARKS
B60/13	1.9' Recovery; say 67.0' to	67.0 to 69.0	53							
	8.9' depth	67.1	ΤV	24.7						TV=0.63 tsf
		67.1 to 67.2	W 53. 1	24.7						
	2	67.2 to 67.5	T53.1.4	15 5		114	CU	12.9 4613		
	Sample includes zones of Silty CLAY, gravelly, stiff to	67.2 to 67.5	1.23.1.5	21.0		104	CU	11.9 3.78		
	ፒ ደ «	67.5	$_{ m L}$	16.4						TV=0.95 tsf
	Clayey GRAVEL, sandy, slightly	67.5 to 67.6	W53.2	16.4						
	plastic (GC) Silty CLAY, gravelly, and Clayey _{67.9}	67.6 to 67.9	153.1.3	19.7		104	CO	15.0 4060		
	GRAVEL, sandy, zones comprise 40 to 50% of total	67.9	ŢV							TV=0.48tsf
		67.9 to	1.53.1	29.4	40 19					
		68.3 to 68.6	T53.1.1	23.6		104	CU	15.0 1945		
		68.3 to 68.6	T53.1.2	31.9		91	CU	6.2 1723		
		68.6	ΤV							TV=0.50 tsf
		68.6 to 68.7	W53.3	33.2						

	PROJECT BELLI	BELLE RIVER		PLANT UNITS	SIBI					FILE	Z
		MARY	OF L	ABORATORY	1	EST	RESULTS	ILTS	D SHEET	DAIE	OF
	DENTIFICATION		TEST NO.	a.	PROPERTIES	S	STI	TRENGTH	CONSOLI- DATION	_	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	ı	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	မ	υ υ	AND REMARKS
B60/14	2.2' Recovery; say 74.0' to	74.0 to 76.5	54								
	76.2' depth	74.4	TV	25.9							TV=0.54tsf
	Silty CLAY, dark gray,	74.4	W54.1	25.9							
	 ;	to	save 54. l								
	Includes ±15% coarse Sand and subrounded to subangular	75.0	$_{ m TV}$	26.8							TV=0.70tsf
	Gravel size particles	75.0	W54.2	26.8							
		75.1 to 75.6	U54.1	26.9		97	U	5,0 652			
		75.1 to 75.6	L54.1	26.9	40 20						
		75.6	ΛI	0.92							TV=0.70tsf
		9	W54.3	26.0							
	•	75.6 to 76.0	save 5 4. 2								
		76.0	ΤV								TV=0.63tsf
	-										

	SOUTH BELLER BEL	E BIVER		STINE TNO 10	E 6 1 3					L 11 L	NO 1255
	1	MARY	, –	ABORA	ORY	TEST F	RESULTS	LTS	SHEE	DATE	
	IDENTIFICATION		TEST NO.	Ъ	PROPERTIES	S	STR	STRENGTH	CONSOLI- DATION	SOLI-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEРТН (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST 6	MAX. SHEAR STRESS % (PSF)		• ວິວ	AND REMARKS
B60/16	2.4' Recovery; say 84.0' to 86.4' depth	84.0 to 86.5	56.0								
		84.2	${ m TV}$	27.4							TV=0.62 tsf
	Silty CLAY, dark gray, moderate to high plasticity,	84.2	W56. 1	27.4							
	firm consistency (CL)	84.2 to 84.6	save 56.1								
		84.6	TV	26.7							TV=0.73 tsf
	Includes about 20% fine to	84.6	W56 2	26.7							
	±15% subangular to subrounded	84.7 to 85.1	save 56.2				<u> </u>				
	Gravel particles	85.2 to 85.4	C56.1	27.9					. 744	.27	
		85.2 to 85.4	L56.1	26.9	40 19						
		2 to 4	3056. 1								Specific Gravity=2.73
		85.6	$_{ m TV}$	26.1							TV=0.65 tsf
		9	W56.3	26.1			ļ				
		6 to 1	k56.1	29.1							
		85.6 to 86.1	S/H 56.1								See plot
		86.1	ΛŢ								TV=0.65 tsf
							1				

(

	T: B		PLAN	PLANT UNITS	I 8 П						FILE	FILE NO. 1255
	TABLE SUMMA	MARY		ABORATORY	⊢	EST	RESULTS	LTS		SHEET		0F
	IDENTIFICATION		TEST NO.	Р	PROPERTIES	S	ST	STRENGTH		CONSOLI DATION	OLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	* ST %	MAX. SHEAR STRESS (PSF)	60	رد ،	AND REMARKS
B60/19	L	99.0 to 101.5	59									
	101.5' depth	99.5	TV	27.6								TV=0.61 tsf
	Silty CLAY; dark gray, highly	99.5	W59.1	27.6								
	(CL)	99.5 to 99.9	save 59.1									
	Includes #15% coarse Sand and subrounded to subangular	99.9	TV	26.9								TV=0.80 tsf
	Gravel size particles	6	W59. 2	26.9								
		100.0 to	U59.1	27.1		101	U	7.0 1	132			
		100.0 td	L59.1	27.1	38 20							
		100.4	ΤV	26.8								TV=0.80 tsf
		100.4	W 59.3	26.8								
		100.5 to	save 59.2									
		6.	$_{ m TV}$	·								TV=0.66 tsf
		101.4 101.4	save 59.3									
								:				
								1.				

	PROJECT BELLE	RIVER	PLANT	T UNITS	SIBIE				FILE	E NO. 1255
		1 -	OF L	ABORATORY		TEST F	RESULTS	ILTS	SHEET	0F
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	OTHER TESTS
BORING SATHPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	აე • მ	AND REMARKS
B60/23	Recovery; say 119.0' to	119.0to	63							
	121.3 depth	9.6		32.9						TV-0.35 tsf
	Silty CLAY, gray mottled reddish brown, low plasticity,	_	W63.1	32.9						
	soft consistency; includes about	to (U63.1	15.4		115	D	6.0 335		
	(subrounded to subangular)	119.6 to 120.0	L63.1	15.4	17 11					
	(CL-ML) At 120.0' change to Clayey SAND	120.0	ΛL	12.9						TV=0.10
	about 10% hard, subrounded to	120.0	- W63.2	_						test performed on sand lens
	about 15% plastic and non-		o ~	·						
	plastic fines (SC)	.5	; >	17.2						TV=0.21 tsf
		120.5	W63.3	17.2						
		0								
		4	3							
:	•									
				·						
				`						

	DECT. BELLE RI	RIVER	PI AN	PL ANT LINITS I	T & I S						FILE	FILE NO. 1255
		IMARY	OF L	ABORATORY	TORY T	EST	RESULTS)LTS		SHE	DATE A	April 1974 OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	ES	ST	STRENGTH	一	CONSOLI	SC!-	ΙĒ
BORING	SOIL DESCRIPTION	DEPTH (FEET)	l	NAT. WATER CONTENT (%)	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT (PCF)	TEST	STS %	MAX. SHEAR STRESS (PSF)	မိ	້ຳວິດ	AND
101/2	Silty CLAY, olive brown	8.0 to 10.0	349									
	very stiff consistency, moderately to highly plastic	8.1 to 8.7	save 349.1									sample used for T466.1, 2, 3
	(CL-CH)		W349.1	27.7		94						1
	Sample includes about 5%	8.9 to 9.2	U349.1	27.8		96	U	2.4]	1828			
	nard, subrounded to rounded gravel size particles	8.9 to 9.2	1.349.1	27.8	50 22							
		9.2	$\Lambda extsf{T}$									TV=1,84ef
		ţ Ç	save 349.2									sample used for T466.1, 2, 3
												

	PROJECT: BELLE	E RIVER	PLANT	T UNITS	SIBI					FILE	NO. 1255
	TABLE SUMMA	MARY	OF L	ABORA	BORATORY T	TEST	RESULTS	JLTS	SHEE	DATE EET	E April 1974 OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI	SOLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	<u> </u>	• ° °	AND REMARKS
101/4	ery; Say 19.0' to	19.0 to 21.5	351								
	21.3' depth	19.0 to 19.3	save 351.1								
	Silty CLAY, gray, firm	19.3 to 19.5	W35L1	33,3		89					
	highly plastic		ΤV								TV=0.48tsf
		19.5 to 19.9	save 35 1 2								
		19.9 to 20.2	U351.1	35.8		98	Þ	6.0 1014			
		19.9 to 20.2	L 351. 1	υ.	49 24			-			
		20.2 to 20.4	W351.2	35.0		88					
		20.4	ŢΥ								TV=0.38tsf
		20.4to 20.8	save 351.3								
·			·								

	PROJECT BELI	BELLE RIVER		PLANT UNITS	TRIS						Ē	FILE NO 1255
		SUMMARY	OF L	ABORATORY	ORY	TEST	RESULTS	JLTS		D/ SHEET	DATE	
	IDENTIFICATION		TEST NO.	d	PROPERTIES	ES	ST	STRENGTH	H	CONSOL!- DATION	SC!-	OTHER TESTS
BORING	SOIL OESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	, »	MAX. SHEAR STRESS (PSF)	၀	, ₂	AND
101/7	2.1' Recovery; Say 34.0'	34.0to 36.5	354									
	to 36.1' depth	34.1 to 34.4	save									
	Silty CLAY, gray, firm	34.4 to 34.6		39.9		81						
		34.6	$\mathbf{T}\mathbf{V}$									TV=0.27tsf
	(CL-CH)	34.6 to 34.9	save 354.2									
		34,9to 35,2	U354.1	40.0		81	þ	2.4	796			
		34.9to 35.2	1.354.1	37.8	46 24							
		35.2to 35.4	W354.2	38.6		83						
		35,4	ΛŢ									IV=0.34tsf
		35.4to 35.7	save 354.3									
					,							
					·							
										-		

FILE NO. 1255	1 E CAPATA 12	CONSOLI- DATION OTHER TESTS	R BO CC REMARKS					TV=0.32tsf		25		TV=0.44tsf		TV=0.30tsf						
	RESULTS	STRENGTH	TEST & SHEAR TYPE % (PSF)						-	U 5.0 72										
TI & I STIND	TORY TEST	PROPERTIES	NATER LIMITS WEIGHT				33.0 88			32.8			2 20							
PI ANT	님	TEST		357	save	357.1	W357. 1	ΤV	save 357.2	17357. 1	1.357.1	TV	_	7.10C M		ર્				_
PIVER T	A		DEPTH (FEET)	49.0 to	49.1 to	49.4	49.4 to 49.6	49.6	46.6 to	50.1 to	50.1 to	50.4	50.6 to	0.00	50.8 to	21.6				
1 - 1 4 A	TABLE SUN	NO	SOIL DESCRIPTION	2 41 D 22 22 32 49 01 to	51.4 Recovery, 3ay 77.5 to 51.4 depth		Silt. CIAV dark orav. firm	consistency, moderately	plastic (CL)	Sample includes about 20%	(subrounded to subangular	in shape)								
			BORING	101/10	101/10															

	PROJECT: BELLE RI	E RIVER		PI ANT INITS T	FRIA						1	511 C ALC 1255
		SUMMARY	OF L	OF LABORATORY	11	TEST	RESULTS	JLTS		SHEFF	DATE	Ψ
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH	E	CONSOLI	15.5	OTUED TECTS
BOR:NG Sample	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	\$ 8°	MAX. SHEAR STRESS (PSF)	°	C	AND REMARKS
101/13	2.4' Recovery; say 64.0' to	64.0 to 66.5	360							T		
	oo.4' depth	64.6 to 64.9	save 360.1									
	Silty CLAY; sandy, gray,	64.9	ΤV									TV=0.49tsf
	stiff consistency, moderately plastic (CL)	64.9 to 65.1	V 360. 1	26.3		26						
	سام تحلقه	65.2 to	U360.1	26.6		97	ū	20.0	1430		<u> </u>	@15.0%strain s=1337 psf
		65.2 to 65.6	360.1	26.6	39 19		<u> </u>					
	gravel size particles (sub- rounded to subangular in	65.6 to 65.8	W360.2	26.2		96						
		_	ŗv									TV=0.52tsf
		to	save 360.2							-		
											-	
											 	
							†					
							-			<u> </u>		

PROJECT: BELLE RIV TABLE SUMMAF
DEPT (FEE
74.0
74.1
74.
74.6
74.6 74.9
74.
1
i i
- 1

	PROJECT: BELLE RI	E RIVER		PLANT UNITS	SIBП					FILE	NO. 1255
	TABLE SUMMA	IMARY	OF L	ABORATORY		TEST	RESULTS)LTS	SHEET	DATE	0F
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI	OLI- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYP E	MAX. SHEAR STRESS % (PSF)	6 e e	° 5 5	AND REMARKS
101/17	2.3' Recoverv: Sav 84.0' to	84.0 to 86.5	364								
	86.3' depth	84.1 to	save								
-2-1-1-1			364.1								
	C:14 CI A V. 22.2. 32.21.	84.4 to 84.6	W364.1	23.9		98					
	gray, stiff consistency.	84.6	ΤV								TV=0.60tsf
	moderately plastic (CL)	84.6 to 84.9	save								
	Sample includes about 30%	85.2 to 85.5	U364	25.2		97	Ð	20.0 207			@15.0%strain s=1923 psf
	gravel size particles	85.2 to 85.5	1364.1	25.2	37 19						
	(subrounded to subangular in shape)	85.5 to 85.7		2.92		66					
		85.7	ΛŢ		·						TV=0.57tsf
		85.7 td 86.1	save 364.3								
								·			

0, to 94.9 TV firm 95.3 L3661 24.5 36 20 firm 95.3 L3661 24.5 36 20 l5% firm 95.3 L3661 24.5 36 20 l5% firm 65.3 L3661 24.5 36 20 l5% firm 66.5 l3661 24.5 36 20 l5% firm 66.5 l3661 24.5 36 20 l5% l6% l6% l6% l6% l6% l6% l6%		ELLE RIVER SUMMARY	PLAN OF L	BOR	HI I	ST	RESULTS	LTS	FILE DAT SHEET	
0' to 96.5 366 0' to 96.5 366 0' to 96.5 366 10' to 96.5 366 10' to 96.5 366 10' to 96.5 366 10' to 96.5 366 10' to 96.5 36 10' to 96.	IDENTIFICATION				ROPERIII	ا د د ا	- 1	KENGI TI	DATION	OTHER TESTS
0' to 94.0 to 96.5 366 94.9 TV 94.9 to 366.1 24.5 100 UU 20.0 57 95.3 1366.1 24.5 36 20 15% ravel ded to	DESCRIPTION	DEPTH (FEET)	. 1	WATER CONTENT (%)	LIMITS UL WP	WEIGHT (PCF)			ပ	, a
15% firm 94.9 TV 94.9 to 34.5 100 UU 20.0 57 95.3 TX6.1 24.5 36 20 15% ravel ded to	0'to		366							
94.9 to 95.3 36.0.1 24.5 100 UU 20.0 57 94.9 to 36.3 1 24.5 36 20	95.3' depth; upper 0.9'	94.9	ΤV							TV=0.36tsf
94.9 to 13661 24.5 36		4		24.	: :	100	UU	0 57		s=548 psf
out 15% e gravel ounded to :)	firm				ĺ					
e gravel ounded to :)										
onuded to	Sample includes about 15% coarse sand and fine gravel									
	size particles (subrounded to subangular in shape)									
					<u> </u>				,	
			-							
			-	_						

·	PROJECT: BELLE	E RIVER		PLANT UNITS	SIBI						Fil F NO	NO 1255
		SUMMARY	OF L	LABORATORY	ORY	TEST	RESULTS	JLTS		D/ SHFFT	DATE	April 1
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	ES	ST	STRENGTH	E	CONSOLI		OTUGD TEST
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT (PCF)	TEST	s's %	MAX. SHEAR STRESS (PSF)	e°	رن	AND AREMARKS
101/23	** *** *** **** **** **** **** **** ****	119.0 to 121.5	370									
	stiff consistency, moderately	to 1	save 370.1							 		
	plastic (CL)	119.4 to 119.5	W370.1	31.8		91						
	Sample includes about 10%	5	$_{ m TV}$									TV=0.42 tsf
	coarse to fine sand and fine		save 370.2									1
	size particles nded to subangular in	119.8 to 120.2	1370.0.1	37.2		85	Ωn	8.0	72.1			
	shape)		1370.1	37.2	44 22							
		120.2to	W370. 2	32.6		88						
		120.4	TV								-	TV=0 55+26
		ر ا	save 370,3									1010000
		ξ	save 370.4			Í						

	PROJECT: BELLE RI	E RIVER	•	PLANT UNITS	SIBI					FILE	FILE NO. 1255
		SUMMARY	OF L	ABORATORY		TEST I	RESULTS	LTS	D/ SHEET	DATE	OF 17.
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	STF	STRENGTH	CONSOLI-	NO.	OTHER TESTS
BOR!NG SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	1	NATER WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	69	ပို	AND REMARKS
105/1	Silty CLAY: olive brown and	4.0 to 6.0	373								
	grayish brown, very stiff to	4.2 to 4.5	save 373.1								
	plastic (CH)	to	W <i>3</i> 73.1	23.4		100					
	Sample includes about 5%	7 to	save 373.2								
	hard, rounded gravel sized particles		$\Lambda extbf{T}$		•						TV=2.00tsf
		5.1 to 5.4	GB.1	23.6			-		642	10	
		5.1 to 5.4	1373, 1	23.6	53 24						
		5.1 to 5.4	8333.1								specific grav- ity=2.72
		to	W373, 2	24.2		101					
		to		4							
			·								

	PROJECT: BELLE	RIVER		PLANT UNITS	SISH						FILE	NO. 1255
	TABLE SUMMA	MARY		ABORATORY		TEST	RESI	RESULTS		SHEET	ET	OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	н	CONSOLI- DATION	OL!-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	6 St	MAX. SHEAR STRESS (PSF)	69	Cc +	AND REMARKS
105/2		9.0- 11.0	374									
	Silty CLAY, olive brown and grevish brown, very stiff	9.1- 9.4	T374, 14	27.7		86	CU	5.8	1 189			Œ=864psf
	consistency, moderate to	9.4- 9.7	L374.1	27.6	46 24							
	mginy prastic (CD)	9.7-	W374.1	26. 1		100						
	Sample includes about 5% hard subrounded gravel particles	9.9-	T374.1,1	26.3		26	CU	3.0	1273			Ūc=576psf
	to 3/4" max. size	10.2	ΛL									TV-1. Itsf
	Note: Saved material used as	10.2-	T374, 12	26.4	-	66	CII	4	1227			$\overline{0}_{c-1152psf}$
	T466. I. I, 2, 3 test	10.6-	T374. L3	26.9	,	96	CU	10.5	2191			
	series								·			
												<i>,</i>

	PROJECT: BELLE RIV	RIVER	기교	L ABORATORY		EST	RESULTS	LTS	FI DV SHEET	FILE NO DATE Ju	NO. 1255 July, 1974 OF
}	NO		I/AC	۵	۱		STI	STRENGTH	CONSOLI	_	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY JNIT EIGHT PCF)	TEST	MAX. SHEAR STRESS % (PSF)	 ိ		AND REMARKS
105/3	Silty CLAY, grey, medium	20.0-	375								
			1 3								
	Command Small And a phose + 50.		W375.1	36.0		85					
			$\Lambda ext{L}$								TV-0.39tsf
	(subrounded to subangular in shape)	1. ^	Saved								
	•	20.9-	L375.1	33.4	42 20						
		10.1	W375. 2	33.3		86					
		21.4	ΤV								TV=0.41tsf
		1 🚭	Saved						 		
								ļ			

30276	PROJECT: BELLE RI	RIVER		PLANT UNITS I	SIBI				FIL	E NO, 1255
Pool of the control o	TABLE SUMMA	IMARY	OF L	LABORATORY	1	TEST	RESULTS	LTS	DA SHEET	DATE July 1713 SHEETOF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	ОЕРТН (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TWL TWP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		
105/4	1.1' Recovery; say 30.0' to	30.0- 32.0	376							
	31.1' depth	30.7-	Saved							
	Silty CLAY, grey, moderately				·					
	plastic (CL)									
	Note: Entire Sample much				:					
	disturbed.									
									·	
					٠					

	18 9 138	BIVER	PI ANT	T UNITS	SIBI					FILE NO.	NO. 1255
	TABLE SUMMA	MARY	-		ORY	EST	RESULTS	LTS	SHEE	DATE ET	0F
	IDENTIFICATION		TEST NO.	٩	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION		OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	69	. ° °	AND REMARKS
7 / 5 / 1	2 2' Becovery: say 40.0' to	40.0-	377								
	42.2 depth			39.2		84	CU	7.6 1902			<u> </u>
	Silty CLAY, grayish brown,	40.4	${ m TV}$								TV=0.35 tsf
	medium consistency,	40.4-	W377.1	35.7							
		9.	1377.1.1	35.9		84	CU	5.9 1068			Oc=1800 psf
	Sample includes about 5% fine to coarse SAND grains	40.6-	L.377.1	35.9	44 2						
	(subrounded to subangular in shape)	0	I377.12	3		8.5	CU	3,1 1376			0c = 3600 psf
		m .	W377.2	3		98					
		41.5	ΛT								TV=0.37 tsf
		<u>ال</u> ا	T377_1	35. 1		85	CU	3.8 1830			Oc=7200 psf
	T										
										:	
				<u> </u>		-	ļ				·

мама	PROJECT: BELL	BELLE RIVER PLANT UNITS I	PLAN	TI UNIT	日 8 I S					FILE	NO 1255
		SUMMARY	OF L	ABORATORY	R	TEST	RESULTS	ILTS	D/ SHEET	DATE	July 1974 OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	ES	ST	STRENGTH	CONSOLI	OC!-	OTHER TESTS
BDRING Sample	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT	TEST TYPE	MAX. SHEAR STRESS % (PSF)	<u> </u>	ိ	AND
105/6	1.7' Recovery; say 50.0' to 51.7' denth	50.0- 52.5	378								
		50.0- 50.3	Saved								
	Sulty CLAY, grey, medium consistency, highly plastic	50.3- 50.5	W378. 1	42,8		76					
	(CH)	50.5	TV								TV=0.35tsf
		50.5- 50.8	Saved								
		50.8- 51.1	L378.2	46.2	57 25						
		3 -	W378.2	41.2		78					
		51.3	TV								TV=0.33tsf

	PROJECT: BELLE	RIVER	PLANT	T UNITS	пві				<u>u</u> c	FILE NO. 12	1255 v 1974
	TABLE SUMMA	MARY	OF L	LABORATORY	Ì	TEST	RESULTS	LTS	SHEET	<u>.</u>	
	IDENTIFICATION		TEST NO	d	PROPERTIES	S	STI	STRENGTH	CONSOLI-	. 1	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ဝိ	AND C. REMAR	AND REMARKS
105/8	ery; say 70.0° to	70.0- 72.5	380							;	
	(2, 3' deptn	70.1- 70.4	Saved								
	Silty CLAY, dark grey, stiff	£- 6	<i>N</i> 380. 1	23.9		100					
		70.6	ΛI							TV=0.	.65tsf
	piasticity (CE)	70.6-	Saved								
	Sample includes about 20% fine to coarse Sand and fine	70.9-71.2	C380.1	23.7					0.625	21	
	gravel size particles (sub-	70.9-	1.380,1	23.8	37 19	6					
		10	SG 380.1							Specifi Gravity	fic y-2.70
		71.3-	W 380.2	23.5		100					
			ΛŢ							TV=0	70tsf
		71.5-	Saved								
		71.8- 72.2	Saved								
į											
	1										
									İ		

oft to oft te gularia gularia	PROJECT: BELLE RIVI	BELLE RIVER PLANT UNITS I	TINO TI	SIBI				Ξ.	125
		Y OF L	LABORATORY	RY	TEST F	RESULTS	ILTS	DA SHEET	7 E 3419
	rion	TEST NO.	4	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	OTHER TESTS
	DEPTH (FEET)	 	NAT. WATER CONTENT	ATTERBERG LIMITS TOL TOP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	၁၁ ၀	AND REMARKS
Silty CLAY, grey, soft consistency, moderate plasticity (CL) Sample includes about 10% fine to coarse Sand grains (subrounded to subangular shape)	to 90.0	- 0 382							
Silty CLAY, grey, soft consistency, moderate plasticity (CL) Sample includes about 10% fine to coarse Sand grains (subrounded to subangular shape)	90.5	6 W382.1	31.0		84				
Sample includes about 10% fine to coarse Sand grains (subrounded to subangular shape)	y, soft lerate 90.6	AT S							TV=0.17tsf
fine to coarse Sand grains (subrounded to subangular shape)	90.06	9 L382.1	29.4	34 19					
shape)	about 10% 90.9-	Saved							
s ha pe)	nd grains sbangular in 91.2-		30.3		88				
	91.3	3 TV							TV=0.18tsf
								·	
		:							
-									

. 19 to 188	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBII					FILE	FILE NO. 1255
(m. 9)	TABLE SUMMA	MARY	OF L	LABORATORY		TEST F	RESULTS	LTS	SHE	SHEET	0F
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI	OLI- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	69	Cc •	AND REMARKS
105/11	110.01 to	110.0- 111.5	383								
		7-	W383. 1	31.7		98					
	Silty CLAY, grey, soft	110.9	ΛŢ								TV-0.25tsf
	moderately	110.9- 111.3	Saved								
	Sample includes about 15% fine to coarse Sand grains										
	(subrounded to subangular in										
	Note: Entitle Sample disturbed.										
	·••										
			,								
	-										

	PROJECT: BELLE RI	E RIVER		PLANT UNITS	SIBI						111111111111111111111111111111111111111	NO 1255
	TABLESUMMA	IMARY	OF L	ABORATORY		TEST	RESULTS	JLTS		SHE		1.1
	IDENTIFICATION		TEST NO.	d	PROPERTIES	ES	ST	STRENGTH		CONSOL	- I	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT (PCF)	TEST TYPE	STI ST	MAX. SHEAR STRESS (PSF)	မိ	· ° °	AND
105/12	0.7' Recovery; say 120.0' to 120.7' depth		384					I				
		120.2- 120.3	W384.1	22.1		102						
	Silty CLAY, Sandy, dark gray,	120.3- 120.6	saved						-			
	plasticity (CL)	-9-	1.384.1	20.4	29 17	,			-			
	Sample includes about 35% fine											
	to coarse SAND grains (subrounded to subangular						-			-		
	in shape)											
	Note: Entire sample slightly disturbed											
				 			ļ					
							-					

dice ka 12	PROJECT BELLE RI	E RIVER		PLANT UNITS I	SIBE						FILE NO	125
		SUMMARY	0F L	ABORATORY	RY	TEST	RESULTS	JLTS		DA SHEET	DATE	= July 1974 OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	H	CONSOLI- DATION	- <u>-</u> -2	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	STR STR	MAX. SHEAR STRESS (PSF)	ိမ	ບິ	AND
118/1	2.1' Recovery; say 3.0' to 5.1' depth; upper 1.0' dis-	3.0- 5.0	252									
		4.0- 4.3	1 131	21.4	49 26							
		4.4- 4.5	W252. I	22.3		101		i				
	highly plastic (CL-CH)	4.5	TV									TV=>2.5tsf
		4.6- 5.0	Saved							-		
										 		
										-		
								:		 		
										-		
			,						ļ	<u> </u>		
										-		
									1		1	

	PROJECT: BELLI	BELLE RIVER		PLANT UNITS I	SIBI			<u>.</u>		" "	FILE	NO. 1255
	TABLE SUMMA	MARY	OF L	ABORATORY		TEST	RESULTS	JLTS		SHEET		0F
	IDENTIFICATION		TEST NO.	٥	PROPERTIES	S	ST	STRENGTH	£	CONSOLI- DATION	_	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	. S . S . S . S . S . S . S . S . S . S	MAX. SHEAR STRESS (PSF)	00	, u	AND REMARKS
118/2	1.5' Recovery; say 8.0' to	8.0 - 10.01	253									
	or action of the	8, 11	W253, 1	23.8								
	Silty CLAY, dark grayish	8, 2 - 8, 5¹	T253.21	23.0		107	CD	4.3	754		O'	o_c = 576 psf
	consistency, highly plastic	8.2 - 8.51	1.253.1	23,3	49 23				-			
	(CL - CE)	8,51	W253.2	21.5						·		
	Sample includes ±5% coarse Sand and fine Gravel size	8.6 - 8.91	T253.2.2	23,3		105	CD	3.6	1248		<u>0</u>	<u>0</u> c = 1152 psf
	particles	8.9 - 9.2 ¹	TZ53.2.3	24.2		103	CD	2.2	2156		Q	$\overline{O_c} = 2304 \text{ psf}$
		9.2 - 9.5 [™]	Saved									
			1									
							:					
										\dashv	\dashv	

F-20.00	PROJECT BELLE RI	E RIVER	•	PLANT UNITS	SISE					FILE	NO. 1255
T GAN MAL	TABLESUMMA	1MARY	OF L	ABORATORY		TEST	RESULTS	LTS	D/ SHEET	DATE	E July 1974 OF
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	ST	STRENGTH	CONSOLI	OLI-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		ر د د	AND REMARKS
118/3	2.1' Recovery; say 18.0' to 20.1' depth: upper 0.5'	18.0- 20.0	254								
		1.6	W254.1	35.5		84					
	Silty CLAY, grey, firm	18.9	TV								TV=0.37tsf
	consistency, moderate to high plasticity (CL)	18.9- 19.3	Saved								
		3 . 5	W254.2	31.6		89					
		19.5	ΤV								TV=0.40tsf
		19.5- 19.9	L.254. 1	35.3	45 23						
							-				
									·		
							·				

	PROJECT: BELL	BELLE RIVER PLANT UNITS I	PLAN	T UNIT	SIBI					FILE	NO. 1255
		SUMMARY	OF L	ABORATORY		TEST	RESULTS	ılts	DA SHEET	DAIE JU ET	Įõ
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI-	SKI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	ļ	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	မိ	Ce.	AND
118/4	21.4' Recovery; say 28.0' to	28.0- 30.0	255								
	30.1 depth	in a	W255, 1	25.3		94					
	Silty CLAY, gray, mottled	28.6	TV								TV= 0.28 tsf
	very dark gray, min to stin consistency, moderate	28.6-	saved							==	
	plasticity (CL)	28.9- 29.3	saved								
	Sample includes about 15% fine to coarse SAND grains	. 3	W255.2	20.6		103					
	(subrounded to subangular	29.4	ΛI					·			TV=0.64 tsf
	ın snape)	29.4-	saved								
	Note: Upper 1.3' of sample slightly disturbed										
										-	
											•
								ļ			

ene sa s	PROJECT BELLE RI	E RIVER		PLANT UNITS	18 I S					FILE	FILE NO. 1255
4A - A	TABLE SUMMA	MARY	OF L	ABORATORY	١.	TEST	RESULTS	LTS	D. SHEET	DATE	E July 1974 OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	STR	STRENGTH	CONSOLI- DATION	SOL!-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		Cc	AND REMARKS
118/5		38.0- 40.0	256								
	greyish brown, ency, moderately	38.1- 38.4	Saved								
	plastic (CL)	38.4	TV								TV=0.34tsf
		38.4- 38.6	W256. 1	36.9		85					
		38.6- 38.9	Saved								
		38.9-	C256.1	36.9					0 96 0	3.0	
		38.9- 39.3	1256.1		41 22					1	
		38.9- 39.3	SG 256. 1								Specific Gravity-2, 70
		39.3	ΛŢ								တ္သ
		39.3- 39.5	W256.2	36.6		98					
		39.5- 39.8	Saved				-				
							ļ				
								:			
								:			

	PROJECT: BELLE A	RIVER	PLAN	T UNIT	PLANT UNITS I & II					<u> </u>	125
		SUMMARY	OF L	ABORATORY		TEST	RESULTS	JLTS	Ŗ	DATE SHEET	-E July 1974 OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES		ST	STRENGTH	δδ	CONSOLI- DATION	ОТНЕ
BORING Sample	SOIL OESCRIPTION	DEPTH (FEET)	I	WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		ÿ	
118/6	2. 1' Recovery; say 48. 0' to	48.0- 50.0	257							<u> </u>	
	Joir deptu	48.4-	N 257 1	42.6		76					
	Silty CLAY, grey, firm consistency, moderate to	. 5	TV	.I)					TV=0.30tsf
	high plasticity (CL-CH)	48.5- 48.8	Saved								
	Sample includes few thin	. 0	Saved								
	Sandy (ML) comprising ±5%	. 2-	N 257.2	43.9		92					
	of total	49.3	TV								TV=0, 43tsf
						·					

	PROJECT - CLEEK	אוא	LAN	0.121	7 7 7					DATE	July 197	4
		SUMMARY	OF L	ABORATORY	TORY	rest	RESULTS	JLTS	HS S	SHEET	0F	T
1	IDENTIFICATION		TEST NO.	Р	PROPERTIES	ES	ST	STRENGTH		DATION	OTHER TESTS	STS
	SOIL DESCRIPTION	DEPTH (FEET)	.	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT	TEST	MAX. SHEAR STRESS % (PSF)	မိ	ນ	AND REMARKS	S
)to	78.0- 80.0	260							_		
T			Saved									
Т	Silty CLAY;dark grey, stiff		W260.1	22. 1		103						
1	consistency, moderately	78.7	ΛI								TV=0.68ts	sf
		78.7-	C.260. 1	27.8					0.74	1.24		
I	Sample includes about 20% fine to coarse Sand and fine		1 2%0 1	ري ا	42 2							
1	Gravel size particles (sub-	78.7	SG 260.1	:1							Specific Gravity-2	. 70
1	Note: Proportions of Sand	79.0	Saved									
•	and fine Gravel increase	79.4-	W260.2	13.1		123	3					
	with depth approaching 40% near bottom of								· · · ·			
1	sample.								:			
1								 				
			<u> </u>									
						-	_					
	· ·			-		-	-					
- 1						-	-					
1							-	'				

	PROJECT BELLI	BELLE RIVER PLANT UNITS I	PLAN	T UNIT	BISI					FILE	VO. 1255
		MARY	OF L	LABORATORY	۲×	TEST	RESULTS)LTS	D/ SHEET	DATE	Jan. 1974 OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	25	ST	STRENGTH	CONSOLI DATION	-IN	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TOL TOP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	မ	C _C .	AND
B119/1	ery; say 3.0' to	3.0 to 5.0	331								
	3.8' depth	3.1	ΤV	32.4							TV=1.0 tsf
		3.1	W331.1	32.4							
	con-	3.1 to 3.4	save 331.1					:			:
	sistency, moderately to highly plastic (CL)	3.4	$^{ m L}$	25.4							TV=1.34 tsf
		3.4 to 3.8	γ33 1. 1	25.4		86					
				,			<u> </u>				

	BELLE	RIVER	PLANT	T UNITS	SIBI					FILE	NO. 1255
	TABLE SUMMA	4	OF L	ABORA	BORATORY T	EST	RESULTS	LTS	SHEET	DATE	Jan. 19
	IDENTIFICATION		TEST NO.	٥	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	-IN	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TUL TOP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ů	رد ،	AND REMARKS
B119/2	.2'; say 8.0' to	8.0 to 10.0	332								
7//17	10.2' depth	8.2									TV=1.25 tsf
	Silty CLAY, dark, grayish brown, very stiff consistency,	8.2 to 8.3	W332.1	28.4							
		8.3 to 8.6	T332.1.3	27.9		86	CU	2.2 2012			
		8.6	ŢΥ			<u></u>		•			TV=1,43 tsf
		8.6 to 9.0	T332.1.4	29.5		94	CU	1.5 1240			
	size particles (subrounded to	9.0	ŢΛ								TV=1.43 tsf
		9.0 to	W332.2	27.5							
		9.1 to	T332.1.1	28.3		95	cn	2.2 887			
		4.0	ΤV								TV=1.50 tsf
		9.4 to	W332.3	29.5							
		9.5 to	1.32.1	30.8	53 26						
		9.7 to 10.1	save 332.1								
		·									

<u> </u>	PROJECT: BELLE	E RIVER		PI ANT INITS	# 8 T 2					l	330
		3	P.	LABORATORY	ORY	TEST	RESULTS	JLTS	Č	DATE	. [ar
	IDENTIFICATION		TEST	۵	PROPERTIES		ST	STRENGTH	CONSOLI	SOLIT	OF-
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT	7 7	MAX. SHEAR STRESS		<u>ပို့</u>	OTHER TESTS AND REMARKS
B119/3	1.9' Recovery; say 20.0' to	20.0 to 22.0	333					1			
	21.9' depth; upper 0.3' dis- turbed	20.3	St	37.3							31
	Silty CLAY: dark grav. firm	20.3 to 20.4	V333.1	37.3							R-0-1 (ES
	highly plastic	20.4 to 20.7	save 333.1								
			ΤV	-							TV=0.32 tsf
	5 to 10% orounded	20,7 to 21,1	save 333.2				 -				
	to subangular in shape)	L	ΤV	37.2							TV=0.31 tsf
			W333.2	37.2							
		ဂ္ဂ	save 333.3								
		5	TV								TV=0.29 tsf
		21.5 to 21.9	√333 . 1	36.3		83					
						-	-				
							 				
							_				
							-				
						1	-		_	-	

		OIVER	PI ANT	I STINU	B II				L.	FILE NO.	VO. 1255
	TABLE SUMMA	MARY	-	BORAT	131	ST RI	RESULTS	TS	SHEET	DATE	OF
	NO		TEST	PROF	PROPERTIES		STR	STRENGTH	CONSOLI		OTHER TESTS
BORING	z	DEPTH (FEET)		WATER LI	ERBERG MITS WP	DRY UNIT WEIGHT T	TEST 6	MAX. SHEAR STRESS % (PSF)	69	ر ،	AND REMARKS
		30.0 to	,								
B119/4	Silty CLAY: very dark graylsn brown, soft to firm consistency,	30 1	134 TV	35.4						[-1	V=0.24 tsf
	highly plastic (CL)	1 to	W334.1	5							
	Sample includes ±5% coarse Sand and fine Gravel size	2 to 5	save 334.1								
	particles (subrounded to sub-	30.5	ΛĪ							H	V=0.26 tsf
	anguar in snape)	Σ to	T334 1 3	35.3		87	B	5.6 1655			
		8.	St								TV=0.29 tst TV=0.11 tsf
		ι ∞ ΄	W334.2	37.8							
		30.9 to 31.2	T334.1.2	38.5		85	cn	1.5 1229			
		31.2	Τ.					·			TV=0.30 tsf
		\sim	T334.1	36.9	·	98	8	1.5 985			
		31.2 to 31.6	1334.1	4	41 22						
			save 334.2		-						
	·	L									
:											
	· ·										

	PROJECT: BELLE RI	RIVER	PLAN	PLANT UNITS I	SIBI					=	g	1255
	TABLE SUMMA	MARY	OF L	ABORATORY	ATORY T	EST	RESULTS	LTS	- 7	DA SHEET.	DATE Jan. 1 ET OF	1974
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES		STI	STRENGTH		CONSOLI		OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH	-	NAT. WATER CONTENT	ATTERE LIMIT	DRY UNIT WEIGHT		MAX. SHEAR	L	ິນ		AND
O A B T L E		(FEE!)		(%)	መ ገመ		TYPE	% (PSF)				ARNS
B119/5	Silty CLAY: dark grayish brown,	40.0 to 42.5	335									
		40.2	ΤV								TV=0	26 tsf
		40.2 to	_v 335, 1	35.4		88			<u></u>			
		40.5	ΤV	35.6							TV=0.	0.27 tsf
		40.5 to 40.6	W335.1	35.6								
		40.6 to 40.9	save 335.1									
		40.9	ΤV								TV=0	29 tsf
		40.9 to 41.3	save 335.2									1
		3	St	36.0							TV=0.	27 tsf
		3	W335.2	36.0							Ψ-i	
		to	save 335,3									
		7	TV								TV=0.	31 tsf
		to	save 335.4		:							
		1	TV								TV=0	30 tsf
									<u> </u>			l

	BFI F	RIVER	PLANT	T UNITS	ІВП					FILE NO.	1255
	TABLE SUMMA	Ę	P	1	-	EST F	RESULTS	LTS	D/ SHEET	DATE	0F
	NO		TEST NO.	ğ	PROPERTIES	S	STF	STRENGTH	CONSOLI DATION	, ,	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ပိ	Œ.	AND REMARKS
B119/9	2.1' Recovery; say 80.0' to	80.0 to 82.5	339								
		80.1	ΤV	22.4				·		ΤΛ	r = 0.90 tsf
	Silty CLAY Sandy oravish	80.1 to	W339, 1	22.4							
		80.2 to 80.5	save 339.1								
		80.5 to 80.8	8339.1	21.6		107					
	Sample includes about 25% coarse to fine Sand and fine	80.5 to	save 339.2							_	
	ď		TV	21.0						TV	/ = 1.0 tsf
			W339.2	21.0						-	
			save 339.3		·						
		81.2 to					1				
			> L	22.1						H	V = 0.73 tsf
			W339, 1	22.1	·					. (
		81.6 to 81.9		20.7		107	D	20.0 3428		g) w	@15% Strain s = 3072 psf
			L339.1	20.7	33 20						
								·			
										\dashv	

	PROJECT: BELLE RI	RIVER		PLANT UNITS	ВІВП						35	FILE NO. 1255
	TABLE SUMMA	MARY		ABORATORY	TORY T	EST	RESULTS	JLTS		SHEET	DAIE ET	OF
	IDENTIFICATION		TEST NO.	Р	PROPERTIES	<u>-</u> S	ST	STRENGTH	Ŧ	CONSOLI- DATION	OL I-	OTHER TESTS
BORING	SCIL DESCRIPTION	DEPTH (FEET)	_	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	¥ SH STI	MAX. SHEAR Stress (PSF)	ео	Cc -	AND REMARKS
126/3	Silty CLAY, olive brown.	8.0 to 10.0	241									
		8.2 to 8.6	UZA.1	26.2		66	U	2.4	1735			
	(CL-CH)	8.2 to 8.6	L24.1	26.6	47 24							
	hard	8.6 to 8.8	W24.1	27.1		97						
	subrounded to subangular	9.1	ΛŢ									TV=1.12tsf
		9.4 to 9.6	W24. 2	27.0		96						
		9.6 to	save 241.2									
												:
					:							
										·		

	PROJECT: BELLE RIV	RIVER	PLANT	T UNITS	SISHI					FILE	FILE NO. 1255
		λ.	OF L	LABORATORY		TEST F	RESULTS	LTS	SHE	SHEET	OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	- 00 00 00 00	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	o e o	ره ،	AND REMARKS
126/5	ery: Say 18.0' to	18.0 to 20.0	242								
	19.9' depth	to	W242. 1	49.3							
	Silty CIAV arsvieh brown	유	W242.2	34.7				:			
	soft consistency, moderately	19.6 to	1242.1	35.6	47 23						
	to highly plastic (CL-CH)							·			
	Note: Entire sample disturbed										
									:		
											·
								-			
	•										
			:								

	PROJECT: BELLE	E RIVER		PLANT UNITS I	SIBI						FILE NO 1255
	TABLE SUI	SUMMARY	OF L	LABORATORY	₹	TEST	RESULTS	LTS	0	DATE	;√
	IDENTIFICATION		TEST	ā	PROPERTIES	ES	STI	STRENGTH	CONSOLI	100 11-100	10
SAW SON	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT	7 E	MAX & SHEAR STRESS		د ع د د	OTHER TESTS AND REMARKS
126/7	Silty CLAY, dark grayish	28.0 to 30.0	243	1				1			
	brown, soft consistency, moderately to highly plastic	28.5	ÅΙ								TV=0.184sf
	(CL-CH)	28.5 to	W2431	35.4	ļ	98					
	Sample includes about 5%	29.0 to	save 243.1				 				
	coarse to fine sand grains (subrounded to subangular	29.3 to 29.5	W243, 2	34.9		86					
	in shape)	29.5	ΛŢ								TV - 0 10+2+
	Note:Entire sample disturbed	29.5 to 29.9	save 243.2				<u> </u>				•
							-		 		
									 		
										 	
		-									
						ļ				<u> </u>	
·				<u> </u>					-	† ·	
				_		-	-		 	+	
		1	1			1	-		1	_	

FILE NO. 1255	SHE	STH CONSOLI- DATION OTHER TESTS	SHEAR STRESS GO CC REMARKS				TV=0.35tsf		0 498			TV=0.40tsf					
	RESULTS	STRENGTH	TEST & TYPE %						UU 4								
В П	TEST	PROPERTIES	ERBERG DRY MITS UNIT WEIGHT			76	i		81	25	80						
UNITS I	ABORATORY	PROF	WATER CONTENT (%)			46.3			41.1	41.2 59	41.4						
PLANT	OF LA	TEST NO.	1	245	save 245.1	W245.1	TV	save 245. 2	T245.01	1245.1	W245.2						
RIVER	MARY		DEPTH (FEET)	48.0 to 50.5	48.2 to 48.5	to ,	48.7	48.7 to	49.1 to	49.1to	49.4 to	49, 6	49.6 to				
PROJECT: BELLE	TABLE SUMMA	IDENTIFICATION	SOIL DESCRIPTION		50.3' depth	}	Silty CLAY, gray, firm			fine gravel and coarse sand size particles (subrounded							
	-		BORING SAMPLE	11/761	17071						,						

•	PROJECT: BELLE R	E RIVER		PLANT UNITS I	SIBI						FILE NO 1255
	TABLE SUN	SUMMARY	OF L	LABORATORY	TORY I	EST	RESI	RESULTS	I.	DATE	E July 1974
	IDENTIFICATION		TEST NO.	٩	PROPERTIES	S	ST	STRENGTH	NO.	CONSOLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER- CONTENT (%)	ATTERBERG LIMITS TOL TOP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS (PSF)		, ü	AND AREMARKS
126/13	Sulty CLAY, dark grey, firm	58.0- 6 0. 5	246								
	consistency, moderately plastic (CL)	58.2- 58.5	Saved								
	Sample includes about 10%	58.5- 58.7	W246. 1	38.8		79					Silty Clay Portion
	fine to coarse Sand grains	58.7	TV								TV=0.32tsf
		59.0- 59.3	L246.1	32.9	40 23						
	ck of	59.9- 60.0	W246.2	22. 1		104					Silty clay, Sandy layer
	Silty CLAY, Sandy, very stiff consistency, low to moderate	60.0	ΤV								TV=0.464sf
	plasticity (CL)	1 8	Saved								
	Sample includes about 40%										
	(subrounded to subangular in										
	shape)						ļ				
	•				-						
											

	PROJECT: BELLE	E RIVER	PLAN	PLANT UNITS	SIBI					"	3 113	NO 1255
	1	SUMMARY	OF L	ABORATORY	ORY	TEST	RESULTS	LTS		SHEFT	ATE	July 1974
	IDENTIFICATION		TEST NO.		PROPERTIES		STE	STRENGTH		CONSOLI	 -	
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	J	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT	TEST	MAX. E SHEAR STRESS (POE)	- (0	မို		AND AREMARKS
126/15	2.4' Recovery; say 68.0' to 70.4' depth	68.0- 70.5	247		1	+			-	 	╁	
	S(1),, OT A X	_	Saved									
	to stiff consistency, moder-	. 7 - 8.8	W247. 1	24. 1		66						
	atery prastic (CL)	6.8.8	TV									TV=0.50tsf
	Sample includes about 15% fine to coarse Sand and fine	68.8- 69.3	L.247.1	23, 2	34 18						_	
	Gravel sized particles (sub-	_ (C	Saved								-	
	shape)		W247. 2	24. 0		100						
		70.2	TV								[-1	TV=0, 47tsf
											<u> </u>	
											<u> </u>	
											\vdash	
									-	-		
										-	<u> </u>	
										_		
,									$\left\{ \right.$	$\left\ \cdot \right\ $	$\frac{1}{2}$	

	PROJECT: BELLE	RIVER	1 I	PLANT UNITS	SIBI					FILE	FILE NO. 1255
	TABLE SUMMA	MARY	OF L	ABORA	BORATORY T	EST !	RESULTS)LTS	SHEET	ETAILE	OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	£S	ST	STRENGTH	CONSOLI-	OLI- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	-	WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	e e o	Cc •	AND REMARKS
126/23	Silty CLAY; dark grav, firm	108.0 to	251								
,	to stiff consistency, moder-		save 251.1								
	alely plastic (CL)	4to 6	W251.1	25.1		97					
	Sample includes about 20%	108.6	ΤV								TV=0.48tsf
	coarse to fine sand and fine gravel sized particles	108.0co	T25.0.1	25.3		96	ΩΩ	20.0 1369			@15.0%strain s=1539 psf
	ular	108.6 to 108.9	1.251.1	23.6	36 20						
	in snape)	09.2 to	W251.2	24.2		97					
		109.4	ΤV								TV=0.48 tsf
		.09,4to 109,8	save 251.3								
		!									
		·									

	. L	- 1 .	- 1	-] ·	H 8	- [FILE	E NO. 1655
	TABLE SUN	SUMMARY	OF L	٩l	BORATORY 1	TEST	RESULTS	JLTS	S	SHEET	0F
	IDENTIFICATION		TEST NO.	α.	PROPERTIES	<u> </u>	ST	STRENGTH	COC	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	рертн	1	NAT. WATER	ATTERBERG LIMITS	S DRY UNIT	TEST	MAX. SHEAR	L	3	AND
SAMPLE		(FEET)		(%)	መ ገመ	(PCF)	TYPE	STRES			REMARKS
127/2	1.4' Recovery; Say 3.5' to	3.5 to 5.5	302								
	4.9' depth	3.6 to 4.0	save 302.1								
	Silty CLAY; grayish brown,	4.0 to	W302.1	24.2		66					
	to highly plastic	4.2	ΛT						<u> </u>		TV=0.87tsf
	(CL-CH)	4.2 to 4.5	save 302.2								
	Sample includes about 5%	to	T302.0.1	24.9		103	חח	8.0 2099	6		
	coarse sand and fine gravel	4.5 to 4.8	13021	23.1	48 24						
	to subangular in shape)										
					-						
		1									
					:						
							1				

	PROJECT BELLE RI	RIVER	PLAN	PLANT UNITS I	SIBI						FILE	VO. 12
	TABLE SUMMA	MARY	OF L	ABORATORY		TEST	RESULTS)LTS		D. SHEET	DATE ET	E 101y 1974 OF
	IDENTIFICATION		TEST NO.	٩	PROPERTIES	S	ST	STRENGTH	H	CONSOLI- DATION	-I-N	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	Ι	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	S	MAX. SHEAR STRESS (PSF)	69	Cc.	AND REMARKS
127/3		5.0- 7.0	416									
	Silty CLAY, greyish brown, very stiff consistency.	5.1	ΛI									TV=1.20tsf
	icity	5.4- 5.5	W416.1	29.3		22						
	hange to -	50-52 56-70	MC 416.1									See plot
	Clayey SAND, dark grey,	5.9	TV									TV=0.68tsf
	with about 40% moderately	6.2- 6.3	W416. 2	27.0		94						
	plastic tines (SC) roots and fibers evident		TV					:				TV=1.1tsf
	@5, 6' change to-	6.6- 7.0	L416.1	25.8	49 22			i				
	Silty CLAY, olive grey, firm to stiff consistency, moder-	م إ	1 714 17	,		113	rU	3.2	9403			Test at 95% of MC 416.1
	(H			1								
	fine to coarse Sand grains											
	(subrounded to subangular in shape)											
					-							

NO. 1255 F April 1974	SHEET OF	OTHER TESTS	AND REMARKS		sample used for T466.1,2,3		sample used for 7466, 1, 2, 3	TV=2.0 tsf														
FILE		ON-	CC												ļ	-	-					
	SHI	CONSOLI- DATION	9		į												_				! ! !	
	S.	STRENGTH	MAX. SHEAR STRESS (PSF)					!											'			
	RESULTS	TRE	% E %		-								ļ <u>-</u>	<u> </u>	+		+	-			-	1
		37	T TEST HT TYPE	-									-		-		+					1
	TEST	ES	G DRY UNIT - WEIGHT	_	<u> </u>	10,	7			<u> </u>		-	-	 	+	+	-	_			-	+
л в п		PROPERTIES	ATTERBERG LIMITS WL WP																			
UNITS	LABORATORY	ā	NAT. WATER CONTENT				.1															
PLANT	OF LA	TEST			41/ save	1 • JT ±	save	ΤV													<u> </u>	
BELLE RIVER	MARY		DEPTH (FEET)	10	to	8. 7 to	8.9 8.9 to	0, 1														
BELLE		NO	SOIL DESCRIPTION		1.6' Recovery; Say 8.0' to 9.6' depth		Silty CLAY, olive brown motfled gravish brown.	stency,	moderately to nigniy plastic (CL-CH)	Sample includes about 20%	coarse to fine sand and fine	gravel size particles (see rounded to subangular in	shape)									
			BORING		127/4																	

(

	PROJECT: BELL	BELLE RIVER	1	PLANT UNITS	T & T &						2 114	AIO 1255
		AMARY	OF L	ABORATORY	ORY	TEST	RESULTS	JLTS		CHEN PER PER PER PER PER PER PER PER PER PER	DATE	; []
	IDENTIFICATION		TEST NO.	٦	PROPERTIES		ST	STRENGTH		CONSOLI		OF
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	STR SHE	MAX. SHEAR STRESS	e° c	ن	OTHER TESTS AND REMARKS
127/8		16.0- 18.0	421					1	1		†	
	13.1. depth	16.2- 16.5	Saved							-		
	Silty CLAY, grey, firm consistency, moderate to high	7	W421. 1	28.0		91			-	+		
	plasticity (CL-CH)	16.7	ΤV								, ,	TV=0.77tsf
	Sample includes lenses/layers	-0	Saved						-	-		
	to coarse Sand grains (sub-	.ı m	Saved							 	-	
	rounded to subangular in shape)	17.3 - 17.4	W421.2	30.7		93						
		17.4	ΛL				 					TV-0 40+c.f
		17.4-	Saved							-	 	
										-	_	
											-	
				•						-		
									-	-	-	
									-		-	
											 	
											-	
											1	

LABORATORY TE NAT. ATTERBERG WATER CONTENT (%) WL WP (PROJECT: BELLE RI	VER PLAN	PLANT UNITS	1 8 I				FIL	FILE NO. 1255 DATE July 1974
NAT. ATTERBERG DRY CONTENT CONSOLITION ON THE LIMITS WEIGHT TYPE W	SUMMA	RY OF L	ABORA	-	ST	ESU	LTS	SHEET	0
WATER CONTENT ATTERBERG DRY TEST & SHEAR CONTENT TEST & SHEAR CONTENT TEST & STRESS GO CC. (%) WATER LIMITS WEIGHT TYPE % (PSF) CC. (%) WEIGHT TYPE % (PSF) CC. (%) WEIGHT TYPE % (PSF) CC. (%) WAX. STRESS GO CC. (%) WAX. SHEAR GOOD IN TEST & SHEAR GOOD IN TEST & CC. (%) WATER LIMITS WEIGHT TYPE % (PSF) CC. (%) WATER LIMITS WEIGHT TYPE % (PSF) CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WATER LIMITS WEIGHT TYPE % (PSF) CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WATER LIMITS WEIGHT TYPE WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WAX. STRESS GO CC. (%) WAX. STRESS GO CC. (%) WAX. STRESS GO CC. (%) WAX. STRESS GO CC. (%) WAX. STRESS GO CC. (%) WATER LIMITS WAX. STRESS GO CC. (%) WAX. STRESS			ď	ROPERTIE	S	STF	ENGTH	CONSOLI	
1 52.			NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP				3	
1		28.5- 30.0 456							
		W456 1	2						
			:						
	1 1								
	l .								
	l					 			
	ŀ								
	ŀ			ē	•				
								·	
	1	·						-	: -

	PROJECT: BELLE	RIVER	1 !	PLANT UNITS	SIBI					FILE P	NO. 1255 F July 1974
· · ·	TABLE SUMMA	MARY	OF L	LABORATORY	TORY T	EST	RESULTS	LTS	SHEET	ET	OF
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES	S	STI	STRENGTH	CONSOLI	ON I	OTHER TESTS
BORING	SOIL DESCRIPTION	ОЕРТН (FEET)	1	NAT.* WATER CONTENT (%)	ATTERBERG LIMITS TOL TOP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	e e	Ce +	AND REMARKS
127/13	Jar Sample	38.0- 40.0	457								
	Silty CLAY, grey, moderate		W457.1	21.4		ŀ					
	plasticity (CL)										
	Sample includes about 5%										
	fine to coarse Sand grains										
	shape)										
	*Note: Water content taken from unsealed jar sample										
			:								
			,								

	PROJECT: BELLE	RIVER		PLANT UNITS	SIBI					FILE NO	NO. 1255
	TABLE SUMMA	MARY	OF L	LABORATORY		TEST F	RESULTS	LTS	SHEET		0F
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	SCI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	ļ	NAT. WATER CONTENT (%)	ATTERBERG LIMITS TOL TOP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	°e e	, °,	AND REMARKS
127/14	Jar Sample	43.5- 45.0	458								
	Silty CLAY, dark grey,		1.458.1		32 18						
	moderate plasticity (CL)										
	Sample includes < 5% fine to coarse Sand grains										
	(subrounded to subangular in shape)										
						<u> </u>					
											•

	PROJECT: BELLE R	RIVER	PLAN	T UNIT	PLANT UNITS I B II					F	FILE NO. 1255
		SUMMARY	OF L	ABORATORY	1 1	TEST	RESULTS)LTS	HS	DATE SHEET	E July 1974 OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH	CONSOLI	SOLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		. 30	AND
127/15	Jar Sample	48.5- 50.0	459								
	Silty CLAY, dark orev		W459. I	* 20.6							
	moderate plasticity (CL)										
	Sample includes 10 to 15%										
	fine to coarse Sand grains (subrounded to subangular in										
	shape)										
	*Note: Water content taken from unsealed jar sample										
							<u> ; ;</u>				
				·							
									-		

Š,	DATE JULY 1974 SHEET OF	SOL!- ION OTHER TESTS	Cc. REMARKS												
	SH	CONSOLI	69						 						
)LTS	STRENGTH	MAX. SHEAR STRESS % (PSF)												
	RESULTS	ST	TEST TYPE										_		
	TEST	ES	DRY UNIT WEIGHT (PCF)		-						<u> </u>		 		
SIBI	ORY	PROPERTIES	ATTERBERG LIMITS WL WP												
PLANT UNITS	LABORATORY	٦	NAT. * WATER CONTENT (%)		* 20.3			· .							
PLAN	OF L	TEST NO.		460	W460. 1										
E RIVER			DEPTH (FEET)	63.5-											
BELLE	'	IDENTIFICATION	SOIL DESCRIPTION	Jar Sample		Silty CLAY, grey, moderate plasticity (CL)	Sample includes about 10 to 15% fine to coarse Sand and fine	Gravel size particles (sub-	*Note: Water content taken	irom unsealed jar sample					
			BORING SAMPLE	127/18											

];	- 1	PLAN	PLANT UNITS	I 8 II						FILE	: NO. 1255 F July 1974
	TABLE SUMMA	MARY		ABORATORY	. 1	TEST	RESULTS	JLTS		SHE		1
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	ES	ST	STRENGTH		CONSOLI- DATION	OL!-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	I	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT (PCF)	TEST TYPE	A STR	MAX. SHEAR STRESS (PSF)	° မ	້ິນ	AND
127/19	Jar Sample	68.5- 70.0	461									
	Silty CLAY, grey, moderate		1.461.1		33 16	6						
	plasticity (CL) Sample includes about 10%				 -							
	fine to coarse Sand grains											
	shape)	·										
										<u> </u>		
		-										
							·					
					:							
								1				

	PROJECT: BELLE RIV	RIVER	PLANT	T UNITS	1 8 II				-	FILE NO	NO. 1255 July 1974	
	1	SUMMARY	OF L	ABORATORY		TEST R	RESULTS	LTS	SHEET	1	0F	
	IDENTIFICATION		TEST NO.	PR	PROPERTIES	8	STR	STRENGTH	CONSOLI- DATION	- - - -	E	
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT.*/ WATER CONTENT (%)	ATTERBERG LIMITS TWL WP	DRY UNIT WEIGHT (PCF)	TEST 6	MAX. SHEAR STRESS % (PSF)	စိ	· °°	AND	
127/24	Jar Sample	93.5- 95.0	462									·
	SILT, grey, non-plastic (ML)		W462.1	24.9*			+					·
	Sample includes about 25% fine Sand grains		į		:							
	Ç.											
	*Note: Water content taken											
	Ifom unseated jar sampte											,
												-
								,				
								·			,	
												- 1
												Т
										L		
				:								_
],					

	PROJECT BELL	BELLE RIVER	A PI AN	TINE	PLANT LINITS TATE						
		SUMMARY	OF L	OF LABORATORY	1 i	TEST	RESULTS	LTS	U	DATE	<u>[</u>]
	IDENTIFICATION		TEST	۵	1 1—		STE	STRENGTH	" 56	CONSOLI-	10
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WI TUR	G DRY UNIT	7 T	MAX. SHEAR STRESS			OTHER TESTS AND REMARKS
127/29	Jar Sample	113.5. 115.0	463							+	
	Silty CLAY, dark gray, moderate plasticity (CL)		L463, 1		41 2				-		
	Sample includes 5 to 10% fine									-	
	to coarse Sand and fine Gravel								<u> </u>		
	size particles (subrounded to subangular in shape)									-	
									<u> </u>	<u> </u>	
	·										
									<u> </u>		
									_		
		· ·									

		LEF	VER	7	PLANT UNITS	I 8 II						FILE	FILE NO. 1255
	TABLESL	SUMMA	۲	OF L	LABORATORY		TEST	RESULTS	JLTS		SHEET	ET	OF.
	IDENTIFICATION	<u>.</u> .		TEST NO.	ď	PROPERTIES	<u> 5</u> 2	ST	STRENGTH		CONSOLI	OLI- ON	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DE (F	DEPTH (FEET)	**	NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	ST:	MAX. SHEAR STRESS (PSF)	60	Cc +	AND REMARKS
127/32	Jar Sample	17	128. 5- 130. 0	464									
	Silty CLAY, dark gray.			W464.1	30.9*								
	moderate plasticity (CL)	<u>.</u>											
		<u> </u>					,		:				
	*Note: Water content taken												
	from unsealed jar sample.												
													:
				:									
											·		
		<u> </u>											
]								·	
		<u> </u>		1									
		<u></u>											
		<u></u>											
											,		

	PROJECT: BELLE RI		PLAN	PLANT UNITS	IBI	1 1				FILE	FILE NO. 1255
	TABLE SUMMA	MARY		ABORATORY	-	EST	RESULTS	LTS	SHEET	ET	0F
	IDENTIFICATION		TEST NO.	Ъ	PROPERTIES	S	ST	STRENGTH	CONSOLI	OL!-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION		ļ	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ss eo	C .	AND REMARKS
129/3	1.1' Recovery; Say 8.0' to	8.U to 10.5	386					:			
	<pre>9.1' depth; upper 0.3' disturbed (Wash?)</pre>	8.3 to 8.6	save 386.1								
		8.6	TV								TV=1.5tsf
	Silty CLAY, olive brown,	8.6 to 8.7	W3&.1	22.9		108				·	
	moderately to highly plastic	8.7 to 9.0	T386.01	22,3		108	nn	6.0 3381	<u></u> {		
	(CT-CH)	8.7 to	1.3%, 1	22.9	48 23						
					:						
								i			

FILE NO. 1255 DATE July 1974 ET OF	I- OTHER TESTS	Cc. REMARKS			<u>€</u> c=1152psf			TV=0.63tsf	Ūc=2304psf	<u>Oc-4608psf</u>		TV=0.53tsf					
FI DV SHEET	CONSOLI	ပ															
RESULTS	STRENGTH	MAX. SHEAR STRESS W (PSF)			6.8 1102				9.7 1276	3.6 2087				·			
T RES	S	Y IT SHT TYPE			90 CU				90 CU	90 CU	6						
I B II FORY TES	PROPERTIES	ATTERBERG DRY LIMITS WEIGHT WEIGHT			6	48 21			6	6	8						
T UNITS	G	NATER WATER CONTENT (%)			33.5	30.8	اہ ا		33. 1	31.9	33. 1						
PLANT OF LA	TEST NO.	l	387	Saved	T387. 1.1	1.387. 1	W387. 1	ΛI	T387. 1.4	T387. 1. 3	W387. 2	ΤV	Saved				
RIVER		DEPTH (FEET)	$\frac{18.0}{21.0}$	18.1- 18.4	18.4- 18.7	18.4- 18.7	18.7 . 18.8		18.8- 19.1	19. 1- 19. 4	19.4- 19.6	19.6	19.6- 20.0				
PROJECT BELLE RIV	IDENTIFICATION	SOIL DESCRIPTION	2.1' Recovery; say 18.0' to 20.1' depth		Silty CLAY, greyish brown,	stiff consistency, moderate to highly plastic (CL-CH)									·		
		BORING	129/5														

	PROJECT: BELLE R	E RIVER		PLANT UNITS I	SIBI					[FILE NO 1255	
		SUMMARY	OF L	ABORATORY	7	TEST	RESULTS	LTS	-,	D/ SHEET	TE AP	974
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	ES	ST	STRENGTH		CONSOLI	OTH	CTC
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS (PSF)	<u></u>	ິບ		(S
129/7	i	28.0 to 30.5	388									
	2.0' Kecovery; Say 28.0' to 30.0' depth	28.3 to 28.4	W388 1	35.8		αα						
	1	28.4 to 28.6		ري م	45 20							
	Silty CLAY, gray, moder-								 			
	(CL-CH)								<u> </u>			
	Note: Entire samply highly disturbed						-			-		
							-					
									-			
									_			
							1		1	-]

	BELLE	RIVER		PLANT UNITS	SIBI						FILE	10. 1255
······································		₹		ABORA	ļō	EST	RESULTS	JLTS		DATE.	DATE	April 1974 0F
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	ST	STRENGTH		CONSOLI	- 12	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	STR STR	MAX. SHEAR STRESS (PSF)	့	ر د ٠	AND REMARKS
129/9	Silty CLAY, grav, firm	38.0 to 40.5	389									
	consistency, moderately	38.1to 38.4	save 389.1									
	to nigniy prastic (CL)	38.4 to	W389.1	34.9		87						
		38.6	ΛŢ									TV=0.29tsf
		38.6 to 38.9	save 389. 2									
		39.1 to 39.3	1.389, 1	36.4	41 22							
		39.1 to 39.3	C389, 1	40.2					1,	083	.39	
		39.1 to 39.3		1								specific grav- itv=2,73
		39.3 to	save 389.3									
		39.6										TV=0.3ltsf
		39.6 to 39.8	W389. 2	34.3		88						
		39.8 to 40.0	save 389.4					 				
												-

ہے عندا	PROJECT BELLE R	RIVER		TINO I	PLANT UNITS I B IT					1 1 1	FILE NO 1255
		1MARY	OF L	ABORATORY	ATORY T	EST	RESULTS	LTS	H.S.	DATE SHEET	Tuly 1
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	STI	STRENGTH	CON	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	l	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. E SHEAR STRESS % (PSF)	L	້ຳ	AND
129/11	1.8' Recovery; say 48.0' to 49.81 depth	48.0- 50.5	390								
	Silty CLAV gray goft	48.2- 48.5	Saved								
		48.5	ΤV								TV=0.28tsf
	nigniy pla stic (CL)	48.5- 48.6	w3 90.1	45.2		22					
	Note: Sample much disturbed										
	below 48.8' depth						-				
					ļ						
								·			

	PROJECT: BELLE RI	RIVER	PLAN	PLANT UNITS I	SIBП						FILE	NQ. 1255
	TABLE SUMMA	MARY	OF L	LABORATORY		TEST	RESULTS	JLTS		SHE	DATI	SHEET OF
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	ST	STRENGTH	Ħ	CONSOLI- DATION	-INC	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	. STS	MAX. SHEAR Stress (PSF)	မ	, ₂ 0	AND REMARKS
129/15	Silty CLAY; dark gray, stiff	73.0 to 75.5	392									
	consistency, moderately plastic (CL)	73.8to 74.0	W392.1	24.6		66						
		74.0 to 74.3	1.392.1	22.8	12 98							
	Sample includes about 15%	74.0 to 74.3	T392.01	24.8		101	מח	7.0	954			
	gravel sized particles	74.3 to	save 392.1									
	(subrounded to subangular in shape)	74.7 to 74.9	W392.2	23.2		102						
	Note: Unner 0 8' of sample	74.9	ΤV							-		TV=0.68tsf
·) 1 1 1 1	74.9 to 75.2	save 392.2									
				·								
							_					

7121	PROJECT: BELLE	2	AZ	T UNITS	ы					AE A	٥٦
	TABLE SUMMA	MARY	OF L	ABORATORY	-	EST	RESULTS	LTS	SHEET		0F
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	. 1	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	69	Ce .	AND REMARKS
01/061	0 D C C C C C C C C C C C C C C C C C C	93.0-	344								
61/671		93.1-	T394.1.1	23.7		99	CU	15.0 1518			<u> </u>
		93.1- 93.4	L39 <u>4.</u> 1	23.7	41 21						
	Silty CLAY, grey, firm to stiff consistency, moderate	93. 4	ΤV								TV = 0.50tsf
	to high plasticity (CL)	4 - - u	XX7304 1	ر بر		_					
	Sample includes about 10%	5-2	T394.1.2	25.		66	CO	15.0 3047			Oc=6480psf
	fine to coarse Sand and fine gravel size particles (sub-	93.8- 94.1	T3941.3	2		66	CU	13.2 4450			<u>Oc=12960psf</u>
	rounded to subangular in shape)	94.1-	W304.2	8 92		98		:			
		.l .	ΤV	.I							TV=0.44tsf
											
		94.0	Saved								
						_					

	PROJECT: BELLE RI	E RIVER		PLANT UNITS I	SIBI					FILE	FILE NO. 1255
	TABLE SUMMA	IMARY	OF L	ABORATORY		TEST	RESULTS	LTS	D. SHEET	DAT	E April 1974 0F
	IDENTIFICATION		TEST NO.	d	PROPERTIES	S	STF	STRENGTH	CONSOLI	SOL!	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	L	9. U	AND REMARKS
129/21	ry; Say 103.0' to	103.0 to	395				<u> </u>				
	105.2 depth		save 395.1								
	Silty CLAY, sandy: oray	103.5 to 103.7	W395.1	27.3		97					
	tely	103.7	ΤV								TV=0.68tsf
		103.7 to 104.0	C395.1	28.0					,703	.23	
	Sample includes about 30% fine to coarse sand and fine	to)	SC395.1								specific grav- ity=2.71
		103.7 to 104.0	1.395.1	26.1	39 21						
		0	save 395.2								
		104.4 to 104.6	W3 35.2	25.1		102					
		104.6	TV		-						TV=0.51tsf
			save 395, 3	-							
							-				
										 	
										1	

- FORICAG	CT. BELLE	RIVER	PLANT	T UNITS	SIBI				Œ (, OV
TABLE	1	MARY	OF L	ABORATORY		TEST	RESULTS	LTS	D/ SHEET	TE JUIV 19 OF
IDENTIFICATION	NOIL		TEST NO.	۵	PROPERTIES	55	ΙÌS	STRENGTH	CONSOLI- DATION	1- OTHER TESTS
SOIL DESCRIPTION	NOILA	DEPTH (FEET)		NAT* WATER CONTENT (%)	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	၁၁ ၀ခ	AND F REMARKS
Jar Sample		108.5. 110.0	465							
			W465.1	, , , , ,						
plasticity (CL)	grey, moderate		L465, 1		39 1	٥,				
Sample includes about 10% fine to coarse Sand grains	bout 10% od grains (sub									
angular to subrounded in shape)	nded in shape)									
*Note: Water content taken from unsealed jar sample	ontent taken 1r sample			:						
					· · · · ·					
	2					!				
								·		

	PROJECT: BELLE RI	RIVER		PLANT UNITS	SIBI					FILE	VO. 1255
	TABLE SUMMA	MARY	OF L	LABORATORY		TEST	RESULTS)LTS	SH	DATE SHEET	'E April 1974 0F
	IDENTIFICATION		TEST NO.	d.	PROPERTIES	S	ST	STRENGTH	CON	CONSOLI- DATION	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	_	WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	R SS 60	, oʻ	AND REMARKS
129/24	1.8' Recovery; Say 123.0' to	123.0 td 125.5	396								
	124.8' depth; upper 0.5' disturbed (Wash?)	123.5	ΛĪ								TV=0,36tsf
		123, 5 to 123, 9	save 396.1								
	Silty CLAY, gray, stiff	123.9 td 124. 1	V396. 1	32.4		06					
		124.1to 124.4	T396.01	30.6	:	95	UU	8.0 679	6.		
		124, 1 to 124, 4	396.1	30.2	46 22						
	Sample includes about 10% hard subrounded gravel size	124.4	${ m TV}$								TV=0.34tsf
	particles										
					-						
		·									
						i.					

NO. 1255	0F	OTHER TESTS	AND															
FILE	EET	CONSOLI- DATION	່ວິວ		_			+	_	_			 _			<u></u>		
	SHE	CON	စိ							_								(
	S	STRENGTH	MAX. SHEAR STRESS (PSF)				į				į			ļ				
	RESULTS	TRE	~ % ⊔ ⊣			1	_	\dashv		_			 		<u> </u>		-	,
! .	RES	S	TEST T TYPE		_	_		-							<u></u>		-	1 *
	EST	S	DRY UNIT WEIGHT (PCF)					_									-	$\frac{1}{4}$
п в п	ORY TE	PROPERTIES	ATTERBERG LIMITS WL WP	49 21			44 22				44 23			46 23				, c
r units	ABORATORY	F.	NAT.* A WATER CONTENT	24.9*			30.1*				30.7*			34.3*				sample
PLANT	OF L	TEST		571 L571.1		572	1.572.1			573	1,573,1	. l	574	1.574. 1				sealed jar
RIVER	MARY		DEPTH (FEET)	7.5:		20.01				40.01			55.0					
BELLE		NO	z	Jar Sample Silty CLAY, grayish brown, highly plastic (CL-CH)			Silty CLAY, grayish brown, moderate to high plasticity	(CL)			Silty CLAY, grayish brown, moderate to high plasticity	(CL)	Jar Sample	Silty CLAY, grayish brown, moderate to high plasticity	(CL)			*Not: Water content taken from un
			BORING	130/SS3		130/886				130 8510	0100/001		130 8913	CICO/ 001				<u> </u>

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

	PROJECT: BELLE RI	E RIVER		PLANT UNITS	SIBI				L	51 CM 12	1255
		SUMMARY	OF L	OF LABORATORY		TEST	RESULTS)LTS	DA AFFET	ATE 12/	
	IDENTIFICATION		TEST NO.	۵	PROPERTIES		STI	STRENGTH	CONSOLI	<u> </u>	
BORING	SOIL DESCRIPTION	DEРТН (FEEŢ)	J	NAT. WATER CONTENT (%)	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT	TEST	MAX. SHEAR STRESS		OTHER TESTS AND AREMARKS	ESTS S RKS
130/SS14	Jar Sample	60	575								
	Silty CLAY, dark gray, low plasticity (CL)		.575.1	13.5	26 17						
	Sommly included 12 FR 62										
	medium Sand size particles										
130/SS16		20	576								
	moderate plasticity (CL)		1576, 1	20.8	34 21						
	Sample includes about 15%										
	fine to medium Sand size										
							<u> </u>				
							+-				
							 				
							 -				
									-		
						-	 				
*Note: W	*Note: Water content taken from unsealed jar	iar sample	واطر			1					7

	BELLE	RIVER	PLANT	T UNITS	SIBI					FILE	FILE NO. 1255
		\$	9	ABORATORY	TORY T	EST	RESULTS	LTS	D/ SHEET	DATE ET	0.5
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	STF	STRENGTH	CONSOLI	OLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	J	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	e ₀	Cc +	AND REMARKS
134/884		8.5- 10.01	578								
	rown,		1.578.1	24.2	49 24						
	inginy prastic (CL-Cii)										
134/889		33.5- 35.01	579								
	silty CLAI, grayish brown, moderate to high plasticity		1.579.1	34.5%	45 22						
	(CL)									į	
134661		58.5-	5 80								
E-700/E-0.1	Silty CLAY, dark gray, highly plastic (CH)		1.580.1	44	52 33						
	Sample includes ±5% fine										
	Sand										
*Note: \	*Note: Water content taken from unsealed ja	H	sample								

	PROJECT: BELLE R	E RIVER	1	PLANT UNITS	пвіѕ						FILE	NO 1255
		SUMMARY	OF L	ABORATORY	1	TEST	RESULTS	JLTS		D/ SHEET	DATE ET	E Nov., 1974
	IDENTIFICATION		TEST NO.	٥	PROPERTIES	S	ST	STRENGTH	E	CONSOLI	12.8 -	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	ОЕРТН (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	ORY UNIT WEIGHT (PCF)	TEST TYPE	-S SI - S	MAX. SHEAR STRESS (PSF)	မ	, °°	AND
B136/2	1.9' Recovery; say 3.0' to	3.0-	525									
	4.9' depth	3.1- 3.4:	MC									Used for proc
	Silty CLAY, mottled grav-		W525. 1	36.2								
	brown and yellow-brown,	3, 51	TV									TV = 1.28 tsf
	plasticity (CH)	3.5- 4.2'	MC								, P	
	Includes about $\pm 5\%$ fine to	4.2- 4.3 ⁻	W525, 2	29.8		92						
	coarse subangular to sub- rounded Sand grains	4.31	$\overline{ ext{TV}}$									TV = 1.62 tsf
	0	4.3- 4.9 [:]	MC		:						٠	Used for proc-
		3.0-4.91	1.525. 1		62 25							
							 					
										-		

	PROJECT: BELLE	E RIVER	PLAN	T UNIT	PLANT UNITS I B II					FILE	00
	TABLE SUMM	AMARY	OF L	LABORATORY	-	EST	RESULTS	LTS	S	DATE SHEET	TE Nov. 1974 OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	88	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	DЕРТН (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		່ຶ່ນ	AND
B136/4	1.8' Recovery; say 8.0' to	8.0:- 10.0:	526								
	9.8' depth	8.51- 8.81-	saved								
	Silty CLAY, mottled gray, gray-brown and yellow brown,	8.8'- 9.2'	U526.1	24.3		102	þ	3.0 5446	16		
	hard consistency, moderate to high plasficity (CL-CH)	8.8 ¹ - 9.2 ¹	1.526.1	25.1	48 22						
		9.2'- 9.3'	W526. 2	25.7		98			ļ ļ		
	Upper U•5' of sample includes about ±15% fine to coarse Sand	31	ΤV								TV>2, 5 tef
	size particles (subrounded to subangular in shape)	9.31- 9.61	saved							-	}
	· · · · · · · · · · · · · · · · · · ·										
							-				
										<u></u>	
										<u></u>	
							1				

	PROJECT: BELLE	E RIVER		IT UNIT	PLANT UNITS I 8 II						FILE	NO. 1255
	TABLE SUMMA	MARY	OF L	ABORATORY		TEST	RESULTS	JLTS		D. SHEET	DATE	E
· BG	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH	\vdash	CONSOLI-	_ - - - - -	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WI WP	G DRY UNIT WEIGHT	TEST	SHIS 3	MAX. SHEAR STRESS	မိ	, ₂	AND
136/6	1.6' Recovery: sav 13.0'	13.0- 15.0'	527						;	†		
		13.1- 13.5 ¹										used for com- pacted C/U
	Silty CLAY, grayish-brown,	13.51	W527.1	31.5		90						
	stiff consistency, moderately plastic (CL)	13.5	ŢΥ									TV = 0.62 tsf
	Somm) 5 (20) 11 = 10 0000	13.6- 14.1 [:]	rc ru									1 ~ ~
	fine to coarse Sand particles	14.1	TV									9
		14.1- 14.6:	rC									used for com-
		13.0- 14.6'	1.527.1		43 22	A1						
		13.0- 14.6	C527.1	17.3		101			o	675	ι.	
		6-	Ur527.1	17.5		100	Ľ.	2.0 2				
		13.0- 14.6'	1.723.3							-	ا ا	Specific Gravity=2 74
												1
									-		1	
	•								-			
							 			-	 	
										-		
							ļ			-		

NO. 1255	OF	STSET DECTS	- ⊆	REMARKS																			•
FILE	SHEET	-	T	, o																			
	SHE	CONSOLI		°e ·																			•
	S	БТН	XAM	SHEAR STRESS (PSF)																			
	RESULTS	STRENGTH		₩ %			_	_			_	 		-	<u> </u>				-	+	-		•
	RES	Ľ		TEST TYPE		3%						 ļ 	7.					-	+-		-		
	EST	ي	? ?	WEIGHT		93						 	∞	<u> </u>	-	-	 		+-	+	-		
181	TORY T	STITES		ATTERBERG LIMITS TOL TOP						43 19			į				34 2	10					
UNITS	ABORATORY	0		WATER CONTENT (%)		31.1*				31.9*			38	•			17 0%	<u>: </u>				sə	(
PLANT	 	ا ا	Ö		581	W58L1			582	15821		η α ς	100 11E 0 2 1	W DO O'S		584	1001	1400				sampl	
RIVER	l ≿	:		DEPTH (FEET)	23.5- 25.0'				33.5- 35.0 ⁻			53.5-				73.5.	7					ıled jar	(
95115			IDENTIFICATION	SOIL DESCRIPTION	Jar Sample	y CLAY, gray-brown,	moderate to high plasticity. Sample includes ±10% fine to	coarse Sand size particles (CL)	Jar Sample	, grayish brown,	moderate to high plasticity (CL)	 Ta # Cample	. gray-brown,	moderate plasticity (CL)			Silty CIAV dark grav. of low	to moderate plasticity.	Sample includes about 25% fine to coarse Sand size	particles (CL)		* Water content taken from unsealed	(
				BORING	J 26/889 J		H 03		138/9811			╼╁╼╴	136/5515				136/SS19						

	PROJECT: BELLE	E RIVER		PLANT UNITS	SIBIE					FILE	FILE NO. 1255
		SUMMARY	OF L	OF LABORATORY		TEST I	RESULTS	LTS	SHE	DATE.	E
	IDENTIFICATION		TEST NO.	d.	PROPERTIES	S	ST	STRENGTH	CONSOLI DATION	OLI-	H
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	° ခ	C C +	AND REMARKS
136/5524	Jar Sample	98.5- 100.01	585			- 1					
	Silty CLAY, grayish-brown, moderately plastic (CL)		1.585.1	21.0%	40 21						
	Sample includes ±15% fine to										
	coarse Sand size particles										
							<u> </u>				
		·	·								
				·							
										·	
			·					, .			
			_								
*Note: W	*Note: Water content taken from unsealed jar	E .	sample								

and the same of th	PROJECT: BE	BELLE	RIVER	PLANT	UNIT	EI BIE					FILE	NO. 1255
		SUMMA	AARY	OF L	LABORA	BORATORY T	EST	RESULTS	LTS	SHE	DATI EET	E
	IDENTIFICATION			TEST NO.	Ы	PROPERTIES	SE	STE	STRENGTH	CONS	CONSOLI- DATION	OTHER TESTS
BORING	SOIL DESCRIPTION	<u> </u>	DEPTH (FEET)	1	NAT. * WATER CONTENT (%)	R LIMITS NT TOL TOL	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		. ° °	
137/551	Jar Sample Silty CLAY, yellow-brown,	13.	1.5 to 3.0	586 S/H 5% 1								م بارتر 10
	(CL-CH)	<u> </u>		.] }								
	Sample includes ±15% fine to coarse Sand size particles	<u> </u>										
137/553	Jar Sample Silty CLAY vellow-brown	9	9.5 to 11.0	587								
	highly plastic (CH)			1587. 1	24.8*	53 24						
										<u> </u>		
		<u> </u>										
		L										
		L										
		<u> </u>										
		<u></u>										
		· · · · · ·										
Note: Wa	Note: Water content taken from unsealed jar	ed ja	r sample	əle								

(

N DEPTH WATER LIMITS UNIT TERBERG DRY (%) WATER LIMITS WEIGHT TY (%) WL WP (PCF) TY (%) WL WP (PCF) TY (%) WL WP (PCF) TY (PCF) T		PROJECT: BELLE TABLE SUMI	ELLE RIVER SUMMARY	PLANT OF LA	BOR	TS I & II ATORY TE	ST	RESULTS	SULTS	SHI	FILE DATE EET SOL!-	NO. 12
Jar Sample 8.5- 588 88 81.5- 588 81.5- 81.5- 81.5- 81.5- 81.5- 82	4, ω	1	DEPTH (FEET)	<u> </u>	NAT. WATER CONTENT			TE TY	MAX. SHEAR STRES		S v	OTHER LESTS AND REMARKS
Silty CLAY, dark gray, moderate to high plasticity. Sample includes about 10% fine to coarse Sand size particles occurring as pockets (CL-CH) Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Jar Sample Silty CLAY, dark gray-brown, ingh plasticity (CL-CH) Jar Sample Silty CLAY, dark gray, high Jar Sample Jar Sample Jar Sample Silty CLAY, dark gray, high Jar Sample	S4	Jar Sample		∞					ŀ			
fine to coarse Sand size particles occurring as pockets (CL-CH) Jar Sample Silty CLAY, light gray-brown, moderate to high plasticity (CL) Jar Sample Silty CLAY, dark gray-brown, ingh plasticity (CL-CH) Jar Sample Jar Sample Silty CLAY, dark gray, high Silty CLAY, dark gray, high plasticity (CL-CH) Silty CLAY, dark gray, high plasticity (CL-CH) Silty CLAY, dark gray, high		Silty CLAY, dark gray, moderate to high plasticity. Sample includes about 10%										
Jar Sample 33.5- 35.0 589 35.0 9 Silty CLAY, light gray-brown, moderate to high plasticity (CL) 58.5- 60.0 590 Silty CLAY, dark gray-brown, high plasticity (CL-CH) 103.5- 105.0 591 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.77 49 25 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1		fine to coarse Sand size particles occurring as										
Jar Sample 33.5- Silty CLAY, light gray-brown, moderate to high plasticity W5891 32.0* 9 CL.) 58.5- 60.0* 590 Jar Sample 60.0* 591 31.9* Silty CLAY, dark gray-brown, ingh plasticity (CL-CH) 105.0* 591 Silty CLAY, dark gray, high plasticity (CL-CH) 105.0* 591		pockets (CL-CH)										
Silty CLAY, light gray-brown, moderate to high plasticity W5891 32.0* 9 (CL) 58.5 - 60.0 590 58.5 - 60.0 590 10.0 590	68	Jar Sample	0 5	589								
GCL) Jar Sample Silty CLAY, dark gray-brown, ingh plasticity (CL-CH) Silty CLAY, dark gray, high plasticity (CL-CH) Jar Sample Silty CLAY, dark gray, high plasticity (CL-CH)		Silty CLAY, light gray-brown,		W589.1			06	<u> </u>				
Jar Sample 58.5 - 60.0 590 Silty CLAY, dark gray-brown, ingh plasticity (CL-CH) W590.1 31.9% Jar Sample 103.5 - 105.0 591 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.73 49 2		(CL)										
Jar Sample 58.5 - 60.0 590 Silty CLAY, dark gray-brown, ingh plasticity (CL-CH) W5901 31.9* Jar Sample plasticity (CLAY, dark gray, high plasticity (CL-CH) 103.5 - 105.0 591												
Silty CLAY, dark gray-brown, nigh plasticity (CL-CH) W5901 31.9* Jar Sample Silty CLAY, dark gray, high plasticity (CL-CH) 103.5 - 591 26.7*49	514	Jar Sample	70 O	590								
Jar Sample Silty CLAY, dark gray, high plasticity (CL-CH)	· .	Silty CLAY, dark gray-brown,	·	W590.1								
Jar Sample 103.5 - 105.0' 591 Silty CLAY, dark gray, high plasticity (CL-CH) L591.1 26.7*49 2		nign plasticity (CL-CH)										
Jar Sample 103.5 - 105.0' 591 Silty CLAY, dark gray, high plasticity (CL-CH) 1591.1 26.7*49 2												
1591.1 26.7*49 2	323		၂က ဝ	591								
				591	6.	49 2						
		prastrative (CIT-CII)					·					

	DRO IFCT BELLE	RIVER	PLANT	T UNITS	в і в п					FILE NO.	NO. 1255
-		MARY	OF L	ABORATORY	TORY TE	ST	RESULTS	LTS	SHEET	ETAL	0F
	IDENTIFICATION		TEST NO.	ā	PROPERTIES	S	STF	STRENGTH	CONSOLI- DATION	- - -	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT	TYPE	MAX. SHEAR STRESS % (PSF)	0	C .	AND REMARKS
139/SS3	Jar Sample	6.5- 8.01	593								
	highly plastic (CH-CL)		1.593, 1	23.5%	50 24						
	Sample includes ±5% fine to										
	medium Samu Size particies										
139/558	Jar Sample	29.5-	594								
	silty CLA I, grayish brown, moderately plastic (CL)		1.594.1	25.2*	4 2 22						
139/5812		49.5-	и О								
10//01	Silty CLAY, grayish brown, moderately plastic (CL)	?	1.595.1	31.4*	43 20						
											. 1
139522	Jar Sample	99.5-	969								
	rounded Gravel particles, 1/2"		55%.1								See plot
	to 1-1/2" in size with about 15% fine to coarse Sand, less than										
	10% non-plastic fines (GP)										
7. VAI 0 + 0. V	Water content tolice from water of	10.00									

*Note: Water content taken from unsealed jar sample

	PROJECT: BELLE RI	E RIVER		T UNIT	PLANT UNITS I BI					FILE	NO. 1255
	TABLE SUMMA	1MARY	OF L	ABORATORY	TORY T	EST	RESULTS	LTS	SHEET	DATE ET	E0F
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	<u> </u>	STR	STRENGTH	CONSOLI	SOL!-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST 6 TYPE 9	MAX. SHEAR STRESS % (PSF)		رد ،	AND
B141/1	1.9' Recovery; say 3.0' to	3.0- 5.01	528								
	4.9 depth	3. 1- 3. 4'	MC								Used for proctor. See plot
	Silty CLAY, mottled gray and	3.51	W528.1	28.9		96					
	brown, very stiff consistency,	3.51	TV								TV=1.50 tsf
	nign prasticity (Cn)	3.5- 4.1'	MC								Used for proctor.
	Includes ±5% Gravel size pieces (subrounded to sub-	4.1-4.21	W528,2	25.7		88					
	angular in shape)	4.2- 4.5;	MC								Used for proctor. See plot
	Breaks verticall and laterally	4.5	TV								TV -1.00 tsf
	in a blocky mainer	4.5- 4.9'	MC								Used for proc-
		3.0- 4.9¹	1528.1		56 23						

Name	m. t	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBE						FILE	NO. 1255
DENTIFICATION TEST				OF L	ABOR4	1	ST	PESU	LTS		SHE	DATI	
Soll Description (FEET) — Water Altered by Soll Description (FEET) — CONGRIT WILLIAMS WITH TEST 6 SHEAR ARK SIRVES OF CONGRIT WILLIAMS WITH THE SOLL DESCRIPTION (No. 1762) Shear and Size particles #20% fine to coarse Sand size particles #20% fine to 20.2 WS9.2 25.0 95 WS9.2 25.0 WS9.2 WS9.2 25.0 WS9.2 25.0 WS9.2 WS9.2 25.0 WS9.2 W		IDENTIFICATION		TEST NO.	<u>ا</u>	ROPERTIE	Si	STI	RENGT		CONS(DATIC	-INC	OTHER TESTS
Sity CLAY, mottled gray and 8.0° 529	BORING	l	DEPTH (FEET)	ı	WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE			ပ မ	Cc.	AND REMARKS
8.1- rU 8.71 W29,1 26.3 95 Used for c 8.72 TV 8.87 TV 9.21 TV 9.22 TV 9.23 TV 10.01 LE2.1 49 23 8.0- 10.02 LE3.1 1.03 rII 2.0 5558	_ ~	Silty CLAY, mottled gray and	8.0- 10.0'	529									
8.7' W52,1 26.3 95		brown, very stiff consistency,	8.1- 8.7'	rU									Used for compacted U
8.7' TV 8.8 9.2' rU 9.2' WE9.2 25.0 95 9.2' TV 9.3- 10.0' rU 8.0- 10.0' UE9.1 17.5 103 rU 2.0 558		communications (2007, Euro 40	8.7	W529. 1	9		95						
8- rU 21 WE99.2 25.0 95 Pacted U pacted U 22 TV 3- 1.00 rU 0- 150.1 17.5 103 rU 2.0 558		coarse Sand size particles		TV									- 1.7
2: WE99.2 25.0 95				rŪ									a
2. TV TV = 1.02 3 3 1.0.				W529.2	5.		95						
3- rU 0- rU -0- LE20.1			9.2	ΛT									= 1.0
0-1 L52.1 49 23 103 r17 2.0 558 103 r17 2 103 r17 2 103 r17 2 10 558 103 r17 2 103 r17			9.3-	rU.									or c U
1 Ut-229, 1 17, 5 103 r-17 2.0			8.0- 10.01	TES: 1		2							
			8.0- 10.0'	Ur529.1	7		0.3	rU	q	5558			
	_					·							
					·								

	PROJECT: BELLE RI	RIVER		PLANT UNITS I	SIBI					FILE	FILE NO. 1255
:		MARY	OF L	ABORATORY	TORY T	EST F	RESULTS	LTS	SHEET	DATE	E Mov. 1974
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	STI	STRENGTH	CONSOLI-	OLI- ON	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	е е	, °2	AND REMARKS
B141/4	1.9' Recovery, say 18,0 to	18'-20'	531								
	19.9' depth	$-\infty$	Save								
		18.3- 18.4	W531.	1 35.3		98					
	plasticity (CL)	18.4	TV								TV=0.37tsf.
	Sample includes ±5% fine to coarse Sand grains and fine	18.4- 18.7	T53112	35.5		87	CO	3, 2, 139.	3		<u>T</u> - 2304psf
	subangular to subrounded		L5311		45 21						
	(1/4" max, size)	18. 7- 19. 1	T 531.11			98	CO	3.0 1040			(<u>F.</u> = 1152.psf
		2.	W531.2	36.6		85	,				J
		19.2	$_{ m TV}$	-							TV=0,32 tsf
		- 2	ь Т531.1	3 37.3		84	CU	9.6 1626	9		<u> </u>
			a T531.1	3 35.1		85	CU	4.2 1625	1.0		<u>o</u> = 4608psf
		:									

	FILE BELLE	RIVER	PI ANT	TUNITS	H & I S					FE	FILE NO. 1255
	TABLE SUMMA	<u>₹</u>	. 1			TEST	RESULTS	LTS	D/ SHEET	DATE	E0F
	IDENTIFICATION		TEST NO.	<u>а.</u>	PROPERTIES	55	STI	STRENGTH	CONSOLI-	- NO	OTHER TESTS
BORING	SOIL DESCRIPTION	OEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	စ	رد <u>.</u>	AND REMARKS
141/884	Jar Sample	29.5- 31.01	597					=			
	Silty CLAY, brown, moderate to high plasticity (CL)		1.597.1	33.8	47 21						
141/SS10	1	59.5- 61.0¹	598								
	Silty CLAY, grayish brown, moderately plastic (CL)		1.598.1	30. 2	* 41 19						
1435/17	Jar Sample	114.5-	500								
141/3321	Sandy GRAVEL, hard sub- angular to subrounded Gravel	기	1 06								See plot
	size particles to 3/4" maximin										
	and 20% non-plastic fines (CM)							ŀ			
141/8827	Jar Sample	144.5- 146.0'	009								·
	Sandy CLAY, gray, low plasur- city; about 45% fine to coarse		5600.1								See plot
	Sand and fine Gravel size particles to 1/4" max. size										
	(SM-SC)										

*Note: Water content taken from unsealed jar sample

	PROJECT BELLE RI	RIVER	PLAN	PLANT UNITS	ВIВП						FILE NO.	NO. 1255
	1	MARY	PF.	LABORATORY	TORY T	EST	RESULTS	JLTS		D/ SHEET	DATE ET	0F
	IDENTIFICATION		TEST NO.	д	PROPERTIES	:s	ST	STRENGTH	H	CONSOL!	-INC	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	_	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	* STS %	MAX. SHEAR Stress (PSF)	o o	, ₀	AND REMARKS
B142/1	0.9' Recovery; say 3.0' to 3.9'	3.0- 5.5'	532									
	depth	3.0-	MC									Used for proc tor.See plot
	Silty CLAY, mottled brown	1.	W532. 1	28.9		98						
·	and gray, very stiff consistency	3.51	ΤV						,			TV=1.53 tsf
		3.5- 3.71	MC									Used for proctor.
	Includes ±10% subrounded to subangular fine to coarse	3.7- 3.8'	W532.2	25.1		26						
	Sand grains	3.81	TV									TV=1.58 tsf
		3.8- 3.9'	MC									Used for proctor. See plot
		۱	1.52.1		54 23							
				-								
·									·			
			•									

SUMMARY OF LABORATORY TEST RESULTS SHEET AND SHEET AND SHEET	PE-1803	BELLE BELLE	RIVER	PLAN	PLANT UNITS I	SIBI					-	FILE	NO. 1255
DENTIFICATION TEST PROPERTIES STRENGTH CONSOLTING			IMARY	ا ا	ABORA	RY T		ZESL	LTS		SHEE	DATE T	ONT
8.6' depth		IDENTIFICATION		TEST NO.	۵	ROPERTIE	S	STI	RENGTH		ONSO	-i-N	OTHER TEST
8.6' depth 8.6' depth 8.6' depth 8.6' depth 8.6' depth 8.7' L533.2 21.4 42. 22 8.3' L533.1 24.8 8.4' W533.1 24.5 49. 22 8.4' TV 8.4' L53.1 24.5 49. 22 8.4' L53.1 24.5 49. 22 8.4' L53.1 24.5 49. 22 8.4' L53.1 24.5 49. 22 8.4' L53.1 24.5 49. 22 8.4' L53.1 24.5 49. 22 8.4' L53.1 24.5 49. 22 8.6' L53.1 24.5 24.5 24 8.6' L53.1 24.5 24 8.6' L53.1 24.5 24 8.6' L53.1 24.5 24 8.6' L53.1 24.5 24 8	BORING		DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE					AND REMARKS
8.6' depth Silty CLAY, olive brown to dark brown with layers of Sandy CLAY; very stiff consistency, moderate to high plasticity (CL) At 8.3' CHANGE TO: Olive-gray/brown Silty CLAY, very stiff consistency, highly plastic (CL-CH) Sample includes ±10% fine to coarse Sand and Gravel size particles (subrounded to subangular in shape; 1/2 inch maximum size)	R142/4	0.7' Recovery: say 8.0' to	8.01- 10.51	3	2.		106						
wn to s. 4' 8. 4' 8. 4' 10f 8. 4' 17V 6 con- 8. 4' 8. 6' 1533.1 24. 5 49 2 high ty ty ty to sub- nch nch		8.6' depth	8.01- 8.31-	533.	انہ ا	2							
ty ine to large to sub- to sub			1	W533, 1	•								
f con- high high ty ine to 1 size to sub- nch		Silty CLAY, olive brown to dark brown with layers of	8.41	ΤV									
at 8.3 CHANGE TO: Olive gray/brown Silty CLAY, very stiff consistency, highly plastic (CL-CH) Sample includes ±10% fine to coarse Sand and Gravel size particles (subrounded to sub- angular in shape; 1/2 inch maximum size)		Sandy CLAY; very stiff consistency, moderate to high	8.41- 8.61	I •1	4	9 2							
at 8.3: CHANGE TO: Olive-gray/brown Silty CLAY, very stiff consistency, highly plastic (CL-CH) Sample includes ±10% fine to coarse Sambre and Gravel size particles (subrounded to sub- angular in shape; 1/2 inch maximum size)		plasticity (CL)											
Ollar gray brown Silty CLAY, very stiff consistency, highly plastic (CL-CH) Sample includes ±10% fine to coarse Sand and Gravel size particles (subrounded to sub- angular in shape; 1/2 inch maximum size)		at 8,3:											
highly plastic (CL-CH) Sample includes ±10% fine to coarse Sand and Gravel size particles (subrounded to sub- angular in shape; 1/2 inch maximum size)		Olive-gray/brown Silty											
Sample includes ±10% fine to coarse Sand and Gravel size particles (subrounded to sub- angular in shape; 1/2 inch maximum size)		CLAY, very stiff consistency, highly plastic (CL-CH)											
coarse Sand and Gravel size particles (subrounded to sub- angular in shape; 1/2 inch maximum size)		Sample includes ±10% fine to								,	:		
angular in shape; 1/2 inch maximum size)		coarse Sand and Gravel size particles (subrounded to sub-											
		angular in shape; 1/2 inch maximum size)											·
													

	PROJECT: BEL	BELLE RIVER		PLANT UNITS	ВІВП					FIE	NO 1255
	TABLE SU	SUMMARY	OF L	ABORATORY	_	TEST	- RESULTS	JLTS		DATE	
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH	CONSOLI	-100	
BORING	SOIL DESCRIPTION	DEPTH (FEET)		ا≃دا	ATTERE	S DRY UNIT WEIGHT	TEST	MAX. SHEAR STRESS		3	AND STAND
	2. 1' Recovery: say 14 0' to	14.0		(%)	WL WP	$-\mathbf{r}$		% (PSF)	i		REMARKS
142/5		16.51	534								
	Silty CI AV 2222 G	14. l - 14. 4	r CU								Used for com- pacted CU
	consistency, moderate to	14.41	W534.1	36.5		82					
	nign piasticity (CL)	_	$_{ m TV}$								$\Gamma V = 0.35 \text{ tsf}$
		14.5' - 15.1'	r CU								Used for com-
		15.1' V	W534.2	34.0		98					
			TV								TV = 0.40 tsf
		15.2 - 1 15.6'	r CU							ء بنا	Used for com-
		15.6' W	W534.3	35.1		88					7
			ΤV							1	TV = 0.41 tsf
		15.7 - r 16.1'	CU							p α	Used for com- pacted CU
		1	1534,1		47 22		!				
		1	T534.1.2	15.3		105	CU 1	15.0 1475		<u></u>	Fc = 1872 psf
		14.0 16.1' T	T534.1.3	15, 1		105	CU I	5.0 2625		Į.	= 3600
											
									-	 -	
							-		-	 	

	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIGI					ILE ATE	FILE NO. 1255
	TABLE SUMMA	MARY	OF L	LABORATORY	TORY TE	ST	RESULTS	LTS	SHEE		0F
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	S	STI	STRENGTH	CONSOLI- DATION	. 1	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS TO TOP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	မ	ပိ	AND REMARKS
R142 /6	2. 3' Recovery: say 19.0' to 21.4'	19.0'- 21.5'	535								
	depth	19.21	ΤV								TV = 0.30 tsf
		19.2'- 19.5'	saved								
	Silty CLAY, gray-brown, medium consistency, moderate	51-	W535.1	38.5							
	to high plasticity (CL)	9.61	$_{ m L}$							-	TV=0.32 tsf
	Sample includes ±15% fine to coarse Sand and fine Gravel	19.6'- 19.9'	saved								
	size pieces (1/2 inch maximum	20.1'-	C535.1	38.2					1.019	41	
	81ZG)	- 1.4	7.535								Specific gravity = 2.69
) - '	1 525 1	27.0	45 22						
		20.5!- 20.6!	W535.2	37.	1	83					
		20.61	ΔT								TV =0.36 tsf
		20.6'- 20.9'	saved								
								:			
	·										

	7: 8	E RIVER		IT UNITS	SIGI					FILE	NO. 1255
	TABLE SUN	SUMMARY	OF L	LABOR/	BORATORY T	EST (RESULTS	LTS	SHE	UAIE	E0F
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	STR	STRENGTH	CONSOLI	SOL!-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	ſ.	NATER WATER CONTENT (%)	ATTERBERG LIMITS TOL TOP	DRY UNIT WEIGHT (PCF)	TEST 6	MAX. SHEAR STRESS % (PSF)	L	, 33 C •	AND
142,5S14	Jar Sample	61.0	601								
	Silty CLAY, grayish-brown, moderately plastic (CL)		1.601.1	34.3*	44 20						
142,5S24	Jar Sample Silty CLAY, sandy, gray, of	111.0'	602								
	low plasticity (CL-ML)		1,602,1	22.0*	23 16						
	Sample includes 25-30% fine										
	to medium Sand size particles										
							_				
	<u>, , , , , , , , , , , , , , , , , , , </u>						 				
*Note: W	*Note: Water content taken from unsealed jar	1	sample							1	

	;		AN	T UNITS	SIBI						FILE NO. 125	2
	TABLE SUMMA	MARY	. r	ABORATORY	TORY I	ESI +	KESULIS	L13	ľ	SHEET	- OF	
	IDENTIFICATION		TEST NO.	ā.	PROPERTIES	S	STI	STRENGTH	1	DATION	OTH	ESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)		ပိ	AND REMARKS	KS.
143/552	Jar Sample	6.03	603									
	rate to high plasticity		1,603.1	23.1*	45 20							
	(CL)											
143/554	Jar Sample	16.01	604									
	Silty CLAY, gray, moderately plastic (CL)		1,604,1	26.7*	43 22							
1 /3 /558	Jar Sample	36.01	605									
145/200	Silty CLAY, grayish-brown, moderately plastic (CL)		1605.1	36.1*	46 23							
1143/SS11		51.0'	909			-						
	Silty CLAY, grayish-brown, of moderate plasticity (CL)		1606.	31.6	43 22							
										,		
*Note: V	*Note: Water content taken from unsealed ja	1 (sample		(`		(r	

	PROJECT: BELLE	E RIVER	2 PLANT	IT UNITS	SIGI					FILE	NO. 1255
	TABLE SUMM	AMARY	OF L	⋖	BORATORY T	EST	RESULTS	ILTS	SHE	DAT ET	E0F
	IDENTIFICATION		TEST NO.	Ā	PROPERTIES	S	ST	STRENGTH	CONSOL DATION	2 - - -	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	1	NAT. * WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	ဝ	, 3°	AND
143/5515	Jar Sample	71.0'	209								
	Silty CLAY, grayish-brown, highly plastic (CL-CH)		1.607.1	29.9*	48 21						
143/5520	Jar Sample Silty CLAY oray moderately 96.	96.01	809								
			1.608.1	19.3*	38 20						
	Sample includes 20-25% fine										
	to coarse pand size particles										
143/5527	Jar Sample Sandy CLAY oray of low	131.01	609								
	plasticity (SC)		1.609.1	14.7*	27 17						
	Sample includes ±35% fine to										
	Gravel size particles to	·									
	1/4· maximum										
							1			1	20000000000000000000000000000000000000

*Note: Water content taken from unsealed jar sample

C-239

	PROJECT: BELLE	E RIVER	PLANT	T UNITS	SIBI					FILE	NO. 1255
	TABLE SUMMA	MARY	OF L	ABORATORY	ATORY T	EST	RESULTS	LTS	D SHEET	DATE	E Nov. 1974 OF
	IDENTIFICATION		TEST NO.	٩	PROPERTIES	S	STI	STRENGTH	CONSOLI	OLI-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	l	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. E SHEAR STRESS % (PSF)		C _C +	AND REMARKS
B144/4	2: Recovery; say 8.0' to 10.0'	8.0- 10.0'	537								
	ことで	8.2	ΛŢ								TV = 1.80 tsf
		8.2 <u>-</u> 8.5 ⁻	saved								
	consistency, highly plastic		1.537. 1	26.3		26	11	1.7 861			
	(CL-CH)	8.5- 8.8	1.782,U	24.1		99	U	15.0 1482	:		
	Includes about 20 - 25% fine	8.5- 8.8 ¹	1.537.1	27.3	48 21						
	Gravel size pieces (sub-	8.8- 8.91	W537.1	28.1							
	rounded to subangular in shape; 1/2 inch max. size)	8,91	ΤV								TV = 1.70 tsf
	Entire sample slightly	8.9- 9.21	U537. 2	24.1		100	Ω	3.0 1002			
	disturbed?	9.2-	W537. 2	27.1							
					٠.						
								,		•	
										* 1	

	PROJECT: BELL	BELLE RIVER	PLAN	PLANT UNITS I	SIBI						FILE	FILE NO. 1255
		SUMMARY	OF L	ABORATORY		TEST	RESULTS	JLTS		D/ SHEET	DATE ET	E 0F
	IDENTIFICATION		TEST NO.	Д.	PROPERTIES	ES.	ST	STRENGTH		CONSOLI	SC!-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	_	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	STI STI	MAX. SHEAR STRESS (PSF)	ိမိ	ر د د	AND
B144/6	1.7' Recovery; say 13.0' to	13.0- 15.01	538	25.7		99						
	14.7' depth	13.3- 13.7 ¹	saved									
	1 4 4 1 6 77130	13.7- 13.8¹	W538.1	25.7								
	ish brown, very stiff con-	13.8	${ m TV}$									TV = 1.53 tef
	sistency, moderate to high plasticity (CL)	8-	S/FE38.1									남양
	Sample included 15 to 200	14.1- 14.2'	W538.2	25.7								
	fine to coarse Sand size	14.21	TV									TV = 1.88 tsf
	particles	14.2- 14.5 ⁻	saved									
											,	
										 		
		·			- ;							

and the second	PROJECT: BELLE R	E RIVER	PLAN	PL ANT LINITS	T & I S					0 110	NO 1255
		SUMMARY	OF L	ABORATORY	ORY	EST	RESULTS	JLTS	i i		
- P.C.	IDENTIFICATION		TEST NO.	٩	PROPERTIES	S	ST	STRENGTH	CONSOLI	100 - -	OTUED TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS (PSF)	J	رد ،	AND REMARKS
144/SS10	Jar Sample	28.5 to 30	610					Ī			
	silty CLAY, gray-brown, moderate to high plasticity.		W610. 1	35.5							
	Sample includes ±5% fine to coarse sand size particles										
	(CL)										
144/SS16		58.5 to 60	611								
	moderate to high plasticity (CL)		W611. 1	32.4							
144/SS23		93.5 to 95	612								
	\perp		1612, 1	19.8	35 18						
	coarse sand size particles			·							
							1				
										ĺ	

	PROJECT: BELL	BELLE RIVER		PLANT UNITS	SIBIL	C.				FILE	NO. 1255
		SUMMARY	OF L	ABORATORY		TEST	RESULTS	JLTS	D SHEET	DATE ET	OF
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	ST	STRENGTH	CONSOLI-	OLI-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	_	NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. E SHEAR STRESS % (PSF)	eo S	Cc.	AND REMARKS
B146/3	1.8' Recovery; say 6.0' to 7 8' denth	6.0 - 8.0 ⁷	540								
		6. 1 - 6. 41	no,								Used for com- pacted CU
	Silty CLAY, brown & gray mottled, very stiff to hard	6.4- 6.51	W540.1	36.2		84					
	consistency, moderate plasticity (CL)	6.51	ΛŢ								TV = 2.03 tsf
	Some of the property of the pr	6.51 - 6.91	rcu								Used for com- pacted CU
	medium Sand size particles	6.9-	W540 . 2	37.8		83					
	(subangular to subrounded in shape)	7.01	ΤV								TV = 2.03 tsf
		7.0 - 7.3¹	rcu								Used for com- pacted CU
		7.4 - 7.51	L540,1	37.2	44 21						
		7.5- 7.8 ¹	rcu								Used for com- nacted CU
		6.0 - 7.81	T540,1,2	14.4	:	108	CO	15.0 2163	~		$\overline{\mathbf{O}}_{\mathbf{C}} = 1872 \text{ psf}$
		6.0 - 7.8¹	T540,1,3	14.2		108	CΩ	10.9 3173	3		<u>0</u> c = 3888 psf
										·	
		,									

	PROJECT: BELLE	E RIVER	PLANT	T UNITS	SIBIL					FILE	NO. 1255
	TABLESUM	SUMMARY	OF L	LABORATORY		TEST F	RESULTS	LTS	SHEET	DATE ET	E
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	S	STE	STRENGTH	CONSOLI	OLI- ON	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	J	NAT. WATER CONTENT (%)	ATTERBERG LIMITS TOL TOP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		° 20	AND
B146/5	1.6' Recovery; say 10.0' to	10.0- 12.0'	541				·····				
	ii.o deptn	$\frac{10.1}{10.4}$	MC								Used for proctor. tor. See plot
	Silty CLAY, mottled brown	10.4	W541. 1	33.9		06					
	and gray, firm consistency, moderate plasticity (CL)	10.4	$_{ m TV}$								TV = 0.67 tsf
	includes ±10% fine to coarse	10.5- 11.0'	MC								Used for proc- tor. See plot
	Sailu size particies	11.0'	W541.1	27.5		95					1
	@ ±11.1' depth changes to	11.0'	ΛŢ								TV = 0.73 ss
	Silty CLAY, Sandy, firm	11.1- 11.6	MC								Used for proctor. See plot
	plastic (CL)	10.0- 11.6'	1541. 1	_	38 19						
	Includes #40% line to coarse Sand and Gravel size pieces										
					<u> </u>						
							<u></u>				

bio spinosam	PROJECT: BELLE	E RIVER	4 !	PLANT UNITS	SIBIL						FILE	FILE NO. 1255
	TABLE SUI	SUMMARY	OF L	ABORATORY		TEST	RESI	RESULTS		D/ SHEET	DATE ET	E0F
	IDENTIFICATION		TEST NO.	Ь	PROPERTIES	ES	ST	STRENGTH	표	CONSOLI-	SCI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	ĺ	WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	. . %	MAX. SHEAR STRESS (PSF)	ိမ	ů	AND
146/7	2.1' Recovery; say 14.0' to	14.0- 16.0'	542									
	16.1 depth	14.1- 14.5'	ZC LTU									used for com- pacted C/II
	Silty CLAY, brown, firm to	14.5	W542.1	32.2		88						
	stiff consistency, moderate	14.5	TV	,								TV = 0.48 tsf
	to high plasticity (CL)	14.6- 15.1'	rc,									used for com-
	Sample includes ±5% fine to coarse Sand size particles	15.1	W542.2	33.3		90						}
		15.1	ΤV						-			TV = 0.50 tsf
		15.2- 15.6'	rC									I C
		61	W542.3	34.0		85					1	1
		15.61	ΤV									TV = 0.49 tsf
		$\frac{15.7}{16.1}$	r Tu							-	2 1	used for com- pacted C/U
		14.0- 16.1'	152.1		46 22					_		
		14.0- 16.1	C52.1	15.9	•	103				(629)	15	
		14.0- 16.1	Ur542.1	16.6		104	D.	2.0 3	3382			
		14.0- 16.1	1.24308								S	Specific Gravity = 2.75
		·								<u> </u>		

	PROJECT: BELLE	E RIVER	PLANT	IT UNITS	SIGI					FILE	NO 1255	_
	TABLE SUN	SUMMARY	OF L	LABORATORY	TORY TEST	ı	RESULTS	TS	ď	DATE		
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	-	STRI	STRENGTH	SNOS	CONSOLI-	OTHER STORY	_
BORING	SOIL DESCRIPTION	DEPTH (FEET)	J	~ =	ATTERBERG LIMITS	DRY UNIT WEIGHT	TEST 6	MAX. SHEAR STRESS		33	AND AND	
146 ÆSI6	Jar Sample	53.5-		(%)	3 A B B B B B B B B B B B B B B B B B B		8				CARAMA	
	Silty CLAY, grayish-brown,		614									·
	(CL)		<u>1.614.</u> 1	28.7%	43 20	+-	-					
						-	-					
	-									·		
							-					
							+			1		
							 					
							-					
										-		
							_			1		
				-	-	1	-					
	-					+	-					
*Note: Water	ater content taken from unsealed jar	jar sample	ıple			-	-			1		

	PROJECT: BELL	BELLE RIVER PLANT UNITS I	PLAN	T UNIT	SI8II] <u>[</u>	FILE NO. 1255
		SUMMARY	OF L	ABORATORY	TORY T	EST	RESULTS)LTS	SHE	DATE.	E
	IDENTIFICATION		TEST NO.	٥	PROPERTIES	S	ST	STRENGTH	CONS	CONSOLI- DATION	OTHER TESTS
BOPING	SOIL DESCRIPTION	ОЕРТН (FEET)		NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		Cc	AND REMARKS
147/SS3	Jar Sample	6.0¹- 7.5¹	624								
	highly plastic (CH)		L 624. 1		58 24	: .					•
	Sample includes ±10%					·					
	_				-						
147/SS7	Jar Sample Silty CLAY gray of moderate	23.5- 25.0¹	919								
			L616.1	31.9*	46 23						
	Sample includes ±5% fine to										
					:						
					r.						
			. :								2"
					,						

*Note: Water content taken from unsealed jar sample

C-247

SUMMARY OF LABORATORY TEST RESULTS SHEET	· · · · · · · · · · · · · · · · · · ·	PROJECT: BELLE RI	E RIVER		PLANT UNITS	SIBI					"	FIE	NO 1255
Soll Description Test				OF L	ABORA	1.	1	RESL	JLTS		SHEE	ATE	N N
1.2 Recovery: say 7.5 to 8 7 7 5 6 6 6 6 6 6 6 6 6		IDENTIFICATION		TEST NO.	۵	ROPERTIE	S	ST	RENGTH		ONSO	 	
depth 3.01	BORING Sample		DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS TWL TWP		TEST TYPE	i		-	T .	AND REMARKS
ottled yellow- , very stiff oderate to high 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0¹ TV 8.0² TV 8.	B151A /2	1.2' Recovery; say 7.5' to 8.7'	7.5'- 10.0'	544					l		-		See plot
ottled yellow- i, very stiff 8.01 TV 6derate to high 8.11- 8.41 saved 8.41 saved 8.41 saved 8.51 TV 6 dine Gravel subrounded to hape-to 1/2 inch 8.51 TV 8				S/H ^{544.}									
y, very stiff 8.01 TV TV TV = 1. 3.11				W544. 1	5		94						
# 5-15% fine to # 8.5'		brown and gray, very stiff	8.01	TV								H	
d fine for avel subrounded to hape-to 1/2 inch		plasticity		saved									
d fine Gravel 8.5' TV		· - · - ·		N 544.2	4.		86				 		
subangular in shape- to 1/2 inch maximum size) A		coarse Sand and fine Gravel size particles (subrounded to		$_{ m TV}$								된	
		subangular in shape-to 1/2 inch											
					_								
											 		

	PROJECT	E RIVER		PI ANT LINITS T	FRIA						1255
		1	R	LABORATORY	₩	TEST	RESULTS	JLTS	JH V	DATE	
	IDENTIFICATION		TEST NO.	<u> </u>	PROPERTIES	S	ST	STRENGTH	CONSOLI		OTUGO TEST
BORING	SOIL DESCRIPTION	DEPTH (FEET)	ļ	NAT. WATER CONTENT (%)	ATTERBERG LIMITS	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS (PSF)		رة . رة .	AND AREMARKS
B151A /3	1.2' Recovery; say 12.5' to 13.7' depth	12.5'- 15.0'	545					ł			
		12.6'- 12.9'	saved								
—	Silty CLAY, gray, very stiff	12.91	W345.1	27.5		94					
	consistency, highly plastic (CL-CH)	12.9'	TV								TV = 1.13 tsf
	Sample includes 10-15% fine to	13.0'- 13.3'	T 545.0.1	28.3		95	מת	10.0 2325			7.
	coarse Sand and fine Gravel	13.0'- 13.3'	1.545.1	27.7	48 20		,-				
	subangular in shape-to 1/4 inch	13.31- 13.61	saved								
	maximum size)	13.71	W345.2	31.5		93					
		13.7	ΛŢ							•	TV = 0.55 tef
					,						
	-								 - 		
										 	

	PROJECT: BELLE	E RIVER	PLANT	T UNITS	1181					и :: ::	NO 1255
		SUMMARY	OF L	ABORATORY	JI	TEST	RESULTS)LTS	 	DATE	
	IDENTIFICATION		TEST NO.	ă	PROPERTIES	S	STI	STRENGTH	CONSOL	123	OTUED TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	ı	NAT* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS (PSF)	မိ	٠ ئ	
154/SS3		6.0¹- 7.5¹	617								
	Silty CLAY, yellow brown, highly plastic (CH-CL)		1.2197	23.2*	51 23						
	Sample includes ±10% fine to		W617.1			100					
	coarse sand size particles						-				
154/SS8	Jar Sample Silty CLAY, gravish-brown	28.5- 30.01	618								
	moderately plastic (CL)	L618.1	1618 1	33,3%	44 21						
	Sample includes ±10% fine to coarse Sand size particles										
										-	
154/SS13	Jar Sample Silty CLAY, grayish-brown,	53.5- 55.01	619								
	moderately plastic (CL)		L619, 1	33.4* 4	40 19						
	Sample includes ±5% fine to coarse Sand size particles										
154 £S17	Jar Sample Silty CLAY, gray, highly	73.5'- 75.0'	970								
			1620.1	33.1* 5	54 25						
									-	-	
										 	
							-			<u> </u>	
	Note: Wator content 1:1					1	1		1	1	

Note: Water content taken from unsealed jar sample

	PROJECT: BELL	BELLE RIVER		PLANT UNITS	SIBI					FILE	NO. 1255
		SUMMARY	OF L	ABORATORY	ATORY 1	FEST	RESULTS	JLTS	SHS	DATE SHEET	E OF
	IDENTIFICATION		TEST NO.		PROPERTIES	ES	ST	STRENGTH	CONSOLI	SOLI-	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT	TEST TYPE	MAX. SHEAR STRESS % (PSF)	<u> </u>	• ວິວ	AND
154/5819	Jar Sample Silty CLAY Sandy dark gray	83.5- 85.0¹	621								
	of low to moderate plasticity		1621. 1	25.7*	31 16						
	(CL) Sample includes +25% fine to										
	coarse Sand size particles										
154/5522	Jar Sample Clavev SILT, grav. of low	98.5- 100.01	622								
	ML)		162.1	9.6*	20 13						
	Sample includes ±15% fine to medium Sand size narticles						 				
154/5525	Jar Sample Silty CLAY, grav, of low	113.5- 115.0	623								
	plasticity, (CL)		1623.1	18.4%	30 19						
	Sample includes ±10% fine										
	4										
								·			
			_								

Note: Water content taken from unsealed jar sample

C-251

	PROJECT: BELLE	E RIVER		PLANT UNITS I	SI8H					FILE NO.	NO. 1255
	TABLE SUI	SUMMARY	OF L	ABORATORY	_	TEST	RESULTS	ILTS	D/ SHEET	DATE ET	0F
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	<u> </u>	OTHER TESTS
BORING	SOIL OESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	မိ	, o	AND REMARKS
158/2		7.5- 10.0'	548								
	9.7' depth; upper 1.5' disturbed	7.6- 8.1	rŪ								used for com- pacted U
		8.1	W548.1	29.0		94					
	Silty CLAY, mottled gray-	8.2- 8.5-	rU								used for com- pacted U
	stiff to very stiff consistency,	8.5	W548.2	28.5		9.5			 .	<u> </u>	
	moderately to highly plastic (CL-CH)	8.6- 8.91	μΩ								used for com- pacted U
	Sample includes fine to	9.01	W548.3	24.3							
	medium Sand size particles;	9.01	ŢΛ					-			į
	sample, ±10% near bottom	9.1- 9.4'	rU								used for com- pacted U
		9.4	W548.4	21.6		101					
		9.4	$_{ m TV}$								
		9.5-	rU							<u> </u>	used for com- pacted U
		7.5-	1.548.1		50 21						
		7.5- 9.7 ¹	Ur548.1	16.8		10.4	114	2.0.347			
						·					
						·					
										1	

	ij	BELLE RIVER	1 1	PLANT UNITS	SIBI						FILE	NQ. 1255
	TABLE SUMMA	MARY	OF L	ABORATORY	TORY	FEST	RESULTS)LTS		SHEET	ATE	ျှဝ
	IDENTIFICATION		TEST NO.	a	PROPERTIES	ES	ST	STRENGTH		CONSOLI	 	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	I	NAT. WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS (PSF)	<u></u>	ိမ		AND
Bl 58/4	Silty CLAY, gray, firm con-	17.5- 20.01	550						-	-	 	
	sistency, moderate to high plasticity (CL)	17.5- 17.8¹	saved									
	Sample includes 5-10%	17.91	W550.1	36.2		64			-			
	Φ	17.9	TV								<u>H</u>	TV = 0.34 tsf
		18.0- 18.5 ¹	saved									
		18,51	W550.2	37.8		83						
		18.51	$_{ m TV}$								ΛŢ	V = 0.37 tsf
		18.6- 18.9 [:]	1550.1.1	37.5	:	83	cn	3.2 88	r.		16	= 1080
		18.6- 18.91	1.550.1		46 19							
			T550.1.2	33,5		8.7	CU	5, 1 971			J.	= 2160 psf
			T550.1.3	37.1		83	CU	5.7 129	7		$\vec{\sigma}_{c}$	c = 4320 psf
		19.8	W 550.3	37.2								
							ļ					
											-	
									-		<u> </u>	
									-			

		RIVER		STINU THE	SIBE					FILE	NO. 1255
		15	OF L	ABORATORY	TORY T	EST	RESULTS	LTS	SHEE	DATE	0F
	IDENTIFICATION		TEST NO.	a.	PROPERTIES	SE	STI	STRENGTH	CONSOL! DATION	- I - N	OTHER TESTS
BORING	SOIL OESCRIPTION	DEPTH (FEET)	l	NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	e _o	່ິນ	AND REMARKS
163/882		3.5- 5.0¹	615					-			
	Silty CLAY, yellow-brown, highly plastic (CH-CL)		1.615.1		51 24						
	Sample includes ±5% fine to										
	coarse Sand size particles							;			
163/884		8.5-	625								
	Silty CLAY, grayish-brown, moderately to highly plastic	2	1625.1	28.4*	47 23						
	(CL)										
163/838	Jar Sample	28.5-	426								
			L626.	23.9*	42 20						
								-			
163/601	Jar Sample	43.5-	427								
100/001	Silty CLAY, grayish-brown, moderately plastic (CL)	1	L 627. 1	33, 5	45 21						
	Sample includes ±5% fine to										
	medium Sand size particles										
	*Note: Water content taken from un	n unsealed	led jar	sample	9						

		BELLE MIVER	PLAN	LIND	IVER PLANT UNITS I BILL					FILE	FILE NO. 1255
	TABLE SUN	SUMMARY	OF L	LABORATORY	-	TEST	RESULTS	ILTS	D, SHEET	DATE	0F
	IDENTIFICATION		TEST NO.	ď	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	SCI-	OTHER TESTS
BORING	SOIL DESCRIPTION	ОЕРТН (FEET)		NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		, ° °	AND
163/8316	Jar Sample	68.5- 70.0'	628								
	Silty CLA Y, grayish-brown, highly plastic (CH)		I 628. 1	36.9*	52 24						
163/5521	Jar Sample Silty CLAV and modernia	93.5- 95.0¹	629								
	plastic (CL)		1.629.1	22.3*	39 20						
	Sample includes ±10% fine to										
	coarse Sand size particles										
				·							

*Note: Water content taken from unsealed jar sample

	. T.	æ	4	T UNITS		1 1				FILE DATE	9 2
	TABLE SUMMA	MARY	OF L	LABORATORY		TEST	RESULTS	LTS	SHEET		OF
	IDENTIFICATION		TEST NO.	a.	PROPERTIES	S	STI	STRENGTH	CONSOLI	SF.	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	e o	Cc +	AND REMARKS
R185/3	2.7' Recovery; say 6.0' to	9:0-	552								
C/C01A	8.7' depth	6.5- 6.8¹	saved								
	Silty CLAY mottled grav-	6.8'	W552.1	25.2		66					
	brown and brown, very stiff	6.9- 7.2 ¹	saved								
	to nard consistency, ingmy plastic (CL-CH)	7.5-	U552. 1	23.9		104	U	4.0 2948			
	Sample includes <5% fine	7.5- 7.8 ¹	1:52.1	24.7	50 23						
	to coarse Sand and Gravel	7.81	W552.2	26.9		99					
	subangular in shape- to 1"	18.7	ΤV								TV = 1.75 tsf
	maxımum sıze)	7.9- 8.1	C552.1	29.1					. 757	0.18	
		7.9-	85,522.1								Specific Gavity ±2.72
		8.2- 8.5-	saved	19-1							
									, 		

<u>.</u>	PROJECT: BELLE RI	E RIVER	1	T UNIT	PLANT UNITS I B II					1 1 1 1	NO 1255
		SUMMARY	OF L	LABORATORY		TEST	RESULTS	ILTS.	D/ SHFFT	DATE	
	IDENTIFICATION	·	TEST NO.	۵	PROPERTIES		STI	STRENGTH	CONSOLI	195 1-15	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	I	NAT. WATER CONTENT	ATTERBERG LIMITS	DRY UNIT WEIGHT	TEST	MAX. E SHEAR STRESS	<u> </u>	, ,	AND REMARKS
B185/7	2.7' Recovery; say 18.0' to 20.7' depth	18.0- 21.01	554								
		18.5	saved				<u> </u>				
	Silty CLAY, gray, medium	18.5-	U554.1	39.3		81	D D	2.4 416			
	Consistency, nignly plastic (CL-CH)	10.5- 18.81	1.554.1	39.0	49 22						
	Sample includes less than 5%	18.91	W554.1	38.8		81					
	fine Sand size particles	18.91	TV								TV = 0.35 tsf
		19.2- 19.8 ⁻	saved								
		19.9	W554.2	35.4		82					i i
		19.91	TV				-			<u> </u>	TV = 0 32 +sf
							-			-	300
							 			+-	
							-				
							-				
							+				
										_	
							 			+	
							 		-	-	

				341141	F					FILE	NO. 1255
	.T:	RIVER		TAGOR	AY TE	15	RESULTS	LTS	DATE.	DATE	0F
	TABLE SUM	SUMMARY	ַן נ	500	- 1	;			CONSC	7:1-	
	IDENTIFICATION		TEST NO.	PRO	U) L		STR	STRENGTH	DATION	z	OTHER TESTS
BORING	SOIL OESCRIPTION	DEPTH (FEET)	1	water LI content LI (%)	ERBERG MITS WP	DRY UNIT WEIGHT (PCF)	TYPE (MAX. SHEAR STRESS % (PSF)	စ	3	REMARKS
C1/ 701 H	2.8' Recovery; say 48.0' to	48.0-	556								
G/6819	50.8' depth	48.2- 48.5'	saved				+				
	Silty CLAY, gray, medium	48.5	W556.1	34.7		85	1				
	consistency, inouerare to mism plasticity (CL)	48.51	ΛŢ								TV = 0.44 tsf
	Sample includes varving		556.1	37.1 47	7 22						
	amounts of fine to medium	40.7	VEEK 2	31.5		87					
	Sand, ±10% at top of sample +0 +40% near bottom; less than	49.5-			17						
	5% subangular to subrounded	47.7	7 84	;							المراجع المراج
	Gravel particles to 1/4" size			-							
	occur throughout										
						_					
			_						-		
						_					
			_ ·-							_	
			-								
			-			-	-				
			4								

ares as	PROJECT: BELLE RI	E RIVER		T UNIT	PLANT UNITS I BIT					Ē	FILE NO	2
	TABLESUN	SUMMARY	OF L	ABORATORY		TEST	RESULTS	ILTS	•,	DATE. SHEET	ATE Ju	uly 1974 0F
	IDENTIFICATION		FEST NO.	Ь	PROPERTIES	ES	ST	STRENGTH	ďΩ	CONSOLI		OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT	TEST	MAX. SHEAR STRESS % (PSF)	L	ບໍ		AND REMARKS
186/3	Jar Sample	6.0	443								_	
	Silty CLAY, dark greyish brown, high plasticity		1.443.1		52 18	8						
	(CH-CL)		W443. 1	21.5		66						
	*Note: Water content taken											
	from unsealed jar sample						,					
							-]	 		
										· 		
										ļ 		
					:							

LE NO. ATE Jul	0F	OTH	AND C REMARKS														
ĒO	SHEET	DATION	၀ ၀ ၀														
í	TS	STRENGTH	MAX. SHEAR STRESS % (PSF)														
	RESULTS	STR	TEST TYPE														
1 1.	TEST	S	DRY UNIT WEIGHT (PCF)			80				l	ļ		-	 -	-	-	-
ᅵᆸ	1	PROPERTIES	ATTERBERG LIMITS WL WP		42. 2				: :								
T UNITS	LABORATORY	<u>a</u>	NAT. WATER CONTENT (%)		40.5												
긥	OF L	TEST NO.		423	1 423 1	1 >	Saved										_
E RIVER	SUMMARY		DEPTH (FEET)	23.0- 25.0	23.0-	23.3-	23.5-										
PROJECT: BELLE	TABLE SUN	IDENTIFICATION	SOIL DESCRIPTION	0.8 Recovery; say 23.0 to	23.8' depth	Silty CLAY, grey, soft	plasticity (CL)	Note: Entire sample much	disturbed								
			BORING	186/7													-

	PROJECT: BELLE RI	RIVER		T UNIT	PLANT UNITS I 8 II						FILE NO	NO. 1255
		MARY	OF L	ABORATORY	TORY I	FEST	RESI	RESULTS		DA SHEET	DATE	July 1974 OF
	IDENTIFICATION		TEST NO.	۵	PROPERTIES	ES	ST	STRENGTH		CONSOLI	N-I-N	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. WATER CONTENT	ATTERBERG LIMITS W. W.	DRY UNIT WEIGHT	TEST TYPE	w 8	MAX. SHEAR STRESS	ပိမ	, o	AND
186/13	1.5' Recovery; say 53.0' to 54.5' depth	53.0- 55.0	426								1	
		الان	Saved			w						
	ey, soft to firm toderate	53.5- 53.6	W426.1	40.7		80	,					
	plasticity (CL)	53.6	TV									TV = 0.28tsf
	below 53.8° depth, sample includes about 20% fine to	- 0	Saved									
	coarse Sand and fine gravel	0-3	L426.1	27.0	33 17			:				
	size particles (subrounded to subangular in shape)	3-	W426.2	28.6		92					-	
		54.4	TV									TV =0.21tsf
				——— ··-				! .				
					:			t.			-	
										-		
					E				 			
	,											

SHA MAR	PROJECT: BELLE	RIVER	PLANT	T UNITS	SIBE					FILE NO	No. 1255 July 1974
	TABLE SUMMA	MARY	OF L	ABORATORY	TORY T	EST F	RESULTS	LTS	SHEET		OF
	IDENTIFICATION		TEST NO.	4	PROPERTIES	S	ST	STRENGTH	CONSOLI	- -	OTHER TESTS
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)	J	NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	69	Cc. *	AND
186/20	Jar Sample	88.5-	4 4 4								
	Silty CLAY, grey, moderate		W444, 1	20.2		107					
	plasticity (CL)		1.444.1		32 17						
	Somme includes about 20% find										
	to coarse Sand grains (subrounded to subangular in										
	shape)										
	*Note: Water content taken										
	from unsealed jar sample	<u> </u>			· · ·						

	PROJECT: BELLE RI	E RIVER		PLANT UNITS I	SIBI						FILE NO.	No. 1255
	TABLE SUMMA	AMARY	OF L	LABORATORY	1	TEST	RESULTS	ILTS		DATE. SHEET	DATE	
	IDENTIFICATION		TEST NO.	Ы	PROPERTIES	ES	ST	STRENGTH	一	CONSOLI	- Z	=
BORING SAMPLE	SOIL DESCRIPTION	DEPTH (FEET)		NAT. * WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST	STR STR	MAX. SHEAR STRESS (PSF)	ိမ	· ° °	AND
186/23	Jar Sample	103.5. 105.0	445						-		1	
	SILT, grey, non-plastic (ML)		W445. 1	12.0*					-	-		
	Sample includes about 200		1445.1		18 18							
	fine Sand grains											
	*Note; Water content taken									 		
	from unsealed jar sample											
										_		
									-			
										 		
	•							į				
											<u>.</u>	

	PROJECT: BELLE	ELLE RIVER SUMMARY	PLANT OF LA	NT UNITS I B.	1 🖽	TEST R	RESULTS	LTS	FII DA SHEET	FILE DATE T	FILE NO. 1255 DATE July 1974 ET OF
	 		TEST	•	PROPERTIES		STR	STRENGTH	CONSOL! DATION		OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT. * WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TYPE 9	MAX. SHEAR STRESS % (PSF)	o ₉	ູ້ນ	AND
187/6	Jar Sample	18.5- 20.0	446				_				
	Silty CLAY, dark grayish		W446.1	35.9							:
	brown, moderate to high										
	(CL-CH)										
	*Note: Water content taken										
	from unsealed jar sample										
											
								,			
				-							
			:	-							
					į						

	PROJECT: BELL	BELLE RIVER		PLANT UNITS	18 I					FILE	NO. 1255
		MARY	OF	LABORATORY		TEST	RESULTS	LTS	SHE	DATE	E July 1974 OF
	IDENTIFICATION		TEST NO.	PR	PROPERTIES	S	STI	STRENGTH	CONSOLI	SOLI-	OTHER TESTS
BORING	SOIL DESCRIPTION	DEРТН (FEET)	1	NATER WATER CONTENT -	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. SHEAR STRESS % (PSF)	i	C c	AND
187/7	Jar Sample	23.5- 25.0	447								
	rate to		1.447.1	37.9*4	17 20						
	nign plasticity (CL-CH)										
	*Note: Water content taken										
	trom unsealed jar sample										
							<u> </u>				
						,					

and the same of th	B	E RIVER	PLAN	IVER PLANT UNITS I	60	1 1				FILE	FILE NO. 1255 DATE July 1974
	ABLE SUN	SUMMARY	7	LABORALORY		IESI I	RESULIS	LTS	SHE	SHEET	0F
	IDENTIFICATION		TEST NO.	Ā	PROPERTIES	S	ST	STRENGTH	CONSOLI- DATION	OLI- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NATER WATER CONTENT (%)	ATTERBERG LIMITS TWL WP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)		رد ۲	AND REMARKS
187/13	Jar Sample	53.5-	448								
	Silty CLAY, grey, moderate to high plasticity (CL)		W448. 1	39.5							
	*Note: Water content taken from unsealed jar sample										
					-						
										<u> </u>	

	PROJECT: BELL	BELLE RIVER	7 2	PLANT UNITS I B	SIBIL	1001		() () () () () () () () () ()			FILE NO. 1255 DATE July 1974
		ואאוו	- 17.	ABORY	וסאו	7	RESULIS)LIS	SHE	ĒŢ	0F
	IDENTIFICATION		- 203	٩	PROPERTIES	ES	ST	STRENGTH	DATION	SOL!- ON	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)	1	NATER WATER CONTENT (%)	ATTERBERG LIMITS WL WP	G DRY UNIT WEIGHT (PCF)	TEST TYPE	MAX. E SHEAR STRESS (PSF)		رد ٠	AND
187/14	Jar Sample	58.5- 60.0	449								
	Clayey SILT, Sandy, gray,		S/H 449.1								See plot
	ow to moderate plasticity (CL-ML)										
	Sample includes about 45% fine to coarse Sand and fine										
	- 23										
	in shape)										
											:
		·									

	T: B	E RIVER	17 5	T UNITS						FILE I	ġ립
	TABLESUN	SUMMARY	OF L	LABORATORY	┝╌╏	EST F	RESULTS	LTS	SHEET	ET	OF
	IDENTIFICATION		TEST NO.		PROPERTIES	S	STF	STRENGTH	CONSOLI	-INC	OTHER TESTS
BORING	SOIL DESCRIPTION	DEPTH (FEET)		NAT * NAT * CONTENT	ATTERBERG LIMITS TUL TUP	DRY UNIT WEIGHT (PCF)	TEST	MAX. SHEAR STRESS % (PSF)	°ə	Cc +	AND REMARKS
187/17	Jar Sample	73.5- 75.0	450								
	Silty CLAY, dark grey,		W450.1	25.6							
	moderate plasticity (CL)										
	Sample includes about 10%										
	fine to coarse Sand grains (subrounded to subangular in										
	shape)		į								
	*Note: Water content taken from unsealed iar sample										
						-					
											-

(

SUMMARY OF LABORATORY TEST RESULTS TEST TEST PROPERTIES STRENGTH OFFIT NAME OF PARTIES NAME OF PARTIE		PROJECT: BELLE RI	RIVER		T UNIT	PLANT UNITS I B II				LL 6	FILE	NO. 1255
IDENTIFICATION SOIL DESCRIPTION TABLE SOIL DESCRIPTION THE STATEMENT TEST CONTENT TO					ABORA			RESU	LTS	SHEE	TAIL	0F
Soil Description Soil Description (FEET) Jar Sample Silty CLA', dark grey, moderate plasticity (CL) Sample includes about 10% fine to coarse Sand grains (subrounded to subangular in shape) *Note: Water content taken from unsealed jar sample		IDENTIFICATION		TEST NO.	۵	ROPERTIE	S	STF	RENGTH	CONSO		THER TESTS
Jar Sample Silty CLAY, dark grey, moderate plasticity (CL) Sample includes about 10% fine to coarse Sand grains (subrounded to subangular in shape) *Note: Water content taken from unsealed jar sample	BORING	ł	DEPTH (FEET)	I .	NAT.* WATER CONTENT (%)	ATTERBERG LIMITS WL WP	DRY UNIT WEIGHT (PCF)					AND REMARKS
in en en en en en en en en en en en en en	187/22	Jar Sample	98.5- 100.0	ĽΩ								
moderate plasticity (CL) Sample includes about 10% fine to coarse Sand grains (aubrounded to subangular in shape) *Note: Water content taken from unsealed jar sample		Silty CLAY, dark grey,		W451. 1	24. 1							
Sample includes about 10% fine to coarse Sand grains (subrounded to subangular in shape) **Note: Water content taken from unscaled jar sample		moderate plasticity (CL)										
		Sample includes about 10%										
*Note: Water content taken from unsealed jar sample												
#Note: Water content taken from unsealed jar sample from unsealed jar sample from th		shape)					<u> </u>					
from unsealed jar sample		world thother metallicity										:
		from unsealed jar sample				:						
												,

TEST & SHEAR OF CE STREES OF CE

TEST	• .	ST DA			DRY SOIL PROPERTIES					
110.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG	LIMITS PL(%)	SOIL DESCRIPTION		
U120.2	1.40	3.50	0.26	31.6	93	44	19	SILTY CLAY (CL)		

BORING 1	10	15
SAMPLE	NO	4
DEPTH	8.6	TO 8.91

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA	<u> </u>	DRY SOIL PROPERTIES						
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	RATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
U121.I	1.40	3.50	0.26	34.1	87	42	20	SILTY CLAY (CL)			

BORING NO. ____15 SAMPLE NO. ____6 DEPTH _____18.1' TO 18.4'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

(

TEST		ST DA	TA		DRY SOIL PROPERTIES						
140.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
VI25.I	1.40	3.50	0.26	22.5	104	34	18	SILTY CLAY (CL)			

BORING NO. ____15 SAMPLE NO. ___14 DEPTH ____59.2' TO 59.6'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255 C-273

TEST					SOIL PROPERTIES						
NO.	DIAMETER (INCHES)		STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
U266.I	1.44	3.46	.260	22.4	108	59	23	SILTY CLAY (CH)			

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

•

(

(

TEST		ST DA			SOIL PROPERTIES						
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG	LIMITS PL(%)	SOIL	DESCRIP	PTION	
U5.1	1.41	3.50	.257	36.6	86	38	20	SILTY	CLAY	(CL)	

BORING NO. 26

SAMPLE NO. 9

DEPTH 39.4' TO 39.7'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES						
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	RATE	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL	DESCRIPTION		
U9.1	1.41	3.45	.261	24.8	101	36	20	SILTY (CL)	CLAY, SANDY		

BORING NO. 26
SAMPLE NO. 17
DEPTH 78.2' TO 78.5'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

(

(

1

TEST NO.	TE.	ST DA		WATER	SOIL PROPERTIES WATER UNIT ATTERBERG LIMITS SOIL DESCRIPTION							
•		(INCHES)	DATE	CONTENT	WEIGHT (pcf)	LL(%)	PL(%)	SOIL DESCRIPTION				
U303.I	1.41	3.45	.261	30.6	94	51	23	SILTY CLAY (CL-CH)				

BORING NO. ____27 SAMPLE NO. ___4 DEPTH ___8.6'_TO__8.9'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

140.	DIAMETER		STRAIN	WATER CONTENT						
U183.I	(INCHES)	3.49	0.26	25.3	100	47	23	SILTY CLAY (CL)		

BORING NO. ____28_ SAMPLE NO. 3 DEPTH ______ 5.8' TO 6.1'

UNCONFINED COMPRESSION **TESTS**

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE DIAMETER	ST DA			DRY SOIL PROPERTIES						
NO.		HEIGHT (INCHES)	PATE	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	SOIL DESCRIPTION			
U186.2	1.40	3.50	0.26	38.0	84	42	20	SILTY CLAY (CL)			

BORING I	40. <u> </u>	28
SAMPLE	NO	9
DEPTH	28.8'	TO 29.1

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST NO.	TE DIAMETER		STRAIN	WATER CONTENT						
U17.I	1.44	3.54	.254	24.3	102	49	24	SILTY CLAY (CL-CH)		
U17.1	1.40	3.50	.257	24.3	103	49	24	SILTY CLAY (CL-CH)		

BORING NO. ____38 SAMPLE NO. ___3 DEPTH ____8.7' TO 9.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST NO.	TE DIAMETER	ST DA		WATER I	SOIL PROPERTIES WATER UNIT ATTERBERG LIMITS SOIL DESCRIPTION							
		(INCHES)	RATE	CONTENT	WEIGHT (pcf)	LL(%)	PL(%)	SOIL DESCRIPTION				
U18.1	1.42	3.50	.257	28.5	96	46	22	SILTY CLAY (CL-CH)				
					_							

BORING NO. 38

SAMPLE NO. 4

DEPTH 14.3' TO 14.6'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255 C-281

TEST	TE	ST DA	TA		SOIL PROPERTIES						
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
U22.1	1.41	3.50	.257	33.4	90	44	21	SILTY CLAY (CL-CH)			

BORING NO. _____38 SAMPLE NO. ____12 DEPTH ____54.2' TO 54.5'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST NO.	DIAMETER	ST DA HEIGHT (INCHES)	STRAIN	WATER CONTENT (%)	UNIT WEIGHT (pcf)	SOIL F		RTIES SOIL DESCRIPTION
U24.1	1.40	3.50	.257	41.3	79	55	24	SILTY CLAY (CL-CH)
					· · · · · · · · · · · · · · · · · · ·			

BORING NO. 38

SAMPLE NO. 16

DEPTH 73.7' TO 74.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST					SOIL PROPERTIES						
	DIAMETER (INCHES)	HEIGHT	RATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL (%)	LIMITS PL(%)	SOIL DESCRIPTION			
U25.1	1.41	3.50	.257	22.2	104	33	19	SILTY CLAY Gravelly (CL)			
Ur25.1	1.40	3.52	.256	22 .2	105	33	19	SILTY CLAY Gravelly (CL)			

BORING NO. _____38 SAMPLE NO. ____18 DEPTH 84.6' TO 84.9'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

(

TEST	TE	ST DA	TA		SOIL PROPERTIES							
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
U26. I	1.42	3.50	.257	31.9	9 2	45	25	SILTY CLAY (CL)				

BORING NO. 38

SAMPLE NO. 24

DEPTH 114.2' TO 114.5'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255 C-285

TEST	TEST . TEST DATA				SOIL PROPERTIES							
110.	DIAMETER (INCHES)		STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL (%)	PL(%)	SOIL DESCRIPTION				
U28.1	1.43	3.50	.257	29.4	94	63	28	SILTY CLAY (CH)				
U _r 28.1	1.40	3.38	.266	29.4	95	63	28	SILTY CLAY (CH)				

BORING NO. 41

SAMPLE NO. 2

DEPTH 4.5' TO 4.8'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

•

1	DIAMETER	ST DA HEIGHT (INCHES)	STRAIN	WATER CONTENT (%)	ONTENT WEIGHT 1 11 (0/1) SOIL DESCRIPTION						
U30.1	1.42	3.50	.257	39.2	83	47	24	SILTY CLAY (CL-CH)			
											

BORING NO. 41 SAMPLE NO. 7 DEPTH 20.6' TO 20.9'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES						
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
U31.1	1.40	3.50	.257	36.9	86	45	21	SILTY CLAY, (CL-CH)			

BORING NO. ____41 SAMPLE NO. ___9 DEPTH ___30.9' TO 31.2'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST		ST DA	TA		SOIL PROPERTIES						
NO.	(INCHES)	HEIGHT	STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	SOIL DESCRIPTION			
U32.1	1.37	3.45	.260	16.0	118	20	12	SILTY CLAY, SANDY (CL-SC)			
								(SAMPLE SLIGHTLY DISTURBED)			

BORING NO. ____41 SAMPLE NO. ___11 DEPTH __40.6' TO 41.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

FILE 1255 C-289

TEST	TE		TA	SOIL PROPERTIES						
NO.	DIAMETER (INCHES)		STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	\$01L DESCRIPTION		
U37.1	1.41	3.47	.259	26.4	99	34	20	SILTY CLAY, SANDY (CL)		

BORING NO. 41

SAMPLE NO. 23

DEPTH 101.8' TO 102.1'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST NO.	DIAMETER	ST DA HEIGHT (INCHES)	STRAIN	CONTENT	UNIT WEIGHT (pcf)	SOIL F		RTIES soil description
U40.1	1.44	3.13	.29	13.8	124	25	17	CLAYEY SAND (GC-SC)

BORING NO. 41

SAMPLE NO. 29

DEPTH 130.7' TO 131.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

140.	TEST DATA			SOIL PROPERTIES					
	DIAMETER (INCHES)	HEIGHT	STRAIN	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG	LIMITS PL(%)	SOIL DESCRIPTION	
U198.I	1.43	3.50	.257	27.3	97	63	24	SILTY CLAY (CH)	

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

110.	TEST DATA DIAMETER HEIGHT STRAIN RATE (INCHES) (INCHES) (%/MIN)			SOIL PROPERTIES WATER UNIT ATTERBERG LIMITS SOIL DESCRIPTION (%) (pcf) Check the second se					
U204.I		3.41	.264		100	34	16	SILTY CLAY, SANDY (CL)	

BORING NO. ___48 SAMPLE NO. ___14 DEPTH __61.2' TO 61.5'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES					
110.	DIAMETER (INCHES)		PATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	\$01L DESCRIPTION		
U134.1	1.41	3.51	.256	34.0	90	42	22	SILTY CLAY (CL)		

BORING NO. ____4 SAMPLE NO. ____4 DEPTH ___ 24.0' TO 24.3'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST		ST DA			SOIL PROPERTIES							
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	RATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	\$OIL DESCRIPTION				
U139.I	1.41	3.36	.268	25.6	100	33	22	SILTY CLAY; SANDY				
								(CL)				

BORING NO. ____49
SAMPLE NO. ___9
DEPTH ___73.9' TO 74.3'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255 C-295

TEST	TE	ST DA	TA		DRY SOIL PROPERTIES							
NO.	DIAMETER (INCHES)		RATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	501L	DESCRIPTION			
U85.I	1.39	3.21	.25	45.8	75	51	18	SILTY	CLAY (CH-CL)			

BORING NO. _____50
SAMPLE NO. ____6
DEPTH __29.3' TO 29.7'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

•

TEST	TΕ	ST DA	TA		DRY SOIL PROPERTIES						
140.	DIAMETER		STRAIN RATE	CONTENT	UNIT WEIGHT	ATTERBERG	LIMITS PL(%)	SOIL	DESCRIPTION		
 	(INCHES)	(INCHES)	(%/MIN)	(%)	(pcf)	ļ					
U86.I	1.40	3.27	0.25	51.3	70	55	23	SILTY	CLAY (CH)		
									· · · · · · · · · · · · · · · · · · ·		

BORING NO. 50 SAMPLE NO. 8 DEPTH 38.9' TO 39.2'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255 C-297

TEST	L	ST DA	· · ·		DRY SOIL PROPERTIES						
NO.	DIAMETER (INCHES)	1 - 7	PATE	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG	PL(%)	SOIL DESCRIPTION			
U87.I	1.40	3.25	.25	23.6	99	36	16	SILTY CLAY, SANDY (CL)			

BORING NO. ____50 SAMPLE NO. ___10 DEPTH ___49.0' TO 49.3'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

(

(

TEST NO.	DIAMETER	ST DA HEIGHT (INCHES)	STRAIN	WATER CONTENT (%)	ONTENT WEIGHT " LINE LIMITS SOIL DESCRIP						
U88.I	1.38	3.20	.25	25.8	99	39	18	SILTY CLAY (CL)			

BORING 1	۷0	50
SAMPLE	NO	12
DEPTH	58.6	- 58.9'

UNCONFINED COMPRESSION **TESTS**

THE DETROIT EDISON COMPANY

BELLE RIVER PLANT UNITS I & II

140.	DIAMETER	ST DA HEIGHT	STRAIN	CONTENT	DRY UNIT WEIGHT (pcf)	SOIL F	PROPEI	RTIES SOIL DESCRIPTION
U90.I	1.39	3.20	.25	27.9	95	39	20	SILTY CLAY (CL)
							<u> </u>	

BORING NO. _____50 SAMPLE NO. ____16 DEPTH ___78.6' - 78.9'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

110.	DIAMETER	ST DA HEIGHT (INCHES)	STRAIN	WATER CONTENT (%)	CONTENT WEIGHT 1 " LINE" SOIL DESCRIPTION						
U108.I	1.37	3.48	.25	30.3	92	49	20	SILTY CLAY (CL-CH)			

BORING 1	VO.		52	
SAMPLE	NO.		3	
DEPTH	20	5¹ -	200	

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		DRY SOIL PROPERTIES						
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	RATE	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
UI09.I	1.37	3.25	.25	31.8	94	35	18	SILTY CLAY (CL)			

BORING NO. <u>52</u>
SAMPLE NO. <u>4</u>
DEPTH 28.6' TO 28.9'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

TEST NO.	TE DIAMETER	ST DA	TA I STRAIN	WATER	DRY SOIL PROPERTIES						
	(INCHES)		DATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	SOIL DESCRIPTION			
UIII.I	1.38	3.02	.29	25.2	100	22	18	SILTY CLAY (CL-ML)			

BORING	NO	52
SAMPLE	NO	66
DEPTH	49.2	- 49.5'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255 C~303

TEST	_	TEST DATA DRY SOIL PROPERTIES								
110.	(INCHES)		STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	SOIL DESCRIPTION		
U112.I	1.36	3.37	.25	13.0	116	23	14	SILTY CLAY, SANDY		
								(CL)		

BORING NO. ____52 SAMPLE NO. ___7 DEPTH ___59.0' - 59.3'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

,	DIAMETER	ST DA HEIGHT (INCHES)	STRAIN		UNIT WEIGHT (pcf)	SOIL PROPERTIES ATTERBERG LIMITS SOIL DESCRIPTION LL (%) PL (%)			
U113.1	1.34	3.50	.25	14.2	115	24	14	SILTY CLAY, SANDY	
	<u> </u>							(CL)	

BORING NO. ____52 SAMPLE NO. ____8 DEPTH ___68.2' TO 68.5'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		DRY SOIL PROPERTIES							
NO.	DIAMETER (INCHES)		RATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
U115.1	1.39	3.27	.28	27.2	97	39	18	SILTY CLAY, SANDY				
								(CL)				

BORING NO. 52 SAMPLE NO. 10 DEPTH 88.6' - 88.9'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

€

(

	DIAMETER	ST DA HEIGHT	STRAIN		DRY UNIT WEIGHT (pcf)	SOIL F	PROPE	RTIES SOIL DESCRIPTION
U96.1	1.40	3.20	.25	31.8	88	49	20	SILTY CLAY (CL-CH)
		··· -						

BORING NO.	53
SAMPLE NO.	3
DEPTH19.6	TO 19.91

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

140.	TE: DIAMETER (INCHES)		STRAIN	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	SOIL F	ROPER	RTIES SOIL DESCRIPTION
U97.I	1.38	3.24	.25	40.7	80	49	22	SILTY CLAY (CL-CH)

BORING NO. ____53 SAMPLE NO. ___4 DEPTH ____29.6' - 29.9' UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

	DIAMETER				DRY UNIT WEIGHT (pcf)	SOIL I	PROPE	RTIES SOIL DESCRIPTION
U99.1	1.37	3.17	.25	27.9	94	43	18	SILTY CLAY (CL)

BORING	NO	53
SAMPLE	NO	6
DEPTH	49.21	TO 495'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

140.	TE DIAMETER (INCHES)		STRAIN	WATER CONTENT (%)	CONTENT WEIGHT LL(%) PL(%)						
U101.I	1.40	3.20	.25	27.9	95	39	21	SILTY CLAY (CL)			

BORING NO. ____53 SAMPLE NO. ___9 DEPTH ____80.1' - 80.4' UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

	(INCHES) (INCHES) (%/MIN)			WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	SOIL ATTERBERG LL(%)	PROPE	RTIES SOIL DESCRIPTION
U398.I	1.38	3.25	.25	25.8	99	38	17	SILTY CLAY, SANDY (CL)
BODIN					-			

BORING NO. ____54
SAMPLE NO. ___5
DEPTH ____59.3' TO 59.6'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

	DIAMETER		STRAIN	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	SOIL F		RTIES SOIL DESCRIPTION
U400.I	(INCHES)	3.17	.25	25.9	98	37	18	SILTY CLAY, SANDY (CL)

BORING NO. _____54
SAMPLE NO. ____7
DEPTH ____68.5' TO 68.8'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST NO.	DIAMETER	ST DA HEIGHT (INCHES)	STRAIN	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	SOIL F ATTERBERG LL(%)		RTIES soil description
U76.I	1.38	3.22	.25	32.8	90	48	20	SILTY CLAY (CL-CH)
	<u></u>							

BORING I	NO	59
SAMPLE	NO	3
DEPTH	IR B' TO	10.11

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		DRY	SOIL F	PROPE	
	DIAMETER (INCHES)	HEIGHT	l RATE	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION
U78.I	1.38	3.27	.25	26.2	99	38	18	SILTY CLAY, SANDY (CL)

BORING NO. ____59
SAMPLE NO. ___5
DEPTH __38.7' TO 39.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST NO.	DIAMETER	ST DA HEIGHT (INCHES)	STRAIN	CONTENT	DRY UNIT WEIGHT (pcf)	SOIL F		RTIES SOIL DESCRIPTION
1.08U	1.38	3.26	.25	26.3	98	36	18	SILTY CLAY, SANDY (CL)

BORING	NO.	59	
SAMPLE	NO.	7	
DEPTH	58.6	TO 58.9'	

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES						
NO.	DIAMETER (INCHES)	HEIGHT	RATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG	LIMITS PL(%)	SOIL DESCRIPTION			
U43.I	1.40	2.85	.316	24.3	105	39	21	SILTY CLAY (CL)			
U _R 43.I	1.44	2.70	.333	24.3	103	39	21	SILTY CLAY (CL)			

BORING NO. 60 SAMPLE NO. 3 DEPTH 17.6' TO 18.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

TEST	TE	ST DA	TA		SOIL PROPERTIES						
110.	DIAMETER (INCHES)		STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
U45.I	1.43	3.50	.257	36.8	86	51	22	SILTY CLAY (CH)			
<u> </u>											

BORING NO. _____60

SAMPLE NO. ____5

DEPTH ____25.6' TO 25.9'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES						
NO.	DIAMETER (INCHES)		RATE	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
U46.I	1.41	3.06	.26	35.0	88	48	25	SILTY CLAY (CL-CH)			

BORING NO. ____60
SAMPLE NO. ___6
DEPTH ____30.5' TO 30.8'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255

•

•

•

TEST	TE	ST DA	TA	<u> </u>		SOIL F	PROPE	RTIES	
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL	DESCRIPTION
U 4 8.1	1.41	3.50	.257	39.7	83	47	25	SILTY	CLAY (CL)
				:					

BORING NO. ____60 SAMPLE NO. ____8 DEPTH ___40.6' TO 41.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST NO.	TE DIAMETER (INCHES)		STRAIN	WATER CONTENT							
U50.I	1.40	3.50	0.26	25.5	100	34	16	SILTY CLAY (CL)			

BORING NO. ____60
SAMPLE NO. ___10
DEPTH ____50.9' TO 51.2'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255

(

(

TEST		ST DA	· -			SOIL F	PROPE	RTIES		
140.	DIAMETER (INCHES)	HEIGHT (INCHES)	RATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG	LIMITS PL(%)	SOIL	DESCRIPT	TION
U51.1	1.41	3.49	.258	24.8	103	33	18	SILTY (CL)	CLAY,	SANDY
451.1	1.41	3.30	.273	24.8	103	33	18	SILTY (CL)	CLAY,	SANDY

BORING NO. ____60 SAMPLE NO. ___11 DEPTH _ 55.6' TO 56.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255 C-321

TEST	ΤE	ST DA	TA			SOIL	PROPER	RTIES
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	RATE	CONTENT	UNIT WEIGHT (pcf)	ATTERBER	G LIMITS PL(%)	SOIL DESCRIPTION
U54.I	1.42	3.50	.257	26.9	97	40	20	SILTY CLAY (CL)
						-		

BORING NO. 60 SAMPLE NO. 14 DEPTH 75.1' TO 75.4'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

•

(

TEST	TE	ST DA	TΑ		SOIL PROPERTIES							
J 140.	DIAMETER (INCHES)	HEIGHT	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG	LIMITS PL(%)	SOIL DESCRIPTION				
U59.1	1.41	3.50	.257	27.1	101	38	20	SILTY CLAY Sandy (CL)				
							,					

BORING NO. ____60 SAMPLE NO. ___19 DEPTH _100.1' TO 100.4'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES							
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
U 63 .1	1.44	3.50	.257	15.4	115	17	11	SILTY CLAY, SANDY (CL-ML)				
						:						

BORING NO. ____60
SAMPLE NO. ___23
DEPTH __119.6' TO_120.0

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

(

C

TEST		ST DA			SOIL PROPERTIES						
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG	LIMITS PL(%)	SOIL DESCRIPTION			
U 3 49.I	1.44	3.15	.286	27.8	96	50	22	SILTY CLAY (CL-CH)			
							. ••				

BORING NO. ______ 101 ____ 2 ____ DEPTH 8.9' TO 9.2'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES							
NO.	DIAMETER (INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
U351.1	1.41	3.29	.274	35.8	86	49	24	SILTY CLAY (CL-CH)				
·								·				

BORING NO. _____101 SAMPLE NO. ____4 DEPTH ___19.9' TO 20.2'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST		ST DA	ŢΑ		SOIL PROPERTIES						
NO.	(INCHES)	HEIGHT (INCHES)	STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	\$OIL DESCRIPTION			
U354.I	1.41	3.37	.267	40.0	81	46	24	SILTY CLAY (CL-CH)			

BORING NO. 101 SAMPLE NO. 7 DEPTH 34.9' TO 35.2'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES							
140.	DIAMETER (INCHES)			WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
U357.1	1.40	3.30	.273	32.8	90	40	22	SILTY CLAY (CL-CH)				

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

(

•

TEST NO.	DIAMETER	ST DA HEIGHT	STRAIN	WATER CONTENT	ONTENT WEIGHT LL(%) PL(%)						
U360.I		3.28	.274	26.6	(pcf) 97	36	19	SILTY CLAY, SANDY (CL)			
<u> </u>											

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES						
110.	DIAMETER (INCHES)	HEIGHT (INCHES)	RATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
U364.I	1.41	3.35	.269	25.2	97	37	19	SILTY CLAY, SANDY (CL)			

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255

•

(

•

TEST	TE	ST DA	TA		SOIL PROPERTIES						
110.	DIAMETER (INCHES)	HEIGHT	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG	LIMITS PL(%)	SOIL DESCRIPTION			
U339.I	1.41	3.35	.268	20.7	107	33	20	SILTY CLAY, SANDY (CL)			
			ļ								

BORING NO. _______9

DEPTH ______81.6' TO 81.9'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA	DRY SOIL PROPERTIES							
140.	DIAMETER (INCHES)		STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
U241.1	1.46	3.50	.257	26.2	99	47	24	SILTY CLAY (CL-CH)			
		i									

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

•

•

TEST	TE	ST DA	TA		DRY SOIL PROPERTIES							
NO.	DIAMETER (INCHES)	HEIGHT	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	SOIL DESCRIPTION				
U416.2	1.42	3.55	0.26	13.5	113	49	22	SILTY CLAY (CL-CH)				
								"COMPACTED SAMPLE"				

BORING NO. ____127 SAMPLE NO. ____3 DEPTH _____5.6' TO 7.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

,,,,,	DIAMETER	ST DA HEIGHT (INCHES)	STRAIN	LOCAL PORCE	UNIT WEIGHT (pcf)	SOIL F		RTIES Soil Description
U526.I	1.42	3.46	-		102	48	22	SILTY CLAY (CL-CH)

BORING NO. ____136
SAMPLE NO. ___4
DEPTH _____8.8' TO 9.2'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255

(

TEST	TE	ST DA			DRY SOIL PROPERTIES						
140.	DIAMETER (INCHES)	HEIGHT	PATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	\$01L DESCRIPTION			
U _r 527.1	1.40	3.28	.274	17.5	100	43	22	SILTY CLAY (CL)			
			·					COMPACTED SAMPLE			

BORING NO. ____136
SAMPLE NO. ____ST 6
DEPTH ___13.0' TO 14.6'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	•	ST DA	-		SOIL PROPERTIES						
NO.	(INCHES)		PATE	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
U529.I	1.41	3.05	.28	17.5	103	49	23	SILTY CLAY (CL-CH)			

BORING NO. ____141 SAMPLE NO. ____2 DEPTH ____ 8.0' TO 10.0'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

(

(

TEST NO.	TE DIAMETER	ST DA	TA I STRAIN	WATER	DRY SOIL PROPERTIES WATER UNIT ATTERBERG LIMITS SOIL DESCRIPTION						
		(INCHES)	RATE (%/MIN)	CONTENT (%)	WEIGHT (pcf)	LL(%)	PL (%)	SOIL DESCRIPTION			
U537.I -		3.24 3.23		26.3 /24.1	97	48	21	SILTY CLAY (CL-CH)			
rU537.I	1.42	3.15	.28	24.1	100						

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		DRY SOIL PROPERTIES							
140.	DIAMETER (INCHES)	HEIGHT	STRAIN RATE (%/MIN)	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
U _r 542.1	1.40	3.18	.283	16.6	104	46	22	SILTY CLAY (CL)				
								COMPACTED SAMPLE				

BORING NO. ____146 SAMPLE NO. ____ST7 DEPTH___14.0' TO 16.1'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255

(

TEST	TE	ST DA	TA		DRY SOIL PROPERTIES							
1 140.	DIAMETER (INCHES)	HEIGHT (INCHES)	RATE	CONTENT	UNIT	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
U _r 548.i	1.37	3.20	.281	16.8	104	50	21	SILTY CLAY (CL-CH)				
								COMPACTED SAMPLE				

BORING NO. _____158 SAMPLE NO. _____ST 2 DEPTH _____7.5' TO 9.7'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255 C-339

TEST		ST DA			SOIL PROPERTIES						
110.	DIAMETER (INCHES)		RATE	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	SOIL DESCRIPTION			
U552.I	1.40	3.43	0.25	23.9	104	50	23	SILTY CLAY (CL-CH)			

BORING NO. ____185 SAMPLE NO. ____3 DEPTH _____75' TO 7.8'

UNCONFINED COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

ſ

TEST	TE	ST DA	TA		DRY SOIL PROPERTIES							
140.	DIAMETER (INCHES)	HEIGHT	STRAIN RATE (%/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	SOIL DESCRIPTION				
U554.I	1.41	3.33	0.25	39.3	81	49	22	SILTY CLAY (CL-CH)				

BORING NO. ____185
SAMPLE NO. ____7
DEPTH ____18.5' TO 18.8'

UNCONFINED COMPRESSION-TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

C-342

TEST	TE	ST DA	TA		SOIL PROPERTIES							
NO.	DIAMETER OF VANE (INCHES)	HEIGHT OF VANE (INCHES)	RATE OF ROTATION (°/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
VS85.I	.50	.25	6 .0	35.2	82	39	18	SILTY CLAY (CL)				
، VS85.۱	.50	.25	6 .0	35.2	82	39	18	SILTY CLAY (CL)				

BORING NO. _____50
SAMPLE NO. ____6
DEPTH ____28.1' - 28.3'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES						
NO.	DIAMETER OF VANE (INCHES)	HEIGHT OF VANE (INCHES)	RATE OF ROTATION (°/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
VS87.I	.50	.25	6.0	25.9	96	36	16	SILTY CLAY, SANDY (CL)			
رVS87.۱	.50	.25	6.0	25.9	96	36	16	SILTY CLAY, SANDY (CL)			

BORING NO. _____50
SAMPLE NO. ____10
DEPTH ____48.1' - 48.4'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES							
NO.	DIAMETER OF VANE (INCHES)	HEIGHT OF VANE (INCHES)	RATE OF ROTATION (°/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
V\$109.I	.50	.25	6.0	30.5	89	35	18	SILTY CLAY (CL)				
rVSIO9.l	.50	.25	6.0	30.5	89	35	18	SILTY CLAY (CL)				

BORING NO. ____52 SAMPLE NO. ___4 DEPTH ___28.9' - 29.2'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

> FILE 1255 C-345

TEST	TE	ST DA	TA			SOIL PROPE	RTIES
NO.	DIAMETER OF VANE (INCHES)	HEIGHT OF VANE (INCHES)	RATE OF ROTATION (°/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL(%) PL(%)	SOIL DESCRIPTION
VS111.1	.50	.25	6.0	23.6	101		SILTY CLAY, SANDY (CL)
,VSIII.I	.50	.25	6.0	23.6	101		SILTY CLAY, SANDY (CL)

BORING NO. ____52 SAMPLE NO. ___6 DEPTH ____49.6'-49.8'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST		ST DA	• • •		SOIL PROPERTIES						
NO.	DIAMETER OF VANE (INCHES)	HEIGHT OF VANE (INCHES)	RATE OF ROTATION (°/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
VSI15.1	.50	.25	6.0	26.4	96	39	18	SILTY CLAY, SANDY (CL)			
رVSI15.۱	.50	.25	6.0	26.4	96	39	18	SILTY CLAY, SANDY (CL)			

BORING NO. 52

SAMPLE NO. 10

DEPTH 89.1' - 89.4'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES							
NO.	DIAMETER OF VANE (INCHES)	HEIGHT OF VANE (INCHES)	RATE OF ROTATION (°/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
VS99.2 ●	.50	.25	6.0	27.3	94	43	18	SILTY CLAY (CL)				
rVS99.2 °	.50	.25	6.0	27.3	94	43	18	SILTY CLAY (CL)				

BORING NO. ____53 SAMPLE NO. ___6 DEPTH ___49.7'-50.0'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255

€

TEST	TE:	ST DA	TA		SOIL PROPERTIES						
NO.	DIAMETER OF VANE (INCHES)	HEIGHT OF VANE (INCHES)	RATE OF ROTATION (°/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION			
VS101.1	.50	.25	6.0	27.9	95	39	21	SILTY CLAY (CL)			
۲ ۷ SIOI.۱	.50	.25	6.0	27.9	95	39	21	SILTY CLAY (CL)			

BORING NO. ____53 SAMPLE NO. ___9 DEPTH ___79.5' - 79.8'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

TEST		ST DA			SOIL PROPERTIES							
NO.	DIAMETER OF VANE (INCHES)	HEIGHT OF VANE (INCHES)	RATE OF ROTATION (°/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL DESCRIPTION				
VS398.I	.50	.25	6.0	27.5	92	38	17	SILTY CLAY, SANDY (CL)				

BORING NO. ____54
SAMPLE NO. ___5
DEPTH ____59.7'-60.0'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES							
1 110.	OF VANE	HEIGHT OF VANE (INCHES)	ROTATION	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	LIMITS PL(%)	SOIL	DESCRIPTION			
VS76.I	.50	.25	6.0	32.8	90	48	20	SILTY	CLAY (CL-CH)			

BORING I	NO.	59	_
SAMPLE	NO.	3	
DEPTH	18	3.5' - 18.8'	_

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

TEST	TE	ST DA	TA		SOIL PROPERTIES						
NO.	DIAMETER OF VANE	HEIGHT OF VANE (INCHES)	RATE OF	CONTENT	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	SOIL DESCRIPTION			
VS78.I •	.50	.25	6.0	25.6	96	38	18	SILTY CLAY, SANDY (CL)			

BORING NO. ____5 SAMPLE NO. ___5 DEPTH ____39.4' - 39.7'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

(

TEST	TE	ST DA	TA		SOIL PROPERTIES						
NO.	DIAMETER OF VANE (INCHES)	HEIGHT OF VANE (INCHES)	RATE OF ROTATION (°/MIN)	WATER CONTENT (%)	UNIT WEIGHT (pcf)	ATTERBERG LL(%)	PL(%)	SOIL DESCRIPTION			
V\$80.I	.50	.25	6.0	24.1	102	36	18	SILTY CLAY, SANDY (CL)			
rV S BO.I ه	.50	.25	6.0	24.1	102	36	18	SILTY CLAY, SANDY (CL)			

BORING NO. _____59
SAMPLE NO. ____7
DEPTH ____59.0' - 59.3'

LABORATORY VANE SHEAR TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

C-354

FILE 1255 C-355

LIQUID LIMIT 44 PLASTIC LIMIT 21

BELLE RIVER PLANT UNITS I & II

FILE 1255 C-357

SOIL DESCRIPTION: SILTY CLAY (CL) LIQUID LIMIT 36 PLASTIC LIMIT 19

TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255 C-361

FILE 1255 C-363

SOIL DESCRIPTION: SILTY CLAY (CL)

LIQUID LIMIT 46 PLASTIC LIMIT 22

TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

SOIL DESCRIPTION: SILTY CLAY (CL-CH)

LIQUID LIMIT 49 PLASTIC LIMIT 22

TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

LIQUID LIMIT 38 PLASTIC LIMIT_17

BELLE RIVER PLANT UNITS I & II.
FILE 1255

C-373

SOIL DESCRIPTION: SILTY CLAY, SANDY (CL)

LIQUID LIMIT 37 PLASTIC LIMIT 18

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255 C-377

FILE 1255 C-379

SOIL DESCRIPTION: SILTY CLAY (CL-CH)

LIQUID LIMIT 48 PLASTIC LIMIT 23

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & IL

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	18
SAMPLE NO	12
DEPTH	108.0' TO 110.0'

REMARKS ENVELOPE IS INTERPRETIVE,
BASED ON LIMITED DATA POINTS

AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

FILE 1255 C-386

92

1.39

18

12

92

1.37

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	26
SAMPLE NO.	2
NEPTH	3.5 TO 5.5

REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

C-387

C~388

EFFECTIVE NORMAL STRESS - p s f

BORING NO	20
SAMPLE NO	5
DEPTH18.0	O TO 20.0
REMARKS ENVELO	OPE IS INTERPRETIVE,
AVAILABLE	
	AND ASSOCIATES, INC. GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255
C-389

C-390

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO	26
SAMPLE NO.	11
DEPTH 48.0 T	0 50.0
REMARKS ENVELOPE BASED ON LIMITED DAT	
AVAILABLE	·
GOLDBERG-ZOINO AND CONSULTANTS IN GEO	ASSOCIATES, INC. TECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255
C-391

C-392

93

1.40

.025

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO). 26
SAMPLE N	028
DEPTH	128.0' TO 130.0'

REMARKS SOILS WITHIN THIS SAMPLE ARE VARIABLE - SEE TEST RESULTS FOR TI3.1.1

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I B II
FILE 1255

C-394

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

SAMPLE	NO	28	· .
DEPTH	128.0	TO 130	<u>.0'</u>
REMARKS S			 T
RESULTS FOI			<u> </u>
GOLDBERG-Z			ES, INC.

BORING NO. _____ 26

MOHR STRENGTH ENVELOPE TRIAXIAL COMPRESSION **TESTS**

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II FILE 1255 C-395

CONSULTANTS IN GEOTECHNICAL ENGINEERING

C-396

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO33
SAMPLE NO7
DEPTH28.0' TO 30.5'
REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS AVAILABLE
GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255
C-397

C - 398

TOTAL NORMAL STRESS - psf

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	33
SAMPLE NO	9
DEPTH38.0	0' TO 40.5'
REMARKS ENVELOPE BASED ON LIMITED D AVAILABLE	
GOLDBERG-ZOINO AN	ND ASSOCIATES, INC.

MOHR STRENGTH ENVELOPE TRIAXIAL COMPRESSION **TESTS**

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II FILE 1255 C-399

C-400

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO	48
SAMPLE NO.	6
DEPTH 18.0	O TO 20.0

REMARKS ENVELOPE IS INTERPRETIVE,
BASED ON LIMITED DATA POINTS
AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

C-401

CONSULTANTS IN GEOTECHNICAL ENGINEERING

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	49
SAMPLE NO.	6
DEPTH	43.0' TO 45.0'

REMARKS ENVELOPE IS INTERPRETIVE,
BASED ON LIMITED DATA POINTS
AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

FILE 1255

TOTAL NORMAL STRESS - p.s.f.

EFFECTIVE NORMAL STRESS - p.s.f.

BORING NO	49
SAMPLE NO.	13
DEPTHII	3.0' TO 115.0'

REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

CONSULTANTS IN GEOTECHNICAL ENGINEERING

TEST NO. / SYMBOL TI43.1.1143.1.2 1143.1.3

			-		
INITIAL CONDITIONS	WATER CONTENT	w o	24.0%	28.7%	29.2%
	DRY DENSITY pcf	βq	100	95	93
	SAMPLE DIAMETER in.	Do	1.40	1.40	1.41
	SAMPLE HEIGHT	Ho	3.37	3.46	3.44
SHEAR	FINAL BACK PRESSURE p.s.f.	чo	11520	7200	7200
FINAL CONDITIONS CONDITIONS BEFORE SHEAR	INITIAL EFFECTIVE STRESS p.s.f.	ι _{σι} . Ε3	3816	7632	15264
	VOLUMETRIC STRAIN	€vol	2.6%	5.1%	6.3%
	PORE PRESSURE RESPONSE		95	100	100
TIONS	WATER CONTENT	Wf	23.1%	26.5 %	24.4%
FINAL COND	SKETCH OF SAMPLE AT END OF TEST				

PERCENT/MINUTE .024 .023 .024

BORING NO. 49

SAMPLE NO. 13

DEPTH 113.0' TO 115.0'

SOIL DESCRIPTION SILTY CLAY, SANDY (CL)

LIQUID LIMIT 33 PLASTIC LIMIT 22

TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

TOTAL NORMAL STRESS - p.s.f.

EFFECTIVE NORMAL STRESS - p.s.f.

SAMPLE NO. 22
DEPTH98.0' TO 100.0'
REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS
AVAILABLE
GOLDBERG-ZOINO AND ASSOCIATES, INC.

CONSULTANTS IN GEOTECHNICAL ENGINEERING

48

BORING NO

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

FILE 1255 C-408

TOTAL NORMAL STRESS - p.s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	50
SAMPLE NO.	6
DEPTH	28.0' TO 30.0'
REMARKS ENVE	ELOPE IS INTERPRETIVE, ED DATA POINTS
AVAILABLE	
GOLDBERG-ZOIN	O AND ASSOCIATES INC

CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE TRIAXIAL COMPRESSION **TESTS**

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II FILE 1255

FILE 1255 C-410

86

1.39

.024

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - psf

SAMPLE NO	18
DEPTH88	3.0' TO 90.0'
REMARKS ENVELOR BASED ON LIMITE AVAILABLE	OPE IS INTERPRETIVE, D DATA POINTS
GOLDBERG-ZOINO CONSULTANTS IN	AND ASSOCIATES, INC. GEOTECHNICAL ENGINEERING

50

BORING NO

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

FILE 1255 C-412

96

1.41

3.25

.025

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	52
SAMPLE NO.	6
DEPTH	48.0' TO 50.5'

REMARKS ENVELOPE IS INTERPRETIVE,
BASED ON LIMITED DATA POINTS
AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

FILE 1255 C-414

104

1.38

.025

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

SAMPLE NO. 4
DEPTH53.0' TO 55.0'
REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS
AVAILABLE
GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

54

BORING NO.

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I 8 II
FILE 1255
C-415

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO),
SAMPLE N	06
DEPTH	63.0' TO 65.0'
	NVELOPE IS INTERPRETIVE,
AVAILABLE	
GOLDBERG-Z	OINO AND ASSOCIATES, INC. S IN GEOTECHNICAL ENGINEERING

TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

FILE 1255 C-418

98

1.39

3.29

98%

.025

EFFECTIVE NORMAL STRESS - p.s f

BORING NO.	60
SAMPLE NO.	2
DEPTH 8.0	TO 10.0

REMARKS ENVELOPE IS INTERPRETIVE,
BASED ON LIMITED DATA POINTS
AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING N	NO		60	
SAMPLE	NO	a =	2	
DEPTH	8.0	TO	10.0	

REMARKS ENVELOPE IS INTERPRETIVE BASED ON LIMITED DATA POINTS AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255

C - 421

T42.I.Ip|T42.I.2,|T42.I.3, TEST NO. / SYMBOL

SNO	WATER CONTENT	wo	2 9 .3%	29.3%	29.3%
CONDITION	DRY DENSITY pcf	٧d	96	99	98
	SAMPLE DIAMETER	Do	1.40	1.40	1.40
INITIAL	SAMPLE HEIGHT in	но	3.30	3.25	3.29
SHEAR	FINAL BACK PRESSURE psf	uo	8640	8640	8640
EFORE	FINAL BACK PRESSURE PS f INITIAL EFFECTIVE STRESS PS f VOLUMETRIC STRAIN PORE PRESSURE RESPONSE WATER CONTENT Wf SKETCH OF SAMPLE AT END OF TEST		576	1152	2304
B SNOI			0.7%	2.4%	3.3%
CONDIT			97%	97%	97%
TIONS	WATER CONTENT	w _f	29.0%	26. !%	25.8%
FINAL COND	SKETCH OF SAMPLE AT END OF TEST		N		

RATE OF STRAIN .025 .024 .025 PERCENT/MINUTE

60 BORING NO. __ 2 SAMPLE NO. __ DEPTH 8.0 TO 10.0

SOIL DESCRIPTION SILTY CLAY (CL)

LIQUID LIMIT 53 PLASTIC LIMIT 26

REMOLDED SAMPLES

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & IL

FILE 1255

TOTAL NORMAL STRESS - p.s.f.

EFFECTIVE NORMAL STRESS - p.s.f.

BORING I	NO. 👱	60
SAMPLE	NO	4
DEPTH	21.0	TO 23.0

REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS

AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

C-424

94

1.43

BORING NO. _______ 60

SAMPLE NO. _____ 9

DEPTH 45.0 TO 47.0

REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I 8 II
FILE 1255

TEST NO. / SYMBOL T49.1.1 T49.1.2 T49.1.3

CONDITIONS	WATER CONTENT	₩o	26.6%	27.0%	26.0%
	DRY DENSITY pcf	۲٩	99	98	102
IL COP	SAMPLE DIAMETER	Do	1.42	1.40	1.39
INITIAL	SAMPLE HEIGHT	Нο	3.32	3.40	3.26
SHEAR	FINAL BACK PRESSURE psf	uo	10080	10080	11520
INITIAL EFFECTIVE STRESS	σ̄₁• σ̄₃	2016	4032	8064	
B SNOI.	VOLUMETRIC STRAIN	€vol	1, 9 %	3. 5%	5. 7%
FINAL CONDITIONS CONDITIONS BEFORE SHEAR	PORE PRESSURE RESPONSE		97%	96%	9 %
TIONS	WATER CONTENT	w _f	26.0%	25.5%	22.6%
COND	SKETCH OF SAMPLE				
FINAL	AT END OF TEST				

RATE OF STRAIN PERCENT/MINUTE	.024	.024	.025

BORING NO. _______ 60
SAMPLE NO. ______ 9
DEPTH _____ 45.0 TO 47.0

SOIL DESCRIPTION SILTY CLAY, SANDY (CL)

LIQUID LIMIT 38 PLASTIC LIMIT 16

TRIAXIAL COMPRESSION TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & IL

FILE 1255

TOTAL NORMAL STRESS - p.s.f.

EFFECTIVE NORMAL STRESS - p.s.f

BORING NO. 60			
SAMPLE NO			
DEPTH67.0' TO 69.0'			
REMARKS ENVELOPE IS INTERPRETIVE, BASED ON DATA POINTS			
AVAILABLE			
GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING			

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I 8 II
FILE 1255

TEST NO. 7 SYMBOL T53.1.2

		_			
INITIAL CONDITIONS	WATER CONTENT	₩o	31.9%	%	15.5%
	DRY DENSITY pcf	۲d	91	·	114
	SAMPLE DIAMETER	Do	1.41		1.40
	SAMPLE HEIGHT in	Но	3.28		3.15
SHEAR	FINAL BACK PRESSURE p.s.f.	цo	8640		11,520
EFORE	INITIAL EFFECTIVE STRESS p.s.f.	σ̄ ₁ ₌ σ̄ ₃	5040		5760
B SNOL	VOLUMETRIC Strain	€vol	5.3%	%	2.4%
CONDIT	PORE PRESSURE RESPONSE		97%		93%
TIONS	WATER CONTENT	w _f	28.4%	%	14.9%
FINAL COND	FINAL BACK PRESSURE P.S.f. INITIAL EFFECTIVE STRESS P.S.f. VOLUMETRIC STRAIN PORE PRESSURE RESPONSE WATER CONTENT W SKETCH OF SAMPLE AT END OF TEST				

RATE OF STRAIN
PERCENT/MINUTE .025 .026

BORING NO. 60 SAMPLE NO. 13 DEPTH 67.0' TO 69.0'

T53.1.2-CLAYEY GRAVEL(GC)
SOIL DESCRIPTION T53.1.4-SILTY CLAY(CL)

LIQUID LIMIT (40) PLASTIC LIMIT (19)

* NOTE: SOIL PROPERTIES OF THIS SAMPLE ARE HIGHLY VARIABLE - SEE DATA FOR T53.I.1, T53.I.3 AND T53.I.5

CONSOLIDATED UNDRAINED
TRIAXIAL COMPRESSION
TESTS

THE DETROIT'EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

TOTAL NORMAL STRESS - p.s.f.

EFFECTIVE NORMAL STRESS - p.s.f.

BORING NO. 101,105,127,128,180 & 183 SAMPLE NO. COMBINED SAMPLES

DEPTH ______2.0' TO 10.0'

REMARKS ENVELOPE IS INTERPRETIVE BASED ON LIMITED DATA POINTS AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II FILE 1255

TEST NO. / SYMBOL 1466.1.1 1466.14 1466.15

S	WATER CONTENT	wo	15.3%	15.5%	15.9%
			3.0 %		
CONDITION	DRY DENSITY pcf	۲d	113	114	114
	SAMPLE DIAMETER	Do	1.38	1.39	1.40
INITIAL	SAMPLE HEIGHT	Но	3.19	3.36	3.44
SHEAR	FINAL BACK PRESSURE p.s.f.	чо	7200	7200	7200
INAL CONDITIONS CONDITIONS BEFORE SHEAR	INITIAL EFFECTIVE STRESS p.s.f.	σ̄₁: σ̄3	1008	2016	3168
	VOLUMETRIC Strain	€vol	— %	.14 %	.14%
CONDIT	PORE PRESSURE RESPONSE		98%	99%	98%
TIONS	WATER CONTENT	Wf	21.3%	19.1%	18.4%
INAL COND	SKETCH OF SAMPLE AT END OF TEST				

PERCENT/MINUTE .025 .024 .023

BORING NO. IOI,IO5,127,128,180 & 183 SAMPLE NO. COMBINED SAMPLES DEPTH 2.0' TO 10.0'

SOIL DESCRIPTION SILTY CLAY (CL-CH)

LIQUID LIMIT ____ PLASTIC LIMIT ____ SEE DATA FOR INDIVIDUAL SAMPLES

TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

FILE 1255

TOTAL NORMAL STRESS - psf

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	105		
SAMPLE NO.	2		
DEPTH	9.0' TO 11.0'	:	
REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS AVAILABLE			
GOLDBERG-ZOIN CONSULTANTS IN	O AND ASSOCIATES, INC. N GEOTECHNICAL ENGINE	ERING	

MOHR STRENGTH ENVELOPE TRIAXIAL COMPRESSION **TESTS**

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II FILE 1255

c-432

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

SAMPLE NO5
DEPTH 40.0' TO 42.5'
REMARKS ENVELOPE IS INTERPRETIVE,
BASED ON LIMITED DATA POINTS AVAILABLE
GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

105

BORING NO.

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

FILE 1255 C - 435

84

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

SAMPLEN	102
DEPTH	8.2' TO 9.2'
REMARKS_	
	· ·

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II FILE 1255 C-436

TOTAL NORMAL STRESS - p.s.f.

EFFECTIVE NORMAL STRESS - p.s.f.

BORING NO.			
SAMPLE NO	D. <u>2</u>		
DEPTH	8.0' TO 10.0'		
REMARKS ENVELOPE IS INTERPRETIVE			

REMARKS ENVELOPE IS INTERPRETIVE
BASED ON LIMITED DATA POINTS
AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

C4437

TOTAL NORMAL STRESS - psf

EFFECTIVE NORMAL STRESS - p s f

BOKING NO
SAMPLE NO. 4
DEPTH 30.0 TO 32.0
REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS AVAILABLE
GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255
C-439

87

1.41

C - 440

TOTAL NORMAL STRESS - psf

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	129	
SAMPLE NO.	5	
DEPTH	18.0' TO 21.0'	
REMARKS ENVE BASED ON LIMITE AVAILABLE	LOPE IS INTERPRETIVE, ED DATA POINTS	
	O AND ASSOCIATES, INC.	

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

TOTAL NORMAL STRESS - psf

EFFECTIVE NORMAL STRESS - p s f

BORING NO129
SAMPLE NO. 19
DEPTH 93.0' TO 95.5'
REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS AVAILABLE
GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

BORING NO.

MOHR STRENGTH ENVELOPE TRIAXIAL COMPRESSION **TESTS**

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II FILE 1255 C-443

CONSULTANTS IN GEOTECHNICAL ENGINEERING

FILE 1255 C-444

99

99

1.40

3.32

.025

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO. 141
SAMPLE NO. 4
DEPTH18.0' TO 20.0'
REMARKS ENVELOPE IS INTERPRETIVE, BASED ON LIMITED DATA POINTS
AVAILABLE
GOLDBERG-ZOING AND ASSOCIATES INC

CONSULTANTS IN GEOTECHNICAL ENGINEERING

TESTS
THE DETROIT EDISON COMPANY

BELLE RIVER PLANT UNITS I & II
FILE 1255

MOHR STRENGTH ENVELOPE

TRIAXIAL COMPRESSION

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BOILING NO.			
SAMPLE NO.	3		
DEPTH	14.0' TO	16.1'	
REMARKS ENVE		•	
AVAILABLE			
GOLDBERG-ZOIN	O AND ASS	OCIATES INC	

CONSULTANTS IN GEOTECHNICAL ENGINEERING

RORING NO

142

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255
C+447

TOTAL NORMAL STRESS - p s f

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	146
SAMPLE NO	ST 3
DEPTH	6.0' TO 7.8'

REMARKS ENVELOPE IS INTERPRETIVE,
BASED ON LIMITED DATA POINTS

AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

TOTAL NORMAL STRESS - psf

EFFECTIVE NORMAL STRESS - p s f

BORING NO.	158	
SAMPLE NO.	4	
DEPTH	17.5' TO 20.0'	

REMARKS ENVELOPE IS INTERPRETIVE,
BASED ON LIMITED DATA POINTS
AVAILABLE

GOLDBERG-ZOINO AND ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

MOHR STRENGTH ENVELOPE
TRIAXIAL COMPRESSION
TESTS

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
FILE 1255

CONSULTANTS IN GEOTECHNICAL ENGINEERING

GOLDBERG-ZOINO & ASSOCIATES, IN SOIL AND FOUNDATION ENGINEERS

2.74 SPECIFIC GRAVITY _ WATER CONTENT, INITIAL 339% FINAL 300% ATTERBERG LIMITS: LIQUID LIMIT 43 % PLASTIC LIMIT 25 % INITIAL VOID RATIO ______ 0.910

INITIAL SAMPLE DIAMETER __ 2.50"

BORING NO. 27 TEST NO. C313.1 SAMPLE NO. 24 DATE APRIL 74 DEPTH 104.2' TO 104.5'

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

GOLDBERG-ZOINO & ASSOCIATES, INC SOIL AND FOUNDATION ENGINEERS

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

FILE 1255

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

SOIL AND FOUNDATION ENGINEERS

SOIL AND FOUNDATION ENGINEERS

FILE 1255

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

FILE 1255

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

C

47

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

GOLDBERG-ZOING & ASSOCIATES, INC SOIL AND FOUNDATION ENGINEERS

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

GOLDBERG-ZOING & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

GOLDBERG-ZOING & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

FILE (255

GOLDBERG-ZOINO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

GOLDBERG-ZOING & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

INITIAL VOID RATIO

0.701

GOLDBERG-ZONO & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS TIME IN MINUTES

FILE 1255

BELLE RIVER PLANT UNITS I & II

GOLDBERG-ZOING & ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

100

TIME IN MINUTES

1000

GOLDBERG-ZOINO B ASSOCIATES, INC. SOIL AND FOUNDATION ENGINEERS

SAMPLE NO. <u>38.5'-38.9</u> DEPTH

0.80" INITIAL SAMPLE HEIGHT INITIAL SAMPLE DIAMETER 2.50" 1.383 INITIAL VOID RATIO

CONSOLIDATION TEST TIME VS. COMPRESSION CURVES

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

FILE 1255

1000

1000

50

C-527

C-53

FILE 1255

BELLE RIVER PLANT UNITS I 8 II

C

TIME IN MINUTES

ဌ

Ü

C

SOIL AND FOUNDATION ENGINEERS

1

ſ	APPLIED	SQUARE ROOT FITTING METHOD			LOG FITTING METHOD			BORING NO. 38
	PRESSURE in tons/ft. ²	t90 in sec.	ft. ² /day	v cm. ² /sec.	150 in sec.	ft. ² /day 1	v cm. ² /sec.	SAMPLE NO4
	1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 8 8 - 16 16 - 4 4 - 1 1 - 1/4	738 612 540 378 468 378 174 1164 3024	.11 .13 .14 .19 .15 .17 .36 .06	.0012 .0014 .0015 .0020 .0016 .0018 .0039 .0006 .0002	300 180 138 78 108 108 60 240 900	.07 .10 .13 .21 .15 .19 .24 .07	.0007 .0011 .0014 .0023 .0016 .0015 .0026 .0007	DEPTH
Ī	APPLIED PRESSURE	SQUARE too	ROOT FITTI	NG METHOD	LO(FITTING ME	v	BORING NO38
	in tons/ft.2	in sec.	ft. ² /day	cm.2/sec.	in sec.	ft. ² /day	cm. ² /sec.	SAMPLE NO16 DEPTH74.0' to 74.1'
	1/8 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 1 1 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 8 8 - 16 16 - 4 4 - 1 1 - 1/4	960 612 468 378 288 135 912 264 438 173 135 216 192 138 576 1380	.08 .12 .16 .19 .22 .46 .07 .25 .15 .37 .46 .27 .27 .27 .09	.0009 .0013 .0017 .0020 .0024 .0050 .0008 .0027 .0016 .0040 .0050 .0029 .0029 .0029 .0039 .0010	180 156 120 90 54 216 102 84 48 36 48 42 33 150 450	.10 .11 .13 .17 .27 .07 .15 .18 .31 .40 .28 .29 .34 .08	.0011 .0012 .0014 .0018 .0029 .0007 .0016 .0019 .0033 .0043 .0030 .0031 .0037 .0009	TEST NO

APPLIED PRESSURE		E ROOT FITTIN	_		G FITTING M	ETHOD	BORING NO41
in tons/ft.2	t ₉₀ in sec.	ft.2/day	cy cm. ² /sec.	†50 in sec.		y I cm. ² /sec.	SAMPLE NO5
1/4 - 1/2 1/2 - 1 1 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 8 8 - 16 24 - 6 6 - 1/2	540 408 1164 438 822 378 408 408 540 138 1218	.15 .20 .07 .18 .09 .20 .18 .17 .11 .42	.0016 .0021 .0007 .0019 .0010 .0022 .0019 .0018 .0012 .0046	168 180 312 120 180 132 120 102 120 45 45	.11 .10 .06 .15 .10 .13 .14 .16 .13 .31	.0012 .0011 .0006 .0016 .0011 .0014 .0015 .0017 .0014 .0033 .0004	DEPTH
APPLIED PRESSURE in tons/ft.2	SQUARE teo in sec.	E ROOT FITTII c ft. ² /day		LOC †50 in sec.	FITTING ME c ft. ² /day	v	BORING NO41 SAMPLE NO7
1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 8 8 - 16 16 - 4 4 - 1 1 - 1/4	614 540 614 778 614 406 194 1110 3024	.12 .14 .11 .08 .09 .12 .24 .05	.0013 .0015 .0012 .0009 .0010 .0013 .0026 .0005	240 210 225 210 162 96 54 240 720	.07 .08 .07 .07 .08 .12 .20 .05	.0008 .0009 .0008 .0007 .0009 .0013 .0022 .0005 .0002	DEPTH
OLDBERG-ZOINO &							CONSOLIDATION TEST SUMMARY OF CV VALUES THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

APPLIED PRESSURE	3	ROOT FITTIN	1		G FITTING MI	ETHOD	BORING NO41
in tons/ft.2	190 in sec.	ft.2/day	y cm.²/sec.	150 in sec.	ft. ² /day	v cm. ² /sec.	SAMPLE NO13
1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 8 8 - 16 24 - 6 6 - 2 2 - 1/2	1500 1056 738 696 540 504 378 912 1500	.05 .06 .08 .07 .09 .08 .10 .05	.0005 .0006 .0009 .0010 .0009 .0011 .0005 .0003	420 300 240 228 150 108 90 192 480	.04 .05 .06 .06 .07 .09 .10 .05	.0004 .0005 .0006 .0008 .0010 .0011 .0005 .0002	DEPTH
APPLIED PRESSURE in tons/ft. ²	SQUARI †90 in sec.	E ROOT FITTI c ft. ² /day	NG METHOD v cm.2/sec.	t 50 in sec.		v	BORING NO 41 SAMPLE NO 17
1/8 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 1 1 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 8 8 - 16 16 - 4 4 - 1 1 - 1/4	1500 696 696 468 318 240 1008 264 504 174 216 348 348 138 438 2382	.06 .11 .10 .15 .21 .27 .07 .26 .13 .38 .30 .18 .17 .40 .13 .03	.0006 .0012 .0011 .0016 .0023 .0029 .0007 .0028 .0014 .0041 .0032 .0019 .0018 .0043 .0014	360 240 180 168 120 45 228 60 102 78 54 96 72 36 54 660	.05 .07 .09 .10 .13 .33 .07 .26 .15 .20 .28 .15 .19 .35 .24	.0005 .0008 .0010 .0011 .0014 .0036 .0007 .0028 .0016 .0021 .0030 .0016 .0020 .0038 .0026 .0002	DEPTH

	APPLIED	SOLIAR	F ROOT SITTI	NC METHOD				
	PRESSURE	SQUARE ROOT FITTING METHOD				OG FITTING I		BORING NO. 41
	in tons/ft.2	in sec.	ft.2/day	cm.2/sec.	in sec.	ft.2/day	cy cm. ² /sec.	
		İ	1					DEPTH113'
	1/4 - 1/2	540	.13	.0014	210	.07	.0008	TEST NOC38,1
	1/2 - 1 1 - 2	408 378	.17	.0018	132	.12	.0013	SOIL PROPERTIES
	2 - 4	408	.16	.0019 .0017	114 108	.13	.0014	SOIL DESCRIPTION:
	4 - 8	408	.15	.0016	114	.13	.0014	Silty CLAY, sandy (CL)
	8 - 16 24 - 6	408 216	. 14	.0015	96	.13	.0014	INITIAL WATER CONTENT 24.2 %
	6 - 2	822	.07	.0026	54 168	. 22	.0024	ATTERBERG LIMITS
	2 - 1/2	1686	.04	.0004	348	.04	.0008	LIQUID LIMIT 29 % PLASTIC LIMIT 19 %
				1				TEST DATA
							1	INITIAL SAMPLE HEIGHT 0.75 IN 1.905cm.
•								INITIAL VOID RATIO 0.642 Cc 0.18
1	400+150			<u> </u>		<u> </u>		
	APPLIED PRESSURE	SQUAR teo	E ROOT FITT			G FITTING M	ETHOD	BORING NO. 41
	in tons/ft.2	in sec.	ft.2/day	cv cm. ² /sec.	in sec.		c _y cm. ² /sec.	SAMPLE NO29
							VIII. 7 36C.	DEPTH130.9' to 131.1'
	1/4 - 1/2	240	. 33	.0036	108	.17	.0018	TEST NOC40.1
ı	1/2 - 1	216	.36	.0039	120	.15	.0016	SOIL PROPERTIES
	1 - 2 2 - 4	318 2 40	. 24 . 32	.0026	90	. 20	.0021	
	4 - 8	240	.31	.0034 .0033	108 108	.16 .16	.0017	SOIL DESCRIPTION:
	8 - 4	174	.41	. 9044	54	31	.0017	
١	4 - 1 $1 - 1/2$	780 1390	.09	.0010	276	.07	.0007	INITIAL WATER CONTENT 11.3% ATTERBERG LIMITS
	1/4 - 1/2	1380 348	.06 .22	.0006 .0024	2 76	.07	.0007	LIQUID LIMIT_25_% PLASTIC LIMIT_17_%
	1/2 - 1	540	.14	.0015	150 174	.12 .10	.0013 .0011	
	1 - 2	780	.09	.9910	150	.11	.0012	TEST DATA
	2 - 4 4 - 8	654 468	.11	.0012	108	.16	.0017	INITIAL SAMPLE HEIGHT 0, 80 IN 2,03CM.
	8 - 16	378	.15 .19	.0016 .0020	150 120	.16	.0012	INITIAL VOID RATIO 0.370 Cc 0.09
	24 - 6	540	.12	.0013	150	.13 .10	.0014 .0011	
-	6 - 2	960	.07	.0008	540	.03	.0003	CONSOLIDATION TEST
	2 - 1/2	1272	.06	.0006	960	.02	.0002	SUMMARY OF CV VALUES

GOLDBERG-ZOINO & ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

APPLIED				LOG FITTING METHOD			BORING NO48
PRESSURE in tons/ft.2	tgo in sec.	ft. ² /day	v cm.²/sec.	†50 in sec	c ft. ² /day j	v cm.²/sec.	SAMPLE NO10
							DEPTH39.2' to 39.4'
1/4 - 1/2	438	.18	.0019	180	.10 .08	.0011	TEST NOC202.1
$\frac{1/2 - 1}{1 - 2}$	540 ნ54	.14	.0015 .0012	210 156	.10	.0011	SOIL PROPERTIES
$\frac{1}{2} - \frac{2}{1/2}$	504	.13	.0014	114	. 14	.0015	
1/2 - 1/4	1500	.05	.0005	39 0	.05	.0005	SOIL DESCRIPTION:
1/4 - 1/2	576	.13	.0014	138 138	.12	.0013	Silty CLAY (CL-CH)
$\frac{1/2 - 1}{1 - 2}$	46 8 504	.15 .14	.0016 .0015	108	.15	.0015	INITIAL WATER CONTENT 38.8 %
2 - 4	696	.09	.0010	300	.05	.0005	ATTERBERG LIMITS LIQUID LIMIT <u>47</u> % PLASTIC LIMIT <u>24</u> %
4 - 8	654	.09	.0010	174	.08	.0009	LIQUID LIMIT 47_76 PLASTIC LIMIT 25_76
8 - 16	504	.10	.0011	144 108	.08 .11	.0009 .0012	TEST DATA
16 - 2 2 - 1/2	438 2 23 2	.12 .03	.0003	540	.11	.0002	INITIAL SAMPLE HEIGHT 0.80 IN 2.03 CM.
1/2 - 1/8	4440	.01	.0001	10 2 0	.01	.0001	INITIAL VOID RATIO 1.027 Cc 0.33
APPLIED	SQUAR	ROOT FITTI	NG METHOD	LO	G FITTING ME	THOD	BORING NO. 49
PRESSURE	190		v I cm.²/sec.	†50 in sec.	c ft.2/day (v cm.²/sec.	SAMPLE NO3
in tons/ft.2	in sec.	ft. ² /day	cm/sec.	in sec.	H7 ddy	cm; /sec.	DEPTH13.7' to 14.0'
1/4 - 1/2	470	.17	.0018	240	.07	.0008	TEST NO
1/2 - 1	540	. 14	.0015	162	.11	.0012	SOIL PROPERTIES
1 - 1/4	738	.10	.0011	210 126	.08 .14	.0009	SOIL DESCRIPTION:
1/4 - 1/2 $1/2 - 1$	264 540	.29 .14	.0031 .0015	120	.15	.0016	Silty CLAY (CL-CH)
1 - 2	540	.14	.0015	156	.11	.0012	INITIAL WATER CONTENT 33,3%
2 - 4	540	.13	.0014	156	.10	.0011	ATTERBERG LIMITS
4 - 8 8 - 16	504 318	.13 .19	.0014 .0020	126 108	.12 .13	.0013 .0014	LIQUID LIMIT 47 % PLASTIC LIMIT 23 %
16 - 4	318	.18	.0019	66	.2 0	.0021	
4 - 1	132 0	.05	.0005	330	.05	.0005	TEST DATA
1 - 1/4	4620	.01	.0001	1140	.01	.0001	INITIAL SAMPLE HEIGHT 0.80 IN 2.03 CM
		ļ					INITIAL VOID RATIO 0.863 Cc 0.26
				1			201001104710117507
							CONSOLIDATION TEST
							SUMMARY OF CV VALUES
	,	·					THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

GOLDBERG-ZOINO & ASSOCIATES, INC.
CANSULTANTS & GEOTECHNICAL ENGINEERING

FILE NO. 1255

C-581

4.

APPLIED	SQUARE	ROOT FITTING	METHOD	LO	S FITTING ME	S S	BORING NO
PRESSURE in tons/ft.2	190 in sec.	C ft 2/day 1	v cm. ² /sec.	150 in sec.	ft,2/day (SAMPLE NO.
In Tons/11."	. 111 360.	11. / 009					DEPTH
					:		TEST NO
				,	· 		SOIL PROPERTIES
i							SOIL DESCRIPTION:
							SOIL BESONII TION
					•		INITIAL WATER CONTENT%
							ATTERBERG LIMITS
							LIQUID LIMIT% PLASTIC LIMIT%
							TEST DATA
							INITIAL SAMPLE HEIGHT IN CM.
•			· ·				INITIAL VOID RATIOCc
					·		
		- DOOT SITTI	NC METHOD		G FITTING MI	ETHOD	BORING NO50
APPLIED PRESSURE	SQUARE	ROOT FITTI	v	†50	. (y	SAMPLE NO8
in tons/ft.2	in sec.	ft.2/day	cm. ² /sec.	in sec.	ft. ² /day	cm. ² /sec.	9 9
						2011	DEPTH 38.5 - 38.9
1/16 - 1/4	438	.18	.0019	174	.10 .13	.0011	TEST NOC86.1
1/4 - 1/2	540	.14 .18	.0015 .0019	138 84	.20	.0014	SOIL PROPERTIES
1/2 - 1	438 438	.10	.0019	84	.20	.0022	SOIL DESCRIPTION:
2 - 1	264	.27	.0029	. 60	. 28	.0030	Silty CLAY (CH)
1 ~ 1/2	576	.13	.0014	156	.11	.0012	INITIAL WATER CONTENT 51.6%
1/2 - 1/4	1272	.06	.0006	240	.07	.0008	ATTERBERG LIMITS
1/4 - 1/2	240	. 31	.0033	60	.29 .14	.0031	LIQUID LIMIT $\frac{55}{}$ % PLASTIC LIMIT $\frac{23}{}$ %
1/2 - 1	468	.16	.0017 .0019	120 60	.28	.0030	TEST DATA
1 - 2 2 - 4	408 960	.18 .07	.0017	360	.05	.0005	INITIAL SAMPLE HEIGHT 0. 80 IN 2. 03 CM.
2 - 4 4 - 8	698	.08	.0009	240	. 06	.0006	INITIAL VOID RATIO 1.383 Cc 0.55
8 - 16	612	.07	.0008	156	. 07	.0007	
16 - 4	288	. 15	.0016	90	. 11	.0012	CONSOLIDATION TEST
4 - 1	2538	. 02	.0002				SUMMARY OF CV VALUES
1 - 1/4	4338	.01	.0001				THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

APPLIED PRESSURE		E ROOT FITTI	_		OG FITTING N	METHOD	BORING NO.
in tons/ft.2	teo in sec.	ft.2/day	cm.2/sec.	tso in sec.	ft.2/day	cy cm. ² /sec.	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						DEPTH
			!		:		TEST NO.
	ľ						SOIL PROPERTIES
		ļ					SOIL DESCRIPTION:
	<u> </u>	·		1		and the second	
					•		INITIAL WATER CONTENT%
			ļ				ATTERBERG LIMITS
	ا الله		ł				LIQUID LIMIT% PLASTIC LIMIT%
							TEST DATA
							INITIAL SAMPLE HEIGHT IN CM
	, ,			· .			INITIAL VOID RATIO Cc
			<u> </u>				
APPLIED PRESSURE	SQUARE teo	ROOT FITT	ING METHOD		G FITTING MI	ETHOD	BORING NO52
in tons/ft.2	in sec.	ft. ² /day	cm. ² /sec.	150 in sec.	ft.2/day	cm. ² /sec.	SAMPLE NO4
							DEPTH29.9' - 30.2'
1/16 - 1/8 1/8 - 1/4	378	. 21	.0023	150	.12	.0013	TEST NO C109. 1
1/8 - 1/4 $1/4 - 1/2$	690 ⁻ 576	.11	.0012	210	. 08	. 0009	
1/2 - 1	378	.20	.0014 .0021	168 90	.10 .20	.0011	SOIL PROPERTIES
1 - 2	288	. 25	0027	72	.24	.0021	Soll DESCRIPTION: Silty CLAY (CL-CH)
2 - 1	288	. 25	.0027	51	.33	.0025	
1 - 1/4 $1/4 - 1/2$	780	.09	.0010	144	. 12	.0013	INITIAL WATER CONTENT 405 % ATTERBERG LIMITS
1/4 - 1/2	348	.21	.0023	114	. 15	.0016	LIQUID LIMIT 49 % PLASTIC LIMIT 20 %
1/2 - 1	5.04	1 5	001/			^^1	
1/2 - I 1 - 2	504 378	. 15 . 19	.0016	108	. 16	.0017	
1 - 2 2 - 4	504 378 648	.15 .19 .10	.0016 .0020 .0011	60	. 28	.0030	TEST DATA
1 - 2	378	• 19	.0020			The state of the s	

16 - 4

4 - 1

1 - 1/4

GOLDBERG-ZOINO & ASSOCIATES, INC. CONSULTANTS IN GEOTECHNICAL ENGINEERING

318

1164

3744

.15

. 05

. 02

.0008

.0016

.0005

.0002

120

312

840

84

.09

.13

. 04

. 02

.0010

.0014

.0004

.0002

CONSOLIDATION TEST SUMMARY OF CV VALUES

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

APPLIED	SQUARE	ROOT FITTIN	G METHOD	LOG FITTING METHOD			BORING NO53	
PRESSURE in tons/ft.2	190 in sec	ft.2/day	v cm. ² /sec.	†50 in sec.	tt. ² /day	v cm.²/sec.	SAMPLE NO5	
							DEPTH39.51-39.81	
1/4 - 1/2	504	.16	.0017	72	. 25	.0027	TEST NOC98.1	
1/2 - 1	438	.18	.0019	114	.16	.0017	SOIL PROPERTIES	
1 - 2	288 .	.26	.0028	43	.40	.0043 .0029	SOIL DESCRIPTION:	
2 - 4	2.40	.29	. 0031	60 45	.27	. 0029	Silty CLAY, Sandy (CL)	
4 - 8 8 - 16	264 240	.24 .23	.0026 .0025	45 36	.35	.0038	INITIAL WATER CONTENT 30, 9 %	
8 - 16 16 - 4	138	.38	.0041	18	. 68	.0073	ATTERBERG LIMITS	
4 - 1	654	. 08	. 0009	144	. 09	.0010	LIQUID LIMIT 39 % PLASTIC LIMIT 209	
1 - 1/4	2616	. 02	. 0002	600 .	. 02	.0002		
							TEST DATA INITIAL SAMPLE HEIGHT 0.80 IN 2.03 CN	
						Ì	INITIAL SAMPLE HEIGHT 6.00 IN 2.05 CK	
	•						INITIAL VOID NATIO CC VESS	
<u></u>				<u> </u>				
APPLIED	SQUAR	E ROOT FITTI	NG METHOD	LO	G FITTING MI	ETHOD	BORING NO.	
PRESSURE	190	ft. ² /day	v • cm.²/sec.	t50 in sec.	ft.2/day	ty 1 cm. ² /sec.	SAMPLE NO.	
in tons/ft.2	in sec.	. 117 day	cm/sec.	111 Sec.	11. 7 009	CIII. 7 360.	DEPTH	
							TEST NO	
1]		.					
	1				·		SOIL PROPERTIES	
							SOIL OESCRIPTION:	
	1]					
		· .		i i			INITIAL WATER CONTENT%	
							ATTERBERG LIMITS	
							LIQUID LIMIT% PLASTIC LIMIT	
							TEST DATA	
	1				1 .		INITIAL SAMPLE HEIGHTINC	
	ľ						INITIAL VOID RATIOCC	
							CONSOLIDATION TEST	
						1	SUMMARY OF CV VALUES	
1	1	1						
				1		*	THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & I	

GOLDBERG-ZOINO & ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

FILE NO. 1255

APPLIED PRESSURE		ROOT FITTIN	G METHOD	LC	G FITTING M	ETHOD	
in tons/ft. ²	190	1 4.24	Cy	tso		v	BORING NO54
111 101157 11.	in sec.	ft.2/day	cm. ² /sec.	in sec.	ft.2/day	cm. ² /sec.	SAMPLE NO6
1/4 - 1/2	5 4 0	1,5	2214				DEPTH 63.5'-63.8'
1/2 - 1	438	. 15 . 18	.0016	216	. 08	.0009	
I - 2	540	.16	.0019 .0015	216	. 08	.0009	TEST NO C399.1
2 - 4	438	.16	.0017	132	.13	.0014	SOIL PROPERTIES
4 - 8	408	.16	.0017	114 84	. 14	.0015	SOIL DESCRIPTION:
8 - 16	348	.18	.0019	84	.18 .17	.0019	Silty CLAY, sandy (CL)
16 - 4	348	. 17	.0018	27	. 1 (.0018	INITIAL WATER CONTENT 26.0%
4 - 1	1008	.06	.0006	144	. 10	.0011	ATTERBERG LIMITS
1 - 1/4	2304	. 03	.0003	540	.03	.0011	LIQUID LIMIT 36 % PLASTIC LIMIT 18 %
					.03	.0003	TEST DATA
·	*						INITIAL SAMPLE HEIGHT 0.80 IN 2.03 CM
·							· —————
				1			INITIAL VOID RATIO 0. 696 Cc 0. 24
APPLIED	SOUADE	POOT FITTU	NO METUOS				
PRESSURE	teo	ROOT FITTI	NG METHOD	L	FITTING ME		BORING NO
in tons/ft.2	in sec.	ft.2/day	cm. ² /sec.	†50 in sec.	ft. ² /day	v cm. ² /sec.	SAMPLE NO.
					in / ddy	cm/sec.	
			4 1				DEPTH
							TEST NO.
·							SOIL PROPERTIES
					1		SOIL DESCRIPTION:
						•	OOIL BESCRIPTION.
				· ·			
					<u> </u> -		INITIAL WATER CONTENT%
			j				ATTERBERG LIMITS
·		I					LIQUID LIMIT% PLASTIC LIMIT%
	ł	Ì			1	<u> </u>	TEST DATA
·				. :	e e de la companya de la companya de la companya de la companya de la companya de la companya de la companya d		INITIAL SAMPLE HEIGHTINCM.
			ļ		İ		INITIAL VOID RATIO Cc
1				,		ŀ	
į		1.				1	CONSOLIDATION TEST
			•	l			CONSOLIDATION TEST
	·]	· [- 1			SUMMARY OF CV VALUES
		1					THE DETROIT EDISON COMPANY
OLDBERG-ZOINO &	ASSOCIATE	C INC					BELLE RIVER PLANT UNITS I 8 II

GOLDBERG-ZOINO & ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

BELLE RIVER PLANT UNITS I & II

APPLIED	SQUARE	ROOT FITTIN	IG METHOD	LO	G FITTING M	ETHOD	BORING NO60
PRESSURE in tons/ft.2	tgo in sec.	ft.2/day	Cy cm. ² /sec.	150		v	
	III 36C.	117 ddy	cm/ sec.	in sec.	ft. ² /day	cm. ² /sec.	SAMPLE NO2
1/4 - 1/2	3 48	. 23	.0025	114	1,0	0017	DEPTH 9.8' to 10.0'
1/2 - 1	654	.12	.0023	114 216	.16 .08	.0017 .0009	TEST NOC42.1
1 - 1/4	1560	.05	.0005	330	.06	.0006	SOIL PROPERTIES
1/4 - 1/2 1/2 - 1	318 774	. 24	.0026	180	. 10	.0011	SOIL DESCRIPTION:
1 - 2	468	.10 .16	.0011 .0017	270 180	.07	.0007 .0010	Silty CLAY (CL-CH)
2 - 4	576	.12	.0013	168	.10	.0010	INITIAL WATER CONTENT 30.0%
4 - 8	540	.12	.0013	156	. 10	.0011	ATTERBERG LIMITS
8 - 16 24 - 6	318 318	.20 .18	.0021 .0019	132 72	.11 .19	.0012 .0020	LIQUID LIMIT 53 % PLASTIC LIMIT 26 %
6 - 2	1218	.05	.0005	420	.04	.0020	TEST DATA
2 - 1/2	3378	.02	.0002	960	.02	.0002	INITIAL SAMPLE HEIGHT 0.80 IN 2.03 CM.
		·					INITIAL VOID RATIO 0.787 Cc 0.23
		- <u>-</u>			• .		
APPLIED	SQUARE	ROOT FITTI	NG METHOD	LO	FITTING ME	THOD	BORING NO60
PRESSURE in tons/ft.2	teo	C	٧	t50 .	С	v .	SAMPLE NO16
III 1011\$711	in sec.	ft. ² /day	cm.=/sec.	in sec.	ft. ² /day	cm. ² /sec.	
							DEPTH85.2' to 85.4'
1/4 - 1/2	240	.33	.0035	90	. 20	.0022	TEST NOC56.1
1/2 - 1	240	.33	.0035	78	.23	.0025	SOIL PROPERTIES
1 - 2	192	.39	.0042	54	.33	.0035	SOIL DESCRIPTION:
2 - 4 4 - 8	264 264	. 28 . 26	.0030 .0028	72 84	.23	.0025	Silty CLAY (CL)
8 - 16	348	.18	.0019	84	.17	.0020 .0018	INITIAL WATER CONTENT 27.9 %
16 - 4	156	.37	.0040	51	. 26	.0028	ATTERBERG LIMITS
4 - 1 1 - 1/4	864 2 400	.07	.0008	210 450	.07	.0007	LIQUID LIMIT 40 % PLASTIC LIMIT 19 %
T - 1/-	2400	.03	.0003	430	.04	.0004	TEST DATA
							INITIAL SAMPLE HEIGHT 0.80 IN 2.03 CM.
	l	İ	İ	ľ			INITIAL VOID RATIO 0.744 Cc 0.27
	i						
		1					CONSOLIDATION TEST
					· · · ·		SUMMARY OF CV VALUES
		İ	l				
					I		THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II
OLDBERG-ZOINO A						-	

GOLDBERG-ZOINO & ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

FILE NO. 1255

BELLE RIVER PLANT UNITS I & IL

BELLE RIVER PLANT UNITS I & II

GOLDBERG-ZOINO & ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

BELLE RIVER PLANT UNITS I & IL

APPLIED	SQUARE	ROOT FITTIN	G METHOD	LO	FITTING M	ETHOD	BORING NO.
PRESSURE in tons/ft.2	t ₉₀ in sec.		v cm.²/sec.	tso in sec.	ft. ² /day	cm. ² /sec.	SAMPLE NO.
							TEST NO
•						·	SOIL PROPERTIES SOIL DESCRIPTION:
				,			INITIAL WATER CONTENT% ATTERBERG LIMITS LIQUID LIMIT% PLASTIC LIMIT
							TEST DATA INITIAL SAMPLE HEIGHT IN CI INITIAL VOID RATIO Cc
APPLIED	<u> </u>					<u> </u>	
	SQUARI	E ROOT FITTI	NG METHOD	LO	G FITTING M	ETHOD	BORING NO129
PRESSURE in tons/ft.2	teo in sec.		NG METHOD v cm.2/sec.	to to to sec.		Cv .	SAMPLE NO21
PRESSURE in tons/ft.2 1/4 - 1/2	190 in sec. 348	ft. ² /day	cm. ² /sec.	tso in sec.	ft. ² /day	cm. ² /sec	i
PRESSURE in tons/ft. ² 1/4 - 1/2 1/2 - 1 1 - 2	348 378 318	ft. ² /day .22 .20 .23	cm. ² /sec. .0024 .0022 .0026	108 120 96	ft. ² /day . 17 . 15 . 19	. 0018 . 0016 . 0020	SAMPLE NO
PRESSURE in tons/ft. ² 1/4 - 1/2 1/2 - i 1 - 2 2 - 4 4 - 1	348 378 318 438 288	. 22 . 20 . 23 . 17 . 24	.0024 .0022 .0026 .0018 .0027	108 120 96 96 51	ft. ² /day . 17 . 15 . 19 . 18 . 32	.0018 .0016 .0020 .0019 .0035	SAMPLE NO
PRESSURE in tons/ft. ² 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 1 1 - 1/4 1/4 - 1/2	348 378 318 438	ft. ² /day . 22 . 20 . 23 . 17	cm. ² /sec. .0024 .0022 .0026 .0018	108 120 96	ft. ² /day .17 .15 .19 .18 .32 .09 .22 .22	. 0018 . 0016 . 0020 . 0019 . 0035 . 0009 . 0024 . 0024	SAMPLE NO. 21 DEPTH 103.7 - 104.0 TEST NO. C395.1 SOIL PROPERTIES SOIL DESCRIPTION: Silty CLAY, Sandy (CL) INITIAL WATER CONTENT 28.0% ATTERBERG LIMITS
PRESSURE in tons/ft.2 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 1 1 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4	348 378 318 438 288 540 288 432 240 240	ft. ² /day . 22 . 20 . 23 . 17 . 24 . 14 . 26 . 17 . 30 . 29	.0024 .0022 .0026 .0018 .0027 .0015 .0028 .0018	108 120 96 96 51 192 78 96 72 60	ft. ² /day .17 .15 .19 .18 .32 .09 .22 .22 .22 .23 .28	. 0018 . 0016 . 0020 . 0019 . 0035 . 0009 . 0024 . 0024 . 0025 . 0030	SAMPLE NO
PRESSURE in tons/ft.2 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 4 - 1 1 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2	348 378 318 438 288 540 288 432 240	ft. ² /day . 22 . 20 . 23 . 17 . 24 . 14 . 26 . 17 . 30	.0024 .0022 .0026 .0018 .0027 .0015 .0028 .0018	108 120 96 96 51 192 78 96 72	ft. ² /day .17 .15 .19 .18 .32 .09 .22 .22 .23	.0018 .0016 .0020 .0019 .0035 .0009 .0024 .0024	SAMPLE NO

.03

480

0002

CONSOLIDATION TEST SUMMARY OF CV VALUES

.0003

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

.02

2265

1 - 1/4

APPLIED PRESSURE		ROOT FITTIN		LC	G FITTING M	ETHOD	BORING NO. 136
in tons/ft.2	in sec.	ft.2/day	cm ² /sec.	150	_ · C	V - 1 - 1 - 1	
	III 360.	11 7 ddy	cm/sec.	in sec.	ft. ² /day	cm. ² /sec.	SAMPLE NO. ST6
1/4 - 1/2	135		.0052	-72		.0023	DEPTH 13.0' to 16.0'
1/2 - 1	317		.0022	102		.0016	TEST NO
1 - 2	1009		.0007	348		.0005	SOIL PROPERTIES
2 - 4 4 - 8	913		.0007	270		.0006	
8 - 16	738 778		.0008	216		.0007	SILTY CLAY (CL)
16 - 4	346		.0007	180		.0007	
4 - 1	960		.0016	66 330		.0020	INITIAL WATER CONTENT 17.3%
1 - 1/4	4338		.0001	1440		.0004	ATTERBERG LIMITS LIQUID LIMIT 43 % PLASTIC LIMIT 22
		s and a	.0001	1,440		.0001	
						· ·	TEST DATA
	9. 4					i egal ti	INITIAL SAMPLE HEIGHT 3.28 IN 8.33 CA
			:			Tanana sa sa sa sa sa sa sa sa sa sa sa sa sa	INITIAL VOID RATIO (0.675) Cc 0.15
APPLIED		ROOT FITTIN	NG METHOD	LOG	FITTING ME	THOD	BORING NO.
PRESSURE in tons/ft.2	001	C1	, ,	†50 .	C	•	
11. 10113711.	in sec.	ft.2/day	cm. ² /sec.	in sec.	ft.2/day	cm. ² /sec.	SAMPLE NO
		•					DEPTH
							TEST NO.
	· .	·					SOIL PROPERTIES
	·						
							SOIL DESCRIPTION:
					Ī		
							INITIAL WATER CONTENT%
	**						ATTERBERG LIMITS
							LIQUID LIMIT% PLASTIC LIMIT%
					[TEST DATA
							INITIAL SAMPLE HEIGHTINCM
							INITIAL VOID RATIO Cc
			•			e de estado de estado de estado de estado de estado de estado de estado de estado de estado de estado de estad	
·						a juli	CONSOLIDATION TEST
. 1]		1	CONSOLIDATION TEST
	1	1			1		SUMMARY OF CV VALUES
				İ			THE DETROIT EDISON COMPANY
LDBERG-ZOINO &							BELLE RIVER PLANT UNITS I & II

						O CITTINO ME	TUOD	
,	APPLIED PRESSURE		ROOT FITTIN	G METHOD	†50 .	G FITTING ME		BORING NO.
20	in tons/ft.2	t90 in sec.	ft.2/day	cm. ² /sec.	in sec.	ft. ² /day	cm. ² /sec.	SAMPLE NO
`								DEPTH
ı	·					·		TEST NO
	·							SOIL PROPERTIES
					*		;	SOIL DESCRIPTION:
•								SOIL DESCRIPTION.
-						:		INITIAL WATER CONTENT%
								ATTERBERG LIMITS
								LIQUID LIMIT% PLASTIC LIMIT%
							V 3 4	TEST DATA
	·					•		INITIAL SAMPLE HEIGHT IN CM.
								INITIAL VOID RATIOCc
					<u> </u>			
	APPLIED	SQUAR	E ROOT FITTI	NG METHOD	LO	G FITTING ME	ETHOD	BORING NO. 142
	PRESSURE	†90	_	V 2	[†] 50	ft. ² /day	v cm. ² /sec.	SAMPLE NO. 6
	in tons/ft.2	in sec.	ft. ² /day	cm. ² /sec.	in sec.	11 7 ddy	CIII. 7 SEC.	DEPTH 20.1' to 20.5'
	1/4-1/2	378	.21	.0022	84	.21	.0023	TEST NO. C535.1
	1/2-1	50 4	.15	.0016	114	.17	.0017	
	1 - 2	576	.14	.0014	150	.12	.0012	SOIL PROPERTIES
	2 - 1	812	.09	.0009	180	.10	.0010 .0050	SOIL DESCRIPTION: Silty CLAY (CL)
	1 - 1/4	72	1.0	.0105	36 108	.50 .17	.0030	
	1/4-1/2	288 3 4 5	.25 .21	.0027	108	.17	.0017	INITIAL WATER CONTENT 38.2%
	1/2-1 1 - 2	318	.23	.0024	103	.17	.0017	ATTERBERG LIMITS
	2 - 4	696	.10	.0010	186	.09	.0009	LIQUID LIMIT 45 % PLASTIC LIMIT 22 %
	4 - 8	378	.17	.0017	108	.13	.0013	TEST DATA
	8 - 16	290	.19	.0020	72	.17	.0017	INITIAL SAMPLE HEIGHT 0. 80 IN 2.03cm
								INITIAL VOID RATIO 1.019 Cc 0.41
	·							
	,		•		1			CONSOLIDATION TEST
	·				•			SUMMARY OF CV VALUES
		-			_			· · · · · · · · · · · · · · · · · · ·
								THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

APPLIED PRESSURE	the state of the s	ROOT FITTIN		LO	G FITTING M	ETHOD	BORING NO146
in tons/ft.2	teo in sec.	ft.2/day	Cy cm. ² /sec.	t50 in sec.	ft.2/day	y cm. ² /sec.	SAMPLE NO7
1/2 7							DEPTH 14.0' to 16.0'
1/2 - 1 1 - 2	540 1440	.12 .05	.0013 .0005	228	.07	.0007	
. 2 - 4	1272	.05	.0005	408 306	.04 .05	.0004 .0005	TEST NO
4 - 8	612	.09	.0010	216	.07	.0003	SOIL PROPERTIES
8 - 16 :	540	.10	.0011	150	.08	.0009	SOIL DESCRIPTION:
l6 - 4	438	. 12	.0013	96	.13	.0014	SILTY CLAY (CL)
4 - 1	1752	.03	.0003	450	.03	.0003	INITIAL WATER CONTENT 15.9 %
1 - 1/4				1560	.01	.0001	ATTERBERG LIMITS
							LIQUID LIMIT 46 % PLASTIC LIMIT 22 %
							TEST DATA
	·						INITIAL SAMPLE HEIGHT 0.75 IN 1.905 CM.
				·			INITIAL VOID RATIO 0.679 Cc 0.14
	i		·				
APPLIED	· ·	ROOT FITTH	NG METHOD	LOG	FITTING ME	THOD	BORING NO.
PRESSURE in tons/ft.2	f90 in sec.	ft. ² /day	v 2/222	[†] 50			SAMPLE NO.
(1) (1)	III Sec.	11. 7 Guy	cm/sec.	in sec.	ft. ² /day	cm. ² /sec.	-
							DEPTH
							TEST NO.
							SOIL PROPERTIES
							SOIL DESCRIPTION:
1							
et .							INITIAL WATER CONTENT%
	i	ł	•				Part Part
					Į.		ATTERBERG LIMITS
							ATTERBERG LIMITS LIQUID LIMIT% PLASTIC LIMIT%
							LIQUID LIMIT% PLASTIC LIMIT%
							TEST DATA
							TEST DATA INITIAL SAMPLE HEIGHTINCM.
							TEST DATA
							TEST DATA INITIAL SAMPLE HEIGHT
							TEST DATA INITIAL SAMPLE HEIGHT
							TEST DATA INITIAL SAMPLE HEIGHT

APPLIED PRESSURE	SQUARE †90	ROOT FITTIN			G FITTING M	ETHOD	BORING NO. 185
in tons/ft.2	in sec.	ft.2/day	cw cm. ² /sec.	tso in sec.	ft.2/day	cy cm. ² /sec.	SAMPLE NO3
1/4-1/2	194	. 43	.0045	72	. 26	.0028	DEPTH _7.9' to 8.1'
1/2- 1 1 - 2	317 378	.25 .21	.0027	96	. 20	.0021	TEST NOC552. 1
2 - 4	. 345	.23	.0022 .0024	96 72	.19	.0020	SOIL PROPERTIES
4 - 8	378	.19	.0020	84	. 24 . 21	.0026 .0022	SOIL DESCRIPTION: Silty CLAY (CL-
8-16	324	. 20	.0021	108	.16	.0016	CH)
							INITIAL WATER CONTENT_29.1%
							ATTERBERG LIMITS
·							LIQUID LIMIT 50 % PLASTIC LIMIT 23 9
							TEST DATA
							INITIAL SAMPLE HEIGHT 0.80 IN 2.03 CM
							INITIAL VOID RATIO 0.757 Cc 0.18
APPLIED	SQUARE	ROOT FITTI	NG METHOD	100	FITTING ME	THOO	
PRESSURE in tons/ft.2	teo .	C	v -	† 50 .	С	٧	BORING NO.
11 10/13/11.	in sec.	ft. ² /day	cm. ² /sec.	in sec.	ft. ² /day	cm. ² /sec.	SAMPLE NO
							DEPTH
							TEST NO.
							SOIL PROPERTIES
·	-	. [·		SOIL DESCRIPTION:
			·				
•							INITIAL WATER CONTENT%
		· .				· .	ATTERBERG LIMITS LIQUID LIMIT% PLASTIC LIMIT%
							TEST DATA
					: i		INITIAL SAMPLE HEIGHT IN CM.
		1			: 1		
					ſ	1	CONSOLIDATION TEST
	1					•	SUMMARY OF Cy VALUES
			•				- minimizer
	•	1		•			THE DETROIT EDISON COMPANY

GOLDBERG-ZOING & ASSOCIATES, INC.
CONSULTANTS IN GEOTECHNICAL ENGINEERING

FILE NO. 1255

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : CLAYEY SILT (CL-ML)

EXPLORATION: BORING

SAMPLE S 5 2 8

129.5 TO 131.0

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS THE DETROIT EDISON COMPANY Ι 8

SOIL CLASSIFICATION TESTS

DATE JAN. 74

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY, SANDY (CL-ML)

EXPLORATION:

SAMPLE

DEPTH : 138.6 TO 140.3

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS THE DETROIT EDISON COMPANY 18日

SOIL CLASSIFICATION TESTS

C-598

DATE JAN.

FILE NO.

PLASTICITY CHART

MATERIAL SOURCE

IDENTIFICATION: SILTY CLAY, SANDY (CL-

EXPLORATION: BORING 10

SAMPLE S 5 3 0

DEPTH : <u>-</u>

SPECIFIC GRAVITY : USED 2.70

BELLE THE DETROIT RIVER PLANT UNITS **EDISON** COMPANY œ H

SOIL CLASSIFICATION TESTS

FILE NO. 1255

DATE JAN. 74

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

MATERIAL SOURCE

IDENTIFICATION : SILTY SAND (SM-SW)

EXPLORATION: BORING 18

103.5' TO 105.0'

SPECIFIC GRAVITY: USED 2.70

BEL THE Ē SOIL CLASSIFICATION TESTS DETROIT RIVER PLANT UNITS **EDISON** COMPANY 18日

FILE NO.

DATE JULY 1974

GOLDBERG - ZOINO & ASSOCIATES
CONSULTANTS IN GEOTECHNICAL ENGINEERING

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY SAND, GRAVELLY (SM)

EXPLORATION: BORING 18

DEPTH : 139.5' TO 141.0'

SPECIFIC GRAVITY: USED 2.70

BELLE THE DETROIT RIVER PLANT UNITS EDISON COMPANY I 8 口

SOIL CLASSIFICATION TESTS

FILE NO.

DATE JULY 1974

PLASTICITY CHART

(COMESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : CLAYEY SILT (CL-ML)

EXPLORATION: BORING 22

SAMPLE 8529 133.5 TO 135.5

SPECIFIC GRAVITY; USED 2.70

BEL THE LE RIVER PLANT UNITS DETROIT EDISON COMPANY 18日

SOIL CLASSIFICATION TESTS

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : CLAYEY SILT; SANDY (CL-ML)

EXPLORATION: BORING 27

SPEDIE : 5817

OEPTH : 68.5' TO 70.0

SPECIFIC GRAVITY: USED 2.70

THE BELLE RIVER DETROIT PLANT UNITS EDISON COMPANY **8** 口

SOIL CLASSIFICATION FILE NO. 1255 TESTS

DATE JULY 1974

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART (COMESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY FINE SAND (SM-SP)

EXPLORATION: BORING 27

SAMPLE

113.6' TO 114.4'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS THE DETROIT EDISON COMPANY П 99 H

SOIL CLASSIFICATION TESTS

DATE JULY 1974

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY, SANDY (CL)

EXPLORATION: 908ING 30

SAMPLE SS 15

DEPTH : 68.5' TO 700'

SPECIFIC GRAVITY: USED 2.70

HE BELLE SOIL CLASSIFICATION DETROIT RIVER PLANT UNITS EDISON COMPANY **TESTS** Φ Ħ

1255

FILE NO.

JULY 1974

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY FINE SAND (SM)

EXPLORATION: BORING 30

98.5' TO 100.0'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS 3HT SOIL CLASSIFICATION TESTS DETROIT EDISON COMPANY П 89

DATE

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY SAND (SM)

EXPLORATION: BORING 30

SAMPLE 25

DEPTH : 118.5' TO 120.0"

SPECIFIC GRAVITY: USED 2.70

BELLE THE DETROIT RIVER PLANT UNITS **EDISON** COMPANY Ø 口

SOIL CLASSIFICATION FILE NO. DATE JULY 1974 TESTS

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL-CH)

EXPLORATION: BORING 36

8.7' TO 9.0'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS I & II THE DETROIT EDISON COMPANY

SOIL CLASSIFICATION TESTS

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART (COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL-CH)

EXPLORATION: BORING 38

SAMPLE

DEPTH : 14.3 TO 14.6

SPECIFIC GRAVITY = 2.71

BELLE THE SOIL CLASSIFICATION DETROIT RIVER FILE NO. PLANT UNITS 1255 EDISON COMPANY DATE JAN. 74 TESTS ထ္ H

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION: SILTY CLAY (CL)

EXPLORATION: BORING 38

DEPTH : 12 54,1' TO 54.5'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS THE DETROIT EDISON COMPANY 18日

SOIL CLASSIFICATION TESTS

DATE JAN. 74

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

EXPLORATION: SILTY CLAY (CH) BORING 36

SAMPLE 6

DEPTH : 74.0' TO 74.1'

SPECIFIC GRAVITY = 2.72

BELLE THE DETROIT RIVER PLANT UNITS **EDISON** COMPANY I & 口

SOIL CLASSIFICATION FILE NO. 1255 TESTS JAN. 74

DATE

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : EXPLORATION: BORING 38 SILTY CLAY (CL)

84.6' 10 84.9

SPECIFIC GRAVITY; USED 2.70

BELLE THE DETROIT RIVER PLANT UNITS I & II **EDISON** COMPANY

SOIL CLASSIFICATION TESTS

DATE JAN. 74

C - 612

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL)

EXPLORATION: BORING 38

DEPTH : 114.2' TO 114.5'

SPECIFIC GRAVITY : USED 2.70

BELLE RIVER PLANT UNITS **THE** DETROIT EDISON COMPANY I B H

SOIL CLASSIFICATION TESTS

FILE NO.

DATE JAN. 74

PERCENT FINER BY WEIGHT

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY SAND (SM)

EXPLORATION: BORING

SAMPLE

DEPTH : 138.5 TO 140.0

SPECIFIC GRAVITY: USED 2.70

THE BELLE RIVER PLANT UNITS DETROIT EDISON COMPANY 18日

SOIL CLASSIFICATION TESTS

C-614

GOLDBERG - ZOINO & ASSOCIATES
CONSULTANTS IN GEOTECHNICAL ENGINEERING

FILE NO.

DATE

JAN. 74

U.S. STANDARD SIEVE SIZE

UNIFIED SOIL

CLASSIFICATION SYSTEM

COARSE MEDIUM

FINE

PLASTICITY CHART

(COMESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CH)

EXPLORATION: BORING 4

SAMPLE

DEPTH : 4.5' TO 4.8'

SPECIFIC GRAVITY: USED 2.70

BELLE THE DETROIT RIVER PLANT UNITS EDISON COMPANY I Q 口

SOIL CLASSIFICATION TESTS

DATE JAN. 74

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL)

EXPLORATION: BORING 41

SAMPLE

20.6' TO 21.0'

SPECIFIC GRAVITY = 2.66

BELLE RIVER PLANT UNITS THE SOIL CLASSIFICATION TESTS DETROIT EDISON COMPANY 18日

FILE NO.

DATE JAN. 74

PLASTICITY CHART

UNIFIED

SYSTEM

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : CLAYEY SAND (SC)

EXPLORATION: BORING

SAMPLE

DEPTH : 40.7' TO 41.0'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER THE DETROIT PLANT UNITS EDISON COMPANY 1 8 口

SOIL CLASSIFICATION TESTS FILE NO. DATE JAN. 74

PLASTICITY CHART

(COMESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY, ZONES OF SAND (CL-SC)

EXPLORATION: BORING 41

SAMPLE : 17

DEPTH : 72.9' TO 73.2'

SPECIFIC GRAVITY = 2.68

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I 8 II

SOIL CLASSIFICATION TESTS

DATE JAN. 74

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CL)

EXPLORATION: BORING 41

SAMPLE Ü

DEPTH : 101.9' TO 102.2'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER THE DETROIT PLANT UNITS EDISON COMPANY υ 9 H

SOIL CLASSIFICATION TESTS

PLASTICITY CHART

MATERIAL SOURCE

OENTIFICATION : CLAYEY SAND (GC-SC) BORING 41

EXPLORATION:

DEPTH: 130.7' 10 130.9"

SPECIFIC GRAVITY =

BELLE RIVER PLANT UNITS THE DETROIT EDISON COMPANY SOIL CLASSIFICATION TESTS 18日

DATE JAN. 74

FILE NO.

GOLDBERG - ZOINO & ASSOCIATES
CONSULTANTS IN GEOTECHNICAL ENGINEERING

PLASTICITY CHART

UNIFIED SOIL CLASSIFICATION SYSTEM

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL-CH)

EXPLORATION: BORING 48

SAMPLE : 4

DEPTH : 8' - 10'

.

SPECIFIC GRAVITY :

USED 2.70

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
SOIL CLASSIFICATION TESTS

FILE NO. 1255

DATE MARCH 74

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CL)

EXPLORATION: BORING 48
SAMPLE : 26

DEPTH : 118'-120.6'

SPECIFIC GRAVITY: USED 2,70

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

SOIL CLASSIFICATION TESTS

FILE NO. 1255

DATE MARCH 74

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CL)

EXPLORATION: SAMPLE BORING 49

53' - 55'

SPECIFIC GRAVITY : USED 2,70

THE BELLE RIVER DETROIT PLANT UNITS EDISON COMPANY H œ H

SOIL CLASSIFICATION TESTS

DATE MARCH 74

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION: SILTY CLAY (CL)

EXPLORATION: BORING 50

28.3' TO 28.5'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER THE DETROIT PLANT UNITS EDISON COMPANY Ħ

SOIL CLASSIFICATION TESTS DATE JULY 1974

ē

90

PERCENT FINER BY WEIGHT

ō 20

PLASTICITY CHART

COARSE

FINE

UNIFIED SOIL

COARSE MEDIUM FIN

SILT OR CLAY

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION SILTY CLAY, SANDY (CL)

EXPLORATION: SHINOS

SAMPLE ō

SEPTH 48.6' TO 48.8'

APECIFIC GRAVITY: USED 2.70

BELLE RIVER HH DETROIT PLANT UNITS EDISON COMPANY œ

SOIL CLASSIFICATION TESTS

FILE NO. 255

DATE JULY 1974

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY, SANDY (CL)

EXPLORATION: BORING 52

SAMPLE

58.6 TO 58.9

GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS THE SOIL CLASSIFICATION TESTS DETROIT EDISON COMPANY 18日

DATE

JULY 1974

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

MATERIAL SOURCE

DEN. PICATION EXPLORATION BORING 53 SILTY CLAY, SANDY (CL)

DEPTH 39.5' TO 39.8'

T T BELLE DETROIT RIVER PLANT UNITS EDISON COMPANY φ H

SOIL CLASSIFICATION TESTS

FILE NO.

DATE JULY 1974

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY, SANDY (CL)

EXPLORATION: SAMPLE : BORING

DEPTH : 63.5 TO 63.8

SPECIFIC GRAVITY: 2.71

BELLE JHT H DETROIT RIVER PLANT UNITS EDISON COMPANY П 99 Ħ

SOIL CLASSIFICATION TESTS

DATE JULY 1974

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL)

EXPLORATION: BORING 54

の多型でに国

DEPTH 73.7' 10

SPECIFIC GRAVITY: 2.73

THE BELLE RIVER PLANT UNITS DETROIT EDISON COMPANY 90 口

SOIL CLASSIFICATION 255 DATE TESTS JULY 1974

GOLDBERG - ZOINO & ASSOCIATES
CONSULTANTS IN GEOTECHNICAL ENGINEERING

PLASTICITY CHART

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CL-CH)

EXPLORATION: BORING 60

5 0' TO 6.5'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS THE SOIL CLASSIFICATION TESTS DETROIT EDISON COMPANY I & II

DATE JAN. 74

C-630

GOLDBERG - ZOINO & ASSOCIATES
CONSULTANTS IN GEOTECHNICAL ENGINEERING

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CL)

EXPLORATION: BORING 60

DEPTH : ō TO 12.5

SPECIFIC GRAVITY : USED 2.70

BELLE THE DETROIT RIVER PLANT UNITS EDISON COMPANY H œ Ħ

SOIL FILE NO. CLASSIFICATION DATE TESTS JAN.

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CL)

EXPLORATION: BORING 60

SAMPLE

DEPTH : 18,1' TO 18,3'

3.410346 GRAVITY ASSUMED 2.70

BELLE RIVER PLANT UNITS AHT HE SOIL CLASSIFICATION TESTS DETROIT EDISON COMPANY ÇΦ Ħ

FILE NO.

DATE MARCH 74

1255

PERCENT FINER BY WEIGHT

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL)

EXPLORATION: S S BORING 60

DEPTH : 19' TO 20.5'

SPECIFIC GRAVITY : USED 2.70

BELLE THE DETROIT RIVER PLANT UNITS **EDISON** COMPANY φ 口

SOIL CLASSIFICATION FILE NO. TESTS

DATE JAN. 74

PLASTICITY CHART

(COMESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CL-CH)

EXPLORATION: BORING 60

\$\$.5 27' TO 28.5'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS THE DETROIT EDISON COMPANY I &

SOIL CLASSIFICATION TESTS DATE JAN, 74

GOLDBERG - ZOINO & ASSOCIATES CONSULTANTS IN GEOTECHNICAL ENGINEERING

PLASTICITY CHART

COBBLES

COARSE

FINE

UNIFIED

COARSE MEDIUM FIN

T Z

SILT OR CLAY

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL)

EXPLORATION: BORING

SAMPLE

DEPTH : 56.1 TO 56.4

SPECIFIC GRAVITY ASSUMED 2.70

BELLE RIVER THE DETROIT PLANT UNITS EDISON COMPANY I B 口

SOIL CLASSIFICATION TESTS

FILE NO.

DATE MARCH 74

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CL)

EXPLORATION: BORING

DEPTH : 85.6' TO 86.1'

SPECIFIC GRAVITY 2.73

BEL. THE LE RIVER PLANT UNITS DETROIT EDISON COMPANY I & II

SOIL CLASSIFICATION TESTS

DATE MARCH 74

PLASTICITY CHART

MATERIAL SOURCE

DENTIFICATION: SILTY CLAY, SANDY (CL)

EXPLORATION: BORING 60

SAMPLE : 23

DEPTH : 119.5' TO 119.9'

SPECIFIC GRAVITY: USED 2.70

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

SOIL CLASSIFICATION TESTS

FILE NO. 1255

DATE JAN. 74

PLASTICITY CHART

(COMESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL-CH)

EXPLORATION: BORING 137

SAMPLE

1.5' TO 3.0'

SPECIFIC GRAVITY: USED 2.70

BELLE RIVER PLANT UNITS I & II THE SOIL CLASSIFICATION TESTS DETROIT EDISON COMPANY

GOLDBERG - ZO B ONIOZ IN GEOTECHNICAL ENGINEERING

C-638

DATE NOV. 1974

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : EXPLORATION: GRAVEL (GP) BORING 139

SAMPLE SS 22

DEPTH : 99.5' TO 101.0'

SPECIFIC GRAVITY

BELLE THE DETROIT EDISON COMPANY RIVER PLANT UNITS 90

TIOS CLASSIFICATION TESTS 1255

FILE NO.

DATE NOV. 1974

PLASTICITY CHART

(COMESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : EXPLORATION: SANDY GRAVEL (GM) BORING 141

S S 2 |

114.5' TO 116.0'

SPECIFIC GRAVITY

BELLE THE DETROIT RIVER PLANT UNITS EDISON COMPANY 8 口

SOIL CLASSIFICATION TESTS DATE NOV. 1974

C-640

GOLDBERG

1110110

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SANDY CLAY (SM-SC)

EXPLORATION: BORING, 141

OEPTH : 144.5' TO 146.0"

SPECIFIC GRAVITY

BELLE RIVER THE DETROIT PLANT UNITS EDISON COMPANY QΩ 口

SOIL CLASSIFICATION TESTS

FILE NO.

DATE NOV. 1974

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

DENTIFICATION : SILTY CLAY (CL) BORING 144

EXPLORATION:

13.8' TO 14.1

SPECIFIC GRAVITY: USED 2.70

THE BELLE RIVER PLANT UNITS DETROIT EDISON COMPANY 18日

SOIL CLASSIFICATION TESTS

DATE NOV. 1974

GOLDBERG - ZOINO & ASSOCIATES CONSULTANTS IN GEOTECHNICAL ENGINEERING

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZE

PLASTICITY CHART

UNIFIED SOIL CLASSIFICATION SYSTEM

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : SILTY CLAY (CL-CH)

EXPLORATION: BORING 151A

SAMPLE N

OEPTH : 7.7' TO 8.0'

SPECIFIC GRAVITY: USED 2,70

BELLE THE DETROIT RIVER PLANT UNITS **EDISON** COMPANY ы 8 口

SOIL CLASSIFICATION TESTS FILE NO. 1255 DATE NOV. 1974

PLASTICITY CHART

(COHESIVE SOIL ONLY)

MATERIAL SOURCE

IDENTIFICATION : CLAYEY SILT, SANDY (CL-ML)

EXPLORATION: BORING 187

58.5' TO 60.D

SPECIFIC GRAVITY: USED 2.70

JHE BELLE RIVER PLANT UNITS SOIL CLASSIFICATION TESTS DETROIT EDISON COMPANY 18日

DATE JULY 1974

C-644

8 ONICZ ASSOCIATES

REMARKS: VOID RATIO AT END OF CONSOLIDATION STAGE = 0.875

SOIL PROPERTIES

SOIL DESCRIPTION SILTY CLAY (CL)

SPECIFIC GRAVITY*2.70 DRY UNIT WEIGHT 84 pcf
INITIAL WATER CONTENT 37.2 % INITIAL VOID RATIO 1.002
ATTERBERG LIMITS:

LIQUID LIMIT 39 % PLASTIC LIMIT 18 %

TEST DATA											
	SYM	INITIAL	CONSOL STAGE								
CONSOLIDATION PRESSURE	σ		1.50	1.50	1.50	1.50					
BACK PRESSURE TOP kg/cm ² BOTTOM				1	4	2.876 2.806					
DIFFERENTIAL HEAD cm.	h			35.16	49.21	70.31					
SAMPLE LENGTH cm.	L	2.540	2.39	2.39	2.39	2.39					
HYDRAULIC GRADIENT	i			14.72	20.6	29.44					
SAMPLE AREA CM2	Α	31.67	31.67	31.67	31.67	31.67					
WATER DISCHARGED 3	Q			1.94	4.00	6.85					
TIME OF DISCHARGE	† .			190,800	266,400	270,000					
PERMEABILITY cm/sec	k			-8 2.18×10	-8 2.30x10	-8 2.72×10					

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

PERMEABILITY TEST VELOCITY VS. HYDRAULIC GRADIENT

BORING NO. 50 SAMPLE NO. 6 DEPTH 28.3 TO 28.5 TEST NO. k85.I DATE JULY 74

SOIL DESCRIPTION SILTY CLAY, SANDY (CL)
SPECIFIC GRAVITY 2.70 DRY UNIT WEIGHT 97 pcf
INITIAL WATER CONTENT 26.9 % INITIAL VOID RATIO 0.730
ATTERBERG LIMITS:

LIQUID LIMIT 36 % PLASTIC LIMIT 16 %

TEST DATA											
	5 Y X	INITIAL	CONSOL STAGE	PERM	EABILI1	Y STA	SES				
CONSOLIDATION PRESSURE Con 2	Ь		2.00	2.00	2.00	2.00					
BACK PRESSURE TOP kg/cm ² BOTTOM	il top Ubot				2.862 2.812	1					
DIFFERENTIAL HEAD cm.	h			35.15	49.21	70.31					
SAMPLE LENGTH cm.	L	2.540	2.420	2.420	2.420	2.420					
HYDRAULIC GRADIENT	i			14.52	20.31	29.00					
SAMPLE cm2	A	31.67	31.67	31.67	31.67	31.67					
WATER DISCHARGED 3	Q			0.94	1.38	1.66					
TIME OF DISCHARGE	Γ.			93,600	82,800	75,600					
PERMEABILITY cm/sec	R			8- 2.18X10	-8 2.58XIO	8- 01XeE.S					

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

PERMEABILITY TEST VELOCITY VS. HYDRAULIC GRADIENT

BORING NO. ______ 50 SAMPLE NO. ____ 1 0 DEPTH ___ 48.6 FO 48.8 TEST NO. K 87.1 DATE JULY 1974

TE 1255

SOIL DESCRIPTION SILTY CLAY, SANDY (CL)
SPECIFIC GRAVITY 2.70 DRY UNIT WEIGHT 119 pcf
INITIAL WATER CONTENT 15.1 % INITIAL VOID RATIO 0.411
ATTERBERG LIMITS:

LIQUID LIMIT 23 % PLASTIC LIMIT 14 %

		TE	ST	ATA					
	SYM	Y INITIAL STAGE PERMEABILITY STAGE							
CONSOLIDATION PRESSURE	ਰ		2.30	2.30	2.30	2.30			
BACK PRESSURE TOP kg/cm ² BOTTOM					2.854 2.806	2.876 2.806	,		
DIFFERENTIAL HEAD cm.	h			35.16	49.21	70.31			
SAMPLE LENGTH cm.	٦	2.54	2.47	2.47	2.47	2.47			
HYDRAULIC GRADIENT	i		-	14.20	19.87	28.40			
SAMPLE AREA CM2	A	31.67	31.67	31.67	31.67	31.67			
WATER DISCHARGED 3	Q	-		1.26	3.38	3.40			
TIME OF DISCHARGE	•			190,800	320,400	198,000			
PERMEABILITY cm/sec	k .			-в 1.46 x Ю	- 8 1.68 x 10	-8 1.91 x 10			

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

PERMEABILITY TEST
VELOCITY VS. HYDRAULIC GRADIENT

BORING NO. 52 SAMPLE NO. 7 DEPTH 58.6' TO 58.9' TEST NO. _ k112.1 DATE __JULY 74

SOIL DESCRIPTION SILTY CLAY, SANDY (CL)
SPECIFIC GRAVITY 2.72 DRY UNIT WEIGHT 104 pcf
INITIAL WATER CONTENT 30.2 % INITIAL VOID RATIO 0.732
ATTERBERG LIMITS:

LIQUID LIMIT 39 % PLASTIC LIMIT 20 %

TEST DATA											
	SYN	INITIAL	CONSOL STAGE	I DEDMEAMNITY SIGNES							
CONSOLIDATION PRESSURE	ਰ		1.74	1.74	1.74	1.74	1.74				
BACK PRESSURE TOP kg/cm ² BOTTOM	ii top			2.810 2.806		2.854 2.806					
DIFFERENTIAL HEAD CM.	h			14.06	35.16	49.21	70.31				
SAMPLE LENGTH cm.	٦	2.54	2.49	2.49	2.49	2.49	2.49				
HYDRAULIC GRADIENT	i			5.64	14.11	19.75	28.22				
SAMPLE CM2	A	31.67	31.67	31.67	31.67	31.67	31.67				
WATER DISCHARGED 3	Q			1.22	2.30	5.89	8.50				
TIME OF DISCHARGE	t			248,400	212,400	277,200	270,000				
PERMEABILITY cm/sec	k			2.75×10	-8 242×10	-8 3.40×10	3.52×10				

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

PERMEABILITY TEST VELOCITY VS. HYDRAULIC GRADIENT

 TEST NO. _ k98.1 DATE _JULY 74

SOIL DESCRIPTION SILTY CLAY, SANDY (CL)
SPECIFIC GRAVITY 2.71 DRY UNIT WEIGHT 98 pcf
INITIAL WATER CONTENT 27.2 % INITIAL VOID RATIO 0.724
ATTERBERG LIMITS:

LIQUID LIMIT 36 % PLASTIC LIMIT 18 %

TEST DATA											
	SYM	INITIAL	CONSOL STAGE	1 DEDM	EABILI	TY STA	GES				
CONSOLIDATION PRESSURE	₹		2.40	2.40	2.40	2.40					
BACK PRESSURE TOP kg/cm ² BOTTOM					2.862 2.812	2.883 2.812					
DIFFERENTIAL HEAD Cm.	h			35.15	49.21	70.31					
SAMPLE LENGTH cm.	L	2.540	2420	2.420	2.420	2.420					
HYDRAULIC GRADIENT				14.52	20.33	29.0					
SAMPLE AREA cm ²	A	31.67	31.67	31.67	31.67	31.67	·				
WATER DISCHARGED 3	O			1.08	1.52	1.76					
TIME OF DISCHARGE	t			93,500	82,800	75,600					
PERMEABILITY cm/sec	k			-8 2.52XIO	-8 2.85XIO	-8 2.53XIO					

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

PERMEABILITY TEST
REMARKS: VOID RATIO AT END OF CONSOLIDATION STAGE=0.641 VELOCITY VS. HYDRAULIC GRADIENT

BORING NO. 5 4 SAMPLE NO. 6 DEPTH 63.5 TO 63.8 TEST NO. K 399.1 DATE JULY 1974

SOIL DESCRIPTION SILTY CLAY (CL) SPECIFIC GRAVITY 2.73 DRY UNIT WEIGHT 90 pcf INITIAL WATER CONTENT 31.6 %INITIAL VOID RATIO 0.851 ATTERBERG LIMITS:
LIQUID LIMIT 45 % PLASTIC LIMIT 21 %

TEST DATA										
	S Y M	INITIAL	CONSOL STAGE	I DEDMEADHITY CTACEC						
CONSOLIDATION PRESSURE	ē		2.71	2.71	2.71	2.71	2.71			
BACK PRESSURE TOP kg/cm ² BOTTOM			·	I		2.862 2.812				
DIFFERENTIAL HEAD cm.	h			14.06	35.15	49.21	70.31			
SAMPLE LENGTH cm.	L	2.540	2.376	2.376	2.376	2376	2.376			
HYDRAULIC GRADIENT	i			5.92	14.80	20.71	29.50			
SAMPLE AREA cm ²	A	31.67	31.67	31.67	31.67	31.67	31.67			
WATER DISCHARGED 3	Q			0.48	0.88	1.10	1.39			
TIME OF DISCHARGE SEC	t			108,000	90,000	79,200	75,600			
PERMEABILITY cm/sec	k			-8 2.37XIO	8 - 01XeQ.S	-8 2.18XIO	-8 2.00X10			

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

PERMEABILITY TEST

BORING NO. ____ 54 SAMPLE NO. 8 DEPTH __ 73.7'T074.0' TEST NO. K 401. I

SOIL DESCRIPTION SILTY CLAY (CL)

SPECIFIC GRAVITY 2.70 DRY UNIT WEIGHT 103 pcf
INITIAL WATER CONTENT 26.1 % INITIAL VOID RATIO.707
ATTERBERG LIMITS:

LIQUID LIMIT 39 % PLASTIC LIMIT 21 %

		TE	ST D	ΔΤΔ			٠.,.				
	SYM	INITIAL	CONSOL STAGE	DEDMEADILITY CTACEC							
CONSOLIDATION PRESSURE Con 2	Ŧ	٠	1.05	1.05	1.05	1.05					
BACK PRESSURE TOP kg/cm ² BOTTOM	il _{top}			1	2.521 2.460						
DIFFERENTIAL HEAD cm.	h			27.7	63.0	103.8					
SAMPLE LENGTH cm.	L	6.48	6.40	6.40	6.40	6.40					
HYDRAULIC GRADIENT	i			11.0	25.0	41.2					
SAMPLE AREA cm2	A	11.37	11.37	11.37	11.37	11.37					
WATER DISCHARGED 3	a			.13	.29	.58					
TIME OF DISCHARGE	t	_		72,000	72,000	86,000					
PERMEABILITY cm/sec	k			1.60x10 ⁸	1.61x10 ⁸	1.63x10					

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

PERMEABILITY TEST
VELOCITY VS. HYDRAULIC GRADIENT

BORING NO. ____60 SAMPLE NO. ___3 DEPTH __[8.1] TO [8.3] TEST NO. k43.I DATE MARCH 74

SOIL DESCRIPTION SILTY CLAY (CL)

SPECIFIC GRAVITY 2.70DRY UNIT WEIGHT 98 pcf
INITIAL WATER CONTENT 27.2% INITIAL VOID RATIO 730
ATTERBERG LIMITS:

LIQUID LIMIT 33 % PLASTIC LIMIT 18 %

		TE	ST D	ATA	•					
	SYM	INITIAL	CONSOL STAGE	PERMEABILITY STAGES						
CONSOLIDATION PRESSURE	₹		2.20	2.20	2.20	2.20				
BACK PRESSURE TOP kg/cm ² BOTTOM					2.847 2.812					
DIFFERENTIAL HEAD CM.	h			14.06	35.16	70.30				
SAMPLE LENGTH cm.	L	1.90	1.73	1.73	1.73	1.73				
HYDRAULIC GRADIENT	i			8.13	20.32	40.63				
SAMPLE AREA CM2	Ą	31.70	31.70	31.70	31.70	31.70				
WATER DISCHARGED 3	Q			.21	.66	.23				
TIME OF DISCHARGE SEC	t,			66,600	59,400	10,200				
PERMEABILITY cm/sec	k			-8 1.25x10	-8 1.75x10	-8 1.76x10				

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

PERMEABILITY TEST VELOCITY VS. HYDRAULIC GRADIENT

BORING NO. 60 SAMPLE NO. 11 DEPTH 56.1 TO 56.4 TEST NO. k51.1 DATE MARCH 74

SOIL DESCRIPTION SILTY CLAY (CL)

SPECIFIC GRAVITY 2.73 DRY UNIT WEIGHT 96 pcf
INITIAL WATER CONTENT 29.1 % INITIAL VOID RATIO .753
ATTERBERG LIMITS:

LIQUID LIMIT 40 % PLASTIC LIMIT 19 %

	TEST DATA											
	S Y M	INITIAL	CONSOL STAGE	PERM	PERMEABILITY STAGES							
CONSOLIDATION PRESSURE	Ē		3.00	3.00	3.00	3.00						
BACK PRESSURE TOP kg/m ² BOTTOM				1	2.847 2.812	2.882 2.812						
DIFFERENTIAL HEAD cm.	b			14.06	35.16	70.30						
SAMPLE LENGTH cm.	٦	1.90	1.74	1.74	1.74	1.74						
HYDRAULIC GRADIENT	į			8.08	20.20	40.40	÷					
SAMPLE AREA cm ²	A	31.70	31.70	31.70	31.70	31.70						
WATER DISCHARGED 3	Q			.34	.97	.31						
TIME OF DISCHARGE SEC	. 1			63,000	59,400	10,200						
PERMEABILITY cm/sec	k	-		2.10×10	-8 2.55xIO	-8 2.37x10						

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

PERMEABILITY TEST VELOCITY VS. HYDRAULIC GRADIENT

BORING NO. 60 SAMPLE NO. 16 DEPTH 85.6 TO 86.1

TEST NO. <u>k56.1</u> DATE <u>MARCH 74</u>

U.S. STANDARD SIEVE SIZE

COBBLES	GRAVEL	SAND	
	COARSE FINE	COARSE MECIUM FINE	SILT OR CLAY

UNIFIED SOIL CLASSIFICATION SYSTEM

COMPACTION

ATTERBERG LIMITS

IDENTIFICATION SILTY CLAY (CL-CH)
LIQUID LIMIT 50
PLASTIC LIMIT 17

MATERIAL SOURCE

IDENTIFICATION SILTY CLAY (CL-CH)
EXPLORATION BORING 49
SAMPLE 2
DEPTH 6.0' TO 8.1'

COMPACTION METHOD

ASTM TEST DISST - METHOD C

AASHO TEST

MOLD HEIGHT 4.584", MOLD DIAM. 4.000".

NO. LAYERS 5 , BLOWS/LAYER 25 ,

HAMMER WT. 10 LBS, DROP HT. 18 ".

NOTES:

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II

COMPACTION - GRADATION TESTS

FILE NO. 1255

DATE MARCH 74

GRAIN SIZE DISTRIBUTION 50H탑 30 GRAIN SIZE IN MILLIMETERS 1.0 0.01 0.001 GRAVEL SAND COBBLES SILT OR CLAY COARSE COARSE MEDIUM UNIFIED SOIL CLASSIFICATION SYSTEM ATTERBERG LIMITS COMPACTION IDENTIFICATION SEE DATA FOR LIQUID LIMIT INDIVIDUAL PLASTIC LIMIT SAMPLES

MATERIAL SOURCE

EXPLORATION SILTY CLAY (CL-CH)

EXPLORATION BORING 101,105,127,128,180 & 183

BAMPLE COMBINED SAMPLES

DEPTH 2.0' TO 10.0'

•

 ϵ

COMPACTION METHOD

ASTM TEST DISST - METHOD C

AASHO TEST

MOLD HEIGHT 4.584", MOLD DIAM. 4.000".

NO. LAYERS 5 , BLOWS/LAYER 25 ,

HAMMER WT. 10 LBS, DROP HT. 18 ".

NOTES:

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
COMPACTION - GRADATION

COMPACTION - GRADATION TESTS

FILE NO. 1255 DATE APRIL 74

C-656

COBBLES	GRAVEL	SAND	
COBBLES	COARSE FINE	COARSE MEDIUM FINE	SILT OR CLAY

UNIFIED SOIL CLASSIFICATION SYSTEM

COMPACTION

ATTERBERG LIMITS

IDENTIFICATION SILTY CLAY (CL - CH)

LIQUID LIMIT 49

PLASTIC LIMIT 22

MATERIAL SOURCE

IDENTIFICATION SILTY CLAY (CL-CH)

EXPLORATION BORING 127

SAMPLE

DEPTH 5.6' TO 7.0'

COMPACTION METHOD

ASTN TEST 01557 - METHOD C

MOLD HEIGHT 4.56 ", MOLD DIAM. 4.00 ".

NO LAYERS 5 , BLOWS/LAYER 25 ,

HAMMER WT. 10 LBS, DROP HT. 18

NOTES:

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II

COMPACTION - GRADATION TESTS

FILE NO. 1255

DATE JULY 74

U.S. STANDARD BIEVE SIZE

COBBLES	GRAVEL	SAND	
	COARSE FINE	COARSE MEDIUM FINE	SILT OR CLAY

UNIFIED SOIL CLASSIFICATION SYSTEM

COMPACTION

ATTERBERG LIMITS

IDENTIFICATION LIQUID LIMIT PLASTIC LIMIT

MATERIAL SOURCE

IDENTIFICATION SILTY CLAY (CH)
EXPLORATION BORING 136

SAMPLE 2
DEPTH 3.0' TO 5.0'

COMPACTION METHOD

ASTM TEST DISST - METHOD C

AASHO TEST

MOLD HEIGHT 4.58 ", MOLD DIAM. 4.00 ".

NO. LAYERS 5 , BLOWS/LAYER 25 ,

HAMMER WT. 10 LBS, DROP HT. 18 ".

NOTES:

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
COMPACTION - GRADATION
TESTS

FILE NO. 1255

DATE NOV. 74

C - 658

	**************************************	A PROPERTY PLANT AND ADDRESS OF THE PARTY OF	THE RESIDENCE OF STREET, SAN PARTY AND	The second section is a second	(4 little) : ere den de de la com				
1	COBBLES	GRAV	/EL	SAND .					
ı		COARSE	FINE	COARSE	MEDIUM	FINE	SILT OR CLAY		

UNIFIED SOIL CLASSIFICATION SYSTEM

COMPACTION

ATTERBERG LIMITS

IDENTIFICATION L526.1 LIQUID LIMIT 56 PLASTIC LIMIT 23

MATERIAL SOURCE

EXPLORATION SILTY CLAY (CH)
EXPLORATION BORING 14:
SAMPLE I
DEPTH 5.0' TO 5.0'

COMPACTION METHOD

ASTM TEST DISST - METHOD C.

AASHO TEST

MOLD HEIGHT 4.58 ", MOLD DIAM. 4.00".

NO. LAYERS 5 , BLOWS/LAYER 25 ,

HAMMER WT. 10 LBS, DROP NT. 18 ".

NOTES:

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II COMPACTION - GRADATION TESTS

FILE NO. 1255

DATE NOV. 74

U.S. STANDARD SHEVE SIZE

_			SAND	
l	COBBLES	GRAVEL		SILT OR CLAY
ŀ	0000000	COARSE FINE	COARSE MEDIUM FINE	

UNIFIED SOIL CLASSIFICATION SYSTEM

COMPACTION

ATTERBERG LIMITS

 \cdot ϵ

€

IDENTIFICATION L 552.1 LIQUID LIMIT 54 PLASTIC LIMIT 23

MATERIAL SOURCE

EXPLORATION SILTY CLAY (CH)
EXPLORATION BORING 142
SAMPLE I
DEPTH 3.0' TO 5.5'

COMPACTION METHOD

ASTM TEST DISST - METHOD C

AASHO TEST

MOLD HEIGHT4.58 ", MOLD DIAM. 4.00".

NO. LAYERS 5 , BLOWS/LAYER 25 ,

HAMMER WT. 10 LBS, DROP HT. 18 ".

NOTES

THE DETROIT EDISON COMPANY
BELLE RIVER PLANT UNITS I & II
COMPACTION - GRADATION
TESTS

FILE NO. 1255 DATE APRIL 74

C - 660

U.S. STANDARD SIEVE SIZE

í	GRAVEL	SAND	CALLED TO SERVICE OF THE SERVICE OF
COBBLES	COARSE FINE	COARSE MEDIUM FINE	SILT OR CLAY

UNIFIED SOIL CLASSIFICATION SYSTEM

COMPACTION

ATTERBERG LIMITS

IDENTIFICATION L 541.1 LIQUID LIMIT 38 PLASTIC LIMIT 19

MATERIAL SOURCE

IDENTIFICATION SILTY CLAY, SANDY (CL) BORING 146 EXPLORATION SAMPLE.

DEPTH 10.0' TO 12.0'

COMPACTION METHOD

ASTM TEST DISST - METHOO C MOLD HEIGHT 4.58 ", MOLD DIAM. 4.00 ". NO. LAYERS 5 , BLOWS/LAYER 25 . HAMMER WT. 10 LB9, DROP HT. IB ",

NOTES:

THE DETROIT EDISON COMPANY BELLE RIVER PLANT UNITS I & II **COMPACTION - GRADATION TESTS**

FILE NO. 1255

DATE APRIL 74

Appendix D

C-662

U.W. STOLL AND ASSOCIATES soil mechanics and foundation consultants
111 WEST KINGSLEY STREET ANN ARBOR, MICHIGAN 48103 (313) 994-5055

ULRICH W. STOLL GARRETT EVANS IN-KUIN KIM

September 8, 1975

Mr. Sherif Afifi
Bechtel Power Corporation
P. O. Box 1000
777 East Eisenhower Parkway
Ann Arbor, Michigan 48106

SUBJECT: Soil Testing

Hopper Investigation
Belle River Coal Handling

Detroit Edison Company

Technical Specification, 10539-3-C-13

Pages

REFERENCE: Purchase Order No. AA2184

Dear Sir:

Enclosed herewith is the summary of laboratory testing conducted on soil samples received from the subject site, as authorized by the referenced purchase order. The laboratory testing was performed in accordance with your technical specification 10539-3-C-13 and included the following tests:

		<u> </u>
30	Visual Classification and In-Situ Moistures	B-1, B-2, B-9
10	Atterberg Limits	B-3, B-4, B-5
	Unconfined Compression	B-6 through B-28
2	In-Situ Moisture and Density	B-6, B-8
5	Mechanical Analysis	B-29, B-30

We appreciate the opportunity of serving you and trust that this work has been performed to your satisfaction.

Very truly yours,

U. W. STOLL AND ASSOCIATES

In-Kuin Kim, P.E.

IKK/jb

Enclosures

JOB MAME: HOPPER INVESTIGATION - BELLE RIVER
JOB LOCATION BELLE RIVER, MICHIGAN
CLIENT: BECHTEL CORPORATION

SUBJECT:

IKK DATE: 8/75
NATURAL MOISTURES OF

BOTTLE SAMPLES

BORING NUMBER	SAMPLE NUMBER	MOISTURE CONTENT (%)	VISUAL CLASSIFICATION
B-191	S-1	23.2	GRAY-BROWN MOTTLED CLAY
	S-2	25.6	BROWN LAYERED CLAY
	\$-3	38.6	GRAY CLAY WITH DRILL WASH
	S-4	35.9	GRAY CLAY WITH DRILL WASH
	S-5	39.6	GRAY CLAY WITH DRILL WASH
	S-6	43.1	GRAY CLAY WITH DRILL WASH
	S-7	39.4	GRAY CLAY
	\$- 8	32.5	GRAY CLAY
	S-9	34.6	GRAY CLAY
	S-10	37.1	GRAY CLAY
4.	S-11	33.4	GRAY CLAY
	S -1 2	30.7	GRAY CLAY WITH DRILL WASH
	S-13	28.7	GRAY CLAY WITH TRACE OF DRILL WASH
	S-14	27.2	GRAY CLAY WITH TRACE OF DRILL WASH
	S-15	27.1	GRAY CLAY
	S-16	24.2	GRAY CLAY
	S-17	24.0	GRAY CLAY
	S-18	24.8	GRAY CLAY
	S-19	26.8	GRAY CLAY WITH TRACE OF DRILL WASH
	S-20	25.4	GRAY CLAY
	\$-21	25.9	GRAY CLAY
	S-22	27.8	GRAY CLAY
	S-23	26.7	GRAY CLAY
	S-24	25.9	GRAY CLAY
	S-25	32.2	GRAY CLAY

JOB NAME HOPPER INVESTIGATION - BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
CLIENT: BECHTEL CORPORATION

BY: IKK DATE: 8/75
SUBJECT: NATURAL MOISTURES OF
BOTTLE SAMPLES

BORING NUMBER	SAMPLE NUMBER	MOISTURE CONTENT (%)	VISUAL CLASSIFICATION
B-191	S-26	40.6	GRAY CLAY
	S-27	25.7	WET CLAYEY SILT
	S-28	12.6	SANDY SILT
•	S-29	10.2	DECOMPOSED SHALE

JOB NAME	HOPPER THRESTIGNITOR	I GAN		RIV	/ER		BY: SUE	JTE C.	IKI			TOR		8/7 ES1	'5 F DATA	. Sl	JMM	ARY	
	НТБИЗЯТС ЯАЭНС (729)	4200	870	069	089	1190	1690	200	1560	230	760	004	01/	630	099	·			
STS	AXIAL STRAIN AT FAILURE (%)	50 %	3%	3%	%9	16%	14%	2%	4%		800	80	2	<u>%</u>	84				
STRENGTH TESTS	MIN. PRINCIPAL STRESS (KG/SQ.CM.)						٠												·
STRE	MAX. PRINCIPAL STRESS (KG/SQ.CM.)							s,		•									
	TYPE OF TEST	UNCONF.	UNCONF.	UNCONF.	UNCONF.	UNCONF.	UNCONF.	UNCONF.	UNCONF.	JNCONF.	L	UNCONF.	UNCONF.	UNCONF.	UNCONF.				- <u>-</u>
9)	SHRINKAGE LIMIT												٠.						
ATTERBERG LIMITS	PLASTIC INDEX	21	18	2	23	14	16	13		13			38	22	-				
ATTI	LIQUID LIMIT	44	40	45	49	33	36	32		33			33	48					
	СВ∀ЛЕГ				<u> </u>				·						•				
TION)	COARSE SAND																		-
TRIBU	WEDINW 28ND		٠														,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
DIS ST S	FINE SAND		*																
SIZE OF TE	SILT				:														
GRAIN SIZE DISTRIBUTION (% OF TEST SAMPLE)	כר∀ג		2					•	·										
	COLLOIDS																		· .
LY.	NATURAL DRY DENSITY (LBS/CU.FT.)	103.6	85.5	80.5	95.5	99.3	103.6	95.5	96.1	99.3	1	88.7	88.0	78.7	87.4				
MOISTURE DENSITY	MATURAL MOISTURE (% OF DRY WTS.)	13.4	36.3	42.6	27.5	25.7	22.2	26.9	26.3	23.6		31.9	33.1	39.5	34.5				
NOI	(.TF) 3J4MA2 90 HT430	9	18.5	33.5	51.5	61.5	72.5	77.0	78.0	98.0		20.0	35.0	45.0	0				
SAMPLE IDENTIFICATION	SAMPLE NO.	ST-1		ST-7	ST-11	ST-13	ST-15	ST-16	ST-16	ST-19		ST-1	ST-4	ST-6					·
SIDEN	воктие ио.	B-193									- -	B-192						D	- 5

U. W. STOLL and ASSOCIATES

HOPPER INVESTIGATION, BELLE RIVER

8/75

 ϵ

C

 ϵ

PLASTICITY CHART

BELLE RIVER, MICHIGAN BECHTEL POWER CORPORATION

PLASTICITY INDEX, PI

U. W. STOLL and ASSOCIATES

HAME: HOPPER INVESTIGATION, BELLE RIVER
LOCATION: BELLE RIVER, MICHIGAN
ENT: BECHTEL POWER CORPORATION

IKK

8/75

PLASTICITY CHART

PLASTICITY INDEX, PI

HOPPER INVESTIGATION, BELLE RIVER BELLE RIVER, MICHIGAN BECHTEL POWER CORPORATION JOB

IKK

8/75

€

GLIENT:	DEC.III.					4 4 E	•
FI	E 1. D	DATA	LABORAT	0 R Y	D .	ATA	
				TEST	s	SHEAR TRENGTH UNDIST	MOISTURE
BORING SAMPLE		A.S.T.M. PENETRATION BLOW DEPTH	DESCRIPTION	DIAM (MM)	1 to 1 to 1 to 2	REMOLD KN/SQ·M)	DRY DENS
	÷					221 0	13.4%
B-193	6.0	DUCHED	STIFF BROWN SILT CLAY WITH PEBBLE	UNCF	5%	201•0	
ST-1	-6.0	\$	QU=4.5 TSF	72.0			1 • 66
B-193	10.0	PUSHED	BROWN MOTTLED CLAY WITH PEBBLE	•			30.0%
ST-2	-10.0	100,55	SAMPLING DISTURB QU=1.75TSF	sep72•5	2000 1000 1000 1000 1000 1000 1000 1000		1.49
•						61.3	32.6%
B-193	12.8	PHSHED	SOFT GRAY, CLAY WITH SEAM OF SIM	<u> </u>	4%	01.0	1.44
ST-3	-12-8	the state of the s	DARK GRAY SANDY CLAY, TU=.57TSF	72.5			1 • 4 -
B-193	18.5		TAN GRAY SOFT SILTY CLAY	UNCF	3%	41.8	
ST-4	-18.5		(LACUSTRINE) TV=.32TSE	72.5			1.37
				. • •			
B-193	23.5		TAN GRAY SOFT	UNCF	2%	39•3	32 • 8%
ST-5	-23•5	PUSHED 5	(LACUSTRINE) TV=.29TSF	72.5			1 • 3 8
B-193	28.5	,	TAN GRAY SOFT	UNCF		29.6	41.4%
		PUSHED	PLASTIC CLAY (LACUSTRINE)	72 • 0	2%		1.32
ST - 6	-28-5		TV= • 27TSF				
B -1 93	33•!	5	TAN GRAY SOFT	UNCF		32•9	42.6%
5-193 ST-7	-33•	PUSHED	PLASTIC CLAY (LACUSTRINE)	72.1	3%		1.29
·			TV=.27T5F				•

JOB NAME.

HOPPER INVESTIGATION, BELLE RIVER BELLE RIVER, MICHIGAN BECHTEL POWER CORPORATION

IKK

8/75

DATE

JOB LOCATION

SUBJECT:

CLIENT:

			·		_		
F I	E L D	DATA	LABORA	TORY	D	АТА	
BORING	DEPTH A.	S.T.M.		TEST	S	SHEAR TRENGTH UNDIST	NATURAL MOISTURE
SAMPLE	PE	NETRATION	LABORATORY DESCRIPTION	DIAM (MM)		REMOLD	DRY DENS
	<u></u>					· · · · · · · · · · · · · · · · · · ·	
B-193	38.5	PUSHED	TAN GRAY SOFT	UNCF	3 %	42.9	38.4%
ST-8	-38.5	, ,, -	(LACUSTRINE) TV=.37TSF	72•9		· . ·	1.33
						.:	
B-193	41 • 5	PUSHED	TAN GRAY SOFT LACUSTRINE CLAY		2%	31.6	
ST = 9	-41.5		TV=0.35TSF	72.3			1.30
B-193	46.5	· · · · · · · · · · · · · · · · · · ·	REDDISH-GRAY	UNCF		40.4	46.5%
ST-10	-46.5	PUSHED	SOFT CLAY (LACUSTRINE)	72.2	2%		1.21
			TV=0.35TSF				:
B-193	51.5	PUSHED	SOFT GRAY	UNCF	6%	32.4	27.5%
ST - 1 1	-51.5	100me <i>b</i>	MOTTLED LACUSTR				1.53
			TV = . 29 TIF	• :	-		20.6%
B-193	56.5	PUSHED	SOFT GRAY PEBBLY SANDY		16%	41 • 1	1.52
ST-12	-56.5		CLAY TV=•41TSF	72.3			1.52
				•		5	
B-193	61.5	PUSHED	PLASTIC CRAY SILTY CLAY	UNCF	16%	56•9	25.7%
ST-13	-61.5		WITH PEBBLES	72 • 5			1.59

TV=.5 TSF

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
CLIENT: BECHTEL POWER CORPORATION

BY: IKK DATE: 8/75

(

 ϵ

SUBJECT:

F	I E L D	DATA	LABORA	TORY	D	АТА	
		A.5.T.M.				SHEAR STRENGTH UNDIST	
BOX1	NG DEFIN	PENETRATION	LABORATORY	S	TRAIN		
SAMP		BLOW DEPTH	DESCRIPTION	DIAM (MM)		REMOLD (KN/SQ.M)	DRY DENS (MG/CU+M)
			t.				
B-19	3 66.0	•	FIRM GRAY	UNCF	0.08	78•9	22.3%
		* 5.7	SILTY CLAY WITH PEBBLES	72.3	20%		1.67
ST - 1	4 -66.0		TV= 0.63 TSF	72.0			
ja e				· · · · · · · · · · · · · · · · · · ·			
B-19	72.5		GRAY SILTY	UNCF		80.8	22.2%
5-13	,3 12.5		CLAY		14%		
ST - 1			WITH PEBBLES TV=.6778 TSF				1.66
	93 77• 0	· ·	FIRM V. SILTY	UNCF		24 - 1	26.9%
,		PUSHED	GRAY CLAY		5 %	•	1.53
ST - 1	16 -77•0		SAND SEAMS TV=•65 TSF	72.9			
B-1	93 7 8•0		GRAY SILTY	UNCF	/ _{1 -} 27	74.9	26 • 3 %
ST-	13 - - 78•0		CLAY WITH PEBBLES -	72 • 1	~±.70		1.54
. 4			TV= •77 TSF				
							20 49/
B-1	93 82•0		GRAY SILTY	UNCF	14%	7.0 • 8	20.4%
· cm	i7 -82•0	PUSHED	CLAY WITH PEBBLES	72.2	14/		1.72
ST-	02•1	•	TV= .85 TSF				
B-1	93 93.5	5	GRAY SILTY	NONE	٠		25.5%
		PUSHED	CLAY	71 1			1.62
5 T -	18 -93.5		WITH PEBBLES DRILL WASH	71 • 1			
•			<u> </u>				

CUNIT CONVERSIONS: 1 KN/SQ.M=20.88 PSF, 1 MG/CU.M=62.43 PCF)

JOB NAME. HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION BELLE RIVER, MICHIGAN
CLIENT: BECHTEL POWER CORPORATION

BY: İKK DATE: 8/75

SUBJECT:

F I	E L D	DATA	LABORA	T O R	Ā D	АТА	
BORING	DEPTH	A•S•T•M•		TEST		SHEAR STRENGTH UNDIST	NATURAL MOISTURE
SAMPLE	ELEV	PENETRATION	LABORATORY DESCRIPTION	DIAM (MM)		REMOLD (KN/SQ.M)	DRY DENS (MG/CU·M)
			GRAY SILTY	UNCF		28.0	23 • 6%
B-193	98•0	PUSHED	CLAY WITH SOME PEBBLES & MOTTLE		20%		1 • 5 9
ST-19	-98.0		TV=.45 TSF	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			31.1%
B-193,	57-20	PUSHED	GRAY SILTY CLAY WITH PERBLES & PRILL WASY	no Test			
B-193	112.0	PUSHED	SOFT GRAY SILTY CLAY	UNCF	20%	19•1	28.5%
ST -21	-112.0		WITH PEBBLES TV=0.22 TSF	72•7			1 • 47
•	, ST-22 , ST-23	b 1710	sa ot sucl 27237	ice Wa	3H		

JOB NAME HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION BELLE RIVER, MICHIGAN
BECHTEL POWER CORPORATION

BY: IKK

ATE: 8/75

SUBJECT:

	F I	E L D	DATA	LABORAT	OR	Y	ATA	
	BORING	DEPTH	A.S.T.M.		TEST		SHEAR STRENGTH UNDIST	MOISTURE
•			PENETRATION	LABORATORY DESCRIPTION	DIAM (MM)			DRY DENS (MG/CU·M)
	B-192	20.0	DUCHED	GRAYISH BROWN PLASTIC SOFT	UNCF	8%	22.1	31 • 9%
	ST - 1	-20.0		LACUSTRINE CLAY TV= • 27 TSF				1 • 42
•								
	B-192	25.0	·	GRAYISH BROWN SOFT PLASTIC	UNCF	4%	27.8	35 • 6%
	ST-2	-25.0		LACUSTRINE CLAY TV=.27 TSF	72.2			1.37
						5 S		
	B-192	30.0		GRAYISH BROWN PLASTIC SOFT			27.7	41.8%
	ST-3	-30 • 0	PUSHED	LACUSTRINE CLAY TV=.25 TSF				1.28
						•		
	B-192		DUCUED	GRAYISH BROWN SOFT PLASTIC	UNCF	2%	34.2	33.1%
	ST-4	-35.0		CLAY(LACUSTRINE) TV=.28 TSF				1 • 4 1
	B-192	40.0		GRAYISH BROWN PLASTIC SOFT		2%	40.5	36.4%
e.	ST-5	-40.0		LACUSTRINE CLAY TV=.28 TSF				1.31
	B-192	45.0		BROWNISH GRAY PLASTIC LACUSTRI		1 %	30.2	39.2%
	ST-6	-45.0	POSHED	CLAY (MOTTLED) TV=-32 TSF				1.26
						•		
	B-192	52.0		FIRM GRAY SILTY CLAY	UNCF	4%	31 • 4	34.5%
	ST-7	-52.0		WITH PEBBLES TU= 0.26 TSF	72•3			1 • 40

CUNIT CONVERSIONS: 1 KN/SQ.M=20.88 PSF, 1 MG/CU.M=62.43 PCF)

D-12

JGB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
CLIENT: BECHTEL POWER CORPORATION

BY: IKK

DATE:

8/75

SUBJECT:

F I	ЕĻD	DATA	LABORAT	ין יָט י	Å D	ATA	
		A.S.T.M. PENETRATION BLOW DEPTH	LABORATORY DESCRIPTION	DIAM	STRAIN	SHEAR STRENGTH UNDIST REMOLD (KN/SQ.M)	MOISTURE DRY DENS
B-192 ST-8		PUSHED	SOFT GRAY SILTY CLAY WITH PEBBLES TU=0.40 TSF	UNCF 72.5	10%	36.8	27.8%
B-192 ST-11		PUSHED	SOFT GRAY SILTY CLAY WITH FINE SAND LAYERS TU=.52 TSF		7 %	84•5	26.6%
B-192 ST-9		PUSHED	PLASTIC GRAY SILTY CLAY WITH PEBBLES	UNCF 72.5	16%	46 • 0	26.5%
31-9	-00•0		TV=0.50 TSF			· .	
B-192	70.0		FIRM GRAY SILTY CLAY	UNCF	20%	85•2	
ST-10	-70 • 0		WITH PEBBLES TV=0.82 TSF	72.3		•	1 • 64

		CON THO	onanios and round	20000 00110010	.anto			
	JOB LOCATION: BE	ER INVESTIGATION, BEL LLE RIVER, MICHIGAN CHTEL POWER CORPORATI		BY: IK	K DA	^{TE:} 8/	75	•
		TT TT TC AT TC AT	D 100 57					··· .
		IT IF ICATION;	B-193,ST					
	DIAL GAGE	LOAD GAGE	STRAIN		STRESS			1.0
	•		%	-	(PSF)			
	1.50	• 0	• 0 0		119.33			
	2.00	5 • 0	•33		1064.92	• •		
•	2.50	11.0	•66		2192.85			•
	and the second s						:	•
	3.00	16.5	• 98		3219.35			
	3.50	21 • 0	1.31	,4	4051.68			
	4 • 0 0	25.0	1.64	4	4785 • 06			
-	4 • 5 0	28.5	1.97		5420•41		•	
	5 • 0 0	31.8	2.29		5014.33	•		
	5.50	35.0	2.62		5585.65			
	6+00		and the second s					
		37.5	2 • 95		7024.04			
	6.50	39•8	3 • 28		7422•60			-
	7 • 0 0	41.8	3.60	7	7763.41		7	
	7.50	43 • 5	3 • 93	ξ	3047.02			
	8.00	44.9	4.26		3274.00	4.5	. *	
	8.50	45 • 6	4.59		3372.46			
	9.00	45.9						
			.4 • 91		3397 • 85	<u></u>		•
	9.50	45.9	5.24		3368•92			
	10.00	44.0	5•5 7	. 7	7999•41			
	10.50	39•0	5 • 90		7078.55			N.
	SAMPLE IDEN	TIFICATION;	B-193,ST					e, i e e e
	DIAL GAGE	LOAD GAGE	STRAIN		STRESS			
		20112 41142	% %	•		•	*	
	1 • 0 0	•			(PSF)			•
		• 0	• 0 0		117.69			
	1.50	113.0	•35		595.39			
	2.00	222.0	•71	1	1052 • 83			•
	2.50	332•0	1.06		1511.20			
4.000	3 • 0 0	422.0	1 • 41		882.54			
	3.50	485 • 0	1 • 77		2138.56			
		.0010	1 4 / /		130.50			
	4 • 0 0	507 0		_				
-		527.0	2.12		2305 • 42			
	4.50	558.0	2 • 4.8		2425 • 46			
	5 • 0 0	578.0	2.83	.2	2499.18			•
	5.50	590•0	3.18		2539.42			
	6.00	597.5	3 • 54		560.86		•	ē.
	6.50	600.0	3.89					
	6.80	600.0			561.68	<u> </u>		
			4 • 1 0		2556.02			
	7 • 0 0	599.0	4.24	2	2548 • 19			•
	7. 50	596 • D	4.60	.2	526.63			•
	8•00	593 • 0	4 • 95	2	505.15	- 1		
	SAMPLE IDEN	TIFICATION;	B-193.ST-			The state of the s	al all and the street and properties of the street and pro-	
••	DIAL GAGE	LOAD GAGE	STRAIN			•		·
	SAME GROD	LOAD GAGE		5	TRESS			
		_	%		(PSF)			
	6.50	• 0	• 0 0		117.69	•		
	7.00	8 7. 0	•33		485 • 48			,
	7.50	160.0	•67		791.74			
	8.00	230.0	1 • 0 0		083.33			
	8.50	290 • 0	1.34					
-	9 • 0 0	·			331.04			
		336.0	1.67		518.59		•	
	9.50	366•0	2 • 0 0	1	638.26	•	•	
							•	
	10.00	3.85 • 0	2.34	1	711.47			
	10.50	395.0	2.67		746.94			
	11.00	396.5	3 • 01					
	D-14 11.50	388.0			747 • 13	√ —		•
	D-14 11.50	3.00 • U 7.6.4 ∴ N	3.34		706.22			
	i 2 x II II.	1871 . 11	-> z-7	•	200 12			

€

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER

JOB LOCATION: BELLE RIVER, MICHIGAN

SUBJECT:

CLIENT: BECHTEL POWER CORPORATION

SAMPLE IDENT	'IFICATION;	B-193,ST-5.	D-23.5
DIAL GAGE	LOAD GAGE	STRAIN	STRESS
	4	2	(PSF)
4.50	- 0	• 0 0	117.69
5 + 0 0	80•0	•33	455 • 87
5.50	175.0	•66	855 • 0 9
6.00	272.0	•99	1260.05
6.50	337.0	1.32	1528•21
7.00	363.0	1 • 65	1631 • 69
7.30	366•O	1 • 85	1640 • 91
7.50	355 • 0	1.98	1592•92
8.00	323.0	2.31	1454 • 83
8.50	310.0	2.64	1396 • 17

			A Record of the Control of the Contr
SAMPLE IDENT	IFICATION;	B-193,ST-6,	D-28.5
DIAL GAGE	LOAD GAGE	STRAIN	STRESS
•		%	(PSF)
• 0 0	• 0 :	• 0 0	119.33
1 • 0 0	124.0	•64	649.00
1.50	200.0	• 96	970•96
2.00	250.0	1.28	1180.32
2.50	264.0	1.60	1235 • 80
3 • 0 0	265.0	1.92	1236.00
4.00	260.0	2.56	1206.94
5 • 0 0	250.0	3.21	1157.33
6.00	244.0	3 • 85	1124.83

	· · · · · · · · · · · · · · · · · · ·		
SAMPLE IDENT	ification;	B-193,ST-1	7.D-33.5
DIAL GAGE	LOAD GAGE	STRAIN	STRESS
		2	(PSF)
2.00	• 0	• 0 0	119.00
3.00	89.0	•65	497 • 86
4.00	177.0	1.30	867•51
5 • 0 9	260.0	1.95	1211.21
6.00	300.5	2.60	1372.55 <
7.00	290.0	3.25	1319•78
8.00	272.0	3.90	1236.66
9.00	262.0	4.55	1187.32

and the second s	the state of the s		•
SAMPLE IDENT	IFICATION;	B-193,ST-8,	D-38.5
DIAL GAGE	LOAD GAGE	STRAIN	STRESS
		%	(PSF)
1 • 0 0	• 0	• 0 0	116 • 41
1.50	85 • 0	•35	471.73
2.00	138.0	•70	691 • 11
2.50	198.0	1 • 0 4	938.03
3 • 0 0	267.0	1.39	1220 • 47
3.50	331.0	1.74	1480 • 26
4.00	376.0	2.09	1660.05
4.50	400.0	2.44	1752.48
5.00	411.0	2.79	1791.13
5.50	412.5	3.13	1790.82
6.00	408.0	3 • 48	1766.14
Z E0	200 0	ን . ደን	1723.42

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
CLIENT: BECHTEL POWER CORPORATION

BY: IKK

8/75 DATE:

SUBJECT:

SAMPLE IDENTI	FICATION;	B-193,ST-9,	D-41.5
DIAL GAGE	LOAD GAGE	STRAIN	STRESS
212 4	— — — — — — — — — — — — — — — — — —	%	(PSF)
• 0 0	• 0	• 0 0	118.35
•50	91 • 0	•32	505.25
1.00	151.0	•64	758 • 14
1.25	179.0	•81	875 • 50
1.50	203.0	. •97	975.56
1.75	224 • 0	1.13	1062.62
2.00	244.0	1.29	1145-18
2.50	272.0	1 • 6 1	1259.07
3 • 0 0	288.0	1.93	1321.94
3.50	288.0	2.26	1317.60
3 • 80	286 • 0	2.45	1306.66
4.30	281.0	2.77	1281.59
4.50	278.0	2.90	1267 • 45
5.00	270.0	3.22	1230.19

SAMPLE IDENTI	FICATION;	B-193,ST-10,	D-46. 5
DIAL GAGE	LOAD GAGE	STRAIN	STRESS
•		%	(PSF)
• 0 0	• O	• 0 0	118.67
• 2 5	69.0	•16	413.41
• 50	116.0	•33	613.30
• 75	160-0	•49	799.74
1.00	205.0	•66	989•82
1.25	245.0	• 82	1158.03
1.50	285 • 0	•99	1325.68
2.00	349.0	1.32	1591.68
2.50	373 • 0	1 • 6 4	1687.44
3 • 0 0	358.0	1.97	1618-84
4 • 0 0	325 • 0	2 • 63	1470 • 41

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER 8Y: . IKK 8/75

DATE:

BECHTEL POWER CORPORATION CLIENT:

15.00

JOB LOCATION: BELLE RIVER, MICHIGAN

310 - 0

SUBJECT:

B-193.ST-11.D-51.5 SAMPLE IDENTIFICATION; DIAL GAGE LOAD GAGE STRAIN STRESS (PSF) % • 0 0 118.35 1.00 **ره** 0 .17 280 • 13 1.25 38.0 373.29 •33 1.50 60.0 2.00 100.0 •66 541.71 .99 700.54 2.50 138.0 858.31 176.0 1.32 3.00 1.65 977.21 3.50 205.0 1.98 1086 + 93 4 • 0 0 232.0 2.31 1166.68 4.50 252.0 1220.93 2.64 266 • 0 5.00 5.50 277.0 2.97 1262.36 3.30 1289.03 6.00 284.5 6.50 290.5 3.63 1309.31 3.96 1323 - 28 7.00 295 • 0 4.29 1335.07 7.50 299.0 8.00 302.0 4.62 1342.68 4.95 1344 - 12 8.50 303.5 1349.56 9.00 5.28 306-0 1350.90 9.50 307.5 5.61 1352.20 10 - 00 309.0 5.94 10.50 309.5 6.27 1349.45 1347.49 310-2 11 - 00 6.61 1345.50 11.50 31.0 - 96.94 1342.31 7.27 12.00 3.11.3 1338.72 12.50 311-6 7.60 13 - 00 311.7 7.93 1334.32 8.26. 1329.54 13.50 311 - 714.50 8.92 1315.30 310.5 9.25 1308.59

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
CLIENT: BECHTEL POWER CORPORATION

BY: IKK

SUBJECT:

DATE: 8/75

	The second of th	TOATION!	B-193,ST-12	2.D-56.5	•
	SAMPLE IDENTII	LOAD GAGE	STRAIN	STRESS	
	DIAL GAGE	LOAD GAGE	%	(PSF)	
		• 0	~ • 0 0	118.35	
	• 0 0	44•0	•16	305.71	
	• 25		•33	386.06	
	• 5 0	63 • 0	•49	461.89	
	•75	81.0	•66	524.75	
	1 • 0 0	96•0	1.15	686.75	•
	1 • 75	135.0	1.32	748.81	
	2.00	150 • 0	1.64	859.69	
	2.50	177 • 0	1.97	969.82	
	3 • 0 0	204.0		1062.51	
	3.50	227.0	2.30	1150.39	
	4 • 0 0	249.0	2.63	1225.22	
	4.50	268.0	2.96	1287.14	
	5.00	284.0	3.29	1380 • 91	
	6.00	309.0	3 • 95	1452.91	1 1
	7.00	329•0	4.61	1507.61	
	8 • 0 0	345.0	5 • 26	1551.37	
	9 • 0 0	358•5	5.92	1584 • 40	
	10.00	369•5	6.58		
	11.00	379.0	7.24	1610.86	
	12.00	387.5	7 • 89	1632 • 87	
	13.00	395•0	8.55	1650 • 49	
	14 • 00	401.5	9.21	1663 • 81	
•	16.00	413.0	10.53	1683 63	
	17.00	418.0	11.18	1690 • 21	
	18.00	422.5	11.84	1694.63	
-	19.00	428 • 0	12.50	1702-53	
	20.00	432 • 5	13.16	1706.41	
	21.00	437.0	13 • 82	1710-04	
	22.00	441.0	14.47	1711.60	
	24.00	449.5	15.79	1715.82	·
	25 • 0 0	453.5	16 • 45	1716.69	
	27.00	461.0	17.76	1715.99	
	28.00	465.0	18.42	1716.19	1. 3
•	29.00	468 • 0	19.08	1712.72	
	30.40	471.5	20.00	1705.18	
	30.440			•	

JOB NAME: HOPPER. INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
CLIENT: BECHTEL POWER CORPORATION

BY: IKK DATE: 8/75

SUBJECT:

CLIENT:

SAMPLE IDENTI	FICATION:	B-193,ST-13	3.D=61.5	
DIAL GAGE	LOAD GAGE	STRAIN	STRESS	
D11111 0.1011	ECAD die	%	(PSF)	
1 • 0 0	• 0	• 0 0	117.69	
1.50	76 • O	•33	438.93	100
2.00	113.0	•67	593.53	
2.50	48.0	1 • 0 0	318.30	
3.00	182.0	1.33	878•63	
3.50	218.0	1.66	1025.99	1.
4 • 0 0	255.0	2.00	1176.49	
4.50	292.0	2.33	1325 • 94	
5.00	323.0	2.66	1449.55	
5.50	353 • 0	2.99	1568-17	
6.00	378.0	3.33	1665.41	
6.50	398.0	3 • 66	1741 • 49	
7.00	414.0	3.99	1800.71	
7.50	429.0	4.32	1855 • 40	
8.00	443.0	4.66	1905.63	
8.50	456 • 0	4.99	1951 • 42	
9.00	467.5	5 • 32	1990.82	
9.50	478.0	5 • 66	2025 • 89	
10.00	487.0	5.99	2054.67	
10.50	496.0	6.32	2083 • 20	
11.00	504.5	6 • 65	2109.50	
12.00	520.0	7.32	2155.46	
13 - 00	534 • 0	7.98	2194.68	
14.00	547.0	8.65	2229.24	
15.00	558.0	9.31	2255 • 36	
16.00	569.0	9.98	2280 • 86	
17.00	5 7 9•5	10.65	2303.84	-
18.00	588.5	11.31	2320 • 58	
19.00	597.0	11.98	2334 • 94	
20.00	604.5	12.64	2345 • 11	
21.00	612.0	13.31	2354.86	
22.00	619.0	13.97	2362.35	
23.00	626.5	14.64	2371.27	
24.00	633.0	15.30	2376 • 16	
25.00	639.0	15.97	2378.90 <=	
26.00	644•0	16.63	2377.77	
27.00	648.5	17.30	2374 • 59	
28.00	653 • 0	17.96	2371 • 16	
29.00	657.0	18.63	2365.75	
30.00	660 • 5	19.29	2358•40	
31.06	664 • 0	20.00	2349.68	
0.00	004 + 0	20400	2049 00	

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
BECHTEL POWER CORPORATION

BY: IKK 8/75

DATE:

CLIENT:

SUBJECT:

SAMPLE IDENT	IFICATION;	B-193.ST-14	D−66	.*
DIAL GAGE	LOAD GAGE	STRAIN	STRESS	
		2	(PSF)	
• 0 0	• 0	• 0 0	118.35	
1.00	105.0	•68	562.77	
2.00	205.0	1.37	980 • 01	
3.00	300.0	2.05	1370 - 48	
4.00	382.0	2.74	1701.42	
400	0020			
5.00	446 • 0	3.42	1953.33	
6.00	495.0	4 • 1 1	2140.09	
7.00	535 • 0	4.79	2287.40	
8.00	570.0	5.48	2412.19	
9.00	598• 0	6.16	2506.89	
10.00	625 • 0	6 • 85	2595.98	
11.00	651 - 0	7 • 53	2679.54	
12.00	675.0	8.22	2753.74	
13.00	697.0	8.90	2818.76	
14.00	717.0	9.59	2874.77	
15.00	736 • 0	10.27	2925.78	
13400	, , , , , , , , , , , , , , , , , , , ,	• • • • • • • • • • • • • • • • • • •		
16.00	755.0	10-96	2975.68	
17.00	773.0	11.64	3020.69	
18.00	788•0	12.33	3053.42	
19.00	804.0	13.01	2088•99	
20.00	818.0	13.70	3116.25	
21.00	834.0	14.38	3150 • 01	
22.00	848.0	15.07	3175.58	
23.00	861.0	15.75	3196 • 73	
24.00	875.0	16 • 44	3220 • 69	÷
25.00	887 • 0	17.12	3236 • 75	
26.00	900•0	17.81	3255 • 62	
27.00	911.0	18.49	3266.77	
28.00	923 • 0	19.18	3280.73	•
29.00	935 • 0	19.86	3293.99	
29.20	937.0	20.00	3295.19	
30.00	947 • 0	20.55	3306.54	•
31.00	958•0	21.23	3315.03	
51.00	75040		= = = = = =	

IKK

DATE:

8/75

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER

8.00

733.0

BELLE RIVER, MICHIGAN SUBJECT: BECHTEL POWER CORPORATION CLIENT: SAMPLE IDENTIFICATION; B-193,ST-15,D-72.5 DIAL GAGE LOAD GAGE STRAIN STRESS 78 (PSF) .00 • 0 • 0 0 118.02 1.00 80.0 .62 455.81 2.00 130.0 1.24 663.23 3.00 180.0. 1.86 868.02 4.00 230 • 0 2.47 1070.18 5,00 290.0 3 4 0 9 1310 - 96 6.00 355 • 0 3.71 1569.09 7.00 418.0 4.33 1815-64 8.00 476 • 0 4.95 2038.64 9.00 529.0 5.57 2238.48 11.00 620.0 6.80 2570.27 12.00 659.0 7.42 2706.94 13,00 692.0 8.04 2818-07 14.00 722.0 8.66 2915 . 80 15.00 751 • 0 9.28 3008.08 16.00 776-0 9.89 3083.49 17.00 798.0 10.51 3146.15 18.00 818-0 11-13 3200.08 19.00 838.0 11.75 3252.97 20.00 857 • 0 12.37 3301.06 22.00 890 • 0 13.61 3375.86 24.00 902.5 14.84 3372 - 86 26.00 880 • 0. 16.08 3243.47 28.00 850 • 0 3090.05 17.32 SAMPLE IDENTIFICATION; B-193, ST-16, D-77 DIAL GAGE LOAD GAGE STRAIN STRESS % (PSF) 1.00 • D • 0 0 116.41 2.00 88.0 +61 483.01 3.00 145 - 0 1.22 716.51 4.00 187-0 1-83 885.24 5.00 210.0 2.44 973.98 7.00 217.0 3-66 990 - 13 8.00 222 • 0 4.27 1003.96 10.00 226 • 0 5.49 1.007 • 05 11.00 225.0 6-10 996 - 61 SAMPLE IDENTIFICATION; B-193, ST-16, D-78 DIAL GAGE LOAD GAGE STRAIN STRESS (PSF) .00 **-** 0 • 0 0 119.00 1 .00 250.0 •53 1186.01 2.00 420.0 1.06 1901.79 3.00 535.0 1.59 2377.45 4 • 0 0 610.0 2.12 2679.78 5.00 663 • 0 2.66 2886.75 6.00 698.0 3.19 3016-48 7 • 0 0 722 - 0 3.72 3099.14

4.25

3127.27

DATE:

IKK

8/75

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER SUBJECT: JOB LOCATION: BELLE RIVER, MICHIGAN BECHTEL POWER CORPORATION CLIENT: B-193,ST-17,D-82 SAMPLE IDENTIFICATION; STRESS STRAIN LOAD GAGE DIAL GAGE (PSF) ጄ .00 118.67 4.00 • Q 566 • 65 .28 4.50 105 + 0 •56 -705-57 138.0 5.00 930 - 26 1:11 192.0 6.00 1135 • 54 1.67 7.00 242.0 2.22 1325 • 88 8.00 289 • 0 2.78 1501.50 333.0 9.00 3.33 1662.61 10.00 374.0 1809.42 3.89 412.3 11.00 1942.15 4.44 447 • 0 12.00 2069-15 5.00 481 • 0 13.00 2174.32 5.56 510.0 14.00 2274.08 6.11 538+0 15.00 2368.52 6.67 16.00 565 • 0 7.22 2453.73 590.0 17.00 2521.95 7.78 00.81 611-0 2597.03 8.33 634.0 19.00 2663 • 21 8 - 89 20.00 655 + 02773.30 10.00 692-0 22.00 11.11 2860.85 724 0 24.00 2926.56 12.22 751.0 26.00 2952 • 59 13.33 28.09 768-0 14.44 2958.69 780.00 30.00 2941.96 15.56 786 - 0 32.00 2915.74 16.67 789.5 34.00 2908.70 17.22 793 - 0 35.00 2899.74 796 - 0 17.78 35.00

PIRILL WASH DUE TO NO STRENGTH [ES] B-193 . ნŢ-|B

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
CLIENT: BECHTEL POWER CORPORATION

IKK

DATE: 8/75

SUBJECT:

SAMPLE IDENTIFICATION; B-193,ST-19,D-98 DIAL GAGE LOAD GAGE STRAIN STRESS 7 (PSF) .00 .00 118.02 1.00 23.0 .66 214.53 2.00 49.0 1.32 322.35 3.00 68.0 1.97 399.51 4.00 85.0 2.63 467.31 5.00 98.0 3.29 517.68 6.00 112.0 3.95 571.41 7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
.00 .00 .118.02 1.00 23.0 .66 214.53 2.00 49.0 1.32 322.35 3.00 68.0 1.97 399.51 4.00 85.0 2.63 467.31 5.00 98.0 3.29 517.68 6.00 112.0 3.95 571.41 7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
1.00 23.0 .66 214.53 2.00 49.0 1.32 322.35 3.00 68.0 1.97 399.51 4.00 85.0 2.63 467.31 5.00 98.0 3.29 517.68 6.00 112.0 3.95 571.41 7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
2.00 49.0 1.32 322.35 3.00 68.0 1.97 399.51 4.00 85.0 2.63 467.31 5.00 98.0 3.29 517.68 6.00 112.0 3.95 571.41 7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
2.00 49.0 1.32 322.35 3.00 68.0 1.97 399.51 4.00 85.0 2.63 467.31 5.00 98.0 3.29 517.68 6.00 112.0 3.95 571.41 7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87	-	
3.00 68.0 1.97 399.51 4.00 85.0 2.63 467.31 5.00 98.0 3.29 517.68 6.00 112.0 3.95 571.41 7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
4.00 85.0 2.63 467.31 5.00 98.0 3.29 517.68 6.00 112.0 3.95 571.41 7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
5.00 98.0 3.29 517.68 6.00 112.0 3.95 571.41 7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
6.00 112.0 3.95 571.41 7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
7.00 124.0 4.61 616.24 8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
8.00 136.0 5.26 660.40 9.00 147.0 5.92 699.87		
9.00 147.0 5.92 699.87		
10.00 158.0 6.58 738.73		
11.00 169.0 7.24 776.98		
12.00 179.0 7.89 810.68		
13.00 188.0 8.55 839.94		
14.00 198.0 9.21 872.55	•	
15.00 207.0 9.87 900.77		
16.00 215.0 10.53 924.67		
17.00 224.0 11.18 951.90		
18.00 233.0 11.84 978.64		
19.00 241.0 12.50 1001.14	,	
20.00 250.0 13.16 1026.89		
21.00 257.0 13.82 1044.80		
22.00 265.0 14.47 1065.95		
23.00 272.0 15.13 1083.05		
24.00 279.0 15.79 1099.75		
25.00 285.0 16.45 1112.51		
26.00 292.0 17.11 1128.45		
27.00 297.0 17.76 1137.00		
28.00 302.0 18.42 1145.27		
29.00 307.0 19.08 1153.27		
30.00 311.5 19.74 1159.27		
30.40 316.0 20.00 1170.80	\supset	

No STRENGTH TEST (Wm = 31.1%) DU G

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
BECHTEL POWER CORPORATION

BY: IKK 8/75

DATE:

SUBJECT:

SAMPLE IDENTI	FICATION;	B-193.ST-21	
DIAL GAGE	LOAD GAGE	STRAIN	STRESS
		% ·	(PSF)
• 0 0	• O	• 0 0	117.05
1.00	10.0	•65	158.23
2.00	28.0	1.31	232.21
3.00	45.0	1 • 96	301.05
4.00	58.0	2.62	352.50
5.00	70.0	3.27	399-15
6.00	80.0	3.92	437.02
7.00	90.0	4.58	474 • 34
8.00	98•0	5 • 23	503.10
9.00	105.0	5 • 89	527.45
10.00	112.0	6 • 54	551 • 41
11.00	119.0	7.19	574.98
12.00	126.0	7 • 85	598.17
13.00	132.0	8.50	617 • 11
14.00	138.0	9.16	635.71
15.00	144.0	9.81	653 • 99
16.00	148.0	10.46	664.37
17.00	153.0	11.12	678.28
18.00	158.0	11.77	691-92
19.00	163.0	12.43	705.28
20.00	168.0	13.08	718.37
21.00	172.0	13.73	727.53
22.00	177.0	14.39	740.09
23.00	180.0	15.04	745-20
24.00	185.0	15.70	757 • 26
25.00	188.0	16.35	761 • 99
26.00	192.0	17.00	770.05
27 • 0.0-	_ 1-95 • 0	1-7-66	774 • 41
28.00	198.0	18.31	778-61
29.00	202.0	18.97	786 • 36
30.33	205.0	19.62	789.90
30 + 3 0	200 • 0		•
31.00	210.0	20.27	800.31
32.00	212.0	20.93	800.42
30.60	208.0	20.01	796 18
30 + 30	200 • 0	. 2000.	

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION BELLE RIVER, MICHIGAN
CLIENT: BECHTEL POWER CORPORATION

IKK

OATE:

8/75

SUBJECT:

SAMPLE IDENT	IFICATION;	B-192,ST-1,	D-20
DIAL GAGE	LOAD GAGE	STRAIN	STRESS
		. %	(PSF)
• 0 0	. 0	- 0 0	117.05
40	11.5	-26	165 • 17
• 80	20.0	•52	200.45
i • 20	28.0	•79	233 • 44
1.60	35 + 0	1 • 0 5	262.07
2.00	42.0	1-31	290.55
2.40	50.0	1.57	323.03
2.80	57 • 0	1.83	351.18
3.20	65 • 0	2.10	383.32
3.60	73.0	2.36	415.28
4 • 0 0	81 - 0	2-62	447.07
4.40	90.0	2.88	482.77
4.80	99 • 0	3-14	518.28
5.20	108.0	3.41	553.59
5.60	118.0	3.67	592.77
	+ + +		
6.80	147.0	4 - 45	704•94
7.20	157 - 9	4.72	743•24
7.60	166.0	4.98	777 • 31
8.00	174.0	5.24	807.18
8 • 40	181.0	5.50	832.88
8.80	187.3	5 •76	854 • 45
9.20	192.0	6• 0 2	871.92
9.60	197 • 0	6.29	889 • 27
10.00	200.0	6 • 55	898.63
10.40	203.0	6.81	907.91
10.80	206-0	7 07	917.13
11.20	208.0	7. 33	922.38
11.60	209.0	7.60	923.67
12.00	210-0	7.486	924 • 94

SAMPLE IDEN	TIFICATION;	B-192, ST-2,	D-25
DIAL GAGE	LCAD GAGE	STRAIN	STRESS
		%	(PSF)
• 0 0	• O	. 0 0. 	118.67
•50	27.0	• 33	233.50
1.00	51 • 0	•66	334.80
1.50	78.0	• 99	448 • 15
2.00	105.0	1.32	560.73
2.50	135.0	1.65	685.17
3.00	165.0	198	808.78
3.50	192.0	2.31	918•98
4.00	213.0	2-64	1003.41
4.50	229.0	2.97	1066.48
5.00	242.0	3 •30	1116.67
5.50	250.0	3.63	1145.87
6 • 0 0	255 • 0	3.496	1162.51
6.50	256.0	4-29	1162.61
7 • 0 0	251.0	4.62	1138.18

DE LOCATION: BELLE R	VESTIGATION, BELLE IVER, MICHIGAN POWER CORPORATION	112 4 1211	BY: IKK DATE: SUBJECT:	8/7
SAMPLE IDENT	IFICATION:	B-192.ST	-3.D-30	
DIAL GAGE	LOAD GAGE	STRAIN	STRESS	
DIND GROD	ECAD GAGE	%	(PSF)	
		and the second s		-
• 0 0	• 0	• 0 0	118+35	
•50	45 0	.32	309 • 47	
1.00	83.0	•65 -	469.65	
1.50	118.0	• 97	616 • 10	
5.00	157.0	1.30	778.43	
2,50	193.0	1.62	927 • 07	
3,00	822.0	1 • 95	1045 • 42	
3,50	241.0	2.27	1121.23	
4,00	250.0	2.60	1154 • 93	_
4,30	251.0	2.79	1156.77 <	
4.50	250.0	2.92	1151.08	•
5,00	247.0	3.25	1134 • 84	
SAMPLE IDENT	IFICATION;	B-192.51	r-4,D-35	
DIAL GAGE	LOAD GAGE	STRAIN	STRESS	
		- %	(PSF)	
.00	• 0	<i>•</i> 0 0	117.69	•
1.00	136.0	• 65	690 • 61	
5.00	275.0	1.31	1268 • 54	
2.80	315.0	1 83	1428•53	< $=$
4,00	254.0	2.62	1164.87	7
ei f Λ Λ · · · · · · · · · · · · · · · · ·				
SAMPLE IDENT		and the second s	Γ-5.D-40	
DIAL GAGE	LCAD GAGE	STRAIN	STRESS	
		%	(PSF)	
• 0 0	• Û	• 0 0	118.02	•
• 5 O	86.0	• 33	482.60	
1.00	147.0	•66	739.02	
_1 • 5.0	205.0	• 9 <u>9</u>	981.08	
2.00	263.0	1.32	1221.51	
2.50	3!3.0	1 - 65	1426 • 81	
3.00	354 • C	1.98	1593 • 15	
3.50	377.0	2.31	1683 • 47	
3.70	379 . 5	2.44	1691.58	<u> </u>
•	372.0	2.70	1655 • 94	
4 • 1 0		2.97	1502.71	
4.50	336.0 310.0	3.30	1390 • 55	
5,00	310.0	3 • 3 ∪	1070.00	
SAMPLE IDENT	IFICATION;	B-192.5	T-6,D-45	
DIAL GAGE	LCAD GAGE	STRAIN	STRESS	1
		%	(PSF)	
• 0 0	. 0	• 0 0	118.35	
•50	111.0	•33	590.33	
1 • 0 0	194.0	•66	940 • 43	•
i contract of the contract of	249.0	•99	1169.84	
1.50		1.31	1262.87	<u> </u>
2.00	2 7 2.0	1.41	1261.61	~
2+15	272.0		1233 • 47	
2.50	266.0	1.64	1179.12	•
3.00	254.0 0	1.97	11/7:16	
3.50	247.0	2.30	1145 • 97	

108 NAME: HOPPER INVESTIGATION, BELLE RIVER JOB LOCATION: BELLE RIVER, MICHIGAN

BY: IKK

8/75 DATE:

SUBJECT:

	DECUTEI	DOUED	CODDODATION
CLIENT:	RECHIEL	PUWER	CORPORATION

SAMPLE IDENTIFICATION;		B-192,ST-7,D-52		
DIAL GAGE	LOAD GAGE	STRAIN	STRESS -	
		% .	(PSF)	
• 0 0	• 0	• 0 0	118.35	
1.00	100+0	• 71	541 • 43	
2.00	170.0	1.42	832-16	
3.00	224.0	2.14	1051.79	
4.00	262.0	2 • 85	1201.77	
5.00	285.0	3.56	1287.67	
6.00	293.0	4.27	1310.87	
7 • 0 0	270.0	4.98	1207.81	

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
BECHTEL POWER CORPORATION

BY: IKK DATE: 8/75

1896.70

1905.68

1914.34

1919.00

11.32

11.95

12.58

13.21

13.84

SUBJECT:

STRESS-STRAIN RELATIONS

	CLIENT: BECHIEL POWER	CORPORATION			
	SAMPLE IDENTIFICATI	CN;	B-192,51	r-8,D-55	
		GAGE	STRAIN	S1	RESS
•	DIAB GAGE 20.12		%		(PSF)
	• 0 0	• O	• 0 0		17.69
-	1.00 103		•62		51.62
		· ·	1.23		808.20
	_ • ·		1.85	·	65.62
·			2.47		22.33
			3.09		30.48
			3.70		266 • 39
	6.00 282	5.4	4.32		351 • 71
	7.00 305				111.61
	8.00 322		4 • 94		150 - 56
	9.00 334		5.56	*	02.84
-crist	11.00 352	2 • 0	6 • 79	1.	002.04
			- 4	1.	16 40
	12.00 358	The state of the s	7 • 41		516 • 48
-	13.00 363		8.02		525.90
	14.00 36		8.64		533 • 1 1
	15.00 370	O • O.:	9•26		532.38
	16.00 373	3 • 5	9 • 88		535•35 <
كميون	18.00 379	9 • O	11 • 11		535.08
	19.00 38	1 • 0	11.73		531 • 92
	20.00 388	2•0	12.35		524 • 93
	•	3 • 0	12.96		5 17 • 88
		4 • 0	13.58	1	510-79
		4 • 0	14.20	1	500.00
		3 • 5	14.81	1 -	487 • 40
		1 • 0	15 • 43	1	467 • 64
	SAMPLE IDENTIFICAT	ION;		T-9,D-60	
	DIAL GAGE LOA	D-CAGE	STRAIN		TRESS
	•		. %	* * .	(PSF)
	• 0 0	. • 0	• 0 0		117.69
Printer .	1 - 0 0 7	0 • 0	• 63°		412.31
	2.00 13	0 • 0	1.26		661 • 26
		5 • 0	1 • 89	A STATE OF THE STA	886 • 18
		5 • 0	2.52		087.46
	· · · · · · · · · · · · · · · · · · ·	0 • 0	3 • 1 4	1	265.51
	• -	7.0	3 • 77	1	408 47
		7 • 0	4 • 40	1	521.04
-		1 • 0	5.03	1	607.81
		9.0	5.66		669.27
		4 • 0	6.29		717.83
Hagir	——————————————————————————————————————	7 • 0	6 • 92		757 - 68
	- ·	9.0	7.55		792.91
			8-18		819.70
		9 • 0	8 • 81		838 22
-		7 • 0	10.06		873 • 96
		3.0		· ·	891 • 20
	17.00 47	1 - 0	10.69		091-20

476.0

482.0

488.0

493.0

497.0

18.00

19.00

20.00

21.00

22.00

D-28

JOB LOCATION: BELLE RI	ESTIGATION, BELLE VER, MICHIGAN POWER CORPORATION	RIVER	BY: IKK SUBJECT: S	DATE STRESS-ST	8/75 RAIN RELATIONS
CLIENT: BECHIEL DIAL GAGE	LOAD GAGE	STRAIN	ST	RESS	٠.
DIAL GAGE	20.12 4.142	%		(PSF)	
24.00	505 • 0	15.09	1	920.54	
25.00	509.0	15.72	1	920.63	< <u> </u>
26.00	512.0	16.35		916.95	•
27.00	516.0	16.98	1	916-64	
28.00	519.0	17.61	1	912.62	
29.00	523.0	18-24	· 1	911.90	
30.00	525.0	18.87	1	904+09	
31.80	530.5	20.00	1	896•20	
					. ,
SAMPLE IDENTI			T-10.D-70		
DIAL GAGE	LOAD GAGE	STRAIN	5	TRESS	-
		7.		(PSF)	
• 0 0	• 0	• 0 0		118.35	
•25	30.0	•16		246 • 05	
• <u>5</u> .0	60.0	-31		373.36	
•75	90 • 0	47		500.27	•
1 • 0 0	117.0	•62		614-05	
1.50	164 • 0	• 93		810 • 94	
2.00	209.0	1.24		998 • 14	•
2.50	252.0	1.55		175.75	
3.00	295 • 0	1 - 86		352 • 21	
3.50	336.0	2.17		519-18	•
4 • 0 0	377 • 0	2 48		685.06	
4.50	417.0	2 + 80		845.71	
5 • 0 0	450 • 0	3-11		976.33	
5 • 5 0	482.0	3-42		101.96	
6.00	512.0	3 • 73		218.52	•
6.50	537 • 0	4 - 0 4		313.79	
7 • 0 0	560 • 0	4.35		400.23	
7.50	582.0	4.66		482.00	
8.00	603.0	4-97		559.12	
9.00	639.0	5-59		687.51	•
10.00	672.0	6-21	and the second s	801.97	
11.00	702.0	6-83		902.75	
12.00	727 • 0	7-45		982-19	
13.00	751 • 0	8-07		056.37	•
14.00	773 • 0	8-70		1121.48	
15.00	792.0	9+32	· ·	3173.81	
16.00	810.0	9-94		3221.29	
17.00	827 • 0	10.56		3263.99	
18.00	844.0	11-18		305.79	
19.00	859.0	11-80		339.16	•
20.00	874.0	12-42		3371 • 74	
22.00	900.0	13.66		3419•75	
24.00	926•0	14.91		3465 • 01	
26.00	949.0	16+15		3496.77	
28.00	971 • 0	17.39		3522.56	
30.00	992•0	18+63		3542.54	
32.20	1014.0	20.00		3558,20	< <u>-</u>
34.00	1037.0	21-12		3585•93	

U. W. STOLL AND ASSOCIATES soil mechanics and foundation consultants

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER
JOB LOCATION: BELLE RIVER, MICHIGAN
GLIENT: BECHTEL POWER CORPORATION

BY: IKK

SUBJECT:

DATE: 8/75
STRESS-STRAIN RELATIONS

CLIENT:

	*		
SAMPLE IDENTI	FICATION;	B-192,ST-1	1,D-80
DIAL GAGE	LOAD GAGE	STRAIN	STRESS
		%	(PSF)
• 0 0	• 0	• 0 0	117-69
•25	42.0	•16	295 • 57
• 5 0	92 • 0	•31·	506-76
•75	137.0	•47	696+15
1 • 0 0	177.0	•62	863+86
1.25	216.0	• 78	1026-83
1.50	253.0	• 93	1180 - 87
1.75	288.0	1.09	1326.02
2.00	324.0	1.24	1474-90
2.25	360.0	1 • 40	1623+31
2.50	395•0	1.55	1767-07
3.00	460 • 0	1.86	2032-36
3.50	522.0	2.17	2283+48
4.00	578.0	2 • 48	2508-12
4.50	622.0	2.79	2681.75
5.00	664.0	3 • 10	2846 + 00
5.50	696•0	3 • 4 1	2968-13
6.00	726•0	3.72	3081-24
6.50	752.0	4.03	3177 • 26
7 • 0 0	774.0	4.34	3256-35
7.50	795•0	4 • 65	3330 - 81
8.00	810.0	4.96	3380-51
8.50	826 • 0	5 • 27	3433 + 83
9 • 0 0	838.0	5.58	3470 • 69
9.50	848.0	5 • 89	3499-25
10.00	856 • 0	6.20	3519-58
11.00	864.5	6 • 82	3529•93
11.50	850 • 0	7 • 13	3461 • 00
- 12.00	820-0	7-44	3331-54
12.50	795.0	7•75	3222-46
	-		

U. W. STOLL AND ASSOCIATES soil mechanics and foundation consultants

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER JOB LOCATION BELLE RIVER, MICHIGAN

BECHTEL POWER CORPORATION

BY: IKK

SUBJECT:

DATE:

9/75

PARTICLE SIZE DISTRIBUTION

ANALYSIS SUMMARY

U. W. STOLL AND ASSOCIATES soil mechanics and foundation consultants

JOB NAME: HOPPER INVESTIGATION, BELLE RIVER

BY IKK

DATE: 9/75

JOB LOCATION BELLE RIVER, MICHIGAN

SUBJECT:

PARTICLE SIZE DISTRIBUTION ANALYSIS SUMMARY

APPENDIX G – 2016 LABORATORY TEST RESULTS

						7	ΓRC Envi	onmenta	l Corpor	ation					(QC:	JPH
				Fa	alling Hea	d, Rising	g Tailwate	r Permea	bility Tes	st (ASTM	D5084, N	Method C)				QA:	JPH
	Proje	ct Na	me:	DTE - BR	RPP BAB an	id DB					Cell #:						
	Proje	ect #:	2	231828.00	003.0000						USCS Des	cription:					N/
	Samp	ole Na	ame:	MW-16-0	01, 50-52'						USCS Cla	ssification:					N/
	Visua	al Des	script: (Gray lear	n clay						Average 1	Kv =				2.9E-08	cm,
	Samp	ole Ty	rpe:	Undistur	bed		Initial	Final							·		
							Values	Values									
	Samp	ole Di	a. (in)				2.87	2.87			Permeant:				V	<i>N</i> ater	
	Samp	ole H	t. (in)				3.02	3.02			Permeant	Specific Gr	avity:		1	1.00	
	Tare	& W	et (g)				775.10	649.20			Sample Sp	ecific Grav	rity:		2	2.70	I
	Tare	& Dr	y (g)				562.60	471.50			Confining	Pressure (psi):		1	100.0	
	Tare	(g)					88.86	88.64			Burette Di	ameter (in)):		C	0.250	
	Samp	ole W	t. (g)				563.65	560.56			Burette Ze	ero (cm):			1	100.0	
	Mois	ture ((%)				44.9	46.4			Maximum	Gradient:			7	7.0	
	Wet	Densi	ty (pcf))			109.9	109.5			Average C	Gradient:			6	5.5	
	Dry l	Densi	ty (pcf)				75.9	74.8			Max. Effec	t. Stress (p	si):		5	5.7	
	Satu	ration	(%)				99.2	100.0			Min. Effec	t. Stress (p	si):		4	1.3	
											Ave. Effec	t. Stress (p	si):	1	4	1.8	
	Date			ime	Run	Temp		ıre (psi)	Cham	Cham.	Bot	Bot.	Top	Тор	Flow	Kv ***	Ave
Yr.	Mo.		Hr.	Min.	Time (s)	C°**	Bot	Top	(cm)	Dif.(cm)	(cm)	Dif.(cm)	(cm)	Dif.(cm)	Dif.(%)	cm/s	0,
2016	3	15	8	10.00		0.0	95	95	55.40		3.45		102.60				
2016	3	15	11	15.00	11100	23.0	95	95	56.10	0.70	4.05	0.60	101.30	1.30	-36.8	4.7E-08	
2016	3	15	14	16.00	10860	23.0	95	95	57.00	0.90	4.75	0.70	100.60	0.70	0.0	3.6E-08	
2016	3	15	18	15.00	14340	23.0	95	95	57.75	0.75	5.55	0.80	99.75	0.85	-3.0	3.3E-08	
2016	3	16	4	55.00	38400	22.0	95	95	59.30	1.55	7.65	2.10	97.50	2.25	-3.4	3.4E-08	
2016	3	16	8	38.00	13380	23.0	95	95	59.80	0.50	8.35	0.70	96.80	0.70	0.0	3.2E-08	
2016	3	16	11	56.00	11880	23.0	95	95	60.35	0.55	9.05	0.70	96.30	0.50	16.7	3.1E-08	
2016				1.00	11100	23.0		05				0.55	95.70	0.60			
	3	16	15				95	95	60.40	0.05	9.60	0.55			-4.3	3.2E-08	
	3	16 17	15 5				95 95	95 95	60.40	0.05	9.60				-4.3	3.2E-08	
2016	3	17	5	14.00	51180	22.0	95	95	61.30	0.90	12.10	2.50	93.20	2.50	0.0	3.2E-08	
2016 2016	3	17 17	5 8	14.00 17.00	51180 10980	22.0 24.0	95 95	95 95	61.30 62.05	0.90	12.10 12.65	2.50 0.55	93.20 92.75	2.50 0.45	0.0	3.2E-08 3.0E-08	
2016 2016 2016	3 3	17 17 17	5 8 12	14.00 17.00 19.00	51180 10980 14520	22.0 24.0 23.0	95 95 95	95 95 95	61.30 62.05 62.15	0.90 0.75 0.10	12.10 12.65 13.25	2.50 0.55 0.60	93.20 92.75 92.05	2.50 0.45 0.70	0.0 10.0 -7.7	3.2E-08 3.0E-08 3.0E-08	
2016 2016 2016 2016	3 3 3 3	17 17 17 17	5 8 12 17	14.00 17.00 19.00 49.00	51180 10980 14520 19800	22.0 24.0 23.0 23.0	95 95 95 95	95 95 95 95	61.30 62.05 62.15 62.60	0.90 0.75 0.10 0.45	12.10 12.65 13.25 14.15	2.50 0.55 0.60 0.90	93.20 92.75 92.05 91.30	2.50 0.45 0.70 0.75	0.0 10.0 -7.7 9.1	3.2E-08 3.0E-08 3.0E-08 2.9E-08	
2016 2016 2016	3 3	17 17 17	5 8 12	14.00 17.00 19.00	51180 10980 14520	22.0 24.0 23.0	95 95 95	95 95 95	61.30 62.05 62.15	0.90 0.75 0.10	12.10 12.65 13.25	2.50 0.55 0.60	93.20 92.75 92.05	2.50 0.45 0.70	0.0 10.0 -7.7	3.2E-08 3.0E-08 3.0E-08	
2016 2016 2016 2016	3 3 3 3 3	17 17 17 17	5 8 12 17	14.00 17.00 19.00 49.00	51180 10980 14520 19800	22.0 24.0 23.0 23.0	95 95 95 95	95 95 95 95	61.30 62.05 62.15 62.60	0.90 0.75 0.10 0.45	12.10 12.65 13.25 14.15	2.50 0.55 0.60 0.90	93.20 92.75 92.05 91.30	2.50 0.45 0.70 0.75	0.0 10.0 -7.7 9.1	3.2E-08 3.0E-08 3.0E-08 2.9E-08	
2016 2016 2016 2016 2016	3 3 3 3 3	17 17 17 17 17 18 18	5 8 12 17 5	14.00 17.00 19.00 49.00 23.00	51180 10980 14520 19800 41640	22.0 24.0 23.0 23.0 22.0	95 95 95 95 95	95 95 95 95 95	61.30 62.05 62.15 62.60 63.15	0.90 0.75 0.10 0.45 0.55	12.10 12.65 13.25 14.15 16.00	2.50 0.55 0.60 0.90 1.85	93.20 92.75 92.05 91.30 89.40	2.50 0.45 0.70 0.75 1.90	0.0 10.0 -7.7 9.1 -1.3	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08	
2016 2016 2016 2016 2016 2016	3 3 3 3 3	17 17 17 17 17 18	5 8 12 17 5 8	14.00 17.00 19.00 49.00 23.00 58.00	51180 10980 14520 19800 41640 12900	22.0 24.0 23.0 23.0 22.0 24.0	95 95 95 95 95 95	95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60	0.90 0.75 0.10 0.45 0.55	12.10 12.65 13.25 14.15 16.00 16.55	2.50 0.55 0.60 0.90 1.85 0.55	93.20 92.75 92.05 91.30 89.40 88.90	2.50 0.45 0.70 0.75 1.90	0.0 10.0 -7.7 9.1 -1.3 4.8	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08	
2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3	17 17 17 17 18 18 18	5 8 12 17 5 8	14.00 17.00 19.00 49.00 23.00 58.00	51180 10980 14520 19800 41640 12900 14220	22.0 24.0 23.0 23.0 22.0 24.0 23.0	95 95 95 95 95 95 95	95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 63.80	0.90 0.75 0.10 0.45 0.55 0.45	12.10 12.65 13.25 14.15 16.00 16.55 17.10	2.50 0.55 0.60 0.90 1.85 0.55	93.20 92.75 92.05 91.30 89.40 88.90 88.30	2.50 0.45 0.70 0.75 1.90 0.50	0.0 10.0 -7.7 9.1 -1.3 4.8 -4.3	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3	17 17 17 17 18 18 18	5 8 12 17 5 8 12	14.00 17.00 19.00 49.00 23.00 58.00 55.00	51180 10980 14520 19800 41640 12900 14220 12900	22.0 24.0 23.0 23.0 22.0 24.0 23.0 23.0	95 95 95 95 95 95 95 95	95 95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 63.80 64.10	0.90 0.75 0.10 0.45 0.55 0.45 0.20	12.10 12.65 13.25 14.15 16.00 16.55 17.10	2.50 0.55 0.60 0.90 1.85 0.55 0.55	93.20 92.75 92.05 91.30 89.40 88.90 88.30 87.90	2.50 0.45 0.70 0.75 1.90 0.50 0.60	0.0 10.0 -7.7 9.1 -1.3 4.8 -4.3	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 2.8E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3 3 3	17 17 17 17 18 18 18 18 21	5 8 12 17 5 8 12 16 4 8	14.00 17.00 19.00 49.00 23.00 58.00 55.00 30.00 58.00 1.00	51180 10980 14520 19800 41640 12900 14220 12900 217680 10980	22.0 24.0 23.0 23.0 22.0 24.0 23.0 23.0 22.0 24.0	95 95 95 95 95 95 95 95 95 95	95 95 95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 63.80 64.10 67.20	0.90 0.75 0.10 0.45 0.55 0.45 0.20 0.30 3.10	12.10 12.65 13.25 14.15 16.00 16.55 17.10 17.65 25.35	2.50 0.55 0.60 0.90 1.85 0.55 0.55 7.70 0.35	93.20 92.75 92.05 91.30 89.40 88.90 88.30 87.90 80.20	2.50 0.45 0.70 0.75 1.90 0.50 0.60 0.40 7.70	0.0 10.0 -7.7 9.1 -1.3 4.8 -4.3 15.8 0.0	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 2.8E-08 3.1E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3 3 3 3	17 17 17 17 18 18 18 18 21 21 21	5 8 12 17 5 8 12 16 4 8	14.00 17.00 19.00 49.00 23.00 58.00 55.00 30.00 58.00 1.00	51180 10980 14520 19800 41640 12900 14220 12900 217680 10980 14940	22.0 24.0 23.0 22.0 24.0 23.0 23.0 22.0 24.0 23.0 22.0	95 95 95 95 95 95 95 95 95 95 95	95 95 95 95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 63.80 64.10 67.20 67.60	0.90 0.75 0.10 0.45 0.55 0.45 0.20 0.30 3.10 0.40	12.10 12.65 13.25 14.15 16.00 16.55 17.10 17.65 25.35 25.70 26.15	2.50 0.55 0.60 0.90 1.85 0.55 0.55 7.70 0.35 0.45	93.20 92.75 92.05 91.30 89.40 88.90 88.30 87.90 80.20 79.85	2.50 0.45 0.70 0.75 1.90 0.50 0.60 0.40 7.70 0.35	0.0 10.0 -7.7 9.1 -1.3 4.8 -4.3 15.8 0.0 0.0	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 2.8E-08 3.1E-08 3.1E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17 17 17 17 18 18 18 21 21 21 21	5 8 12 17 5 8 12 16 4 8 12	14.00 17.00 19.00 49.00 23.00 58.00 55.00 30.00 58.00 1.00 10.00	51180 10980 14520 19800 41640 12900 14220 12900 217680 10980 14940	22.0 24.0 23.0 23.0 22.0 24.0 23.0 22.0 24.0 23.0 22.0 24.0 23.0	95 95 95 95 95 95 95 95 95 95 95	95 95 95 95 95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 63.80 64.10 67.20 67.60 67.70	0.90 0.75 0.10 0.45 0.55 0.45 0.20 0.30 3.10 0.40 0.00	12.10 12.65 13.25 14.15 16.00 16.55 17.10 17.65 25.35 25.70 26.15	2.50 0.55 0.60 0.90 1.85 0.55 0.55 0.55 7.70 0.35 0.45 0.25	93.20 92.75 92.05 91.30 89.40 88.90 87.90 80.20 79.85 79.40	2.50 0.45 0.70 0.75 1.90 0.50 0.60 0.40 7.70 0.35 0.45 0.25	0.0 10.0 -7.7 9.1 -1.3 4.8 -4.3 15.8 0.0 0.0 0.0	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 2.8E-08 3.1E-08 3.1E-08 3.0E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17 17 17 17 18 18 18 18 21 21 21 21 21	5 8 12 17 5 8 12 16 4 8 12 15	14.00 17.00 19.00 49.00 23.00 58.00 55.00 30.00 1.00 10.00 12.00 36.00	51180 10980 14520 19800 41640 12900 14220 12900 217680 10980 14940 10920 15840	22.0 24.0 23.0 22.0 24.0 23.0 23.0 22.0 24.0 23.0 23.0 23.0 23.0	95 95 95 95 95 95 95 95 95 95 95 95	95 95 95 95 95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 63.80 64.10 67.20 67.60 67.70	0.90 0.75 0.10 0.45 0.55 0.45 0.20 0.30 3.10 0.40 0.00 0.10	12.10 12.65 13.25 14.15 16.00 16.55 17.10 17.65 25.35 25.70 26.15 26.40	2.50 0.55 0.60 0.90 1.85 0.55 0.55 7.70 0.35 0.45 0.25	93.20 92.75 92.05 91.30 89.40 88.90 88.30 87.90 80.20 79.85 79.40 79.15	2.50 0.45 0.70 0.75 1.90 0.60 0.40 7.70 0.35 0.45 0.25	0.0 10.0 -7.7 9.1 -1.3 4.8 -4.3 15.8 0.0 0.0 0.0 0.0	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 2.8E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17 17 17 17 18 18 18 21 21 21 21 21 21	5 8 12 17 5 8 12 16 4 8 12 15 19	14.00 17.00 19.00 49.00 23.00 58.00 55.00 30.00 1.00 12.00 36.00 31.00	51180 10980 14520 19800 41640 12900 14220 12900 217680 10980 14940 10920 15840 6900	22.0 24.0 23.0 22.0 24.0 23.0 23.0 22.0 24.0 23.0 23.0 23.0 23.0 23.0	95 95 95 95 95 95 95 95 95 95 95 95	95 95 95 95 95 95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 63.80 64.10 67.20 67.60 67.70 68.30 68.10	0.90 0.75 0.10 0.45 0.55 0.45 0.20 0.30 3.10 0.40 0.00 0.10 0.60 -0.20	12.10 12.65 13.25 14.15 16.00 16.55 17.10 17.65 25.35 25.70 26.15 26.40 26.90	2.50 0.55 0.60 0.90 1.85 0.55 0.55 7.70 0.35 0.45 0.25 0.50 0.20	93.20 92.75 92.05 91.30 89.40 88.90 88.30 87.90 80.20 79.85 79.40 79.15 78.70	2.50 0.45 0.70 0.75 1.90 0.50 0.60 0.40 7.70 0.35 0.45 0.25 0.45	0.0 10.0 10.0 -7.7 9.1 -1.3 4.8 -4.3 15.8 0.0 0.0 0.0 5.3 0.0	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17 17 17 18 18 18 18 21 21 21 21 21 21 21	5 8 12 17 5 8 12 16 4 8 12 15 19 21	14.00 17.00 19.00 49.00 23.00 58.00 30.00 58.00 1.00 12.00 36.00 31.00 52.00	51180 10980 14520 19800 41640 12900 14220 12900 217680 10980 14940 10920 15840 6900 30060	22.0 24.0 23.0 22.0 24.0 23.0 23.0 22.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0	95 95 95 95 95 95 95 95 95 95 95 95 95	95 95 95 95 95 95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 63.80 64.10 67.20 67.60 67.70 68.30 68.90	0.90 0.75 0.10 0.45 0.55 0.45 0.20 0.30 3.10 0.40 0.00 0.10 0.60 -0.20 0.80	12.10 12.65 13.25 14.15 16.00 16.55 17.10 17.65 25.35 25.70 26.15 26.40 26.90 27.10	2.50 0.55 0.60 0.90 1.85 0.55 0.55 7.70 0.35 0.45 0.25 0.50 0.20	93.20 92.75 92.05 91.30 89.40 88.90 88.30 87.90 80.20 79.85 79.40 79.15 78.70 78.50	2.50 0.45 0.70 0.75 1.90 0.50 0.60 0.40 7.70 0.35 0.45 0.25 0.45 0.20	0.0 10.0 10.0 -7.7 9.1 -1.3 4.8 -4.3 15.8 0.0 0.0 0.0 5.3 0.0 5.6	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17 17 17 18 18 18 18 21 21 21 21 21 21 22 22	5 8 12 17 5 8 12 16 4 8 12 15 19 21 5	14.00 17.00 19.00 49.00 23.00 58.00 55.00 30.00 1.00 12.00 36.00 31.00 52.00	51180 10980 14520 19800 41640 12900 14220 12900 217680 10980 14940 10920 15840 6900 30060	22.0 24.0 23.0 23.0 22.0 24.0 23.0 22.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	95 95 95 95 95 95 95 95 95 95 95 95 95 9	95 95 95 95 95 95 95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 64.10 67.20 67.60 67.70 68.30 68.10 68.85	0.90 0.75 0.10 0.45 0.55 0.45 0.20 0.30 3.10 0.40 0.00 0.10 0.60 -0.20 0.80 -0.05	12.10 12.65 13.25 14.15 16.00 16.55 17.10 17.65 25.35 25.70 26.15 26.40 26.90 27.10 28.05 28.45	2.50 0.55 0.60 0.90 1.85 0.55 0.55 7.70 0.35 0.45 0.25 0.50 0.20 0.90	93.20 92.75 92.05 91.30 89.40 88.90 87.90 80.20 79.85 79.40 79.15 78.70 78.50 77.65	2.50 0.45 0.70 0.75 1.90 0.50 0.60 0.40 7.70 0.35 0.45 0.25 0.45 0.20 0.85	0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 3.0E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17 17 17 18 18 18 18 21 21 21 21 21 21 22 22 22	5 8 12 17 5 8 12 16 4 8 12 15 19 21 5	14.00 17.00 19.00 49.00 23.00 58.00 55.00 30.00 1.00 12.00 36.00 31.00 52.00 31.00	51180 10980 14520 19800 41640 12900 14220 12900 217680 10980 14940 10920 15840 6900 30060 16740 19680	22.0 24.0 23.0 23.0 22.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	95 95 95 95 95 95 95 95 95 95 95 95 95 9	95 95 95 95 95 95 95 95 95 95 95 95 95	61.30 62.05 62.15 62.60 63.15 63.60 64.10 67.20 67.60 67.70 68.30 68.10 68.90 68.85	0.90 0.75 0.10 0.45 0.55 0.45 0.20 0.30 3.10 0.40 0.00 0.10 0.60 -0.20 0.80 -0.05	12.10 12.65 13.25 14.15 16.00 16.55 17.10 17.65 25.35 25.70 26.15 26.40 27.10 28.05 28.45 29.00	2.50 0.55 0.60 0.90 1.85 0.55 0.55 7.70 0.35 0.45 0.25 0.50 0.20 0.95	93.20 92.75 92.05 91.30 89.40 88.90 87.90 80.20 79.85 79.40 79.15 78.70 78.50 77.65 77.20	2.50 0.45 0.70 0.75 1.90 0.50 0.60 0.40 7.70 0.35 0.45 0.25 0.45 0.20 0.85 0.45	0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 3.0E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.2E-08 3.2E-08 3.2E-08 3.2E-08	
2016 2016 2016 2016 2016 2016 2016 2016	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17 17 17 18 18 18 18 21 21 21 21 21 22 22 22	5 8 12 17 5 8 12 16 4 8 12 15 19 21 5 10 15 22	14.00 17.00 19.00 49.00 58.00 55.00 30.00 1.00 12.00 36.00 31.00 52.00 31.00 59.00	51180 10980 14520 19800 41640 12900 14220 12900 217680 10980 14940 10920 15840 6900 30060	22.0 24.0 23.0 22.0 24.0 23.0 23.0 22.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 24.0 24.0 24.0	95 95 95 95 95 95 95 95 95 95 95 95 95 9	95 95 95 95 95 95 95 95 95 95 95 95 95 9	61.30 62.05 62.15 62.60 63.15 63.60 63.80 64.10 67.20 67.60 67.70 68.30 68.10 68.90 68.85 69.40	0.90 0.75 0.10 0.45 0.55 0.45 0.20 0.30 3.10 0.40 0.00 0.10 0.60 -0.20 0.80 -0.05 0.40	12.10 12.65 13.25 14.15 16.00 16.55 17.10 17.65 25.35 25.70 26.15 26.40 26.90 27.10 28.05 28.45 29.00 29.55	2.50 0.55 0.60 0.90 1.85 0.55 0.55 7.70 0.35 0.45 0.25 0.50 0.20 0.90	93.20 92.75 92.05 91.30 89.40 88.90 88.30 87.90 80.20 79.85 79.40 79.15 78.70 77.65 77.20 76.70	2.50 0.45 0.70 0.75 1.90 0.50 0.60 0.40 7.70 0.35 0.45 0.25 0.45 0.20 0.85 0.45 0.50	0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	3.2E-08 3.0E-08 3.0E-08 2.9E-08 3.3E-08 3.0E-08 3.0E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08 3.1E-08	

						,	TRC Envir	onmenta	l Corpora	ation						QC:	JPH
				Fa	alling Head	d, Rising	g Tailwate	r Permea	bility Tes	st (ASTM	1 D5084, 1	Method C)				QA:	JPH
	Proje	ct Na	me:	DTE - BI	RPP BAB an	d DB					Cell #:						9
	Proje	ct #:		231828.0	003.0000						USCS Des	scription:					N/A
	Samp	ole Na	ame:	MW-16-0	05, 50-52'						USCS Cla	ssification:			-		N/A
	Visu	al Des	script:	Gray lea	n clay						Average	Kv =				2.7E-08	cm/
	Samp	ole Ty	pe:	Undistu	bed		Initial	Final									
							Values	Values									
	Samp	ole Di	a. (in)				2.87	2.84			Permeant	:				Water	
	Samp	ole Ht	i. (in)				3.25	3.20			Permeant	Specific G	avity:			1.00	
	Tare	& We	et (g)				536.11	691.40			Sample S ₁	pecific Grav	vity:			2.70	Es
	Tare	& Dr	y (g)				403.90	517.10			Confining	g Pressure (psi):			100.0	
	Tare	(g)					93.83	91.24			Burette D	iameter (in):			0.250	
	Samp	ole W	t. (g)				610.40	600.16			Burette Z	ero (cm):				100.0	
		ture (42.6	40.9				n Gradient:				7.3	
			ty (pci	_			110.6	112.8			Average (6.9	
	Dry l	Densi	ty (pcf	f)			77.5	80.0				ct. Stress (p	,			6.1	
	Satu	ration	(%)				98.2	100.0				et. Stress (p	,			4.6	
	ъ.	1	-	r.	n I		Б	, I	Charri	CI		ct. Stress (p		T.	1	5.1	
3/	Date			Γime	Run	Temp C°**		re (psi)	Cham	Cham.	Bot	Bot.	Top	Top	Flow	Kv ***	Ave.*
Yr.	Mo.		Hr.	Min.	Time (s)		Bot	Top	(cm)	Dif.(cm)	(cm)	Dif.(cm)	(cm)	Dif.(cm)	Dif.(%)	cm/s	0,1
2016	3	15	8	11.00		0.0	95	95	25.20		1.95		101.75				
2016	3	15	11	15.00		0.0	95	95	27.70		1.80		99.60				
2016	3	15	14	17.00	10920	23.0	95	95	29.40	1.70	2.00	0.20	98.65	0.95	-65.2	3.2E-08	
2016	3	15	18	16.00	14340	23.0	95	95	30.65	1.25	2.40	0.40	97.60	1.05	-44.8	3.1E-08	
2016	3	16	4	56.00	38400	22.0	95	95	32.20	1.55	3.85	1.45	95.40	2.20	-20.5	3.1E-08	
2016	3	16	8	39.00	13380	23.0	95	95	32.40	0.20	4.40	0.55	94.85	0.55	0.0	2.6E-08	
2016	3	16	11	57.00	11880	23.0	95	95	33.85	1.45	4.95	0.55	94.40	0.45	10.0	2.7E-08	
2016	3	16	15	2.00	11100	23.0	95	95	34.00	0.15	5.35	0.40	93.90	0.50	-11.1	2.7E-08	
2016	3	17	5	15.00	51180	22.0	95	95	35.20	1.20	7.35	2.00	91.80	2.10	-2.4	2.8E-08	
2016	3	17	8	17.00	10920	24.0	95	95	35.80	0.60	7.80	0.45	91.45	0.35	12.5	2.5E-08	
2016	3	17	12	20.00	14580	23.0	95	95	35.90	0.10	8.30	0.50	89.85	1.60	-52.4	5.1E-08	
2016	3	17	17	50.00	19800	23.0	95	95	36.40	0.50	9.10	0.80	89.25	0.60	14.3	2.6E-08	
2016	3	18	5	23.00	41580	22.0	95	95	37.00	0.60	10.65	1.55	88.60	0.65	40.9	2.0E-08	
			8														
2016	3	18		58.00	12900	24.0	95	95	37.50	0.50	11.15	0.50	88.15	0.45	5.3	2.7E-08	
2016	3	18	12	55.00	14220	23.0	95	95	37.70	0.20	11.65	0.50	87.60	0.55	-4.8	2.8E-08	
2016	3	18	16	31.00	12960	23.0	95	95	38.00	0.30	12.10	0.45	87.20	0.40	5.9	2.5E-08	
2016	3	21	4	59.00	217680	22.0	95	95	41.00	3.00	19.25	7.15	79.85	7.35	-1.4	3.0E-08	
2016	3	21	8	2.00	10980	24.0	95	95	41.40	0.40	19.55	0.30	79.60	0.25	9.1	2.4E-08	
2016	3	21	12	10.00	14880	23.0	95	95	41.40	0.00	19.95	0.40	79.15	0.45	-5.9	2.8E-08	
2016	3	21	15	13.00	10980	23.0	95	95	41.60	0.20	20.25	0.30	78.85	0.30	0.0	2.7E-08	1
2016	3	21	19	37.00	15840	23.0	95	95	42.00	0.40	20.80	0.55	78.55	0.30	29.4	2.7E-08	1
2016	3	21	21	32.00	6900	23.0	95	95	41.80	-0.20	20.90	0.10	78.30	0.25	-42.9	2.6E-08	1
2016	3	22	5	53.00	30060	25.0	95	95	42.75	0.95	21.75	0.85	77.55	0.75	6.3	2.6E-08	1
2016	3	22	10	32.00	16740	23.0	95	95	42.75	0.00	22.20	0.45	77.10	0.45	0.0	2.8E-08	1
2016	3	22	16	0.00	19680	24.0	95	95	43.25	0.50	22.75	0.55	76.65	0.45	10.0	2.7E-08	1
2016	3	22	22	33.00	23580	24.0	95	95	43.60	0.35	23.35	0.60	76.10	0.55	4.3	2.6E-08	1
					ries of meas							rith a 1 in tl			1.0	2.7E-08	
A Zei										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					L	= 50	- /-

Sample Name								TRC Envir		•						ŀ	QC:	JPH
No. Sample Paris Paris Sample					Fa	alling Head	d, Risin	g Tailwate	r Permea	bility Tes	st (ASTM	I D5084, N	Method C))			QA:	JPH
Note 1		Proje	ct Na	me:	DTE - BF	RPP BAB an	d DB					Cell #:						ç
Semple Dake Pare India Pare Pare India Pare Par		Proje	ct #:		231828.00	003.0000							•					N/A
Sample Type: Undisturbed												USCS Cla	ssification:			n		N/A
Sample Dia. (in)		Visua	ıl Des	-			y, with g	gravel				Average :	Kv =				2.9E-08	cm/
Sample Dia (in)		Samp	le Ty	pe:	Undistur	bed												
Sample He May Sample He May Sample He May Sample He May Sample He May Sample He May Sample Sample Sample Sample Sample Sample Sample Sample May Sample S																		
Tark of Pay (2) 1		-		. ,													Water	
Tare Paris		-		` '				3.50					•				1.00	
Moisture (1)				10,										•				Es
Moisture (No. 1.00			-	y (g)								_	,	. ,				
Moisture (%)			,										,):				
Part Part		Samp	ole W	t. (g)				666.40	648.58			Burette Ze	ero (cm):				100.0	
Part Part																		
Part Part			•	,														
Salita S					•													
Name)								•	,				
Date Date Run Time Run Temp Pressure (psi) Cham Cham Bot Bot Top Dif. (cm)		Satur	ation	(%)				102.4	100.0					,				
Yr. Mo. Day Hr. Min. Time (s) Cons. Bot Top (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) Dif.(cm) (cm) Dif.(cm) (cm) Dif.(cm) Color Action Action Action Action Action Action Action Action Action Action Action Action Action Dif.(cm) (cm) Dif.(cm) Dif.(cm) Dif.(cm) Dif.(cm) Dif.(cm) Dif.(cm) Dif.(cm) Dif.(cm) Dif.(cm) Dif.(cm) Color of the Col		D	ı	-	·	P	Т	D.	ma (==-^\	Charr	Cl		Ť		т			Α.
2016 4 21 11 16,00	Yr.		Dav				-		. ,					•	-			0,1
2016 4 21 20 32.00 33360 27.0 95 95 27.60 10.80 1.25 -1.25 96.40 5.85 -154.3 4.1E-08 2016 4 22 9 22.00 46200 24.0 95 95 32.50 4.90 2.40 1.15 93.40 3.00 -44.6 3.0E-08 2016 4 22 12 18.00 10560 24.0 95 95 33.50 1.00 2.85 0.45 92.90 0.50 -5.3 3.1E-08 2016 4 22 18 33.00 22500 25.0 95 95 95 35.05 1.55 3.80 0.95 91.95 0.95 0.0 2.9E-08 2016 4 25 11 30.00 233820 23.0 95 95 44.30 9.25 12.75 8.95 8.310 8.85 0.6 3.1E-08 2016 4 25 12 31.00 0.22560 24.0 95 95 45.35 1.05 1.350 0.75 82.40 0.70 3.4 2.9E-08 2016 4 25 23 39.00 10680 24.0 95 95 45.35 1.05 13.80 0.30 82.00 0.40 -14.3 3.0E-08 2016 4 25 23 315.00 9360 24.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 13 18.00 17.940 24.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 13 18.00 17.940 24.0 95 95 45.95 0.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 27 42 57.00 56340 23.0 95 95 46.00 0.65 14.75 0.65 81.00 0.70 3.47 3.0E-08 2016 4 27 42 57.00 56340 23.0 95 95 46.00 0.45 15.70 0.60 80.10 0.50 91 3.0E-08 2016 4 27 42 57.00 56340 23.0 95 95 46.00 0.45 15.70 0.60 80.10 0.50 91 3.0E-08 2016 4 27 42 57.00 56340 23.0 95 95 47.60 1.20 17.40 17.0 78.60 1.50 6.2 2.9E-08 2016 4 27 4 57.00 56340 23.0 95 95 47.60 1.20 17.40 17.0 78.60 1.50 6.2 2.9E-08 2016 4 28 8 5.00 1400 24.0 95 95 47.60 1.20 17.40 17.0 78.60 1.50 6.2 2.9E-08 2016 4 28 8 5.00 1400 24.0 95 95 47.60 1.20 17.40 17.0 78.60 1.50 6.2 2.9E-08 2016 4 28 8 5.00 1400 24.0 95 95 47.60 1.20 17.40 17.0 78.60 1.50 6.2 2.9E-08 2016 4 28 8 5.00 1400 24.0 95 95 47.60 1.20 17.40 17.0 78.60 1.50 6.2 2.9E-08 2016 4 28 8 5.00 1400 24.0 95 95 47.60 1.20 17.40 17.0 17.0 78.60 1.50 6.2 2.9E-08 2016 4 28 8 5.00 1400 24.0 95 95 47.60 1.20 17.40 17.0 17.0 78.60 1.50 6.2 2.9E-08 2016 4 28 8 5.00 1400 24.0 95 95 47.60 1.20 17.40 17.0 17.0 78.60 1.50 6.2 2.9E-08 2016 4 28 8 5.00 1400 24.0 95 95 47.60 1.20 17.40 17.0 17.0 78.60 1.50 6.2 2.9E-08 2016 4 28 14 56.00 24.00 24.00 95 95 47.60 1.20 2.75 0.60 0.20 2.75 0.00 2.2E-08 2016 4 29 14 41.00 15240 23.0 95 95 54.50 0.20 2.75 0.60 0.20 2.75 0.60 0.20 2.75 0.60 0.20 2.							-			, ,		. ,			1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
2016 4 22 9 22.00 46200 24.0 95 95 32.50 4.90 2.40 1.15 93.40 3.00 44.6 3.0E-08 2016 4 22 12 18.00 10560 24.0 95 95 33.50 1.00 2.85 0.45 92.90 0.50 -5.3 3.1E-08 2016 4 22 18 33.00 22500 25.0 95 95 35.05 1.55 3.80 0.95 91.95 0.95 0.0 2.9E-08 2016 4 25 11 30.00 233820 23.0 95 95 44.30 9.25 12.75 8.95 83.10 8.85 0.6 3.1E-08 2016 4 25 17 41.00 22260 24.0 95 95 45.35 1.05 13.50 0.75 82.40 0.70 3.4 2.9E-08 2016 4 25 20 39.00 10680 24.0 95 95 45.35 1.05 13.50 0.75 82.40 0.70 3.4 2.9E-08 2016 4 25 23 15.00 93.00 10680 24.0 95 95 45.35 0.05 13.80 0.30 82.00 0.40 -14.3 3.0E-08 2016 4 25 23 15.00 93.00 23.04 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 4 59.00 2.04 95 95 45.35 0.05 14.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 26 4 59.00 2.04 95 95 45.95 46.00 0.65 14.75 0.65 81.00 0.70 3.7 3.0E-08 2016 4 26 4 59.00 2.40 95 95 45.95 46.00 0.65 14.75 0.65 81.00 0.70 3.7 3.0E-08 2016 4 26 13 18.00 17.940 24.0 95 95 45.95 40.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 26 13 18.00 17.940 24.0 95 95 46.00 0.65 14.75 0.65 81.00 0.70 3.7 3.0E-08 2016 4 27 4 57.00 56340 23.0 95 95 47.60 1.20 17.40 17.0 78.60 1.50 62 2.9E-08 2016 4 27 12 47.00 28200 23.0 95 95 47.60 1.20 17.40 17.0 78.60 1.50 62 2.9E-08 2016 4 27 12 47.00 28200 23.0 95 95 47.90 0.05 18.45 0.25 77.65 0.25 0.0 3.2E-08 2016 4 28 8 15.00 17.00 24.0 95 95 48.80 0.90 19.80 1.35 76.55 0.20 2.0 0.3 3.2E-08 2016 4 28 8 15.00 17.00 24.0 95 95 49.40 0.60 0.20 20.75 0.60 75.55 0.60 0.0 2.8E-08 2016 4 28 8 15.00 17.00 24.0 95 95 49.40 0.60 0.20 20.75 0.60 75.55 0.60 0.0 2.8E-08 2016 4 28 8 15.00 17.760 23.0 95 95 49.40 0.60 0.20 20.75 0.60 75.55 0.60 0.0 2.8E-08 2016 4 29 10 27.00 17.760 23.0 95 95 49.40 0.60 0.20 20.75 0.60 75.55 0.60 0.0 2.8E-08 2016 4 29 10 27.00 17.760 23.0 95 95 51.05 1.15 22.10 0.80 73.30 0.45 5.9 3.0E-08 2016 4 29 10 27.00 17.760 23.0 95 95 51.05 1.15 22.10 0.80 73.30 0.45 5.9 3.0E-08 2016 4 29 10 27.00 17.760 23.0 95 95 51.05 1.15 22.10 0.80 73.30 0.45 5.9 3.0E-08 2016 4 29 18 0.00 11940 23.0 95 95 55.05 0.30 23.0 0.30 0.30 0.30 0.30 0.30						33360					10.80		-1 25		5.85	-1543	4 1F-08	<u> </u>
2016 4 22 12 18.00 10560 24.0 95 95 33.50 1.00 2.85 0.45 92.90 0.50 -5.3 3.1E-08 2016 4 22 18 33.00 22500 25.0 95 95 35.05 1.55 3.80 0.95 91.95 0.95 0.0 2.9E-08 2016 4 25 11 30.00 233820 23.0 95 95 44.30 9.25 12.75 8.95 83.10 8.85 0.6 3.1E-08 2016 4 25 17 41.00 22260 24.0 95 95 45.35 1.05 13.50 0.75 82.40 0.70 3.4 2.9E-08 2016 4 25 20 39.00 10680 24.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 25 23 15.00 9360 24.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 4 59.00 20640 25.0 95 95 46.00 0.65 14.75 0.65 81.00 0.70 -3.7 3.0E-08 2016 4 26 13 18.00 17940 24.0 95 95 45.95 0.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 26 13 18.00 17940 24.0 95 95 47.60 1.20 17.40 1.70 78.60 1.50 6.2 2.9E-08 2016 4 27 12 47.00 28200 23.0 95 95 47.90 0.05 18.45 0.25 77.65 0.25 0.0 3.2E-08 2016 4 28 8 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5 5.00 11040 24.0 95 95 44.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5 5.00 11040 24.0 95 95 95 44.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5 5.00 11040 24.0 95 95 95 44.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5 5.00 11040 24.0 95 95 95 44.90 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 8 5 5.00 11040 24.0 95 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 10 27.00 17.76 23.0 95 95 51.05 1.15 22.10 0.80 74.35 0.75 3.2 2.8E-08 2016 4 29 10 27.00 17.76 23.0 95 95 51.05 0.90 0.15 22.50 0.40 73.90 0.45 5.9 3.0E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.05 0.90 0.15 22.50 0.40 73.90 0.45 5.9 3.0E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.05 0.30 22.20 0.30 73.40 0.20 2.00 2.7E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 20.00 50 51.11 51.10 0.25 69.05 0.20 11.1 3.1E-08 20.00 50 51.11 51.10 0.20 0																		
2016 4 22 18 33.00 22500 25.0 95 95 35.05 1.55 3.80 0.95 91.95 0.95 0.0 2.9E-08 2016 4 25 11 30.00 233820 23.0 95 95 44.30 9.25 12.75 8.95 83.10 8.85 0.6 3.1E-08 2016 4 25 17 41.00 22260 24.0 95 95 45.35 1.05 13.50 0.75 82.40 0.70 3.4 2.9E-08 2016 4 25 20 39.00 10680 24.0 95 95 45.35 0.05 13.80 0.30 82.00 0.40 -14.3 3.0E-08 2016 4 25 23 15.00 9360 24.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 4 59.00 20640 25.0 95 95 45.95 0.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 26 8 19.00 12000 24.0 95 95 45.95 0.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 27 12 47.00 28200 23.0 95 95 47.60 1.20 17.40 1.70 78.60 1.50 6.2 2.9E-08 2016 4 27 15 8.00 8460 23.0 95 95 47.90 0.05 18.45 0.25 77.65 0.25 0.0 3.2E-08 2016 4 28 8 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5 1.00 49980 22.0 95 95 49.40 0.60 2.015 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 8 5 3.10 31880 26.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 28 8 5 0.0 11040 24.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 8 5 0.0 11040 24.0 95 95 49.40 0.60 2.015 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 0 10 27.00 17760 23.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 10 27.00 17760 23.0 95 95 51.05 1.15 22.10 0.80 74.35 0.75 3.2 2.8E-08 2016 4 29 14 41.00 124.0 95 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.25 0.35 2.29 0.40 73.90 0.45 -5.9 3.0E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.55 0.30 22.90 0.40 73.90 0.45 -5.9 3.0E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.50 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.50 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.50 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.50 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.50 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.50 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08																		
2016 4 25 11 30.00 233820 23.0 95 95 44.30 9.25 12.75 8.95 83.10 8.85 0.6 3.1E-08 2016 4 25 17 41.00 22260 24.0 95 95 45.35 1.05 13.50 0.75 82.40 0.70 3.4 2.9E-08 2016 4 25 20 39.00 10680 24.0 95 95 45.30 -0.05 13.80 0.30 82.00 0.40 -14.3 3.0E-08 2016 4 25 23 15.00 9360 24.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 4 59.00 20640 25.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 8 19.00 12000 24.0 95 95 45.95 -0.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 26 13 18.00 17940 24.0 95 95 45.95 -0.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 27 4 57.00 56340 23.0 95 95 47.60 1.20 17.40 1.70 78.60 1.50 6.2 2.9E-08 2016 4 27 12 47.00 28200 23.0 95 95 47.95 0.35 18.20 0.80 77.90 0.70 6.7 2.8E-08 2016 4 28 8 5 0.0 1400 24.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5 0.0 11040 24.0 95 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 8 5.00 11040 24.0 95 95 44.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 8 5.00 11040 24.0 95 95 44.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 8 5.00 11040 24.0 95 95 44.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 8 5.00 11040 24.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 29 13 44.00 15240 23.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 1.00 2.8E-08 2016 4 29 14 41.00 15240 23.0 95 95 51.05 1.15 22.00 0.40 73.40 0.20 20.0 2.8E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.05 1.15 22.00 0.40 73.40 0.20 20.0 2.8E-08 2016 5 2 4 58.00 45300 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95																		
2016 4 25 17 41.00 22260 24.0 95 95 45.35 1.05 13.50 0.75 82.40 0.70 3.4 2.9E-08 2016 4 25 20 39.00 10680 24.0 95 95 45.30 -0.05 13.80 0.30 82.00 0.40 -14.3 3.0E-08 2016 4 25 23 15.00 9360 24.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 4 59.00 20640 25.0 95 95 46.00 0.65 14.75 0.65 81.00 0.70 -3.7 3.0E-08 2016 4 26 8 19.00 12000 24.0 95 95 45.95 -0.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 26 13 18.00 17940 24.0 95 95 45.46 0 0.45 15.70 0.60 80.10 0.50 9.1 3.0E-08 2016 4 27 4 57.00 56340 23.0 95 95 47.60 1.20 17.40 1.70 78.60 1.50 6.2 2.9E-08 2016 4 27 12 47.00 28200 23.0 95 95 47.95 0.35 18.20 0.80 77.90 0.70 6.7 2.8E-08 2016 4 28 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5.00 11040 24.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 8 14 56.00 24660 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 10 27.00 17.60 23.0 95 95 50.00 0.15 2.20 0.00 73.90 0.45 5.9 3.0E-08 2016 4 29 10 27.00 17.60 23.0 95 95 50.00 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 18 0.00 11940 23.0 95 95 50.00 0.15 22.0 0.40 73.90 0.45 5.9 3.0E-08 2016 4 29 18 0.00 11940 23.0 95 95 50.00 0.15 22.00 0.40 73.90 0.45 5.9 3.0E-08 2016 4 29 18 0.00 11940 23.0 95 95 50.50 0.00 27.8E 0.00 73.60 0.30 14.3 2.9E-08 2016 5 2 8 8.00 1106 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 8.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 8.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 8.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 8.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 8.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 8.00 11160 23.0 95 95 55.																		
2016 4 25 20 39.00 10680 24.0 95 95 45.30 -0.05 13.80 0.30 82.00 0.40 -14.3 3.0E-08 2016 4 25 23 15.00 9360 24.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 4 59.00 20640 25.0 95 95 46.00 0.65 14.75 0.65 81.00 0.70 -3.7 3.0E-08 2016 4 26 8 19.00 12000 24.0 95 95 45.95 -0.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 26 13 18.00 17940 24.0 95 95 46.40 0.45 15.70 0.60 80.10 0.50 9.1 3.0E-08 2016 4 27 4 57.00 56340 23.0 95 95 47.60 1.20 17.40 1.70 78.60 1.50 6.2 2.9E-08 2016 4 27 12 47.00 28200 23.0 95 95 47.95 0.35 18.20 0.80 77.90 0.70 6.7 2.8E-08 2016 4 28 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 13.0 1.9 3.0E-08 2016 4 28 8 5.00 11040 24.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 10 27.00 17760 23.0 95 95 95 51.05 1.15 22.10 0.80 74.35 0.75 3.2 2.8E-08 2016 4 29 10 27.00 17760 23.0 95 95 95 51.05 1.15 22.10 0.80 74.35 0.75 3.2 2.8E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.25 0.35 22.90 0.40 73.90 0.45 5.9 3.0E-08 2016 5 2 8 40.0 11940 23.0 95 95 51.55 0.30 23.20 0.30 73.40 0.20 20.0 2.7E-08 2016 5 2 8 40.0 11960 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 40.0 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 40.0 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 40.0 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 40.0 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 40.0 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 40.0 11160 23.0 95 95 55.50 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 40.0 11160 23.0 95 95 55	2016																	
2016 4 25 23 15.00 9360 24.0 95 95 45.35 0.05 14.10 0.30 81.70 0.30 0.0 3.0E-08 2016 4 26 4 59.00 20640 25.0 95 95 46.00 0.65 14.75 0.65 81.00 0.70 -3.7 3.0E-08 2016 4 26 8 19.00 12000 24.0 95 95 45.95 -0.05 15.10 0.35 80.60 0.40 -6.7 3.0E-08 2016 4 26 13 18.00 17940 24.0 95 95 46.40 0.45 15.70 0.60 80.10 0.50 9.1 3.0E-08 2016 4 27 4 57.00 56340 23.0 95 95 47.60 1.20 17.40 1.70 78.60 1.50 6.2 2.9E-08 2016 4 27 12 47.00 28.200 23.0 95 95 47.95 0.35 18.20 0.80 77.90 0.70 6.7 2.8E-08 2016 4 27 15 8.00 8460 23.0 95 95 47.90 -0.05 18.45 0.25 77.65 0.25 0.0 3.2E-08 2016 4 28 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 20 48.00 21120 23.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 10 27.00 17760 23.0 95 95 50.90 -0.15 22.50 0.40 73.90 0.45 -5.9 3.0E-08 2016 4 29 14 41.00 15240 23.0 95 95 51.25 0.35 22.90 0.40 73.60 0.30 14.3 2.9E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.55 0.30 23.20 0.30 73.40 0.20 20.0 2.7E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08	2016	4																
2016	2016	4	25	20	39.00	10680	24.0	95	95	45.30	-0.05	13.80	0.30	82.00	0.40	-14.3	3.0E-08	
2016	2016	4	25	23	15.00	9360	24.0	95	95	45.35	0.05	14.10	0.30	81.70	0.30	0.0	3.0E-08	
2016	2016	4	26	4	59.00	20640	25.0	95	95	46.00	0.65	14.75	0.65	81.00	0.70	-3.7	3.0E-08	
2016 4 27 4 57.00 56340 23.0 95 95 47.60 1.20 17.40 1.70 78.60 1.50 6.2 2.9E-08 2016 4 27 12 47.00 28200 23.0 95 95 47.95 0.35 18.20 0.80 77.90 0.70 6.7 2.8E-08 2016 4 27 15 8.00 8460 23.0 95 95 47.90 -0.05 18.45 0.25 77.65 0.25 0.0 3.2E-08 2016 4 28 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 14 56.00 2460 23.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 20 48.00 21120 23.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 5 31.00 31380 26.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 10 27.00 17760 23.0 95 95 51.05 1.15 22.10 0.80 74.35 0.75 3.2 2.8E-08 2016 4 29 14 41.00 15240 23.0 95 95 51.25 0.35 22.90 0.40 73.60 0.30 14.3 2.9E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.25 0.35 22.90 0.40 73.60 0.30 14.3 2.9E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.25 0.35 22.90 0.40 73.60 0.30 14.3 2.9E-08 2016 5 2 4 58.00 45300 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.05 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 Azero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.	2016	4	26	8	19.00	12000	24.0	95	95	45.95	-0.05	15.10	0.35	80.60	0.40	-6.7	3.0E-08	
2016	2016	4	26	13	18.00	17940	24.0	95	95	46.40	0.45	15.70	0.60	80.10	0.50	9.1	3.0E-08	
2016 4 27 15 8.00 8460 23.0 95 95 47.90 -0.05 18.45 0.25 77.65 0.25 0.0 3.2E-08 2016 4 28 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5.00 11040 24.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.60 0.20 20.75 0.60 75.55 0.60 0.0 2.8E-08 2016 4 28 20 48.00 21120 23.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 5 31.00 31380 26.0 95 95 51.05 1.15 22.10 0.80 74.35 0.75 3.2 2.8E-08 2016 4 29 10 27.00 17760 23.0 95 95 50.90 -0.15 22.50 0.40 73.90 0.45 -5.9 3.0E-08 2016 4 29 14 41.00 15240 23.0 95 95 51.25 0.35 22.90 0.40 73.60 0.30 14.3 2.9E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.55 0.30 23.20 0.30 73.40 0.20 20.0 2.7E-08 2016 5 1 16 23.00 166980 22.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 A zero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.	2016	4	27	4	57.00	56340	23.0	95	95	47.60	1.20	17.40	1.70	78.60	1.50	6.2	2.9E-08	
2016 4 27 15 8.00 8460 23.0 95 95 47.90 -0.05 18.45 0.25 77.65 0.25 0.0 3.2E-08 2016 4 28 5 1.00 49980 22.0 95 95 48.80 0.90 19.80 1.35 76.35 1.30 1.9 3.0E-08 2016 4 28 8 5.00 11040 24.0 95 95 49.40 0.60 20.15 0.35 76.15 0.20 27.3 2.8E-08 2016 4 28 14 56.00 24660 23.0 95 95 49.60 0.20 20.75 0.60 75.55 0.60 0.0 2.8E-08 2016 4 28 20 48.00 21120 23.0 95 95 49.90 0.30 21.30 0.55 75.10 0.45 10.0 2.8E-08 2016 4 29 5 31.00 31380 26.0 95 95 51.05 1.15 22.10 0.80 74.35 0.75 3.2 2.8E-08 2016 4 29 10 27.00 17760 23.0 95 95 50.90 -0.15 22.50 0.40 73.90 0.45 -5.9 3.0E-08 2016 4 29 14 41.00 15240 23.0 95 95 51.25 0.35 22.90 0.40 73.60 0.30 14.3 2.9E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.55 0.30 23.20 0.30 73.40 0.20 20.0 2.7E-08 2016 5 1 16 23.00 166980 22.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 A zero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.	2016	4	27	12	47.00	28200	23.0	95	95	47.95	0.35	18.20	0.80	77.90	0.70	6.7	2.8E-08	
2016	2016																	
2016																		
2016																		
2016																		
2016 4 29 5 31.00 31380 26.0 95 95 51.05 1.15 22.10 0.80 74.35 0.75 3.2 2.8E-08 2016 4 29 10 27.00 17760 23.0 95 95 50.90 -0.15 22.50 0.40 73.90 0.45 -5.9 3.0E-08 2016 4 29 14 41.00 15240 23.0 95 95 51.25 0.35 22.90 0.40 73.60 0.30 14.3 2.9E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.55 0.30 23.20 0.30 73.40 0.20 20.0 2.7E-08 2016 5 1 16 23.00 166980 22.0 95 95 54.25 2.70 26.95 3.75 70.05 3.35 5.6 3.0E-08 2016 5 2 4 58.00 45300 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 4																		
2016 4 29 10 27.00 17760 23.0 95 95 50.90 -0.15 22.50 0.40 73.90 0.45 -5.9 3.0E-08 2016 4 29 14 41.00 15240 23.0 95 95 51.25 0.35 22.90 0.40 73.60 0.30 14.3 2.9E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.55 0.30 23.20 0.30 73.40 0.20 20.0 2.7E-08 2016 5 1 16 23.00 166980 22.0 95 95 54.25 2.70 26.95 3.75 70.05 3.35 5.6 3.0E-08 2016 5 2 4 58.00 45300 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 A zero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.																		
2016 4 29 14 41.00 15240 23.0 95 95 51.25 0.35 22.90 0.40 73.60 0.30 14.3 2.9E-08 2016 4 29 18 0.00 11940 23.0 95 95 51.55 0.30 23.20 0.30 73.40 0.20 20.0 2.7E-08 2016 5 1 16 23.00 166980 22.0 95 95 54.25 2.70 26.95 3.75 70.05 3.35 5.6 3.0E-08 2016 5 2 4 58.00 45300 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 A zero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.	2016	4		5	31.00	31380					1.15		0.80					
2016 4 29 18 0.00 11940 23.0 95 95 51.55 0.30 23.20 0.30 73.40 0.20 20.0 2.7E-08 2016 5 1 16 23.00 166980 22.0 95 95 54.25 2.70 26.95 3.75 70.05 3.35 5.6 3.0E-08 2016 5 2 4 58.00 45300 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 A zero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.	2016	4	29	10	27.00	17760	23.0	95	95	50.90	-0.15	22.50	0.40	73.90	0.45	-5.9	3.0E-08	
2016 5 1 16 23.00 166980 22.0 95 95 54.25 2.70 26.95 3.75 70.05 3.35 5.6 3.0E-08 2016 5 2 4 58.00 45300 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 A zero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.	2016	4	29	14	41.00	15240	23.0	95	95	51.25	0.35	22.90	0.40	73.60	0.30	14.3	2.9E-08	
2016 5 2 4 58.00 45300 23.0 95 95 55.05 0.80 27.85 0.90 69.25 0.80 5.9 2.9E-08 2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 A zero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.	2016	4	29	18	0.00	11940	23.0	95	95	51.55	0.30	23.20	0.30	73.40	0.20	20.0	2.7E-08	
2016 5 2 8 4.00 11160 23.0 95 95 55.30 0.25 28.10 0.25 69.05 0.20 11.1 3.1E-08 A zero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.	2016	5	1	16	23.00	166980	22.0	95	95	54.25	2.70	26.95	3.75	70.05	3.35	5.6	3.0E-08	
A zero in this column starts a series of measurements. *Average Kv for those rows with a 1 in the Ave. column.	2016	5	2	4	58.00	45300	23.0	95	95	55.05	0.80	27.85	0.90	69.25	0.80	5.9	2.9E-08	
<u> </u>	2016	5	2	8	4.00	11160	23.0	95	95	55.30	0.25	28.10	0.25	69.05	0.20	11.1	3.1E-08	
	A zer	o in th	is col	lumn s	tarts a se	ries of mea	suremen	nts.		*Average	Kv for the	ose rows w	rith a 1 in tl	he Ave. co	olumn.			
	Гегтіг	nation	dete	rminec	d by stabl	e Kv and lo	w flow	differential.		Ü						usted for	temperature.	

				г	.112		TRC Envi		•		DE004 1	Made 1.C			-	QC:	JPH
	ъ.						g ranwate	ı rermea	omty res			Method C)			(QA:	JPH
	Proje		me:		RPP BAB ar	nd DB					Cell #:						9
	Proje			231828.0							USCS De	-					N/A
	•			MW-16-0			1				USCS CIa	ssification:					N/
					ndy lean cla	y, with g		T: 1									
	Samp	oie Ty	pe:	Undistu	rbea		Initial	Final									
	•		<i>(</i> ,)				Values	Values									
	Samp		. ,				2.86	2.83			Permeant					Water	
	Samp		. ,				3.50	3.48				Specific Gr	-			1.00	_
	Tare						512.00	737.80				pecific Grav				2.68	Е
	Tare		y (g)				387.40	552.10				g Pressure (-			100.0	
	Tare						92.18	89.22				iameter (in)):).250	
	Samp	ole W	t. (g)				666.40	648.58			Burette Z	ero (cm):			1	100.0	
	Mois	ture (%)				42.2	40.1			Maximur	n Gradient:			3	3.8	
	Wet l	Densi	ty (pc	f)			112.9	112.9			Average (Gradient:			3	3.6	
	Dry I	Densi	ty (pc	f)			79.4	80.6			Max. Effe	ct. Stress (p	si):		5	5.2	
	Satur	ation	(%)				102.4	100.0			Min. Effe	ct. Stress (p	si):		4	1.6	
											Ave. Effe	ct. Stress (p	si):		4	1.9	
	Date		-	Гіте	Run	Temp	Pressu	ıre (psi)	Cham	Cham.	Bot	Bot.	Top	Top	Flow	Kv ***	Ave
Yr.	Mo.	Day	Hr.	Min.	Time (s)	C°**	Bot	Top	(cm)	Dif.(cm)	(cm)	Dif.(cm)	(cm)	Dif.(cm)	Dif.(%)	cm/s	0,1
2016	5	2	8	4.00		0.0	95	95	55.30		28.10		69.05				
2016	5	2	13	15.00	18660	23.0	95	95	55.65	0.35	28.50	0.40	68.80	0.25	23.1	2.8E-08	
2016	5	2	20	45.00	27000	26.0	95	95	56.30	0.65	29.00	0.50	68.35	0.45	5.3	2.6E-08	
2016	5	3	4	50.00	29100	23.0	95	95	56.00	-0.30	29.50	0.50	67.75	0.60	-9.1	3.1E-08	
2016	5	3	8	0.00	11400	25.0	95	95	56.35	0.35	29.70	0.20	67.60	0.15	14.3	2.5E-08	
2016	5	3	11	10.00	11400	23.0	95	95	56.30	-0.05	29.90	0.20	67.35	0.25	-11.1	3.4E-08	
2016	5	3	14	12.00	10920	23.0	95	95	56.40	0.10	30.15	0.25	67.25	0.10	42.9	2.8E-08	
2016	5	3	19	36.00	19440	24.0	95	95	57.20	0.80	30.55	0.40	67.05	0.20	33.3	2.6E-08	
2016	5	4	5	24.00	35280	23.0	95	95	57.60	0.40	31.15	0.60	66.50	0.55	4.3	2.9E-08	
2016	5	4	9	48.00	15840	23.0	95	95	57.60	0.00	31.40	0.25	66.25	0.25	0.0	2.9E-08	
2016	5	4	14	50.00	18120	23.0	95	95	57.70	0.10	31.70	0.30	66.00	0.25	9.1	2.8E-08	
2016	5	4	20	0.00	18600	25.0	95	95	58.25	0.55	32.10	0.40	65.80	0.20	33.3	2.9E-08	
2016	5	5	5	24.00	33840	24.0	95	95	58.35	0.10	32.60		65.30	0.50	0.0	2.8E-08	
2016	5	5	10	25.00	18060	24.0	95	95	58.60	0.25	32.90	0.30	65.10	0.20	20.0	2.7E-08	
2016	5	5	14	42.00	15420	24.0	95	95	58.90	0.30	33.20	0.30	64.85	0.25	9.1	3.5E-08	
2016	5	6	4	52.00	51000	23.0	95	95	59.50	0.60	34.00	0.80	64.25	0.60	14.3	2.8E-08	
2016	5	6	9	32.00	16800	23.0	95	95	59.70	0.20	34.25	0.25	64.05	0.20	11.1	2.9E-08	
													_				
															ı .		
*A zer	o in th	nis col	lumn :	starts a se	eries of mea	suremen	its.		*Average	Kv for tho	se rows v	vith a 1 in th	ne Ave. c	olumn.		2.9E-08	cm
Termi	nation	dete	rmine	d by stabl	le Kv and lo	ow flow	differential	.)						***Kv adj	usted for t	emperature.	

							ΓRC Envir	onmenta	l Corpor	ation						QC:	JPH
				Fa	alling Head	d, Rising	g Tailwate	r Permea	bility Tes	st (ASTM	I D5084, I	Method C)				QA:	JPH
	Proje	ct Na	me:	DTE - BF	RPP BAB an	d DB					Cell #:						10
	Proje	ct #:		231828.0	003.0000						USCS Des	scription:					N/A
	Samp	ole Na	ame:	SB-16-01	, 50-52'						USCS Cla	ssification:			-		N/A
	Visua	al Des	script:	Gray lear	n clay						Average	Kv =				2.1E-08	cm/s
	Samp	ole Ty	pe:	Undistu	rbed		Initial	Final									
							Values	Values									
	Samp	ole Di	a. (in)				2.87	2.82			Permeant	:				Water	
	Samp	ole Ht	i. (in)				2.88	2.86			Permeant	Specific Gr	avity:			1.00	
	Tare	& We	et (g)				534.46	607.60			Sample S ₁	pecific Grav	rity:			2.70	Est
	Tare	& Dr	y (g)				400.40	448.80			Confining	g Pressure (psi):			100.0	
	Tare	(g)					98.45	86.36			Burette D	iameter (in)):			0.250	
	Samp	ole W	t. (g)				532.36	521.24			Burette Z	ero (cm):				100.0	
	Mois	,					44.4	43.8				n Gradient:				8.9	
			ty (pci	,			109.0	111.0			Average (8.4	
			ty (pcf	t)			75.5	77.2				ct. Stress (p	,			6.1	
	Satur	ation	(%)				97.4	100.0				ct. Stress (p:	<i>'</i>			4.5	
	Dati	1	-	Fim a	P	Toma	D.,	mo (mai)	Cham	Char		ct. Stress (p		Tar	1	5.1 Kv ***	A 4
٧×	Date			Γime Min.	Run	Temp C°**	Pressu Bot	re (psi)		Cham. Dif.(cm)	Bot (cm)	Bot.	Top	Top Dif.(cm)	Flow Dif.(%)		Ave.*
Yr.	Mo.		Hr.		Time (s)			Тор	(cm)	Dir.(cm)	(cm)	Dif.(cm)	(cm)	Dir.(cm)	DIF.(%)	cm/s	0,1
2016	3	15	8	11.00		0.0	95	95	24.00		1.65		102.30				
2016	3	15	11	16.00		0.0	95	95	27.35		1.15		99.70				
2016	3	15	14	17.00		0.0	95	95	29.50		1.15		98.60				
2016	3	15	18	17.00	14400	23.0	95	95	30.90	1.40	1.35	0.20	97.50	1.10	-69.2	2.5E-08	
2016	3	16	4	56.00	38340	22.0	95	95	34.75	3.85	2.00	0.65	95.00	2.50	-58.7	2.4E-08	
2016	3	16	8	39.00	13380	23.0	95	95	35.00	0.25	2.50	0.50	94.55	0.45	5.3	2.0E-08	
2016	3	16	11	58.00	11940	23.0	95	95	35.45	0.45	3.00	0.50	94.10	0.45	5.3	2.3E-08	
2016	3	16	15	3.00	11100	23.0	95	95	35.80	0.35	3.35	0.35	93.60	0.50	-17.6	2.2E-08	
2016	3	17	5	15.00	51120	22.0	95	95	38.75	2.95	4.55	1.20	91.10	2.50	-35.1	2.2E-08	
2016	3	17	8	18.00	10980	24.0	95	95	38.25	-0.50	5.25	0.70	90.95	0.15	64.7	2.3E-08	
2016	3	17	12	21.00	14580	23.0	95	95	38.60	0.35	5.65	0.40	90.35	0.60	-20.0	2.1E-08	
2016	3	17	17	51.00	19800	23.0	95	95	38.50	-0.10	6.45	0.80	89.85	0.50	23.1	2.1E-08	
2016	3	18	5	24.00	41580	22.0	95	95	40.80	2.30	7.40	0.95	87.95	1.90	-33.3	2.3E-08	
2016	3	18	8	59.00	12900	24.0	95	95	40.40	-0.40	8.05	0.65	87.70	0.25	44.4	2.3E-08	
2016	3	18	12	56.00	14220	23.0	95	95	40.70	0.30	8.40	0.35	87.25	0.45	-12.5	1.9E-08	
2016	3	18	16	32.00	12960	23.0	95	95	40.70	0.00	8.95	0.55	86.90	0.35	22.2	2.4E-08	
2016	3	21	4	59.00	217620	22.0	95	95	45.25	4.55	15.10	6.15	80.30	6.60	-3.5	2.2E-08	
2016	3	21	8	2.00	10980	24.0	95	95	45.25	0.00	15.50	0.40	80.10	0.20	33.3	2.2E-08	
2016	3	21	12	11.00	14940	23.0	95	95	45.40	0.15	15.90	0.40	79.65	0.45	-5.9	2.4E-08	1
2016	3	21	15	13.00	10920	23.0	95	95	45.70	0.30	16.10	0.20	79.35	0.30	-20.0	1.9E-08	1
2016	3	21	19	38.00	15900	23.0	95	95	45.70	0.00	16.65	0.55	79.10	0.25	37.5	2.1E-08	1
2016	3	21	21	33.00	6900	23.0	95	95	46.10	0.40	16.70	0.05	78.80	0.30	-71.4	2.2E-08	1
2016	3	22	5	53.00	30000	25.0	95	95	47.20	1.10	17.35	0.65	78.00	0.80	-10.3	2.0E-08	1
2016	3	22	10	32.00	16740	23.0	95	95	47.10	-0.10	17.80	0.45	77.60	0.40	5.9	2.2E-08	1
2016	3	22	16	0.00	19680	24.0	95	95	47.40	0.30	18.35	0.55	77.15	0.45	10.0	2.2E-08	1
2016	3	22	22	34.00	23640	24.0	95	95	47.10	-0.30	19.10	0.75	76.80	0.35	36.4	2.1E-08	1
					ries of meas							rith a 1 in th			55.1	2.1E-08	
*A 7.01					or mea				- I · CIUGC		10110 W					IL 00	/ 0

APPENDIX H – 2020 LABORATORY TEST RESULTS

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

20L186

Project No: PN1017

Client Sample ID: B1-1 (3')

Lab Sample No:

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.8
#10	2.00	99.3
#20	0.850	99.0
#40	0.425	98.7
#60	0.250	98.3
#100	0.150	97.5
#140	0.106	96.8
#200	0.075	96.1

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	0.2
Sand (%):	3.7
Fines (%):	96.1
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity	(-):	
------------------	------	--

Org.	Content	10):	

Carbon.	Content	(%	١:	
Car bon.	Content	10	,,,	

Client	Lab	Moisture	Fines Content Atterberg Limits Engineering	Atterberg Limits		Engineering Classification	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B1-1 (3')	20L186	22.6	96.1	49	22	27	CL - Lean clay

Note(s):

01-25-2021R

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Bell River ALD Support

PN1017 Project No:

Client Sample ID: B1-6 (25')

Lab Sample No: 20L191

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer	
3"	75	100.0	
2"	50	100.0	
1.5"	37.5	100.0	
1"	25	100.0	
3/4"	19	100.0	
3/8"	9.5	100.0	
#4	4.75	98.9	
#10	2.00	98.2	
#20	0.850	97.7	
#40	0.425	97.2	
#60	0.250	96.8	
#100	0.150	96.2	
#140	0.106	95.9	
#200	0.075	95.6	

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	1.1
Sand (%):	3.3
Fines (%):	95.6
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity (-):	

Org.	Content (%):
------	------------	----

ntent (%):	Carbon.
------------	---------

Client Sample ID.	Lab Sample No:	Moisture Content (%)	Fines Content < No. 200 (%)	Atterberg Limits		mits	Engineering Classification	
				LL (-)	PL (-)	PI (-)		
B1-6 (25')	20L191	35.5	95.6	38	19	19	CL - Lean clay	

Note(s):

01-26-2021 AAI NSIR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B1-9 (48')

Lab Sample No: 20L194

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	100.0
#10	2.00	99.9
#20	0.850	99.8
#40	0.425	99.7
#60	0.250	99.6
#100	0.150	99.4
#140	0.106	99.4
#200	0.075	99.3

Hydrometer Particle Diameter (mm)	% Finer

0.7
99.3

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific	Gravity (-)):	
----------	-------------	----	--

Org.	Content (%):

	Carbon.	Content	(%)	:	
- 1	Car bon.	Content	(70)		

Client	Lab	Moisture	Fines Content	Att	terberg Li	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B1-9 (48')	20L194	39.5	99.3	42	20	22	CL - Lean clay

Note(s):

01-21-2021 01-21-75R

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B1-11 (59')

Lab Sample No: 20L196

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	100.0
#10	2.00	100.0
#20	0.850	100.0
#40	0.425	100.0
#60	0.250	100.0
#100	0.150	99.9
#140	0.106	99.9
#200	0.075	99.9

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	7
Sand (%):	0.1
Fines (%):	99.9
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity (-):	Specific	Gravity	(-)		
-------------------------	----------	---------	-----	--	--

Org.	Content	(%):	
------	---------	----	----	--

1	Carbon.	Content	19%	١:	
- 1	Car bon.	Content	70	١.	

Client	Lab Moisture	Fines Content	Atterberg Limits			Engineering Classification	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B1-11 (59')	20L196	36.8	99.9	39	19	20	CL - Lean clay

Note(s):

01-25-2021 AAI NSR

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B1-14 (80') Lab Sample No: 20L199

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.5
#10	2.00	97.8
#20	0.850	95.5
#40	0.425	93.6
#60	0.250	91.4
#100	0.150	87.8
#140	0.106	85.4
#200	0.075	83.5

Hydrometer Particle Diameter (mm)	% Finer
200	

Gravel (%):	0.5
Sand (%):	16.0
Fines (%):	83.5
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity (-):	
-------------------------	--

Org.	Content (10):	

Carbon. Content (%):	
----------------------	--

Client	Lab	Lab Moisture	Fines Content	Atterberg Limits			Engineering Classification
Sample ID.	Sample Content No: (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)		
B1-14 (80')	20L199	24.6	83.5	37	20	17	CL - Lean clay with sand

Note(s):

01-25-2021 A AI NSR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Bell River ALD Support

Project No: PN1017

Client Sample ID: B1-16 (85')

Lab Sample No: 20L201

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100
2"	50	100
1.5"	37.5	100
1"	25	100
3/4"	19	100
3/8"	9.5	98
#4	4.75	96
#10	2.00	94
#20	0.850	92
#40	0.425	90
#60	0.250	87
#100	0.150	82
#140	0.106	79
#200	0.075	77

iner
-

Gravel (%):	4
Sand (%):	19
Fines (%):	77
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Specific Gravity (-):

Org. Content (%):

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Li	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B1-16 (85')	20L201	19.5	77	32	17	15	CL - Lean clay with sand

Note(s): Sieve specimen was undersized.

01-26-2021 01-AA1. 15 R

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

PN1017 Project No:

Client Sample ID: B1-ST-1 (7-9')

Lab Sample No: 20L143

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer		
3"	75	100.0		
2"	50	100.0		
1.5"	37.5	100.0		
1"	25	100.0		
3/4"	19	100.0		
3/8"	9.5	100.0		
#4	4.75	100.0		
#10	2.00	100.0		
#20	0.850	99.9		
#40	0.425	99.8		
#60	0.250	99.6		
#100	0.150	99.1		
#140	0.106	98.7		
#200	0.075	98.2		

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	
Sand (%):	1.8
Fines (%):	98.2
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific	Gravity	(-):	
----------	---------	------	--

Org. Content (%):	
-------------------	--

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Lir	nits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B1-ST-1 (7-9')	20L143	22.7	98.2	44	20	24	CL - Lean clay

Note(s):

O 2 - OLICE NS K

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B1-ST-3 (36-38')

Lab Sample No: 20L145

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer		
3"	75	100.0		
2"	50	100.0		
1.5"	37.5	100.0		
1"	25	100.0		
3/4"	19	100.0		
3/8"	9.5	100.0		
#4	4.75	100.0		
#10	2.00	99.9		
#20	0.850	99.9		
#40	0.425	99.9		
#60	0.250	99.8		
#100	0.150	99.8		
#140	0.106	99.8		
#200	0.075	99.7		

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	
Sand (%):	0.3
Fines (%):	99.7
Silt (%):	
Clay (%):	

Co	oeff. Unif. (Cu):	
Co	oeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity (-):

Org. Content (%):	ent (%):	Org. Content
-------------------	------------	--------------

Carbon.	Content	(%):	
---------	---------	------	--

Client	Lab	Moisture	Fines Content	Atterberg Limits		mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B1-ST-3 (36-38')	20L145	35.2	99.7	42	21	21	CL - Lean clay

Note(s):

02-01-2021 NAI NSR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B2-2 (5')

Lab Sample No: 20L205

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	97.4
#10	2.00	96.9
#20	0.850	96.6
#40	0.425	96.3
#60	0.250	95.9
#100	0.150	95.5
#140	0.106	95.2
#200	0.075	94.9

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	2.6
Sand (%):	2.5
Fines (%):	94.9
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Org. Content (%):	Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Atterberg Limits		mits	Engineering Classificati	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)		
B2-2 (5')	20L205	26.9	94.9	49	23	26	CL - Lean clay	

Note(s):

Specific Gravity (-):

01-25-2021 AAINSR

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B2-5 (18')

Lab Sample No: 20L208

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer		
3"	75	100.0		
2"	50	100.0 100.0		
1.5"	37.5			
1"	25	100.0		
3/4"	19	100.0		
3/8"	9.5	100.0		
#4	4.75	99.6		
#10	2.00	98.9		
#20	0.850	98.5		
#40	0.425	98.1		
#60	0.250	97.7		
#100	0.150	97.2		
#140	0.106	96.9		
#200	0.075	96.7		

Particle Diameter	% Finer
Gravel (%):	0.4
Sand (%):	2.9
Fines (%):	96.7

Sand (%):	2.9
Fines (%):	96.7
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity	(- '):	

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Li	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B2-5 (18')	20L208	36.3	96.7	44	20	24	CL - Lean Clay

Note(s):

01-25-2021 AAI NSR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B2-8 (40')

Lab Sample No: 20L211

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer		
3"	75	100.0		
2"	50	100.0		
1.5"	37.5	100.0		
1"	25	100.0		
3/4"	19	100.0		
3/8"	9.5	100.0		
#4	4.75	100.0		
#10	2.00	99.9		
#20	0.850	99.8		
#40	0.425	99.7		
#60	0.250	99.7		
#100	0.150	99.5		
#140	0.106	99.4		
#200	0.075	99.4		

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	
Sand (%):	0.6
Fines (%):	99.4
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Specific Gravity (-): Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Atterberg Limits		nits	Engineering Classification	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)		
B2-8 (40')	20L211	37.5	99.4	40	20	20	CL - Lean clay	

Note(s):

01-25-2021 ANI 15R

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Belle River ALD Support

PN1017 Project No:

Client Sample ID: B2-12 (60')

Lab Sample No: 20L215

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	98.6
#10	2.00	95.1
#20	0.850	89.8
#40	0.425	85.4
#60	0.250	78.8
#100	0.150	68.1
#140	0.106	62.2
#200	0.075	58.1

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	1.4
Sand (%):	40.5
Fines (%):	58.1
Silt (%):	
Clay (%):	

C	oeff. Unif. (Cu):	
C	oeff. Curv. (Cc):	

Specific Gravity (-):	
-------------------------	--

Org. Content	(%)	:
--------------	-----	---

Carbon. Content (%):

Client	Lab	Moisture	re Fines Content Atterberg Limits Engineer		Engineering Classification		
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B2-12 (60')	20L215	17.4	58.1	22	14	8	CL - Sandy lean clay

Note(s):

01-25-2021 AAINSR

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B2-16 (80')

Lab Sample No: 20L219

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.2
#10	2.00	97.3
#20	0.850	95.1
#40	0.425	93.5
#60	0.250	91.4
#100	0.150	88.0
#140	0.106	85.8
#200	0.075	84.1

% Finer

Gravel (%):	0.8
Sand (%):	15.1
Fines (%):	84.1
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Org.	Content	(%):	
------	---------	----	----	--

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Li	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B2-16 (80')	20L219	25.2	84.1	42	22	20	CL - Lean clay with sand

Note(s):

01-25-2021 ARINSR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B2-ST-1 (1-3')

Lab Sample No: 20L149

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer		
3"	75	100.0		
2"	50	100.0		
1.5"	37.5	100.0		
1"	25	100.0		
3/4"	19	100.0		
3/8"	9.5	100.0		
#4	4.75	99.6 99.1		
#10	2.00			
#20	0.850	98.7		
#40	0.425	98.3		
#60	0.250	97.8		
#100	0.150	97.1		
#140	0.106	96.4		
#200	0.075	95.8		

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	0.4
Sand (%):	3.8
Fines (%):	95.8
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific	Gravity	(-):	l
----------	---------	------	---

rg. Content (%):

Carbon.	Content	(%):	
---------	---------	------	--

Client	Lab	Moisture	Fines Content Atterberg Limits Engineering C	Atterberg Limits		Engineering Classification	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B2-ST-1 (1-3')	20L149	23.0	95.8	50	22	28	CL - Lean clay

Note(s):

02 AAI NSA

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

20L224

Project No: PN1017

Client Sample ID: B3-2 (5')

Lab Sample No:

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer	
3"	75	100.0	
2"	50	100.0	
1.5"	37.5	100.0	
1"	25	100.0	
3/4"	19	100.0	
3/8"	9.5	100.0	
#4	4.75	99.7 99.6	
#10	2.00		
#20	0.850	99.2	
#40	0.425	98.9	
#60	0.250	98.4	
#100	0.150	97.7	
#140	0.106	97.3	
#200	0.075	96.7	

6 Finer

Gravel (%):	0.3		
Sand (%):	3.0		
Fines (%):	96.7		
Silt (%):			
Clay (%):			

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

riquia rimit (LL)

Specific	Gravity	(-)):	

Org. Content (%):	
-------------------	--

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	Atterberg Limits		Engineering Classification	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)		
B3-2 (5')	20L224	24.1	96.7	55	22	33	CH - Fat clay	

Note(s):

01-25-2021 AA. 15R

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B3-6 (25')

Lab Sample No: 20L228

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	100.0
#10	2.00	99.8
#20	0.850	99.6
#40	0.425	99.5
#60	0.250	99.4
#100	0.150	99.3
#140	0.106	99.3
#200	0.075	99.3

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	
Sand (%):	0.7
Fines (%):	99.3
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity	v (-):

Org.	Content (%):	
------	-----------	-----	--

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Li	mits	Engineering Classificatio	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)		
B3-6 (25')	20L228	37.7	99.3	43	20	23	CL - Lean clay	

Note(s):

01-25-2021 AAI NSR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B3-10 (45')

Lab Sample No: 20L232

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer	
3"	75	100.0	
2"	50	100.0	
1.5"	37.5	100.0	
1"	25	100.0	
3/4"	19	100.0	
3/8"	9.5	100.0	
#4	4.75	100.0	
#10	2.00	100.0	
#20	0.850	100.0	
#40	0.425	99.9	
#60	0.250	99.9	
#100	0.150	99.9	
#140	0.106	99.8	
#200	0.075	99.8	

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	
Sand (%):	0.2
Fines (%):	99.8
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity (-):

Org. Content (%):

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Li	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B3-10 (45')	20L232	36.5	99.8	40	20	20	CL - Lean clay

Note(s):

01-25-2021 AAINSK

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

PN1017 Project No:

Client Sample ID: B3-18 (85')

Lab Sample No: 20L240

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	97.4
#10	2.00	94.8
#20	0.850	91.9
#40	0.425	89.7
#60	0.250	86.8
#100	0.150	82.6
#140	0.106	80.1
#200	0.075	78.4

% Finer

Gravel (%):	2.6
Sand (%):	19.0
Fines (%):	78.4
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	-

Liquid Limit (LL)

Specific Gravity	(-):	
Specific Gravity	- 1.	

Org. Content (%):	
-------------------	--

Carbon. Content (%):

Client	Lab	Moisture	Fines Content Atterberg Limits Engineering C		Fines Content Atterberg Limits Engineering		Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B3-18 (85')	20L240	21.9	78.4	34	18	16	CL - Lean clay with sand

Note(s):

01-25-2021 A AINSR

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Bell River ALD Support

Project No: PN1017

Client Sample ID: B3-14 (67')

Lab Sample No: 20L236 ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928 SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer	
3"	75	100.0	
2"	50	100.0	
1.5"	37.5	100.0	
1"	25	100.0	
3/4"	19	100.0	
3/8"	9.5	100.0	
#4	4.75	98.8	
#10	2.00	94.9	
#20	0.850	90.1	
#40	0.425	86.2	
#60	0.250	80.4	
#100	0.150	70.1	
#140	0.106	63.7	
#200	0.075	58.6	

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	1.2
Sand (%):	40.2
Fines (%):	58.6
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Specific Gravity (-):	Org. Content (%):
-------------------------	-------------------

C	arbon.	Content	(%):	
---	--------	---------	------	--

Client	Lab	Moisture	Fines Content	Atterberg Limits		mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B3-14 (67')	20L236	15.2	58.6				

Note(s):

02,03-2021 02,03-2021

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B4-1 (10')

Lab Sample No: 20L243

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer	
3"	75	100.0	
2"	50	100.0	
1.5"	37.5	100.0	
1"	25	100.0	
3/4"	19	100.0	
3/8"	9.5	100.0	
#4	4.75	100.0	
#10	2.00	99.2	
#20	0.850	98.6	
#40	0.425	98.3	
#60	0.250	97.9	
#100	0.150	97.4	
#140	0.106	97.1	
#200	0.075	96.8	

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	
Sand (%):	3.2
Fines (%):	96.8
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity (-):	
-------------------------	--

Org. Content (%):	
-------------------	--

Carbon.	Content	(%):	
---------	---------	------	--

Client	Lab	Moisture	Fines Content	Att	erberg Lir	nits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B4-1 (10')	20L243	25.6	96.8	46	21	25	CL - Lean clay

Note(s):

01-25-2021 NAN NSK

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B4-7 (34')

Lab Sample No: 20L249

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	98.8
#10	2.00	97.8
#20	0.850	96.4
#40	0.425	95.4
#60	0.250	94.5
#100	0.150	93.3
#140	0.106	92.5
#200	0.075	92.0

% Finer

Gravel (%):	1.2
Sand (%):	6.8
Fines (%):	92.0
Silt (%):	
Clay (%):	1

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity (-):	
-------------------------	--

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Lir	nits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B4-7 (34')	20L249	33.9	92.0				

Note(s):

01-25-2521 AAIMSR

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B4-12 (55') Lab Sample No: 20L254

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.5
#10	2.00	99.0
#20	0.850	98.1
#40	0.425	97.4
#60	0.250	96.8
#100	0.150	95.8
#140	0.106	95.0
#200	0.075	94.4

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	0.5
Sand (%):	5.1
Fines (%):	94.4
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity (-):	
-------------------------	--

Org. Content (%):

|--|

Client Sample ID.	Lab Sample No:	Moisture	Fines Content < No. 200 (%)	Att	Atterberg Limits		Engineering Classification
		Content (%)		LL (-)	PL (-)	PI (-)	
B4-12 (55')	20L254	41.4	94.4	50	22	28	CH - Fat clay

Note(s):

01-25-2021 AAINSR

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B4-16 (75')

Lab Sample No: 20L258

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.6
#10	2.00	97.8
#20	0.850	95.6
#40	0.425	93.9
#60	0.250	91.7
#100	0.150	88.2
#140	0.106	85.9
#200	0.075	84.0

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	0.4
Sand (%):	15.6
Fines (%):	84.0
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity	(-1	

Org. Content (%):

	Carbon. Content	(%)	١.	
- 1	Car bon. Content	100	<i>!•</i>	

Client	Lab	Moisture	Fines Content	Atterberg Limits		mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B4-16 (75')	20L258	24.0	84.0	33	17	16	CL - Lean clay with sand

Note(s):

01-25-2021 01-25-2021

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B4-20 (95')

Lab Sample No: 20L262

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100
2"	50	100
1.5"	37.5	100
1"	25	100
3/4"	19	100
3/8"	9.5	89
#4	4.75	86
#10	2.00	84
#20	0.850	82
#40	0.425	81
#60	0.250	79
#100	0.150	76
#140	0.106	75
#200	0.075	74

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	14
Sand (%):	12
Fines (%):	74
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific	Gravity	(-):	
----------	---------	----	----	--

1	Org.	Content	(%):	
---	------	---------	---	---	----	--

Carbon.	Content	%	١:	

Client	Lab	Moisture	Fines Content	Atterberg Limits		mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B4-20 (95')	20L262	21.7	74	35	19	16	CL - Lean clay with gravel

Note(s): Sieve specimen was undersized.

01-25-2021 AAI NSR

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

PN1017 Project No:

Client Sample ID: B5-1 (7')

Lab Sample No: 20L263

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.8
#10	2.00	99.3
#20	0.850	98.8
#40	0.425	98.5
#60	0.250	98.0
#100	0.150	97.3
#140	0.106	96.6
#200	0.075	95.8

% Finer

Gra	avel (%):	0.2
Sa	nd (%):	4.0
Fi	nes (%):	95.8
Si	ilt (%):	
CI	ay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity	(-)	١.	

Org.	Content (%):	
------	-----------	---	----	--

	Carbon.	Content	(%)	١.	
- 11	Car bon.	Content	(/0	J•	

Client Sample ID.	Lab Sample No:	Moisture Content (%)	Fines Content < No. 200 (%)	Atterberg Limits			Engineering Classification	
				LL (-)	PL (-)	PI (-)		
B5-1 (7')	20L263	35.7	95.8	58	22	36	CH - Fat clay	

Note(s):

01-25.2021 AAINSK

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B5-4 (29')

Lab Sample No: 20L266

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer	
3"	75	100.0	
2"	50	100.0	
1.5"	37.5	100.0	
1"	25	100.0	
3/4"	19	100.0	
3/8"	9.5	100.0	
#4	4.75	100.0	
#10	2.00	99.1	
#20	0.850	98.2	
#40	0.425	97.5	
#60	0.250	96.9	
#100	0.150	96.2	
#140	0.106	95.7	
#200	0.075	95.3	

Hydrometer Particle Diameter (mm)	% Finer

4.7
95.3

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	1

Liquid Limit (LL)

Specific Gravity	(- '	١.	

Carbon. Content (%	6):
--------------------	-----

Client Sample ID.	Lab Sample No:	Moisture Content (%)	Fines Content < No. 200 (%)	Atterberg Limits			Engineering Classification
				LL (-)	PL (-)	PI (-)	
B5-4 (29')	20L266	39.1	95.3	46	21	25	CL - Lean clay

Note(s):

01-25-2021 AAIMSR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Belle River ALD Support

Project No: PN1017

B5-9 (52') Client Sample ID:

Lab Sample No: 20L271

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	100.0
#10	2.00	99.4
#20	0.850	99.3
#40	0.425	99.3
#60	0.250	99.2
#100	0.150	99.1
#140	0.106	99.1
#200	0.075	99.1

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	
Sand (%):	0.9
Fines (%):	99.1
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Specific Gravity (-):

Org. Content (%):

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Lin	nits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B5-9 (52')	20L271	40.2	99.1	43	21	22	CL - Lean clay

Note(s):

01-25-2021 AAINSR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B5-13 (72')

Lab Sample No: 20L275

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.2
#10	2.00	96.2
#20	0.850	93.5
#40	0.425	91.4
#60	0.250	88.8
#100	0.150	84.8
#140	0.106	82.3
#200	0.075	80.2

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	0.8
Sand (%):	19.0
Fines (%):	80.2
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific	Gravity (-	1:	

Org.	Content	(%)):	
			_	

	(%):	Content	arbon.
--	------	---------	--------

Client	Lab	Moisture	Fines Content	Att	erberg Lin	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B5-13 (72')	20L275	27.1	80.2	34	18	16	CL - Lean clay with sand

Note(s):

01-25-2021 AAINSR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B5-17 (92')

Lab Sample No: 20L279

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100
2"	50	100
1.5"	37.5	100
1"	25	100
3/4"	19	100
3/8"	9.5	95
#4	4.75	94
#10	2.00	92
#20	0.850	89
#40	0.425	87
#60	0.250	85
#100	0.150	82
#140	0.106	80
#200	0.075	78

% Finer

Gravel (%):	6
Sand (%):	16
Fines (%):	78
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Org. Content (%):

Client	Lab	Moisture	Fines Content	Att	terberg Li	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B5-17 (92')	20L279	22.0	78	35	19	16	CL - Lean clay with sand

Note(s): Sieve specimen was undersized.

Specific Gravity (-):

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B6-3 (15') Lab Sample No: 20L284

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.7
#10	2.00	99.4
#20	0.850	98.9
#40	0.425	98.4
#60	0.250	98.0
#100	0.150	97.5
#140	0.106	97.2
#200	0.075	96.9

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	0.3
Sand (%):	2.8
Fines (%):	96.9
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity	(-)):	

Org. C	ontent (%):
--------	------------	----

Carbon.	Content	(%):	

Client	Lab	Moisture	Fines Content	ntent Atterberg Limits		mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B6-3 (15')	20L284	36.7	96.9	44	21	23	CL - Lean clay

Note(s):

01-26-2021 AAINSR

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B6-7 (35') Lab Sample No: 20L288

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve 110.	Size (min)	70 I IIICI
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	100.0
#10	2.00	100.0
#20	0.850	100.0
#40	0.425	99.9
#60	0.250	99.9
#100	0.150	99.9
#140	0.106	99.9
#200	0.075	99.9

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	
Sand (%):	0.1
Fines (%):	99.9
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity (-):	
--------------------	-----	--

Org. Content	(%):	
--------------	----	----	--

Content (%):	Carbon.
--------------	---------

Client	Lab	Moisture	Fines Content	Atterberg Limits		erberg Limits Engineering Classificati	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B6-7 (35')	20L288	37.8	99.9	40	20	20	CL - Lean clay

Note(s):

01-26-202 R

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B6-11 (55')

Lab Sample No: 20L292

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No. Size (mm)		% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	100.0
#10	2.00	99.9
#20	0.850	99.8
#40	0.425	99.7
#60	0.250	99.7
#100	0.150	99.6
#140	0.106	99.5
#200	0.075	99.4

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	
Sand (%):	0.6
Fines (%):	99.4
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific	Gravity	(-):	
----------	---------	------	--

Org.	Content	(%)):	

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Atterberg Limits		mits	Engineering Classification	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)		
B6-11 (55')	20L292	38.7	99.4	48	21	27	CL - Lean Clay	

Note(s):

01-26-2021A

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Belle River ALD Support

Project No: PN1017

Client Sample ID: B6-15 (75') Lab Sample No: 20L296

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Eng. Classificat

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No. Size (mm)		% Finer	
3"	75	75 100	
2"	50	100	
1.5"	37.5	100	
1"	25	100	
3/4"	19	100	
3/8"	9.5 95		
#4	4.75	5 94	
#10	10 2.00 91		
#20	0.850	88	
#40	0.425	85	
#60	0.250	82	
#100	0.150	77	
#140	0.106	74	
#200	0.075	71	

Gravel (%):	6
Sand (%):	23
Fines (%):	71
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

20 72 3	
Specific Gravity (-):	

Org. Content (%):

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Li	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B6-15 (75')	20L296	20.5	71	26	16	10	CL - Lean clay with sand

Note(s): Sieve specimen was undersized.

01-26-2021 R

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Belle River ALD Support

20L300

PN1017 Project No:

Client Sample ID: B6-19 (95') Lab Sample No:

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer		
3"	75	100.0		
2"	50	100.0		
1.5"	37.5	100.0		
1"	25	100.0		
3/4"	19	100.0		
3/8"	9.5	100.0		
#4	4.75	99.8		
#10	2.00	97.0		
#20	0.850	94.5		
#40	0.425	92.6		
#60	0.250	90.4		
#100	0.150	87.6		
#140	0.106	85.8		
#200	0.075	84.6		

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	0.2
Sand (%):	15.2
Fines (%):	84.6
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity	(-):	
------------------	------	--

Org. Content (%):	
-------------------	--

-				
Carbon.	Content	(%)	۱٠I	

Client	Lab	Moisture	Fines Content	Att	erberg Li	mits	Engineering Classification
Sample ID.	The state of the s	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
B6-19 (95')	20L300	26.5	84.6	36	19	17	CL - Lean clay with sand

Note(s):

01-26-20-21SR

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

FLEXIBLE WALL PERMEABILITY TEST (1) **ASTM D5084**

Project Name: Belle River ALD Support **Project Number:** PN1017 Geosyntec Consultants Client Name: Site Sample ID: B1-ST-3 (36-38') 20L145 Lab Sample Number: Soil Material Type: NA Specified Value (cm/sec): 1/26/2021 Date Test Started:

Specimen Type (See Note2) (-)		ecimen Init				Hydraulic				
	Spec. Length	Spec. Diameter	Dry Unit	Moisture Content	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid (3)	Average Gradient	Conductivity (cm/s)
	3.43	7.37	89.5	35.0	53.0	50.0	3.0	DDW	12	2.2E-8
ST	3.47	7.04	97.4	27.6	63.00	50.0	13.0	DDW	10	2.7E-9

Notes:

- 1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
- 2. Specimen preparation: ST = Shelby Tube, R = Remolded, B = Block Sample.
- 3. Type of permeant liquid: DTW = Deaired Tap Water, DDW = Deaired Deionized (Distilled) Water

12 XX, NJR

1/26/2021

Excel Geotechnical Testing, Inc. "Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

FLEXIBLE WALL PERMEABILITY TEST (1)

Project Name: Belle River ALD Support PN1017 **Project Number:** Geosyntec Consultants Client Name: B2-ST-2 (7-9') Site Sample ID: 20L150 Lab Sample Number: Material Type: Soil NA Specified Value (cm/sec):

Specimen Type (See Note2)	Spe	Specimen Initial Conditions				Test Conditions				
	Sp	ecimen Fin	al Conditi	ons			Hydraulic			
	Spec.	Spec. Diameter		Moisture Content	Cell Press.	Back Press.	Consolid. Press.	Permeant Liquid (3)		Conductivity
(-)	(cm)	(cm)	(pcf)	(%)	(psi)	(psi)	(psi)	(-)	(-)	(cm/s)
CT.	3.54	7.22	98.2	26.8	53.0	50.0	3.0	DDW	12	2.1E-8
ST	3.54	7.20	98.8	26.4	54.00	50.0	4.0	DDW	12	2.0E-8

Date Test Started:

- 1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
- 2. Specimen preparation: ST = Shelby Tube, R = Remolded, B = Block Sample.
- 3. Type of permeant liquid: DTW = Deaired Tap Water, DDW = Deaired Deionized (Distilled) Water

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

FLEXIBLE WALL PERMEABILITY TEST (1)

Belle River ALD Support Project Name: PN1017 Project Number: Client Name: Geosyntec Consultants B2-ST-7 (97-99') Site Sample ID: 20L155 Lab Sample Number: Material Type: Soil NA Specified Value (cm/sec): 2/15/2021 Date Test Started:

	Spe	cimen Init	ial Condit	ions						
Specimen	Spe	ecimen Fin	al Conditi	ons			Hydraulic			
Type (See Note2)	Spec. Length (cm)	Spec. Diameter		Moisture Content (%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ⁽³⁾	Average Gradient	Conductivity (cm/s)
	3.53	7.24	110.9	20.3	53.0	50.0	3.0	DDW	3	3.3E-8
ST	3.50	7.16	114.2	18.5	77.00	50.0	27.0	DDW	6	2.2E-8

Notes:

- 1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
- 2. Specimen preparation: ST = Shelby Tube, R = Remolded, B = Block Sample.
- 3. Type of permeant liquid: DTW = Deaired Tap Water, DDW = Deaired Deionized (Distilled) Water

* Deviations:

Laboratory temperature at 22±3 °C.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

FLEXIBLE WALL PERMEABILITY TEST (1)

Belle River ALD Support Project Name: Project Number: PN1017 Geosyntec Consultants Client Name: B3-ST-1 (1-3') Site Sample ID: 20L156 Lab Sample Number: Soil Material Type: Specified Value (cm/sec): NA 2/8/2021 Date Test Started:

Specimen Type	Specimen Initial Conditions									
	Spe	ecimen Fin	al Condit	ions		Hydraulic				
	Spec.	Spec.	Dry Unit	Moisture	Cell	Back	Consolid.	Permeant	Average	Conductivity
(See Note2)	Length	Diameter	Weight	Content	Press.	Press.	Press.	Liquid (3)	Gradient	
(-)	(cm)	(cm)	(pcf)	(%)	(psi)	(psi)	(psi)	(-)	(-)	(cm/s)
ST	3.53	7.17	111.4	19.1	53.0	50.0	3.0	DDW	8	9.6E-9
	3.62	7.29	104.7	22.7	33.0					

Notes:

- 1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
- 2. Specimen preparation: ST = Shelby Tube, R = Remolded, B = Block Sample.
- 3. Type of permeant liquid: DTW = Deaired Tap Water, DDW = Deaired Deionized (Distilled) Water

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

FLEXIBLE WALL PERMEABILITY TEST (1) **ASTM D5084**

Belle River ALD Support **Project Name:** PN1017 **Project Number:** Client Name: Geosyntec Consultants B4-ST-4 (67-69') Site Sample ID: 20L165 Lab Sample Number: Soil Material Type: NA Specified Value (cm/sec): 2/15/2021 Date Test Started:

Specimen Type (See Note2)	Spe	ecimen Init	ial Condit	ions		Hydraulic				
	Spo	ecimen Fin	al Conditi	ons						
	Spec. Length	Spec. Diameter		Moisture Content	Cell Press.	Back Press.	Consolid. Press.	Permeant Liquid (3)	Average Gradient	Conductivity
(-)	(cm)	(cm)	(pcf)	(%)	(psi)	(psi)	(psi)	(-)	(-)	(cm/s)
S.T.	3.53	7.23	129.8	11.6	53.0	50.0	3.0	DDW	5	2.8E-8
ST	3.55	7.21	129.5	11.1	69.00	50.0	19.0	DDW	10	1.8E-8

- 1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
- 2. Specimen preparation: ST = Shelby Tube, R = Remolded, B = Block Sample.
- 3. Type of permeant liquid: DTW = Deaired Tap Water, DDW = Deaired Deionized (Distilled) Water

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

FLEXIBLE WALL PERMEABILITY TEST (1) **ASTM D5084**

Project Name: Belle River ALD Support PN1017 **Project Number:** Geosyntec Consultants Client Name: Site Sample ID: B5-ST-2 (27-29') 20L169 Lab Sample Number: Material Type: Soil NA Specified Value (cm/sec): Date Test Started: 2/15/2021

Specimen Type (See Note2)	Spe	ecimen Init	ial Condit	ions						
	Specimen Final Conditions					Hydraulic				
	Spec.	Spec. Diameter	1000	Moisture Content	Cell Press.	Back Press.	Consolid. Press.	Permeant Liquid ⁽³⁾		Conductivity
(-)	(cm)	(cm)	(pcf)	(%)	(psi)	(psi)	(psi)	(-)	(-)	(cm/s)
CT	3.49	7.34	85.9	36.8	53.0	50.0	3.0	DDW	9	3.4E-8
ST	3.48	7.02	93.4	30.7	60.00	50.0	10.0	DDW	4	2.1E-8

Notes:

- 1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
- 2. Specimen preparation: ST = Shelby Tube, R = Remolded, B = Block Sample.
- 3. Type of permeant liquid: DTW = Deaired Tap Water, DDW = Deaired Deionized (Distilled) Water

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

FLEXIBLE WALL PERMEABILITY TEST (1) **ASTM D5084**

Belle River ALD Support **Project Name:** PN1017 **Project Number:** Geosyntec Consultants Client Name: B6-ST-4 (47-49') Site Sample ID: 20L177 Lab Sample Number: Soil Material Type: NA Specified Value (cm/sec): Date Test Started: 2/17/2021

Specimen Type (See Note2)	Spe	cimen Init	ial Condi	tions		Hydraulic				
	Spe	ecimen Fir	al Condit	ions						
	Spec.	Spec. Diameter		Moisture Content	Cell Press.	Back Press.	Consolid. Press.	Permeant Liquid (3)	Average Gradient	Conductivity
(-)	(cm)	(cm)	(pcf)	(%)	(psi)	(psi)	(psi)	(-)	(-)	(cm/s)
CT.	3.49	7.32	86.6	38.3	53.0	50.0	3.0	DDW	5	2.5E-8
ST	3.45	7.16	93.3	29.6	65.00	50.0	15.0	DDW	10	1.8E-8

- 1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
- 2. Specimen preparation: ST = Shelby Tube, R = Remolded, B = Block Sample.
- 3. Type of permeant liquid: DTW = Deaired Tap Water, DDW = Deaired Deionized (Distilled) Water

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

FLEXIBLE WALL PERMEABILITY TEST (1) **ASTM D5084**

Belle River ALD Support Project Name: PN1017 Project Number: Client Name: Geosyntec Consultants Site Sample ID: B6-ST-7 (97-99') Lab Sample Number: 20L180 Soil Material Type:

NA Specified Value (cm/sec):

Date Test Started:

2/17/2021

Specimen Type (See Note2)	Spe	ecimen Initi	ial Conditi	ions		Hydraulic				
	Sp	ecimen Fin	al Conditi	ons						
	Spec. Length	Spec. Diameter		Moisture Content	Cell Press.	Back Press.	Consolid.	Permeant Liquid (3)	Average Gradient	Conductivity
(-)	(cm)	(cm)	(pcf)	(%)	(psi)	(psi)	(psi)	(-)	(-)	(cm/s)
ST	3.53	7.29	104.1	23.5	53.0	50.0	3.0	DDW	4	2.4E-8
31	3.51	7.18	108.3	21.0	76.00	50.0	26.0	DDW	9	1.2E-8

Notes:

- 1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
- 2. Specimen preparation: ST = Shelby Tube, R = Remolded, B = Block Sample.
- 3. Type of permeant liquid: DTW = Deaired Tap Water, DDW = Deaired Deionized (Distilled) Water

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537 Fax: (770) 910 7538

LAST PAGE

Test Applicability and Limitations:

- The results are applicable only for the materials received at the laboratory and tested which may or may not be representative of the materials at the site.

Storage Policy:

- Uncontaminated Material: All samples (or what is left) will be archived for a period of 3 months from the date received. Thereafter the samples will be discarded unless a written request for extended storage is received. A rate of \$1.00 per sample per day will be applied after the initial 3 month storage period.
- Contaminated Material: All samples (or what is left) will be archived for a period of 3 months from the date received. Thereafter, the samples will be returned to the project manager or his/her designated receiver unless a written request for extended storage is received. A rate of \$1.30 per sample per day will be applied after the initial 3 months storage.

Sounding: CPT20-01 Job No: 20-61-21681 CONETEC GeoSyntec Cone: 551:T1500F15U500 Date: 2020-12-10 14:55 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 100 200 40 0.0 0.5 1.0 1.5 2.0 0 200 400 3 30 50 10 20 30 40 0+10 - ∇ 20 30 40 Depth (feet) 50 60 70 80 -90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) File: 20-61-21681_CP01.COR Max Depth: 30.600 m / 100.39 ft SBT: Robertson, 2009 and 2010 Depth Inc: 0.025 m / 0.082 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 470985ft E: 13625925ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Uegachieved

Sounding: CPT20-01B Job No: 20-61-21681 CONETEC GeoSyntec Date: 2020-12-11 08:28 Cone: 551:T1500F15U500 Site: DTE Belle River Power Plant Su (Nkt) (tsf) Phi (deg) u (ft) Ic (PKR 2009) N160 (Ic RW1998) (bpf) qt (tsf) 100 200 40 0.0 0.5 1.0 1.5 2.0 0 200 400 3 30 50 10 20 30 40 0-4 10 - ∇ 20 30 40 Depth (feet) 50 60 _`> 70 80 90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) Max Depth: 30.575 m / 100.31 ft File: 20-61-21681_CP01B.COR SBT: Robertson, 2009 and 2010 Depth Inc: 0.025 m / 0.082 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 470980ft E: 13625906ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Sounding: CPT20-02 Job No: 20-61-21681 CONETEC GeoSyntec Date: 2020-12-09 12:28 Cone: 513:T1500F15U500 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 100 0.0 0.5 1.0 1.5 2.0 0 200 200 400 3 30 40 50 10 20 30 40 10 - ∇ 20 30 40 Depth (feet) 50 60 70 Refusal Refusal Refusal Refusal Refusal Refusal 80 90 100 110 Su(Ndu) N(60) (bpf) File: 20-61-21681_CP02.COR Max Depth: 22.050 m / 72.34 ft SBT: Robertson, 2009 and 2010 Depth Inc: 0.050 m / 0.164 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 470997ft E: 13626119ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Sounding: CPT20-04 Job No: 20-61-21681 CONETEC GeoSyntec Cone: 551:T1500F15U500 Date: 2020-12-09 11:05 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 100 200 40 0.0 0.5 1.0 1.5 2.0 0 200 400 3 30 50 10 20 30 40 0-1 10 - ∇ 20 30 40 Depth (feet) 50 60 70 80 _= 90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) Max Depth: 30.575 m / 100.31 ft File: 20-61-21681_CP04.COR SBT: Robertson, 2009 and 2010 Depth Inc: 0.025 m / 0.082 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 471237ft E: 13626152ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueg not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Sounding: CPT20-05 Job No: 20-61-21681 CONETEC GeoSyntec Cone: 551:T1500F15U500 Date: 2020-12-09 12:02 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 100 0 200 200 400 3 0.0 0.5 1.0 1.5 2.0 30 40 50 10 20 30 40 0 + 10 20 30 40 Depth (feet) 50 60 70 80 90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) Max Depth: 30.575 m / 100.31 ft File: 20-61-21681_CP05.COR SBT: Robertson, 2009 and 2010 Depth Inc: 0.025 m / 0.082 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 471243ft E: 13625954ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Sounding: CPT20-06 Job No: 20-61-21681 CONETEC GeoSyntec Date: 2020-12-09 13:54 Cone: 513:T1500F15U500 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 100 40 0.0 0.5 1.0 1.5 2.0 0 200 200 400 3 30 50 10 20 30 40 0+10 -EOH EOH EOH EOH EOH EOH 20 30 40 Depth (feet) 50 60 70 80 90 100 110 N(60) (bpf) Su(Ndu) File: 20-61-21681_CP06.COR Max Depth: 4.600 m / 15.09 ft SBT: Robertson, 2009 and 2010

Depth Inc: 0.050 m / 0.164 ft
Avg Int: Every Point
Overplot Item: Unit Wt: SBTQtn (PKR2009)
Su Nkt/Ndu: 15.0 / 9.0
Su Nkt/Ndu: 15.0 / 9.0
Sheet No: 1 of 1
Sheet No: 1 of 1
Sheet No: 1 of 1
Sheet No: 1 of 1
Sheet No: 1 of 1

Sounding: CPT20-07 Job No: 20-61-21681 CONETEC GeoSyntec Cone: 513:T1500F15U500 Date: 2020-12-09 11:04 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 200 0.0 0.5 1.0 1.5 2.0 0 100 200 400 3 30 40 50 10 20 30 40 10 - ∇ 20 30 40 Depth (feet) 50 60 70 80 90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) File: 20-61-21681_CP07.COR Max Depth: 30.500 m / 100.06 ft SBT: Robertson, 2009 and 2010 Depth Inc: 0.050 m / 0.164 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 471015ft E: 13625752ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Uegachieved

GeoSyntec

Avg Int: Every Point

Overplot Item: Ueg Assumed Ueg

Job No: 20-61-21681

Date: 2020-12-11 12:09

Site: DTE Belle River Power Plant

Sounding: CPT20-08

Sheet No: 1 of 1

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq not achieved

Cone: 568:T1500F15U500

SuNkt/Ndu: 15.0 / 9.0

Dissipation, Ueq achieved

Sounding: CPT20-08B Job No: 20-61-21681 CONETEC GeoSyntec Date: 2020-12-11 12:35 Cone: 568:T1500F15U500 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 0.0 0.5 1.0 1.5 2.0 100 200 200 400 3 30 40 50 10 20 30 40 10 - ∇ 20 30 40 EOH EOH EOH EOH EOH EOH Depth (feet) 50 60 70 80 90 100 110 N(60) (bpf) Su(Ndu) Max Depth: 12.200 m / 40.03 ft File: 20-61-21681_CP08B.COR SBT: Robertson, 2009 and 2010 Depth Inc: 0.050 m / 0.164 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 470382ft E: 13626396ft

Sheet No: 1 of 1

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueg not achieved

SuNkt/Ndu: 15.0 / 9.0

Dissipation, Ueq achieved

Avg Int: Every Point

Sounding: CPT20-08C Job No: 20-61-21681 CONETEC GeoSyntec Cone: 568:T1500F15U500 Date: 2020-12-15 08:41 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 200 0.0 0.5 1.0 1.5 2.0 100 200 400 3 30 40 50 10 20 30 40 10 - ∇ 20 30 40 Depth (feet) 50 60 70 80 90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) File: 20-61-21681_CP08C.COR Max Depth: 30.500 m / 100.06 ft SBT: Robertson, 2009 and 2010 Depth Inc: 0.050 m / 0.164 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 470384ft E: 13626391ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Sounding: CPT20-10.1 Job No: 20-61-21681 CONETEC GeoSyntec Cone: 551:T1500F15U500 Date: 2020-12-16 11:02 Site: DTE Belle River Power Plant Ic (PKR 2009) Phi (deg) u (ft) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 100 200 0.0 0.5 1.0 1.5 2.0 200 400 3 30 40 50 10 20 30 40 10 - ∇ 20 30 40 Depth (feet) 50 60 70 80 90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) Max Depth: 30.575 m / 100.31 ft File: 20-61-21681_CP10.1.COR SBT: Robertson, 2009 and 2010 Depth Inc: 0.025 m / 0.082 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 469861ft E: 13626732ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Sounding: CPT20-10A Job No: 20-61-21681 CONETEC GeoSyntec Cone: 551:T1500F15U500 Date: 2020-12-16 11:53 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 200 200 0.0 0.5 1.0 1.5 2.0 10 20 30 40 0 100 400 3 30 40 50 10 ∇ 20 30 40 Depth (feet) 50 60 70 80 90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) Max Depth: 30.575 m / 100.31 ft File: 20-61-21681_CP10A.COR SBT: Robertson, 2009 and 2010 Depth Inc: 0.025 m / 0.082 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 469934ft E: 13626592ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Uegachieved

Sounding: CPT20-11 Job No: 20-61-21681 CONETEC GeoSyntec Cone: 551:T1500F15U500 Date: 2020-12-15 11:07 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 100 200 0.0 0.5 1.0 1.5 2.0 0 200 400 3 30 40 50 10 20 30 40 10 -20 30 40 Depth (feet) 50 60 70 80 90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) Max Depth: 30.575 m / 100.31 ft File: 20-61-21681_CP11.COR SBT: Robertson, 2009 and 2010 Depth Inc: 0.025 m / 0.082 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 469979ft E: 13626765ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Sounding: CPT20-12 Job No: 20-61-21681 CONETEC GeoSyntec Cone: 551:T1500F15U500 Date: 2020-12-15 08:44 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 100 200 0.0 0.5 1.0 1.5 2.0 200 400 3 30 40 50 10 20 30 40 10 -20 30 40 Depth (feet) 50 60 70 80 -Refusal Refusal Refusal Refusal Refusal Refusal 90 100 110 N(60) (bpf) Su(Ndu) File: 20-61-21681_CP12.COR Max Depth: 25.050 m / 82.18 ft SBT: Robertson, 2009 and 2010 Depth Inc: 0.025 m / 0.082 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 470292ft E: 13626802ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Sounding: CPT20-13 Job No: 20-61-21681 CONETEC GeoSyntec Date: 2020-12-10 15:00 Cone: 513:T1500F15U500 Site: DTE Belle River Power Plant Phi (deg) u (ft) Ic (PKR 2009) Su (Nkt) (tsf) N160 (Ic RW1998) (bpf) qt (tsf) 100 40 0.0 0.5 1.0 1.5 2.0 0 200 200 400 3 30 50 10 20 30 40 0 + 10 - ∇ 20 30 40 Depth (feet) 50 Refusal Refusal Refusal Refusal Refusal Refusal 60 70 80 90 100 110 N(60) (bpf) Su(Ndu) Max Depth: 17.200 m / 56.43 ft File: 20-61-21681_CP13.COR SBT: Robertson, 2009 and 2010 Depth Inc: 0.050 m / 0.164 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 470478ft E: 13626800ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Sounding: CPT20-13B Job No: 20-61-21681 CONETEC GeoSyntec Cone: 568:T1500F15U500 Date: 2020-12-11 09:09 Site: DTE Belle River Power Plant Su (Nkt) (tsf) Phi (deg) u (ft) Ic (PKR 2009) N160 (Ic RW1998) (bpf) qt (tsf) 100 200 40 0.0 0.5 1.0 1.5 2.0 0 200 400 3 30 50 10 20 30 40 0-1 10 - ∇ 20 30 40 Depth (feet) 50 60 3 70 80 90 100 Target Depth Target Depth Target Depth Target Depth Target Depth Target Depth 110 Su(Ndu) N(60) (bpf) File: 20-61-21681_CP13B.COR Max Depth: 30.500 m / 100.06 ft SBT: Robertson, 2009 and 2010 Depth Inc: 0.050 m / 0.164 ft Unit Wt: SBTQtn (PKR2009) Coords: Michigan State Plane South N: 470491ft E: 13626793ft Avg Int: Every Point SuNkt/Ndu: 15.0 / 9.0 Sheet No: 1 of 1

Dissipation, Ueq not achieved

Dissipation, Uegassumed

— Hydrostatic Line

Dissipation, Ueq achieved

Soil Behavior Type (SBT) Scatter Plots

Job No: 20-61-21681

Date: 2020-12-10 14:55

Site: DTE Belle River Power Plant

Sounding: CPT20-01

Job No: 20-61-21681 Date: 2020-12-11 08:28

Site: DTE Belle River Power Plant

Sounding: CPT20-01B Cone: 551:T1500F15U500

Job No: 20-61-21681 Date: 2020-12-09 12:28

Site: DTE Belle River Power Plant

Sounding: CPT20-02

Job No: 20-61-21681

Date: 2020-12-09 14:00

Site: DTE Belle River Power Plant

Sounding: CPT20-03

Job No: 20-61-21681 Date: 2020-12-09 11:05

Site: DTE Belle River Power Plant

Sounding: CPT20-04

Job No: 20-61-21681

Date: 2020-12-09 12:02

Site: DTE Belle River Power Plant

Sounding: CPT20-05

Job No: 20-61-21681 Date: 2020-12-09 13:54

Site: DTE Belle River Power Plant

Sounding: CPT20-06

Job No: 20-61-21681 Date: 2020-12-10 08:43

Site: DTE Belle River Power Plant

Sounding: CPT20-06B Cone: 513:T1500F15U500

Job No: 20-61-21681 Date: 2020-12-09 11:04

Site: DTE Belle River Power Plant

Sounding: CPT20-07

Job No: 20-61-21681

Date: 2020-12-11 12:09

Site: DTE Belle River Power Plant

Sounding: CPT20-08

Cone: 568:T1500F15U500

Job No: 20-61-21681 Date: 2020-12-11 12:35

Site: DTE Belle River Power Plant

Sounding: CPT20-08B Cone: 568:T1500F15U500

Job No: 20-61-21681 Date: 2020-12-15 08:41

Site: DTE Belle River Power Plant

Sounding: CPT20-08C Cone: 568:T1500F15U500

Cemented Sand

Qtn Chart (PKR 2009) Modified SBTn (PKR 2016) Standard SBT Chart (UBC 1986) 1000 1000-1000-SD 9 100-100 100 Qtn.cs = 70qt (bar) Otn Otn SC 10.0-10.0-10.0 Ic = 2.62 1.0 1.0-1.0-1.0 0.10 1.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0 Fr (%) Fr (%) Rf(%) **Depth Ranges** Legend Legend Legend >0.0 to 5.0 ft Sensitive, Fine Grained CCS (Cont. sensitive clay like) Sensitive Fines >5.0 to 10.0 ft Organic Soils CC (Cont. clay like) Organic Soil >10.0 to 15.0 ft Clays TC (Cont. transitional) Clav >15.0 to 20.0 ft Silt Mixtures SC (Cont. sand like) Silty Clay >20.0 to 25.0 ft CD (Dil. clay like) Sand Mixtures Clayey Silt >25.0 to 30.0 ft Sands TD (Dil. transitional) Silt >30.0 to 35.0 ft Gravelly Sand to Sand SD (Dil. sand like) Sandy Silt >35.0 to 40.0 ft Stiff Sand to Clayey Sand Silty Sand/Sand >40.0 to 45.0 ft Very Stiff Fine Grained Sand >45.0 to 50.0 ft Gravelly Sand >50.0 ft Stiff Fine Grained

Job No: 20-61-21681 Date: 2020-12-16 11:02

Site: DTE Belle River Power Plant

Sounding: CPT20-10.1 Cone: 551:T1500F15U500

Job No: 20-61-21681 Date: 2020-12-16 11:53

Site: DTE Belle River Power Plant

Sounding: CPT20-10A Cone: 551:T1500F15U500

Job No: 20-61-21681 Date: 2020-12-15 11:07

Site: DTE Belle River Power Plant

Sounding: CPT20-11

Job No: 20-61-21681 Date: 2020-12-15 08:44

Site: DTE Belle River Power Plant

Sounding: CPT20-12

Job No: 20-61-21681

Date: 2020-12-10 15:00

Site: DTE Belle River Power Plant

Sounding: CPT20-13 Cone: 513:T1500F15U500

Job No: 20-61-21681 Date: 2020-12-11 09:09

Site: DTE Belle River Power Plant

Sounding: CPT20-13B Cone: 568:T1500F15U500

Job No: 20-61-21681 Date: 12/11/2020 08:28

Site: DTE Belle River Power Plant

Sounding: CPT20-01B

Cone: 551:T1500F15U500 Area=15 cm²

Filename: 20-61-21681_CP01B.PPF Trace Summary:

Depth: 0.650 m / 2.133 ft

Duration: 300.0 s

u Min: -0.0 ft

u Max: 4.3 ft

Ueq: 0.0 ft u Final: 0.1 ft

Job No: 20-61-21681 Date: 12/11/2020 08:28

Site: DTE Belle River Power Plant

Sounding: CPT20-01B

Cone: 551:T1500F15U500 Area=15 cm²

Filename: 20-61-21681_CP01B.PPF Trace Summary:

Depth: 2.775 m / 9.104 ft Duration: 450.0 s

u Max: 14.3 ft u Final: 14.2 ft

Job No: 20-61-21681 Date: 12/11/2020 08:28

Site: DTE Belle River Power Plant

Sounding: CPT20-01B

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP01B.PPF Depth: 8.575 m / 28.133 ft

Duration: 6500.0 s

u Min: 69.6 ft

u Max: 128.1 ft u Final: 69.6 ft

WT: 4.572 m / 15.000 ft Ueq: 13.1 ft

Ir: 100 U(50): 70.62 ft

Ch: 0.1 cm²/min

Job No: 20-61-21681 Date: 12/11/2020 08:28

Site: DTE Belle River Power Plant

Sounding: CPT20-01B

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP01B.PPF Depth: 14.675 m / 48.146 ft

Duration: 4015.0 s

u Min: 129.2 ft u Max: 234.0 ft

u Max: 234.011 u Final: 129.2 ft WT: 4.572 m / 15.000 ft

Ueq: 33.1 ft Ir: 100 U(50): 133.60 ft Ch: 0.2

Ch: 0.2 cm²/min

T(50): 3564.5 s

Job No: 20-61-21681 Date: 12/11/2020 08:28

Site: DTE Belle River Power Plant

Sounding: CPT20-01B

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP01B.PPF

Depth: $19.975 \, \text{m} \, / \, 65.534 \, \text{ft}$

Duration: 1405.0 s

u Min: 25.2 ft

u Max: 142.2 ft u Final: 98.9 ft

Job No: 20-61-21681 Date: 12/11/2020 08:28

Site: DTE Belle River Power Plant

Sounding: CPT20-01B

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP01B.PPF

Depth: 20.775 m / 68.159 ft

Duration: 535.0 s

u Min: 84.4 ft

u Max: 176.2 ft

u Final: 108.6 ft

WT: 4.572 m / 15.000 ft

Ueq: 53.2 ft Ir: 100

U(50): 114.66 ft Ch: 1.8 cm²/min

Job No: 20-61-21681 Date: 12/11/2020 08:28

Site: DTE Belle River Power Plant

Sounding: CPT20-01B

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP01B.PPF

Depth: 26.850 m / 88.089 ft Duration: 5755.0 s

u Min: 177.6 ft u Max: 283.6 ft

u Final: 177.6 ft

WT: 4.572 m / 15.000 ft

Ueq: 73.1 ft Ir: 100 U(50): 178.34 ft

Ch: 0.1 cm²/min

T(50): 5600.8 s

Job No: 20-61-21681 Date: 12/11/2020 08:28

Site: DTE Belle River Power Plant

Sounding: CPT20-01B

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP01B.PPF

Depth: 29.900 m / 98.096 ft

Duration: 4870.0 s

u Min: 201.9 ft u Max: 323.3 ft

u Final: 201.9 ft

WT: 4.572 m / 15.000 ft

Ueq: 83.1 ft Ir: 100 U(50): 203.21 ft Ch: 0.7

Ch: 0.1 cm²/min

T(50): 4686.3 s

Job No: 20-61-21681 Date: 12/09/2020 14:00

Site: DTE Belle River Power Plant

Sounding: CPT20-03

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP03.PPF

Depth: 3.100 m / 10.170 ft

Duration: 300.0 s

u Min: -1.4 ft

u Max: 0.3 ft

WT: 3.100 m / 10.170 ft

Ueq: 0.0 ft u Final: -0.1 ft

Job No: 20-61-21681 Date: 12/09/2020 14:00

Site: DTE Belle River Power Plant

Sounding: CPT20-03

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP03.PPF

Depth: 6.150 m / 20.177 ft

Duration: 5900.0 s

u Min: 53.0 ft u Max: 87.3 ft

u Final: 53.0 ft

Job No: 20-61-21681 Date: 12/09/2020 14:00

Site: DTE Belle River Power Plant

Sounding: CPT20-03

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP03.PPF

Depth: 11.325 m / 37.155 ft

Duration: 4895.0 s

u Min: 92.9 ft

u Max: 165.1 ft u Final: 92.9 ft

Job No: 20-61-21681 Date: 12/09/2020 14:00

Site: DTE Belle River Power Plant

Sounding: CPT20-03

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP03.PPF

Depth: 17.725 m / 58.152 ft

Duration: 4365.0 s

u Min: 131.3 ft u Max: 225.8 ft

u Final: 131.3 ft

WT: 5.486 m / 17.998 ft

Ueq: 40.2 ft Ir: 100 U(50): 133.00 ft

Ch: 0.2 cm²/min

T(50): 4136.3 s

Job No: 20-61-21681 Date: 12/09/2020 14:00

Site: DTE Belle River Power Plant

Sounding: CPT20-03

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP03.PPF

Depth: 24.425 m / 80.134 ft

Duration: 5835.0 s

u Min: 155.4 ft u Max: 244.1 ft

u Final: 155.4 ft

Job No: 20-61-21681 Date: 12/09/2020 14:00

Site: DTE Belle River Power Plant

Sounding: CPT20-03

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP03.PPF

Depth: 25.050 m / 82.184 ft

Duration: 295.0 s

u Min: 106.4 ft u Max: 176.0 ft

u Final: 106.4 ft

WT: 5.486 m / 17.998 ft

Ueq: 64.2 ft Ir: 100 U(50): 120.10 ft

Ch: 5.8 cm²/min

T(50): 120.6 s

Job No: 20-61-21681 Date: 12/09/2020 14:00

Site: DTE Belle River Power Plant

Sounding: CPT20-03

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP03.PPF Depth: 25.700 m / 84.317 ft

Duration: 445.0 s

u Min: 144.0 ft u Max: 222.1 ft

u Final: 144.0 ft

Job No: 20-61-21681 Date: 12/09/2020 14:00

Site: DTE Belle River Power Plant

Sounding: CPT20-03

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP03.PPF Depth: 30.225 m / 99.162 ft

Duration: 4225.0 s

u Min: 221.4 ft u Max: 358.9 ft

u Final: 221.4 ft

Job No: 20-61-21681 Date: 12/15/2020 11:07

Site: DTE Belle River Power Plant

Sounding: CPT20-11

Cone: 551:T1500F15U500 Area=15 cm²

Filename: 20-61-21681_CP11.PPF Trace Summary:

Depth: 0.650 m / 2.133 ft

Duration: 170.0 s

u Min: -7.9 ft

u Final: -0.0 ft

u Max: 0.3 ft

Ueq: 0.0 ft

WT: 0.650 m / 2.133 ft

Job No: 20-61-21681 Date: 12/15/2020 11:07

Site: DTE Belle River Power Plant

Sounding: CPT20-11

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP11.PPF

Depth: 2.475 m / 8.120 ft

Duration: 145.0 s

u Min: -13.3 ft

u Max: -7.6 ft

u Final: -7.8 ft

Job No: 20-61-21681 Date: 12/15/2020 11:07

Site: DTE Belle River Power Plant

Sounding: CPT20-11

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP11.PPF

Depth: 5.850 m / 19.193 ft

Duration: 6255.0 s

u Min: 56.5 ft

u Max: 109.5 ft u Final: 56.6 ft WT: 4.267 m / 13.999 ft

Ueq: 5.2 ft U(50): 57.33 ft

Ir: 100

Ch: 0.1 cm²/min

T(50): 5985.9 s

Job No: 20-61-21681 Date: 12/15/2020 11:07

Site: DTE Belle River Power Plant

Sounding: CPT20-11

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP11.PPF Depth: 8.575 m / 28.133 ft

Duration: 4610.0 s

u Min: 77.8 ft

u Max: 138.1 ft u Final: 77.9 ft

Job No: 20-61-21681 Date: 12/15/2020 11:07

Site: DTE Belle River Power Plant

Sounding: CPT20-11

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP11.PPF

Depth: 14.675 m / 48.146 ft

Duration: 3175.0 s

u Min: 136.1 ft

u Max: 243.7 ft u Final: 136.1 ft WT: 4.267 m / 13.999 ft

Ir: 100

Ch: 0.2 cm²/min

T(50): 2952.5 s

Job No: 20-61-21681 Date: 12/15/2020 11:07

Site: DTE Belle River Power Plant

Sounding: CPT20-11

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP11.PPF

Depth: 20.550 m / 67.420 ft Duration: 900.0 s u Min: 188.3 ft u Max: 221.0 ft

u Final: 188.3 ft

Job No: 20-61-21681 Date: 12/15/2020 11:07

Site: DTE Belle River Power Plant

Sounding: CPT20-11

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP11.PPF

Depth: 26.850 m / 88.089 ft Duration: 3575.0 s

u Min: 196.1 ft u Max: 321.7 ft

u Final: 196.3 ft

WT: 4.267 m / 13.999 ft Ueq: 74.1 ft

U(50): 197.88 ft

Ir: 100

Ch: 0.2 cm²/min

T(50): 3435.4 s

Job No: 20-61-21681 Date: 12/15/2020 11:07

Site: DTE Belle River Power Plant

Sounding: CPT20-11

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP11.PPF Depth: 29.900 m / 98.096 ft

Duration: 4565.0 s

u Min: 206.1 ft u Max: 329.2 ft

u Final: 206.1 ft

WT: 4.267 m / 13.999 ft

Ueq: 84.1 ft Ir: 100 U(50): 206.63 ft

T(50): 4484.0 s

Ch: 0.2 cm²/min

Job No: 20-61-21681 Date: 12/15/2020 08:44

Site: DTE Belle River Power Plant

Sounding: CPT20-12

Cone: 551:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP12.PPF

Depth: 4.900 m / 16.076 ft

Duration: 5480.0 s

u Min: 54.1 ft

u Max: 82.0 ft u Final: 54.1 ft

Job No: 20-61-21681 Date: 12/09/2020 13:54

Site: DTE Belle River Power Plant

Sounding: CPT20-06

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP06.PPF

Depth: 1.000 m / 3.281 ft

Duration: 900.0 s

u Min: 1.0 ft

u Max: 11.8 ft

u Final: 1.1 ft

Job No: 20-61-21681 Date: 12/09/2020 13:54

Site: DTE Belle River Power Plant

Sounding: CPT20-06

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP06.PPF

Depth: 4.600 m / 15.092 ft

Duration: 5470.0 s

u Min: 40.7 ft u Max: 80.7 ft

u Final: 40.8 ft

Job No: 20-61-21681 Date: 12/10/2020 08:43

Site: DTE Belle River Power Plant

Sounding: CPT20-06B

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP06B.PPF Depth: 13.450 m / 44.127 ft

Duration: 5290.0 s

u Min: 108.2 ft

u Max: 208.0 ft u Final: 108.3 ft WT: 5.182 m / 17.000 ft

Ueq: 27.1 ft Ir: 100 U(50): 117.58 ft Ch: 0.2

Ch: 0.2 cm²/min

T(50): 3964.4 s

Job No: 20-61-21681 Date: 12/10/2020 08:43

Site: DTE Belle River Power Plant

Sounding: CPT20-06B

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP06B.PPF

Depth: 13.800 m / 45.275 ft

Duration: 85.0 s

u Min: 195.3 ft u Max: 212.2 ft

u Final: 195.3 ft

Job No: 20-61-21681 Date: 12/10/2020 08:43

Site: DTE Belle River Power Plant

Sounding: CPT20-06B

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP06B.PPF Depth: 19.550 m / 64.140 ft

Duration: 5845.0 s

u Min: 137.0 ft u Max: 223.2 ft

u Final: 137.1 ft

Job No: 20-61-21681 Date: 12/10/2020 08:43

Site: DTE Belle River Power Plant

Sounding: CPT20-06B

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP06B.PPF Depth: 25.650 m / 84.153 ft

Duration: 6105.0 s

u Min: 165.5 ft u Max: 275.6 ft

u Final: 165.5 ft

WT: 5.182 m / 17.000 ft

Ir: 100

T(50): 5203.0 s

Ueq: 67.2 ft U(50): 171.39 ft Ch: 0.1 cm²/min

Job No: 20-61-21681 Date: 12/10/2020 08:43

Site: DTE Belle River Power Plant

Sounding: CPT20-06B

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP06B.PPF

Depth: 29.550 m / 96.948 ft

Duration: 190.0 s

u Min: 251.6 ft u Max: 303.6 ft

u Final: 290.1 ft

Job No: 20-61-21681 Date: 12/10/2020 08:43

Site: DTE Belle River Power Plant

Sounding: CPT20-06B

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP06B.PPF

Depth: 30.500 m / 100.064 ft

Duration: 130.0 s

u Min: 319.2 ft u Max: 353.7 ft

u Final: 319.2 ft

Job No: 20-61-21681 Date: 12/09/2020 11:04

Site: DTE Belle River Power Plant

Sounding: CPT20-07

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP07.PPF

Depth: 18.800 m / 61.679 ft

Duration: 130.0 s

u Min: 181.5 ft u Max: 202.3 ft

u Final: 195.9 ft

Job No: 20-61-21681 Date: 12/11/2020 12:35

Site: DTE Belle River Power Plant

Sounding: CPT20-08B

Cone: 568:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP08B.PPF

Depth: 6.100 m / 20.013 ft Duration: 7200.0 s u Min: 55.5 ft u Max: 110.1 ft

u Final: 55.5 ft

WT: 4.877 m / 16.000 ft Ueq: 4.0 ft

Ir: 100

T(50): 6624.7 s

U(50): 57.04 ft Ch: 0.1 cm²/min

Job No: 20-61-21681 Date: 12/11/2020 12:35

Site: DTE Belle River Power Plant

Sounding: CPT20-08B

Cone: 568:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP08B.PPF

Depth: 12.200 m / 40.026 ft Duration: 4195.0 s

u Min: 110.2 ft

u Max: 199.5 ft u Final: 110.2 ft WT: 4.877 m / 16.000 ft

Ueq: 24.0 ft Ir: 100 U(50): 111.76 ft

Ch: 0.2 cm²/min

Job No: 20-61-21681 Date: 12/15/2020 08:41

Site: DTE Belle River Power Plant

Sounding: CPT20-08C

Cone: 568:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP08C.PPF

Depth: 18.300 m / 60.039 ft Duration: 4720.0 s

u Min: -7.2 ft

u Max: 157.2 ft u Final: 100.1 ft WT: 4.877 m / 16.000 ft Ueq: 44.0 ft

Ir: 100

T(50): 4406.0 s

U(50): 100.63 ft Ch: 0.2 cm²/min

Job No: 20-61-21681 Date: 12/15/2020 08:41

Site: DTE Belle River Power Plant

Sounding: CPT20-08C

Cone: 568:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP08C.PPF

Depth: 24.400 m / 80.052 ft

Duration: 2090.0 s

u Min: 168.8 ft u Max: 276.0 ft

u Final: 168.8 ft

WT: 4.877 m / 16.000 ft

Ueq: 64.1 ft Ir: 100 U(50): 170.02 ft

Ch: 0.4 cm²/min

T(50): 2003.9 s

Job No: 20-61-21681 Date: 12/15/2020 08:41

Site: DTE Belle River Power Plant

Sounding: CPT20-08C

Cone: 568:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP08C.PPF Depth: 30.500 m / 100.064 ft

Duration: 4500.0 s

u Min: 207.5 ft

u Max: 333.6 ft u Final: 207.5 ft WT: 4.877 m / 16.000 ft

T(50): 4346.6 s Ueq: 84.1 ft Ir: 100 U(50): 208.83 ft

Ch: 0.2 cm²/min

Job No: 20-61-21681 Date: 12/10/2020 15:00

Site: DTE Belle River Power Plant

Sounding: CPT20-13

Cone: 513:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP13.PPF

Depth: 17.200 m / 56.430 ft

Duration: 125.0 s

u Min: 197.4 ft u Max: 211.4 ft

u Final: 197.4 ft

Job No: 20-61-21681 Date: 12/11/2020 09:09

Site: DTE Belle River Power Plant

Sounding: CPT20-13B

Cone: 568:T1500F15U500 Area=15 cm²

Trace Summary:

Filename: 20-61-21681_CP13B.PPF Depth: 25.200 m / 82.676 ft

Duration: 600.0 s

u Min: -3.9 ft

u Max: 85.6 ft u Final: 75.2 ft

WT: 3.962 m / 13.000 ft

Ueq: 69.7 ft Ir: 100 U(50): 77.63 ft

Ch: 4.1 cm²/min

APPENDIX J – CHEMISTRY ANALYSIS OF SITE-SPECIFIC WATER

05-Jan-2021

Michael Coram Geosyntec Consultants 2100 Commonwealth Blvd. Suite 100 Ann Arbor, MI 48105

Re: DTE- Belle River (GLP-8017) Work Order: 20121752

Dear Michael,

ALS Environmental received 3 samples on 18-Dec-2020 10:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 21.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Chad Whelton

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

ALS Group, USA

Date: 05-Jan-21

Client: Geosyntec Consultants

Project: DTE- Belle River (GLP-8017)

Work Order: 20121752

Lab Samp ID	Client Sample ID	Matrix	Tag Number	Collection Date	Date Received	Hold
20121752-01	BAB-E	Groundwater		12/16/2020 15:00	12/18/2020 10:00	
20121752-02	BAB-W	Groundwater		12/16/2020 14:00	12/18/2020 10:00	
20121752-03	DB	Groundwater		12/16/2020 16:00	12/18/2020 10:00	

Work Order Sample Summary

Client: Geosyntec Consultants

Project: DTE- Belle River (GLP-8017)

Case Narrative

Work Order: 20121752

Samples for the above noted Work Order were received on 12/18/2020. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Metals:

No other deviations or anomalies were noted.

Wet Chemistry:

Batch R306912, Method SW9040C, Sample BAB-E (20121752-01B): pH is considered a "field test" and, as such, the recommended sample holding time expired prior to sample receipt.

Batch R306912, Method SW9040C, Sample BAB-W (20121752-02B): pH is considered a "field test" and, as such, the recommended sample holding time expired prior to sample receipt.

Batch R306912, Method SW9040C, Sample DB (20121752-03B): pH is considered a "field test" and, as such, the recommended sample holding time expired prior to sample receipt.

Batch R307145, Method SW9056A, Sample 20121752-03B MSD: The MSD recovery was outside of the control limit for Sulfate; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required.

Date: 05-Jan-21

Qualifier	<u>Description</u>
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R S	RPD above laboratory control limit Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	Description
°C	Degrees Celcius
mg/L	Milligrams per Liter
s.u.	Standard Units

Client: Geosyntec Consultants

Project: DTE- Belle River (GLP-8017) **Work Order:** 20121752

Sample ID: BAB-E **Lab ID:** 20121752-01

Collection Date: 12/16/2020 03:00 PM Matrix: GROUNDWATER

Date: 05-Jan-21

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	'0A	Prep: SW7470 12/30/20 13:08	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	12/30/2020 01:26 PM
METALS BY ICP-MS			SW602	0B	Prep: SW3005A 12/30/20 15:00	Analyst: STP
Antimony	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Arsenic	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Barium	0.21		0.0050	mg/L	1	12/30/2020 09:06 PM
Beryllium	ND		0.0020	mg/L	1	12/30/2020 09:06 PM
Boron	0.26		0.020	mg/L	1	12/30/2020 09:06 PM
Cadmium	ND		0.0020	mg/L	1	12/30/2020 09:06 PM
Calcium	39		0.50	mg/L	1	12/30/2020 09:06 PM
Chromium	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Cobalt	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Iron	ND		0.080	mg/L	1	12/30/2020 09:06 PM
Lead	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Lithium	0.014		0.010	mg/L	1	12/30/2020 09:06 PM
Magnesium	7.9		0.20	mg/L	1	12/30/2020 09:06 PM
Manganese	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Molybdenum	0.024		0.0050	mg/L	1	12/30/2020 09:06 PM
Potassium	3.0		0.20	mg/L	1	12/30/2020 09:06 PM
Selenium	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
Sodium	29		0.20	mg/L	1	12/30/2020 09:06 PM
Thallium	ND		0.0050	mg/L	1	12/30/2020 09:06 PM
ALKALINITY			A2320	B-11		Analyst: QTN
Alkalinity, Bicarbonate (as CaCO3)	71		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Carbonate (as CaCO3)	20		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Hydroxide (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Phenolphthalein (as CaCO3	10		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Total (as CaCO3)	91		10	mg/L	1	12/29/2020 11:55 AM
ANIONS BY ION CHROMATOGRAPHY			SW905	6A		Analyst: JDR
Chloride	8.6		1.0	mg/L	1	12/30/2020 07:11 PM
Fluoride	0.25		0.10	mg/L	1	12/30/2020 07:11 PM
Sulfate	94		8.0	mg/L	8	12/31/2020 02:59 PM
PH (LABORATORY)			SW904	0C		Analyst: QTN
pH (laboratory)	8.84	Н	0.100	s.u.	1	12/29/2020 11:55 AM
Temperature	20.8	Н	0.100	°C	1	12/29/2020 11:55 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/22/20 11:40	Analyst: AJS
Total Dissolved Solids	240		50	mg/L	1	12/23/2020 02:50 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client: Geosyntec Consultants

Project: DTE- Belle River (GLP-8017) **Work Order:** 20121752

Sample ID: BAB-W **Lab ID:** 20121752-02

Collection Date: 12/16/2020 02:00 PM Matrix: GROUNDWATER

Date: 05-Jan-21

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 12/30/20 13:08	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	12/30/2020 01:28 PM
METALS BY ICP-MS			SW602	0B	Prep: SW3005A 12/30/20 15:00	Analyst: STP
Antimony	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Arsenic	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Barium	0.30		0.0050	mg/L	1	12/30/2020 09:08 PM
Beryllium	ND		0.0020	mg/L	1	12/30/2020 09:08 PM
Boron	0.21		0.020	mg/L	1	12/30/2020 09:08 PM
Cadmium	ND		0.0020	mg/L	1	12/30/2020 09:08 PM
Calcium	54		0.50	mg/L	1	12/30/2020 09:08 PM
Chromium	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Cobalt	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Iron	0.28		0.080	mg/L	1	12/31/2020 05:14 PM
Lead	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Lithium	0.013		0.010	mg/L	1	12/30/2020 09:08 PM
Magnesium	10		0.20	mg/L	1	12/30/2020 09:08 PM
Manganese	0.0078		0.0050	mg/L	1	12/30/2020 09:08 PM
Molybdenum	0.016		0.0050	mg/L	1	12/30/2020 09:08 PM
Potassium	3.4		0.20	mg/L	1	12/30/2020 09:08 PM
Selenium	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
Sodium	33		0.20	mg/L	1	12/30/2020 09:08 PM
Thallium	ND		0.0050	mg/L	1	12/30/2020 09:08 PM
ALKALINITY			A2320	B-11		Analyst: QTN
Alkalinity, Bicarbonate (as CaCO3)	83		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Carbonate (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Hydroxide (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Phenolphthalein (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Total (as CaCO3)	89		10	mg/L	1	12/29/2020 11:55 AM
ANIONS BY ION CHROMATOGRAPHY			SW905	6A		Analyst: JDR
Chloride	9.9		1.0	mg/L	1	12/30/2020 07:30 PM
Fluoride	0.22		0.10	mg/L	1	12/30/2020 07:30 PM
Sulfate	140		8.0	mg/L	8	12/30/2020 06:36 PM
PH (LABORATORY)			SW904	0C		Analyst: QTN
pH (laboratory)	8.43	Н	0.100	s.u.	1	12/29/2020 11:55 AM
Temperature	20.7	Н	0.100	°C	1	12/29/2020 11:55 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/22/20 11:40	Analyst: AJS
Total Dissolved Solids	330		50	mg/L	1	12/23/2020 02:50 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client: Geosyntec Consultants

Project: DTE- Belle River (GLP-8017) **Work Order:** 20121752

Sample ID: DB **Lab ID:** 20121752-03

Collection Date: 12/16/2020 04:00 PM Matrix: GROUNDWATER

Date: 05-Jan-21

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	0A	Prep: SW7470 12/30/20 13:08	Analyst: MAC
Mercury	ND		0.00020	mg/L	1	12/30/2020 01:30 PM
METALS BY ICP-MS			SW602	0B	Prep: SW3005A 12/30/20 15:00	Analyst: STP
Antimony	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
Arsenic	0.0057		0.0050	mg/L	1	12/30/2020 09:09 PM
Barium	0.19		0.0050	mg/L	1	12/30/2020 09:09 PM
Beryllium	ND		0.0020	mg/L	1	12/30/2020 09:09 PM
Boron	6.0		0.20	mg/L	10	12/31/2020 05:15 PM
Cadmium	ND		0.0020	mg/L	1	12/30/2020 09:09 PM
Calcium	110		0.50	mg/L	1	12/30/2020 09:09 PM
Chromium	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
Cobalt	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
Iron	0.35		0.080	mg/L	1	12/31/2020 05:17 PM
Lead	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
Lithium	0.061		0.010	mg/L	1	12/30/2020 09:09 PM
Magnesium	18		0.20	mg/L	1	12/30/2020 09:09 PM
Manganese	0.068		0.0050	mg/L	1	12/30/2020 09:09 PM
Molybdenum	0.30		0.0050	mg/L	1	12/30/2020 09:09 PM
Potassium	13		0.20	mg/L	1	12/30/2020 09:09 PM
Selenium	0.0087		0.0050	mg/L	1	12/30/2020 09:09 PM
Sodium	510		2.0	mg/L	10	12/31/2020 05:15 PM
Thallium	ND		0.0050	mg/L	1	12/30/2020 09:09 PM
ALKALINITY			A2320	B-11		Analyst: QTN
Alkalinity, Bicarbonate (as CaCO3)	140		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Carbonate (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Hydroxide (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Phenolphthalein (as CaCO3)	ND		10	mg/L	1	12/29/2020 11:55 AM
Alkalinity, Total (as CaCO3)	140		10	mg/L	1	12/29/2020 11:55 AM
ANIONS BY ION CHROMATOGRAPHY			SW905	6A		Analyst: JDR
Chloride	43		20	mg/L	20	12/30/2020 06:55 PM
Fluoride	0.44		0.10	mg/L	1	12/30/2020 07:49 PM
Sulfate	1,200		100	mg/L	100	12/31/2020 03:21 PM
PH (LABORATORY)			SW904	0C		Analyst: QTN
pH (laboratory)	8.32	Н	0.100	s.u.	1	12/29/2020 11:55 AM
Temperature	20.1	Н	0.100	°C	1	12/29/2020 11:55 AM
TOTAL DISSOLVED SOLIDS			A2540	C-11	Prep: FILTER 12/22/20 11:40	Analyst: AJS
Total Dissolved Solids	2,100		300	mg/L	1	12/23/2020 02:50 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 05-Jan-21

Client: Geosyntec Consultants

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

QC BATCH REPORT

Batch ID: 170071	Instrument ID HG4			Metho	d: SW747	0A						
MBLK	Sample ID: MBLK-170071-1	70071				Units: mo	ı/L	Analysi	s Date: 12/ 3	30/2020 01	I:14 PN	
Client ID:	R	Run ID: H e	G4_20	01230A		SeqNo: 70	40771	Prep Date: 12/	30/2020	DF: 1		
Analyte	Resi	ult l	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Mercury	N	ND 0.00	020									
LCS	Sample ID: LCS-170071-170	0071				Units: m ç	ı/L	Analysi	s Date: 12/ 3	30/2020 01	I:16 PN	
Client ID:	R	Run ID: H e	G4_20	01230A		SeqNo: 70	40772	Prep Date: 12/	30/2020	DF: 1		
Analyte	Resi	ult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Mercury	0.00208	85 0.00	020	0.002		0 104	80-120	()			
MS	Sample ID: 20121813-10DM	S				Units: mg/L Analysis Date:				12/30/2020 01:55 PM		
Client ID:	R	Run ID: H e	G4_20)1230A		SeqNo: 70	40812	Prep Date: 12/	30/2020	DF: 1		
Analyte	Resi	ult l	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
Mercury	0.002	19 0.00	020	0.002	0.00000	3 109	75-125)			
MSD	Sample ID: 20121813-10DM	SD				Units: mg	ı/L	Analysi	s Date: 12/ 3	30/2020 01	1:57 PN	
Client ID:	R	Run ID: H e	G4_20)1230A		SeqNo: 70	40815	Prep Date: 12/	30/2020	DF: 1		
Analyte	Resi	ult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
	0.0021	15 0.00	020	0.002	0.00000	3 106	75-125	0.00219	3.48	20		

Client: Geosyntec Consultants

QC BATCH REPORT

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: 170083	Instrument ID ICPMS4	Method:	SW6020B
------------------	----------------------	---------	---------

MBLK	Sample ID: MBLK-170083-17008	3			Units: mg/	L	Analys	is Date: 12/	30/2020 0	8:51 PM
Client ID:	Run II	: ICPMS4	4_201230A		SeqNo: 704 :	3005	Prep Date: 12	/30/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	ND	0.0050								
Arsenic	ND	0.0050								
Barium	ND	0.0050								
Beryllium	ND	0.0020								
Boron	ND	0.020								
Cadmium	ND	0.0020								
Calcium	ND	0.50								
Chromium	ND	0.0050								
Cobalt	ND	0.0050								
Iron	ND	0.080								
Lead	ND	0.0050								
Lithium	ND	0.010								
Magnesium	ND	0.20								
Manganese	ND	0.0050								
Molybdenum	ND	0.0050								
Potassium	ND	0.20								
Selenium	ND	0.0050								
Sodium	ND	0.20								
Thallium	ND	0.0050								

QC BATCH REPORT

Client: Geosyntec Consultants

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: 170083 Instrument ID ICPMS4 Method: SW6020B

LCS	CS Sample ID: LCS-170083-170083						L	Analysis Date: 12	2/30/2020 0	8:52 PM
Client ID:	Run II	D: ICPMS	4_201230A		Se	qNo: 7043	3006	Prep Date: 12/30/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %RPD	RPD Limit	Qual
Antimony	0.09984	0.0050	0.1		0	99.8	80-120	0		
Arsenic	0.099	0.0050	0.1		0	99	80-120	0		
Barium	0.1005	0.0050	0.1		0	100	80-120	0		
Beryllium	0.09793	0.0020	0.1		0	97.9	80-120	0		
Boron	0.4459	0.020	0.5		0	89.2	80-120	0		
Cadmium	0.1049	0.0020	0.1		0	105	80-120	0		
Calcium	9.959	0.50	10		0	99.6	80-120	0		
Chromium	0.09764	0.0050	0.1		0	97.6	80-120	0		
Cobalt	0.09865	0.0050	0.1		0	98.6	80-120	0		
Iron	9.742	0.080	10		0	97.4	80-120	0		
Lead	0.09896	0.0050	0.1		0	99	80-120	0		
Lithium	0.09939	0.010	0.1		0	99.4	80-120	0		
Magnesium	10.41	0.20	10		0	104	80-120	0		
Manganese	0.09726	0.0050	0.1		0	97.3	80-120	0		
Molybdenum	0.09949	0.0050	0.1		0	99.5	80-120	0		
Potassium	10.09	0.20	10		0	101	80-120	0		
Selenium	0.09876	0.0050	0.1		0	98.8	80-120	0		
Sodium	10.48	0.20	10		0	105	80-120	0		
Thallium	0.09419	0.0050	0.1		0	94.2	80-120	0		

QC BATCH REPORT

Client: Geosyntec Consultants

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: 170083 Instrument ID ICPMS4 Method: SW6020B

MS	Sample ID: 20121813-01DMS				Units: mg/	L	Analysis	Date: 12/	30/2020 0	9:13 PM
Client ID:	Run I	D: ICPMS	4_201230A	:	SeqNo: 704 3	3018	Prep Date: 12/3	0/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.0939	0.0050	0.1	0.000019	93.9	75-125	0			
Arsenic	0.09542	0.0050	0.1	0.000523	94.9	75-125	0			
Barium	0.1197	0.0050	0.1	0.01914	101	75-125	0			
Beryllium	0.1028	0.0020	0.1	0.003422	99.4	75-125	0			
Boron	0.5173	0.020	0.5	0.07866	87.7	75-125	0			
Cadmium	0.09866	0.0020	0.1	0.003046	95.6	75-125	0			
Calcium	63.88	0.50	10	53.04	108	75-125	0			0
Chromium	0.09053	0.0050	0.1	0.000351	90.2	75-125	0			
Cobalt	0.2039	0.0050	0.1	0.1134	90.5	75-125	0			
Iron	8.964	0.080	10	0.02083	89.4	75-125	0			
Lead	0.09794	0.0050	0.1	0.000674	97.3	75-125	0			
Lithium	0.1112	0.010	0.1	0.01095	5 100	75-125	0			
Magnesium	61.4	0.20	10	51.16	102	75-125	0			0
Molybdenum	0.09472	0.0050	0.1	0.001008	93.7	75-125	0			
Potassium	12.35	0.20	10	2.605	97.4	75-125	0			
Selenium	0.1012	0.0050	0.1	0.005949	95.3	75-125	0			
Sodium	65.82	0.20	10	55.83	99.9	75-125	0			0
Thallium	0.09224	0.0050	0.1	0.000037	92.2	75-125	0			

MS	Sample ID: 20121813-10DMS				Units: mg/	L	Analysis	Date: 12/	30/2020 09	:35 PM
Client ID:	Run I	D: ICPMS4	1_201230A	Se	eqNo: 704 :	3031	Prep Date: 12/30	0/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.09845	0.0050	0.1	0.000041	98.4	75-125	0			
Arsenic	0.1005	0.0050	0.1	0.00021	100	75-125	0			
Barium	0.125	0.0050	0.1	0.02584	99.1	75-125	0			
Beryllium	0.1046	0.0020	0.1	0.002214	102	75-125	0			
Boron	0.5169	0.020	0.5	0.056	92.2	75-125	0			
Cadmium	0.1056	0.0020	0.1	0.005454	100	75-125	0			
Calcium	34.88	0.50	10	25.15	97.2	75-125	0			
Chromium	0.09457	0.0050	0.1	0.000785	93.8	75-125	0			
Cobalt	0.2768	0.0050	0.1	0.1806	96.2	75-125	0			
Iron	9.488	0.080	10	0.143	93.5	75-125	0			
Lead	0.09729	0.0050	0.1	0.001591	95.7	75-125	0			
Lithium	0.107	0.010	0.1	0.006549	100	75-125	0			
Magnesium	24.92	0.20	10	15.27	96.4	75-125	0			
Molybdenum	0.0977	0.0050	0.1	0.000386	97.3	75-125	0			
Potassium	12.88	0.20	10	3.03	98.5	75-125	0			
Selenium	0.09792	0.0050	0.1	0.001894	96	75-125	0			
Sodium	71.55	0.20	10	61.63	99.1	75-125	0			0
Thallium	0.09151	0.0050	0.1	0.000106	91.4	75-125	0			

Note:

QC BATCH REPORT

Client: Geosyntec Consultants

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: 170083	Instrument ID ICPMS4		Method	d: SW602	0B					
MS	Sample ID: 20121813-01DMS				Units: mg/	'L	Analysis	Date: 12/3	31/2020 05	5:20 PN
Client ID:	Run I	D: ICPMS4	_201231A		SeqNo: 704	6543	Prep Date: 12/3	0/2020	DF: 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Manganese	3.991	0.050	0.1	3.94	9 41.3	75-125	0			so
MS	Sample ID: 20121813-10DMS				Units: mg/	'L	Analysis	Date: 12/3	31/2020 05	5:39 P
Client ID:	Run I	D: ICPMS4	_201231A		SeqNo: 704	6555	Prep Date: 12/3	0/2020	DF: 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Manganese	4.091	0.050	0.1	3.86	55 227	75-125	0			so
MSD	Sample ID: 20121813-01DMSD				Units: mg/	'L	Analysis	Date: 12/3	30/2020 09	9:15 P
Client ID:	Run I	D: ICPMS4	_201230A		SeqNo: 704	3019	Prep Date: 12/3	0/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Antimony	0.09655	0.0050	0.1	0.00001	9 96.5	75-125	0.0939	2.78	20	
Arsenic	0.09753	0.0050	0.1	0.00052	3 97	75-125	0.09542	2.18	20	
Barium	0.1208	0.0050	0.1	0.0191	4 102	75-125	0.1197	0.848	20	
Beryllium	0.1044	0.0020	0.1	0.00342	2 101	75-125	0.1028	1.59	20	
Boron	0.5179	0.020	0.5	0.0786	6 87.8	75-125	0.5173	0.103	20	
Cadmium	0.1013	0.0020	0.1	0.00304	6 98.3	75-125	0.09866	2.67	20	
Calcium	62.93	0.50	10	53.0	98.9	75-125	63.88	1.49	20	0
Chromium	0.09296	0.0050	0.1	0.00035	92.6	75-125	0.09053	2.65	20	
Cobalt	0.2064	0.0050	0.1	0.113	92.9	75-125	0.2039	1.18	20	
Iron	9.236	0.080	10	0.0208	3 92.1	75-125	8.964	2.99	20	
Lead	0.09947	0.0050	0.1	0.00067	4 98.8	75-125	0.09794	1.55	20	
Lithium	0.1128	0.010	0.1	0.0109	5 102	75-125	0.1112	1.45	20	
Magnesium	61.51	0.20	10	51.1	6 104	75-125	61.4	0.185	20	0
Molybdenum	0.09663	0.0050	0.1	0.00100	95.6	75-125	0.09472	2	20	
Potassium	12.63	0.20	10	2.60	5 100	75-125	12.35	2.27	20	
Selenium	0.1029	0.0050	0.1	0.00594	9 96.9	75-125	0.1012	1.62	20	
Sodium	66.86	0.20	10	55.8	3 110	75-125	65.82	1.56	20	0
Thallium	0.09366	0.0050	0.1	0.00003	7 93.6	75-125	0.09224	1.53	20	

QC BATCH REPORT

Client: Geosyntec Consultants

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: 170083 Instrume	ent ID ICPMS4 Method	SW6020B
---------------------------	----------------------	---------

Batch ID: 170083	Instrument ID ICPMS4		Method:	SW6020)B					
MSD	Sample ID: 20121813-10DMSD				Units: mg/l	L	Analysis	Date: 12/3	0/2020 09):37 PM
Client ID:	Run I	D: ICPMS4	4_201230A		SeqNo: 704 3	3032	Prep Date: 12/3	0/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	0.09824	0.0050	0.1	0.00004	1 98.2	75-125	0.09845	0.211	20	
Arsenic	0.09954	0.0050	0.1	0.0002	1 99.3	75-125	0.1005	0.917	20	
Barium	0.1229	0.0050	0.1	0.0258	4 97	75-125	0.125	1.7	20	
Beryllium	0.1039	0.0020	0.1	0.00221	4 102	75-125	0.1046	0.636	20	
Boron	0.517	0.020	0.5	0.05	6 92.2	75-125	0.5169	0.0288	20	
Cadmium	0.1044	0.0020	0.1	0.00545	4 99	75-125	0.1056	1.11	20	
Calcium	34.42	0.50	10	25.1	5 92.7	75-125	34.88	1.31	20	
Chromium	0.09402	0.0050	0.1	0.00078	5 93.2	75-125	0.09457	0.58	20	
Cobalt	0.2727	0.0050	0.1	0.180	6 92.2	75-125	0.2768	1.48	20	
Iron	9.402	0.080	10	0.14	3 92.6	75-125	9.488	0.913	20	
Lead	0.0969	0.0050	0.1	0.00159	1 95.3	75-125	0.09729	0.394	20	
Lithium	0.1057	0.010	0.1	0.00654	9 99.1	75-125	0.107	1.23	20	
Magnesium	24.72	0.20	10	15.2	7 94.4	75-125	24.92	0.809	20	
Molybdenum	0.09638	0.0050	0.1	0.00038	6 96	75-125	0.0977	1.36	20	
Potassium	12.71	0.20	10	3.0	3 96.8	75-125	12.88	1.33	20	
Selenium	0.09719	0.0050	0.1	0.00189	4 95.3	75-125	0.09792	0.75	20	
Sodium	70.5	0.20	10	61.6	3 88.7	75-125	71.55	1.48	20	0
Thallium	0.09051	0.0050	0.1	0.00010	6 90.4	75-125	0.09151	1.1	20	
MSD	Sample ID: 20121813-01DMSD				Units: mg/l	L	Analysis	Date: 12/3	1/2020 05	5:22 PM
Client ID:	Run I	D: ICPMS4	4_201231A		SeqNo: 7046	6544	Prep Date: 12/3	0/2020	DF: 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Manganese	4.164	0.050	0.1	3.94	9 215	75-125	3.991	4.26	20	so
MSD	Sample ID: 20121813-10DMSD				Units: mg/l	L	Analysis	Date: 12/3	31/2020 05	5:41 PM
Client ID:		D: ICPMS4	4_201231A		SeqNo: 7046		Prep Date: 12/3		DF: 10	

MSD	Sample ID: 20121813-10	0DMSD				Units: m	g/L	Analy	sis Date: 12/ 3	1/2020 05	:41 PM
Client ID:		Run ID:	ICPMS4	_201231A		SeqNo: 70	46556	Prep Date: 1	2/30/2020	DF: 10	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%RE	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Manganese		4.094	0.050	0.1	3.86	65 229	75-125	4.0	91 0.0533	20	so

The following samples were analyzed in this batch:

20121752-01A 20121752-02A 20121752-03A

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: 169727	Instrument ID TDS	3		Method	: A2540	C-1	1					
MBLK	Sample ID: MBLK-1697	27-169727				ι	Jnits: mg/ l	L	Analy	sis Date: 12/2	23/2020 0	2:50 PM
Client ID:		Run ID:	TDS_20)1223B		Se	qNo: 702 1	1476	Prep Date: 1:	2/22/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Solid	s	ND	30									
LCS	Sample ID: LCS-169727	7-169727				ι	Jnits: mg/ l	L	Analy	sis Date: 12/2	23/2020 0	2:50 PM
Client ID:		Run ID:	TDS_20)1223B		Se	qNo: 702 1	1475	Prep Date: 12	2/22/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Solid	s	476	30	495		0	96.2	85-109		0		
DUP	Sample ID: 20121752-0	3B DUP				ι	Jnits: mg/ l	L	Analy	sis Date: 12/2	23/2020 02	2:50 PM
Client ID: DB		Run ID:	TDS_20	01223B		Se	qNo: 702 1	1469	Prep Date: 12	2/22/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolved Solid	s	1940	300	0		0	0	0-0	210	00 7.92	10	
The following samp	les were analyzed in this	s batch:	20)121752-01E	3 20)121	752-02B	20	121752-03B	-		

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: R306910 Instrument ID T	itrator 1		Metho	d: A2320	B-11						
MBLK Sample ID: MB-R306	910-R30691	0			U	nits: mg/ l	L	Analys	is Date: 12/ 2	29/2020 1°	1:55 AM
Client ID:	Run ID	: TITRAT	OR 1_2012	229A	Sec	No: 703 3	3262	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicarbonate (as CaCO3)	ND	10									
Alkalinity, Carbonate (as CaCO3)	ND	10									
Alkalinity, Hydroxide (as CaCO3)	ND	10									
Alkalinity, Phenolphthalein (as CaCO3	ND	10									
Alkalinity, Total (as CaCO3)	ND	10									
LCS Sample ID: LCS-R30	6910-R3069 ²	10			U	nits: mg/ l	L	Analys	is Date: 12/ 2	29/2020 1°	1:55 AM
Client ID:	Run ID	: TITRAT	OR 1_2012	229A	Sec	No: 703	3263	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Carbonate (as CaCO3)	923.7	10	925		0	99.9	88-110		0		
Alkalinity, Total (as CaCO3)	996.2	10	1000		0	99.6	89-103		0		
			1000					·			
DUP Sample ID: 20121803	-01E DUP				U	nits: mg/	L	Analys	is Date: 12/ 2	29/2020 1 ⁻	1:55 AN
Client ID:	Run ID	: TITRAT	OR 1_2012	29A	Sec	No: 703	3273	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
•	219.1	10	0		0	0	0-0	224.		10	
Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	ND	10	0		0	0	0-0		9 2.0 0 0		
											4 55 41
DUP Sample ID: 20121990		TITDAT	OD 4 0040	00.4		nits: mg/			is Date: 12/ 2		1:55 AIV
Client ID: Analyte	Result	PQL	OR 1_2012 SPK Val	SPK Ref Value		No: 703 ;	Control Limit	Prep Date: RPD Ref Value	%RPD	DF: 1 RPD Limit	Qual
Alkalinity, Total (as CaCO3)	66.2	10	0		0	0	0-0	62.9		10	
DUP Sample ID: 20122120	-08C DUP				U	nits: mg/ l	L	Analvs	is Date: 12/ 2	29/2020 1°	1:55 AN
		: TITRAT	OR 1_2012	229A		No: 703 :		Prep Date:		DF: 1	
Client ID:										RPD	
Client ID:				SPK Ref			Control	RPD Ref			
Client ID: Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
	Result	PQL 10	SPK Val	Value	0	%REC 0	Limit 0-0	Value 127.9		10	Qual

Geosyntec Consultants

QC BATCH REPORT

Work Order: 20121752

Client:

Project: DTE- Belle River (GLP-8017)

LCS	Sample ID: LCS-R30691	12-R3069	12			U	Jnits: s.u.		Analysis	Date: 12/2	9/2020 1°	1:55 AN
Client ID:		Run ID	: TITRAT	OR 1_2012	29B	Sec	qNo: 703 3	301	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.99	0.10	4		0	99.8	92-108	0			
LCS	Sample ID: LCS-R30691	12-R3069 ⁻	12			U	Jnits: s.u.		Analysis	Date: 12/2	.9/2020 1	1:55 AN
Client ID:		Run ID	: TITRAT	OR 1_2012	29B	Sec	qNo: 703 3	308	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		3.99	0.10	4		0	99.8	92-108	0			
DUP	Sample ID: 20122120-08	BC DUP				U	Jnits: s.u.		Analysis	Date: 12/2	9/2020 1°	1:55 AN
Client ID:		Run ID	: TITRAT	OR 1_2012	29B	Sec	qNo: 703 3	305	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		8.05	0.10	0		0	0	0-0	7.99	0.748	5	Н
Temperature		20.95	0.10	0		0	0	0-0	20.76	0.911		Н
DUP	Sample ID: 20121990-0	5A DUP				U	Jnits: s.u.		Analysis	Date: 12/2	.9/2020 1	1:55 AN
Client ID:		Run ID	: TITRAT	OR 1_2012	29B	Sec	qNo: 703 3	315	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pH (laboratory)		7.51	0.10	0		0	0	0-0	7.56	0.664	5	Н
Temperature		20.63	0.10	0		0	0		19.96	3.3		Н

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: R307142	Instrument ID IC3			Method	: SW905	6A						
MBLK	Sample ID: MBLK-R307	7142				ı	Units: mg/l	L	Analys	sis Date: 12	/30/2020 0	4:56 PM
Client ID:		Run ID	IC3_20	1230A		Se	eqNo: 7043	8048	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		ND	1.0									
Fluoride		ND	0.10									
LCS	Sample ID: LCS-R3071	42				ı	Units: mg/l	L	Analys	sis Date: 12	/30/2020 0	5:15 PM
Client ID:		Run ID	IC3_20	1230A		Se	eqNo: 7043	8049	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		9.321	1.0	10		0	93.2	88-110		0		
Fluoride		2.135	0.10	2		0	107	82-116		0		
MS	Sample ID: 20122223-0	1D MS				ı	Units: mg/l	L	Analys	sis Date: 12	/31/2020	
Client ID:		Run ID	IC3_20	1230A		Se	eqNo: 7043	3070	Prep Date:		DF: 40	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		405	40	400	28.4	42	94.1	88-110		0		
Fluoride		84.26	4.0	80		0	105	82-116		0		
MSD	Sample ID: 20122223-0	1D MSD				ı	Units: mg/l	L	Analys	sis Date: 12	/31/2020 1	2:19 AM
Client ID:		Run ID	IC3_20	1230A		Se	eqNo: 7043	3071	Prep Date:		DF: 40	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		406.1	40	400	28.4	42	94.4	88-110	40	0.28	5 20	
Fluoride		83.74	4.0	80		0	105	82-116	84.2			
The following samp	oles were analyzed in thi	s batch:	20)121752-01E	3 20)12°	1752-02B	20	121752-03B		_ _	_

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

Batch ID: R307145	Instrument ID IC4			Method	: SW905	6A						
MBLK	Sample ID: MBLK-R30	7145				Un	its: mg/	L	Analys	sis Date: 12/ 3	30/2020 0°	1:43 PM
Client ID:		Run ID	: IC4_20	1230A		Seql	No: 704 3	3217	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
·		ND					70.120			701.1.2		
Chloride Sulfate		ND	1.0									
LCS	Sample ID: LCS-R3071	45				Un	its: mg/	L	Analys	sis Date: 12/ 3	30/2020 02	2:39 PM
Client ID:		Run ID	: IC4_20	1230A		Seql	No: 704 3	3218	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		9.353	1.0	10		0	93.5	88-110		0		
Sulfate		9.647	1.0	10		0	96.5	90-110		0		
MS	Sample ID: 20121752-0	3B MS				Un	its: mg/	L	Analys	sis Date: 12/ 3	30/2020 07	7:14 PM
Client ID: DB		Run ID	: IC4_20	1230A		Seql	No: 704 3	3233	Prep Date:		DF: 20	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		228.2	20	200	42.5	57	92.8	88-110		0		
Sulfate		1470	20	200	125	51	109	90-110		0		EO
MSD	Sample ID: 20121752-0	3B MSD				Un	its: mg/	L	Analys	sis Date: 12/ 3	30/2020 07	7:34 PM
Client ID: DB		Run ID	: IC4_20	1230A		Seql	No: 704 3	3234	Prep Date:		DF: 20	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		229.3	20	200	42.5	57	93.4	88-110	228	.2 0.476	20	
Sulfate		1480	20	200	125		114	90-110	147		20	SEO
The following samp	oles were analyzed in thi	s batch:	20)121752-01E	3 20	1217	52-02B	20	121752-03B			

Work Order: 20121752

Project: DTE- Belle River (GLP-8017)

MBLK	Sample ID: MBLK-R307	276				Units: mg	/L	Analy	sis Date: 12/ 3	31/2020 0	1:42 PN
Client ID:		Run ID	: IC3_20	1231A		SeqNo: 704	7811	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfate		ND	1.0								
LCS	Sample ID: LCS-R3072	76				Units: mg	/L	Analy	sis Date: 12/ 3	31/2020 0	2:01 PN
Client ID:		Run ID	: IC3_20	1231A		SeqNo: 704	7812	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Sulfate		9.654	1.0	10		0 96.5	90-110		0		
MS	Sample ID: 20122530-0	6A MS				Units: mg	/L	Analy	sis Date: 12/ 3	31/2020 0	6:35 PI
Client ID:		Run ID	: IC3_20	1231A		SeqNo: 704	7826	Prep Date:		DF: 40)
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Sulfate		424.4	40	400	43.1	11 95.3	90-110		0		
MSD	Sample ID: 20122530-0	6A MSD				Units: mg	/L	Analy	sis Date: 12/ 3	31/2020 0	6:54 PI
Client ID:		Run ID	: IC3_20	1231A		SeqNo: 704	7827	Prep Date:		DF: 40)
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Sulfate		425.5	40	400	43.1	11 95.6	90-110	424	1.4 0.255	20	
	les were analyzed in this		20	121752-011	2 20	121752-03B					

Chain of Custody Form

Į				
	Page	_1	of	1_

ALS Environmental 3352 128th Avenue Holland, Michigan 49424 (Tel) 616.399.6070 (Fax) 616.399.6185

samples and COC Form have been submitted to ALS.

ALS Project Manager: ALS Work Order #: 33730 Project Information Parameter/Method Request for Analysis **Customer Information** Purchase Order Project Name **DTE Belle River** Α Metals Work Order **Project Number** GLP 8017 В pH, Anions, TDS, Alkalinity Bill To Company **Company Name Geosyntec Consultants Geosyntec Consultants** С Invoice Attn. D Send Report To Michael Coram Michael Coram E 2100 Commonwealth Blvd. 2100 Commonwealth Bivd. Address Address Suite 100 Suite 100 ۴ City/State/Zip Ann Arbor, MI 48105 Ann Arbor, MI 48105 G City/State/Zip 734-794-1547 Phone 734-794-1547 Phone н Fax 734-332-8063 Fax 734-332-8063 ī e-Mail Address J Pres. Key В C D E F G Sample Description Date Time Matrix No. # Bottles Α Hold Numbers 1 BAB-E 12/16/2020 3:00 GW 2 2 х Х 12/16/2020 2 BAB-W 2:00 GW 2 2 х х 3 DB 12/16/2020 4:00 GW 2 2 х X 4 5 6 7 8 9 10 11 12 13 14 15 16 Sampler(s): Please Print & Sign Shipment Method: Turnaround Time: (Business Days) Results Due Date: Other _ Curter FedEX ☑ 10 BD 5 BD 3 BD 2 BD 1 BD Relinquished by: Received by: Date: Time: Notes: Separate Report Relinquished by: Received by (Laboratory): Date: Time: QC Package: (Check Box Below) ALS Cooler Cooler 10000 Temp ☑ Level II: Standard QC Level III: Raw Data Logged by (Laboratory): Checked by (Laboratory) TRRP Level IV TRRP LRC Level IV: SW846 Methods/CLP like IN PAZZ Other: 2-HNO₃ 3-H₂SO₄ 5-Na₂S₂O₃ 8-4°C Note: Any changes must be made in writing once Preservative Key: 1-HCI 4-NaOH 6-NaHSO₄ 7-Other

Client Name: GEOSYNTEC - AA

Sample Receipt Checklist

Date/Time Received:

18-Dec-20 10:00

Work Order: 201	<u>21752</u>				Received b	y: <u>M</u>	<u>JG</u>			
Checklist completed	_{I by} Matthew Gaylor	rd	18-Dec-20)	Reviewed by:	Chad Whe	elton		18-Dec-20)_
Matriaga	eSignature		Date			eSignature			Date	
	iroundwater edEx									
Shipping container/c	cooler in good condition?		Yes	✓	No 🗌	Not Present				
Custody seals intact	t on shipping container/coole	r?	Yes	✓	No 🗌	Not Present				
Custody seals intact	t on sample bottles?		Yes		No 🗌	Not Present	✓			
Chain of custody pre	esent?		Yes	~	No 🗌					
Chain of custody sig	gned when relinquished and r	eceived?	Yes	✓	No 🗌					
Chain of custody ag	rees with sample labels?		Yes	~	No 🗌					
Samples in proper c	container/bottle?		Yes	✓	No 🗌					
Sample containers i	ntact?		Yes	✓	No 🗌					
Sufficient sample vo	olume for indicated test?		Yes	✓	No 🗌					
All samples received	d within holding time?		Yes	✓	No 🗌					
Container/Temp Bla	ınk temperature in complianc	e?	Yes	~	No 🗌					
Sample(s) received	on ice?		Yes	~	No 🗌					
Temperature(s)/The	rmometer(s):		5.8/5.8	<u> </u>		IR1				
Cooler(s)/Kit(s):			10/10/							
Date/Time sample(s Water - VOA vials h	s) sent to storage: ave zero headspace?		12/18/2 Yes	2020	1:47:53 PM No	No VOA vials su	bmitted	✓		
Water - pH acceptat			Yes	✓	No 🗌	N/A				
pH adjusted?			Yes		No 🗸	N/A				
pH adjusted by:			-							
Login Notes:										
										_
Client Contacted:		Date Contacted	:		Person	Contacted:				
Contacted By:		Regarding:								
								1		
Comments:										
CorrectiveAction:										
	1									

Ft. Collins, Colorado LIMS Version: 7.012 Page 1 of 1

Tuesday, January 19, 2021

Michael Coram Geosyntec Consultants 2100 Commonwealth Blvd. Suite 100 Ann Arbor, MI 48105

Re: ALS Workorder: 2012397

Project Name: DTE - Belle River

Project Number: GLP-8017

Wilin Elliza

Dear Mr. Coram:

Three water samples were received from Geosyntec Consultants, on 12/18/2020. The samples were scheduled for the following analyses:

Radium-226 Radium-228

The results for these analyses are contained in the enclosed reports.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely,

ALS Environmental Julie Ellingson

Project Manager

<u>Accreditations</u>: ALS Environmental – Fort Collins is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

ALS Environme	ntal – Fort Collins
Accreditation Body	License or Certification Number
California (CA)	2926
Colorado (CO)	CO01099
Florida (FL)	E87914
Idaho (ID)	CO01099
Kansas (KS)	E-10381
Kentucky (KY)	90137
PJ-LA (DoD ELAP/ISO 170250)	95377
Maryland (MD)	285
Missouri (MO)	175
Nebraska(NE)	NE-OS-24-13
Nevada (NV)	CO010992018-1
New York (NY)	12036
North Dakota (ND)	R-057
Oklahoma (OK)	1301
Pennsylvania (PA)	68-03116
Tennessee (TN)	TN02976
Texas (TX)	T104704241
Utah (UT)	CO01099
Washington (WA)	C1280

<u>40 CFR Part 136</u>: All analyses for Clean Water Act samples are analyzed using the 40 CFR Part 136 specified method and include all the QC requirements.

2012397

Radium-228:

The samples were analyzed for the presence of ²²⁸Ra by low background gas flow proportional counting of ²²⁸Ac, which is the ingrown progeny of ²²⁸Ra, according to the current revision of SOP 724.

All remaining acceptance criteria were met.

Radium-226:

The samples were prepared and analyzed according to the current revision of SOP 783.

Sample 2012397-2 has a calculated yield as determined by ICP-AES above the 110% control limit at 132%. It is believed that there was native barium present in the sediment portion of the sample that was unaccounted for in the initial ICP aliquot. The result has been calculated conservatively, assuming a quantitative yield of 100%. This sample is identified with a "Y2" flag in the final reports, and the results are submitted without further qualification.

All remaining acceptance criteria were met.

Sample Number(s) Cross-Reference Table

OrderNum: 2012397

Client Name: Geosyntec Consultants

Client Project Name: DTE - Belle River

Client Project Number: GLP-8017

Client PO Number:

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
BAB-E	2012397-1		WATER	16-Dec-20	15:00
BAB-W	2012397-2		WATER	16-Dec-20	14:00
DB	2012397-3		WATER	16-Dec-20	16:00

Fort Collins, CO +1 970 490 1511

Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600

Holland, MI +1 616 399 6070

Chain of Custody Form

ŏ

coc ID: 230240 Page

Houston, TX +1 281 530 5656

South Charleston, WV +1 304 356 3168 Spring City, PA +1 610 948 4903

2012397

Salt Lake City, UT +1 801 266 7700 Middletown, PA +1 717 944 SS41

Parameter/Method Request for Analysis l) N ALS Work Order #: Radium 206 and 228 combined ပ E 7 ⋖ 8 ۵ щ Ø I ALS Project Manager: É 2100 Commonwealth Elvo Geosyntec Consultants Project Information 481.55 Nichael Coram (734) 794 1547 (734) 332-8068 Ann Artior, Mil Sinte 100 Fax Phone Project Number Invoice Attn Project Name Bill To Company City/State/Zip Address e-Mail Address 2100 Commonwealth Bivd Geosyntec Consultants **Customer Information** Ann Amon MI 45105 Michael Coram (734) 794-1547 (734) 332-8063 Suite 160

> Company Name Send Report To

Work Order

Purchase Order

Phone Ę

City/State/Zip

Address

홋

a	e-Mail Address			e-Mail Address	ress				7	,							
Š		Sample Description		Date	Time	Matrix	Pres.	# Bottles	 	8	<u>ه</u>	Ш	L	H		7	Holo
_	B	B-E		9//1	2:00	SAME.	3	4	×								
7	R	8-W	ൾ	9/12/	2.3	A A	3	1	~						-		
က	t Co	5	∞	12/16	30: h	See See See See See See See See See See	12	4	! ×								
4)																
ις:																	
9																	
7													<u> </u>				
80																	
6																	
10																	
ဖွဲ့	Sampler(s) Please Print & Sign	nt & Sign		Shipment M	nent Method	Requi	ired Turnaro	Required Turneround Time: (Check Box)	heck Box		Other 2 WK Davs	A Hos	J. J. J. J. J. J. J. J. J. J. J. J. J. J	Result	Results Due Date:	Date:	
& ∧	Relinguiehted By:	Date:	1	CC: Siemil	Received by:	1 1	N	Notes:	Notes:	Ŧ							
8	Relinquished by:	Date:		Time:	Received by (Laboratory):	boratory):			Cooler ID	r	Cooler Temp. QC Package: (Check One Box Below)	8	ackage: (Check On	e Box Be	low)	

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
3. The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

TPRP CheckList

Level III Std OC/Par Data [Level III Std OC/Par Data [Level IV SW846-01.P

9-5035

7-Other

6-NaHSO,

5-Na₂S₂O₃

4-NaOH

3-H,SO4

2-HNO

Preservative Key: 1-HCI

Logged by (Laboratory)

QC Package: (Check One Box Below

Checked by (Laboratory)

Time:

Form 201r30.xls

(06/04/2020)

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

Client Name/ID:	Geosyntec MI		\	Workorder No:		201	2397	•
Project Manager:		Initials:	RG	A	Date	: 1	2/18/	/2020
1. Are airbills / shipping docum	nents present and/or remo	ovable?		***	Drop C	# 🗸	YES	☐ NO
2. Are custody seals on shippir	ng containers intact?				NOV	E 🔽	YES	NO•
3. Are custody seals on sample	containers intact?	CONTROLLER			NON	Е	YES	∏ NO•
4. Is there a COC (chain-of-cust	tody) present?				ero en hausent graphica anno		YES	☐ NO•
5. Is the COC in agreement wit	h samples received? (IDs, da	ites, times, # of sam	ples, # of contain	ners, matrix, requested an	alyses, etc.)		YES	□ NO•
6. Are short-hold samples pres	ent?						YES	✓ NO
7. Are all samples within holdi	ng times for the requested	d analyses?		THE CONTRACTOR OF THE CONTRACT			YES	☐ NO•
8. Were all sample containers	received intact? (not broken or	leaking)		VILLE			YES	□ NO•
9. Is there sufficient sample fo	r the requested analyses?	**************************************	•			V	YES	☐ NO•
10. Are samples in proper cont	ainers for requested analy	/ses? (form 250,	Sample Handlin	g Guidelines)	AND THE STATE OF T	V	YES	□ NO•
11. Are all aqueous samples pro	eserved correctly, if requir	red?	1188888844	***************************************	□ N/A		YES	₽ NO•
12. Were unpreserved samples	pH checked, if required?	AND AND AND AND AND AND AND AND AND AND		a program to the same	✓ N/A		YES	NO
13. Are all samples requiring no he	eadspace (voc, gro, rsk/mee, radon)	free of bubb	les > 6 mm	in diameter?	✓ N/A	ľ	YES	NO
14. Were the samples shipped	on ice?			- 10 had an			YES	NO
15. Were cooler temperatures	measured at 0.1 - 6.0°C?	IR gun used*:	# 3	√ #5	Rad On	v 🔽	YES	NO
Cooler #: 1		-		• "				
Temperature (°C): 3.2								
# of custody seals on cooler:								
External mR/hr reading: 12								
Background mR/hr reading: 9	Were external mR/hr readir acceptance o	ngs ≤ two time: criteria? (If no,	•		N/A		YES	☐ NO
	elow for 'NO' responses in gray I					ie w/ l	ogin.	
11) Sample 2012397-1-2 h	ad a pH of 4, 0.5mL of	HNO3 was	added to	achieve a pH	<2			
er corresponding 4.	Commission of the commission o	The constituted assessment or		· · · · · · · · · · · · · · · · · · ·		*1,*2#119155(\$922.5)	Pressort contributions	MINELL
t adam z	Oriman			***************************************				
· · · · · · · · · · · · · · · · · · ·				entered to the second s				
		management		,		***************************************		
. 1 (18.00) (10.00), 4 (10.00)	\$\$\$\$\$\$\$\$\$\$paranes							
VI TINI C TOTATA PROGRAMMENTAL COLOR	· · · · · · · · · · · · · · · · · · ·	MARINE COLOR STATE STATE OF THE	**************************************					1.600119889549858333311111111
	**************************************						engyer; me are	
The second control of the second control of	THE THE THE THE THE THE THE THE THE THE							
MARKET LITTLE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF T		*	FERRING MANAGEMENT (FEE TO SE					
			All allows be	attle IDle ve ALC leb i	Dia da da			DC 4
If applicable, was the client co	ntacted? YES N	/A Contac	t Name	ottle ID's vs ALS lab	o s double-	_	ate:	RGA
Project Manager Signature		,	1011	, ,				
	, bate.	/ 10	121	10				
	//	,	,					

+IR Gun #3, VWR SN 170647571

+IR Gun #5, VWR SN 192272629

ORIGIN ID:DEOA (248). 390-5748

SUITE 100 2100 COMMONWEALTH BLVD STE 100 ANN ARBOR, MI 48105 UNITED STATES US

SHIP DATE: 17DEC20 ACTWGT: 56.90 LB CAD: 6997566/SSF02121 DIMS: 25x14x13 IN

BILL THIRD PARTY

ALS FT. COLLINS ATTN: SAMPLE RECIEVING 225 COMMERCE DR

FORT COLLINS CO 80524

ASS RADB EXP 11/21

TRK# 7816 0264 9731

NA FTCA

FRI - 18 DEC 10:30A PRIORITY OVERNIGHT 80524 co-us DEN

SAMPLE SUMMARY REPORT

Client:Geosyntec ConsultantsDate: 19-Jan-21Project:GLP-8017 DTE - Belle RiverWork Order: 2012397Sample ID:BAB-ELab ID: 2012397-1

Legal Location: Matrix: WATER

Collection Date: 12/16/2020 15:00 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation	- Method 903.1	SOF	783	Prep	Date: 1/4/2021	PrepBy: TRB
Ra-226	0.57 (+/- 0.35)	Y1	0.41	pCi/l	NA	1/12/2021 11:32
Carr: BARIUM	101	Y1	40-110	%REC	DL = NA	1/12/2021 11:32
Radium-228 Analysis by GFPC		SOF	724	Prep	Date: 1/11/2021	PrepBy: RGS
COMBINED RADIUM (226+228)	1.49 (+/- 0)		0.78	pCi/l	NA	1/15/2021 07:48
Ra-228	0.92 (+/- 0.45)		0.78	pCi/l	NA	1/15/2021 07:48
Carr: BARIUM	99.2		40-110	%RFC	DI = NA	1/15/2021 07:48

AR Page 1 of 4 **8 of 13**

SAMPLE SUMMARY REPORT

Client: Geosyntec Consultants Date: 19-Jan-21

Project:GLP-8017 DTE - Belle RiverWork Order: 2012397Sample ID:BAB-WLab ID: 2012397-2Legal Location:Matrix: WATER

Collection Date: 12/16/2020 14:00 Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation -	Method 903.1	SOF	783	Prep	Date: 1/4/2021	PrepBy: TRB
Ra-226	1.78 (+/- 0.66)	Y2	0.3	pCi/l	NA	1/12/2021 11:32
Carr: BARIUM	132	Y2	40-110	%REC	DL = NA	1/12/2021 11:32
Radium-228 Analysis by GFPC		SOF	724	Prep	Date: 1/11/2021	PrepBy: RGS
COMBINED RADIUM (226+228)	1.78 (+/- 0)		1.32	pCi/l	NA	1/15/2021 07:48
Ra-228	ND (+/- 0.69)	U,M	1.32	pCi/l	NA	1/15/2021 07:48
Carr: BARILIM	57		40-110	%RFC	DI = NA	1/15/2021 07:48

AR Page 2 of 4 9 of 13

LIMS Version: 7.012

Collection Date: 12/16/2020 16:00

SAMPLE SUMMARY REPORT

Percent Moisture:

Client:Geosyntec ConsultantsDate: 19-Jan-21Project:GLP-8017 DTE - Belle RiverWork Order: 2012397Sample ID:DBLab ID: 2012397-3

Legal Location: Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Radium-226 by Radon Emanation -	Method 903.1	SOF	783	Prep	Date: 1/4/2021	PrepBy: TRB
Ra-226	ND (+/- 0.21)	U	0.3	pCi/l	NA	1/12/2021 11:32
Carr: BARIUM	95		40-110	%REC	DL = NA	1/12/2021 11:32
Radium-228 Analysis by GFPC		SOF	724	Prep	Date: 1/11/2021	PrepBy: RGS
COMBINED RADIUM (226+228)	ND (+/- 0)	U	1.8	pCi/l	NA	1/15/2021 07:48
Ra-228	ND (+/- 0.83)	U,M	1.8	pCi/l	NA	1/15/2021 07:48
Carr: BARILIM	45		40-110	%RFC	DI = NA	1/15/2021 07:48

AR Page 3 of 4 **10 of 13**

LIMS Version: 7.012

SAMPLE SUMMARY REPORT

Client: Geosyntec Consultants Date: 19-Jan-21

Project: GLP-8017 DTE - Belle River Work Order: 2012397

Sample ID: DB Lab ID: 2012397-3
Legal Location: Matrix: WATER

Collection Date: 12/16/2020 16:00 Percent Moisture:

Report Dilution
Analyses Result Qual Limit Units Factor Date Analyzed

Explanation of Qualifiers

Radiochemistry:

- "Report Limit" is the MDC

U or ND - Result is less than the sample specific MDC.

Y1 - Chemical Yield is in control at 100-110%. Quantitative yield is assumed.

Y2 - Chemical Yield outside default limits.

W - DER is greater than Warning Limit of 1.42

* - Aliquot Basis is 'As Received' while the Report Basis is 'Dry Weight'.

- Aliquot Basis is 'Dry Weight' while the Report Basis is 'As Received'.

G - Sample density differs by more than 15% of LCS density.

D - DER is greater than Control Limit

M - Requested MDC not met.

M3 - The requested MDC was not met, but the reported activity is greater than the reported MDC.

L - LCS Recovery below lower control limit.

H - LCS Recovery above upper control limit.

P - LCS, Matrix Spike Recovery within control limits.

N - Matrix Spike Recovery outside control limits

NC - Not Calculated for duplicate results less than 5 times MDC

B - Analyte concentration greater than MDC.

B3 - Analyte concentration greater than MDC but less than Requested

MDC.

Inorganics:

B - Result is less than the requested reporting limit but greater than the instrument method detection limit (MDL).

U or ND - Indicates that the compound was analyzed for but not detected

E - The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.

M - Duplicate injection precision was not met

N - Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike duplicate fail and the native sample concentration is less than four times the spike added concentration.

Z - Spiked recovery not within control limits. An explanatory note may be included in the narrative.

* - Duplicate analysis (relative percent difference) not within control limits.

S - SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Organics:

U or ND - Indicates that the compound was analyzed for but not detected.

- B Analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user.
- E Analyte concentration exceeds the upper level of the calibration range.
- J Estimated value. The result is less than the reporting limit but greater than the instrument method detection limit (MDL).
- A A tentatively identified compound is a suspected aldol-condensation product.
- X The analyte was diluted below an accurate quantitation level.
- * The spike recovery is equal to or outside the control criteria used.
- + The relative percent difference (RPD) equals or exceeds the control criteria.
- G A pattern resembling gasoline was detected in this sample.
- D A pattern resembling diesel was detected in this sample
- M A pattern resembling motor oil was detected in this sample.
- C A pattern resembling crude oil was detected in this sample.
- 4 A pattern resembling JP-4 was detected in this sample.
- 5 A pattern resembling JP-5 was detected in this sample.
- H Indicates that the fuel pattern was in the heavier end of the retention time window for the analyte of interest.
- L Indicates that the fuel pattern was in the lighter end of the retention time window for the analyte of interest.
- Z This flag indicates that a significant fraction of the reported result did not resemble the patterns of any of the following petroleum hydrocarbon products:
- gasoline
- JP-8 - diesel
- mineral spirits
- motor oil
- Stoddard solvent
- bunker C

Client: Geosyntec Consultants

Work Order: 2012397

Project: GLP-8017 DTE - Belle River

Date: 1/19/2021 1:00:4

Batch ID: R	RE210104-1-3	Instrument ID: Alp	ha Scin	ļ	Method: F	Radium-226	by Rado	on Emanation	١			
LCS	Sample ID: F	RE210104-1			l	Jnits: pCi/l		Analy	sis Date: 1	1/12/202	21 12:16	
Client ID:		Run II	D: RE210104-	1A			1	Prep Date: 1/4	/2021	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qual
Ra-226		46 (+/- 12)	0	46.8		98.8	67-120					Р
Carr: BARII	UM	15230		15490		98.3	40-110					
МВ	Sample ID: F	RE210104-1			l	Jnits: pCi/l		Analy	sis Date: 1	1/12/202	21 12:16	
Client ID:		Run II	D: RE210104- 1	1A			I	Prep Date: 1/4	/2021	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qual
Ra-226		ND	0.31									U
Carr: BARII	UM	15370		15490		99.2	40-110					
The follow	wing samples w	ere analyzed in this batch:	20123	397-1	20123	397-2	201	2397-3				

Work Order: 2012397

Project: GLP-8017 DTE - Belle River

Batch ID: RA	A210111-1-5	Instrument ID:	GASPROP		Method: Ra	adium-228	Analysis	by GFPC				
LCS	Sample ID:	RA210111-1			U	nits: ug		Analy	sis Date: 1	/15/202	1 07:48	
Client ID:		Rui	n ID: RA210111-	1A			F	rep Date: 1/1	1/2021	DF:	NA	
Analyte		Resu	It ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qua
Carr: BARIU	JM	3429	90	36030		95.2	40-110					
Ra-228		17.3 (+/- 4.	0.7	22.86		75.6	70-130					Р
LCSD	Sample ID:	RA210111-1			U	nits: ug		Analy	sis Date: 1	/15/202	1 07:48	
Client ID:		Rui	n ID: RA210111-	1A			F	rep Date: 1/1	1/2021	DF:	NA	
Analyte		Resu	It ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qua
Carr: BARIU	JM	3390	60	36030		94.2	40-110		34290			
Ra-228		22.7 (+/- 5.	3) 0.7	22.86		99.3	70-130		17.3	0.81	2.13	Р
МВ	Sample ID:	RA210111-1			U	nits: ug		Analy	sis Date: 1	/15/202	1 07:48	
Client ID:		Rui	n ID: RA210111-	1A			F	rep Date: 1/1	1/2021	DF:	NA	
Analyte		Resu	It ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref Value	DER	DER Limit	Qua
Carr: BARIU	JM	3426	80	36150		94.8	40-110					
			ND 0.77									U

APPENDIX K – ALD HYDRAULIC CONDUCTIVITY TEST RESULTS

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 1)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	conductivity	
Site ID	Lab No.	Moisture Content	Dry Unit Weight	Moisture Content	Dry Unit Weight		Days After Injection		Passed After Injection	In Flow	Out Flow	In Flow	Out Flow	Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						3/15/2021	0	1.2E-08	0.0000	-	-	ı	-	
						3/22/2021	7	9.3E-09	0.0417	-	-	-	-	
						3/29/2021	14	7.3E-09	0.0681	8.3	8.4	-	-	
						4/05/2021	21	7.0E-09	0.1077	-	-	-	-	
						4/12/2021	28	7.1E-09	0.1345	-	-	-	-	
						4/14/2021	30	6.9E-09	0.1408	8.2	8.5	-	-	
						4/19/2021	35	7.8E-09	0.1725	-	-	-	-	
						4/26/2021	42	6.4E-09	0.2022	-	-	-	-	
						4/27/2021	43	6.9E-09	0.2059	8.2	8.4	656	1614	
						5/3/2021	49	7.7E-09	0.2434	-	-	-	-	
						5/04/2021	50	7.8E-09	0.2487		-	-	-	
B1-ST-1 (7-9')	20L143	26.7	98.1	28.7	96.6	5/07/2021	53	7.7E-09	0.2619	-	-	-	-	
						5/10/2021	56	6.9E-09	0.2728	8.3	8.2	-	-	
						5/14/2021	60	8.1E-09	0.2987		-	-	-	
						5/21/2021	67	7.2E-09	0.3323	-	-	-	-	
						5/24/2021	70	6.9E-09	0.3423	8.5	8.6	-	-	
						5/28/2021	74	8.1E-09	0.3684		-	-	-	
						6/04/2021	81	7.0E-09	0.4006	8.4	8.6	660	1411	
						6/11/2021	88	7.6E-09	0.4404	-	-	-	-	
						6/17/2021	94	6.5E-09	0.4634	8.3	8.2	-	-	
						6/18/2021	95	7.3E-09	0.4729	-	-	1	-	
						6/25/2021	102	7.6E-09	0.5139	-	-	1	-	3-29-2023 NSR
						7/01/2021	108	6.4E-09	0.5375	8.5	8.2	-	-	229-2021. 131

1- Based on Specimen Final Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 2)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						7/02/2021	109	7.6E-09	0.5460	-	-	-	-	
						7/09/2021	116	7.0E-09	0.5870	-	-	-	-	
						7/16/2021	123	6.9E-09	0.6139	8.5	8.2	656	1230	
						7/23/2021	130	7.6E-09	0.6560	-	-	-	-	
						7/30/2021	137	7.0E-09	0.6827	8.6	8.5	-	-	
						8/06/2021	144	6.9E-09	0.7216	-	-	-	-	
						8/13/2021	151	6.8E-09	0.7489	8.5	8.1	-	-	
						8/20/2021	158	8.2E-09	0.7906	-	-	-	-	
						8/27/2021	165	6.0E-09	0.8165	-	-	-	-	
						8/30/2021	168	7.4E-09	0.8265	8.3	8.3	653	1141	
						9/03/2021	172	7.2E-09	0.8517	-	-	-	-	
B1-ST-1 (7-9')	20L143	26.7	98.1	28.7	96.6	9/10/2021	179	6.5E-09	0.8827	-	-	-	-	
						9/14/2021	183	5.8E-09	0.8948	8.1	8.3	-	-	
						9/17/2021	186	6.9E-09	0.9131	-	-	-	-	
						9/24/2021	193	6.6E-09	0.9453	-	-	-	-	
						10/01/2021	200	5.7E-09	0.9663	-	-	-	-	
						10/04/2021	203	5.8E-09	0.9733	8.4	8.4	-	-	
						10/08/2021	207	7.2E-09	0.9990	-	-	-	-	
						10/15/2021	214	6.3E-09	1.0291	-	-	-	-	
						10/22/2021	221	5.5E-09	1.0485	8.2	8.3	622	1200	
						10/29/2021	228	6.8E-09	1.0886	-	-	-	-	
						11/05/2021	235	8.1E-09	1.1118	-	-	-	-	3.29.2023 NSR
						11/12/2021	242	8.2E-09	1.1185	-	-	-	-	29-2025 NSK

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 3)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	P	Н	Electrical C	Conductivity	
		Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	Lab No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						11/19/2021	249	7.7E-09	1.1187	-	-	-	-	
						11/21/2021	251	8.0E-09	1.1178	8.0	8.3	-	-	
						11/26/2021	256	8.1E-09	1.1372	-	-	-	-	
						12/03/2021	263	7.9E-09	1.1516	-	-	-	-	
						12/10/2021	270	6.7E-09	1.1553	-	-	-	-	
						12/17/2021	277	7.5E-09	1.1541	-	-	-	-	
						12/21/2021	281	6.2E-09	1.1606	8.8	8.6	-	-	
						12/24/2021	284	6.7E-09	1.1782	-	-	-	-	
						12/31/2021	291	6.5E-09	1.2109	-	-	-	-	
						1/7/2022	298	5.7E-09	1.2333	8.8	8.8	719	1274	
						1/14/2022	305	6.3E-09	1.2688	-	-	-	-	
B1-ST-1 (7-9')	20L143	26.7	98.1	28.7	96.6	1/21/2022	312	5.8E-09	1.2956	-	=	-	-	
						1/26/2022	317	4.9E-09	1.3070	8.0	8.2	-	-	
						1/28/2022	319	5.3E-09	1.3176	-	-	-	-	
						2/4/2022	326	6.0E-09	1.3494	-	-	-	-	
						2/11/2022	333	5.2E-09	1.3714	8.7	8.7	1091	-	
						2/18/2022	340	6.4E-09	1.4082	-	-	-	-	
						2/25/2022	347	6.3E-09	1.4346	8.9	9.0	964	1310	
						3/4/2022	354	6.8E-09	1.4730	-	-	-	-	
						3/11/2022	361	6.7E-09	1.5008	-	-	-	-	
						3/14/2022	364	6.8E-09	1.5103	8.4	9.0	1220	-	
						3/18/2022	368	6.9E-09	1.5337	-	-	-	-	3.29.2023 NSR
						3/25/2022	375	6.8E-09	1.5649	-	-	-	-	3-29-20- NSI

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 4)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	p	Н	Electrical C	conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						3/29/2022	379	6.4E-09	1.5786	9.1	9.1	1210	-	
						4/1/2022	382	7.2E-09	1.5978	-	-	-	-	
						4/8/2022	389	6.6E-09	1.6302	-	-	-	-	
						4/15/2022	396	6.1E-09	1.6525	8.3	8.3	1236	1256	
						4/22/2022	403	6.6E-09	1.6942	-	-	-	-	
						4/29/2022	410	6.3E-09	1.7236	-	-	-	-	
						5/2/2022	413	7.0E-09	1.7342	8.2	8.3	1257	-	
						5/6/2022	417	7.6E-09	1.7604	-	-	-	-	
						5/13/2022	424	7.1E-09	1.7937	-	-	=	-	
						5/17/2022	428	6.8E-09	1.8081	7.8	8.2	1252	-	
						5/20/2022	431	7.1E-09	1.8278	-	-	-	-	
B1-ST-1 (7-9')	20L143	26.7	98.1	28.7	96.6	5/27/2022	438	7.1E-09	1.8623	-	-	-	-	
						6/1/2022	443	6.3E-09	1.8792	8.1	8.4	1254	-	
						6/3/2022	445	6.8E-09	1.8931	-	-	-	-	
						6/10/2022	452	7.0E-09	1.9301	-	-	-	-	
						6/16/2022	458	6.6E-09	1.9533	8.0	8.3	1294	-	
						6/17/2022	459	7.0E-09	1.9605	-	-	-	-	
						6/24/2022	466	7.1E-09	1.9994	-	-	-	-	
						7/1/2022	473	7.0E-09	2.0260	8.3	8.3	1315	-	
						7/8/2022	480	7.3E-09	2.0702	-	-	=	-	
						7/15/2022	487	6.7E-09	2.0976	-	-	-	-	
						7/18/2022	490	6.5E-09	2.1068	8.2	8.3	1257	1377	3-29-2023 NSR
						7/22/2022	494	7.7E-09	2.1330	-	-	-	-	3-29-184. No.

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 5)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial Co	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	p	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture			Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						7/29/2022	501	7.1E-09	2.1668	-	-	-	-	
						8/3/2022	506	6.3E-09	2.1828	8.1	8.3	1253	-	
						8/5/2022	508	7.3E-09	2.1974	-	-	=	-	
						8/12/2022	515	7.5E-09	2.2351	-	-	=	-	
						8/18/2022	521	6.3E-09	2.2562	9.1	8.3	1315	-	
						8/19/2022	522	6.6E-09	2.2629	-	-	-	-	
						8/26/2022	529	7.1E-09	2.3023	1	-	-	-	
						8/31/2022	534	6.7E-09	2.3224	7.9	8.2	1256	1233	
						9/2/2022	536	7.4E-09	2.3356	1	-	-	-	
						9/9/2022	543	6.8E-09	2.3720	-	-	-	-	
						9/15/2022	549	6.7E-09	2.3940	8.5	8.6	1309	-	
B1-ST-1 (7-9')	20L143	26.7	98.1	28.7	96.6	9/16/2022	550	7.0E-09	2.4009	-	-	-	-	
						9/23/2022	557	7.0E-09	2.4393	-	-	-	-	
						9/30/2022	564	6.5E-09	2.4657	8.7	8.6	1253	-	
						10/7/2022	571	7.1E-09	2.5058	-	-	-	-	
						10/14/2022	578	7.0E-09	2.5343	8.5	8.3	1209	1197	
						10/21/2022	585	6.6E-09	2.5730	-	-	-	-	
						10/28/2022	592	6.3E-09	2.6010	-	-	-	-	
						10/31/2022	595	5.9E-09	2.6098	8.5	8.3	1209	1197	
						11/4/2022	599	7.3E-09	2.6346	-	-	-	-	
						11/11/2022	606	6.9E-09	2.6681	-	-	-	-	
						11/18/2022	613	6.1E-09	2.6945	-	-	-	-	3.29-2023 NSR
						11/25/2022	620	6.0E-09	2.7244	-	-	-	-	3-29-1By.

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 6)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

Г								T	est Information						
			Initial Co	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	P	Н	Electrical (Conductivity	
		Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
	Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
									N.41 8 2	Note 1					
									Notes 1 & 2	Note 1					
	(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
							12/2/2022	627	5.0E-09	2.7459	-	-	-	-	
							12/5/2022	630	5.0E-09	2.7534	8.5	8.5	1242	1200	
	D4 977 4 47 00	207.4.42	24.5	00.4	20.5	0.4.4	12/9/2022	634	6.5E-09	2.7749	-	-	-	-	
	B1-ST-1 (7-9')	20L143	26.7	98.1	28.7	96.6	12/16/2022	641	5.1E-09	2.8008	-	-	-	-	
							12/23/2022	648	4.4E-09	2.8182	-	-	-	-	
							12/31/2022	656	4.9E-09	2.8525	-	-	-	-	
I															
															3-29-2023 NSR
L															3-127 BY.

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 1)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
. ,		(,	(1.7	(,	(1.)	3/15/2021	0	1.8E-08		-	-	-	-	
						3/22/2021	7	1.6E-08	0.0846	8.5	8.1	_	-	
						3/29/2021	14	1.3E-08	0.1548	-	-	_	-	
						3/30/2021	15	1.3E-08	0.1595	8.5	8.3	_	-	
						4/05/2021	21	1.4E-08	0.2036	-	-	-	-	
						4/09/2021	25	1.3E-08	0.2270	8.0	8.1	782	3050	
						4/12/2021	28	1.4E-08	0.2608	-	-	-	-	
						4/16/2021	32	1.3E-08	0.2939	8.2	8.5	-	-	
						4/19/2021	35	1.3E-08	0.3273	-	-	-	-	
						4/26/2021	42	1.1E-08	0.3737	8.0	7.9	-	-	
						5/03/2021	49	1.3E-08	0.4429	8.2	8.5	560	2300	
B2-ST-1 (1-3')	20L149	20.4	105.7	26.0	101.6	5/07/2021	53	1.3E-08	0.4826	-	-	-	-	
						5/12/2021	58	1.2E-08	0.5197	8.1	8.3	-	-	
						5/14/2021	60	1.3E-08	0.5444	-	-	-	-	
						5/21/2021	67	1.2E-08	0.6038	8.3	8.1	-	-	
						5/28/2021	74	1.2E-08	0.6683	8.4	8.2	621	1790	
						6/04/2021	81	1.2E-08	0.7309	-	-	-	-	
						6/11/2021	88	1.2E-08	0.7967	-	-	-	-	
						6/14/2021	91	1.1E-08	0.8129	8.3	8.2	-	-	
						6/18/2021	95	1.2E-08	0.8553	-	-	-	-	
						6/22/2021	99	1.1E-08	0.8823	8.3	8.1	595	1982	
						6/25/2021	102	1.3E-08	0.9169	-	-	-	-	3-29-2023 NSR
						7/01/2021	108	1.1E-08	0.9601	8.5	8.5	-	-	3-29-18y. No

1- Based on Specimen Final Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 2)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial Co	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	P	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture			Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
								110005 1 60 2	11010 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						7/02/2021	109	1.1E-08	0.9719	-	-	-	-	
						7/09/2021	116	1.1E-08	1.0337	8.8	8.4	-	-	
						7/16/2021	123	1.2E-08	1.0975	8.7	8.1	657	1988	
						7/23/2021	130	1.2E-08	1.1654	8.3	8.4	=	-	
						7/30/2021	137	1.2E-08	1.2287	-	-	-	-	
						8/02/2021	140	1.1E-08	1.2452	8.7	8.1	-	-	
						8/06/2021	144	1.2E-08	1.2857	-	-	-	-	
						8/13/2021	151	1.1E-08	1.3313	8.2	8.1	652	1764	
						8/20/2021	158	1.2E-08	1.3978	-	-	-	-	
						8/23/2021	161	1.1E-08	1.4132	8.1	8.3	-	-	
						8/27/2021	165	1.2E-08	1.4535	-	-	-	-	
B2-ST-1 (1-3')	20L149	20.4	105.7	26.0	101.6	8/31/2021	169	1.2E-08	1.4815	8.4	8.2	-	-	
						9/03/2021	172	1.2E-08	1.5143	-	-	-	-	
						9/08/2021	177	1.1E-08	1.5516	8.1	8.0	596	1523	
						9/10/2021	179	1.1E-08	1.5740	-	-	-	-	
						9/17/2021	186	9.8E-09	1.6213	-	-	-	-	
						9/20/2021	189	1.0E-08	1.6353	8.2	8.3	-	-	
						9/24/2021	193	1.2E-08	1.6763	-	-	-	-	
						10/01/2021	200	9.0E-09	1.7155	8.3	8.3	-	-	
						10/08/2021	207	1.1E-08	1.7778	-	-	-	-	
						10/12/2021	211	1.2E-08	1.7970	8.3	8.4	585	1524	
						10/15/2021	214	1.1E-08	1.8259	-	-	-	-	03 0
						10/22/2021	221	9.4E-09	1.8672	8.5	8.3	-	-	229-2 023 NSR

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 3)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						10/29/2021	228	1.1E-08	1.9280	-	-	-	-	
						11/01/2021	231	1.1E-08	1.9439	8.1	8.1	-	-	
						11/05/2021	235	1.2E-08	1.9864	-	-	-	-	
						11/12/2021	242	9.3E-09	2.0274	8.2	8.2	591	1510	
						11/19/2021	249	1.2E-08	2.0850	-	-	-	-	
						11/24/2021	254	9.8E-09	2.1108	8.2	8.1	-	-	
						11/26/2021	256	1.1E-08	2.1339	-	-	-	-	
						12/03/2021	263	1.0E-08	2.1827	-	-	-	-	
						12/08/2021	268	9.4E-09	2.2043	8.3	8.1	-	-	
						12/10/2021	270	9.9E-09	2.2227	-	-	-	-	
						12/14/2021	274	1.1E-08	2.2543	8.1	7.9	653	1120	
B2-ST-1 (1-3')	20L149	20.4	105.7	26.0	101.6	12/17/2021	277	1.1E-08	2.2847	-	-	-	-	
						12/21/2021	281	1.1E-08	2.3157	8.5	8.3	-	-	
						12/24/2021	284	1.1E-08	2.3456	-	-	-	-	
						12/30/2021	290	1.1E-08	2.3880	8.3	8.2	-	-	
						12/31/2021	291	1.1E-08	2.3996	-	-	-	-	
						01/07/2022	298	1.0E-08	2.4543	8.7	8.2	609	1010	
						01/14/2022	305	1.1E-08	2.5129	-	-	1	-	
						1/18/2022	309	9.6E-09	2.5343	8.0	8.1	-	-	
						1/21/2022	312	1.0E-08	2.5652	-	-	-	-	
						1/28/2022	319	9.0E-09	2.6069	8.3	8.5	-	-	
						2/4/2022	326	1.0E-08	2.6650	-	-	-	-	3.29.2023 TSR
						2/7/2022	329	9.8E-09	2.6820	8.5	8.7	-	-	29-2013 NSK

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 4)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	р	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						2/11/2022	333	1.0E-08	2.7173	-	-	-	-	
						2/17/2022	339	9.8E-09	2.7561	8.5	8.8	1213	-	
						2/18/2022	340	1.0E-08	2.7674	-	-	-	-	
						2/25/2022	347	1.1E-08	2.8240	8.9	9.1	1224	856	
						3/4/2022	354	1.1E-08	2.8832	=	-	=	-	
						3/7/2022	357	1.1E-08	2.9016	8.7	8.6	1226	-	
						3/11/2022	361	1.1E-08	2.9381	-	-	-	-	
						3/17/2022	367	9.7E-09	2.9759	8.9	8.8	1198	-	
						3/18/2022	368	1.0E-08	2.9860	-	-	-	-	
						3/25/2022	375	1.2E-08	3.0436	-	-	-	-	
						3/28/2022	378	1.1E-08	3.0694	8.3	8.5	1229	903	
B2-ST-1 (1-3')	20L149	20.4	105.7	26.0	101.6	4/1/2022	382	1.1E-08	3.0983	-	-	-	-	
						4/7/2022	388	1.0E-08	3.1386	8.6	8.5	1238	-	
						4/8/2022	389	1.1E-08	3.1494	-	-	-	-	
						4/16/2022	397	1.1E-08	3.2061	7.8	8.0	1261	-	
						4/22/2022	403	9.9E-09	3.2603	-	-	-	-	
						4/27/2022	408	9.8E-09	3.2895	7.9	8.0	1237	972	
						4/29/2022	410	1.0E-08	3.3101	-	-	-	-	
						5/6/2022	417	1.1E-08	3.3638	-	-	-	-	
						5/7/2022	418	1.1E-08	3.3704	7.9	8.0	1345	-	
						5/13/2022	424	1.1E-08	3.4264	-	-	-	-	
						5/17/2022	428	1.1E-08	3.4517	7.8	8.0	1267	-	3-29-2023 NSR
						5/20/2022	431	1.1E-08	3.4836	-	-	-	-	3-29-18y. Bb

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 5)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	p	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						5/26/2022	437	1.1E-08	3.5267	8.1	8.3	1262	942	
						5/27/2022	438	1.1E-08	3.5385	-	-	-	-	
						6/3/2022	445	1.1E-08	3.5964	-	-	-	-	
						6/6/2022	448	1.1E-08	3.6124	8.0	8.2	1304	-	
						6/10/2022	452	1.1E-08	3.6501	-	-	-	-	
						6/16/2022	458	1.1E-08	3.6906	7.9	8.0	1281	-	
						6/17/2022	459	1.1E-08	3.7017	-	-	-	-	
						6/24/2022	466	1.1E-08	3.7603	-	-	-	-	
						6/27/2022	469	9.9E-09	3.7753	8.2	8.3	1253	945	
						7/1/2022	473	1.2E-08	3.8170	-	-	-	-	
						7/6/2022	478	1.2E-08	3.8543	8.1	8.1	1245	-	
B2-ST-1 (1-3')	20L149	20.4	105.7	26.0	101.6	7/8/2022	480	1.2E-08	3.8776	-	-	1	-	
						7/15/2022	487	1.1E-08	3.9311	8.0	8.0	1250	-	
						7/22/2022	494	1.2E-08	3.9951	-	-	-	-	
						7/25/2022	497	1.2E-08	4.0130	8.2	8.3	1191	1046	
						7/29/2022	501	1.2E-08	4.0552	-	-	-	-	
						8/3/2022	506	1.1E-08	4.0903	8.0	8.1	1259	-	
						8/5/2022	508	1.2E-08	4.1136	-	-	-	-	
						8/12/2022	515	1.1E-08	4.1683	8.0	8.1	1271	-	
						8/19/2022	522	1.1E-08	4.2329	-	-	-	-	
						8/22/2022	525	1.1E-08	4.2503	8.1	8.2	1246	1109	
						8/26/2022	529	1.2E-08	4.2918	-	-	-	-	3-29-2023 NSR
						8/31/2022	534	1.1E-08	4.3273	8.2	8.2	1248	-	3-29 184. 151

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 6)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	onductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(μs/cm)	(µs/cm)	
(-)	(-)	(/0)	(pcr)	(/0)	(pcr)	9/2/2022	536	1.1E-08	4.3504	-	-	- (μs/cm)	(µs/cm)	
						9/9/2022	543	1.1E-08	4.4039	8.5	8.4	1290	_	
						9/16/2022	550	1.2E-08	4.4677	-	-	-	_	
						9/20/2022	554	1.1E-08	4.4846	8.2	8.3	1264	1136	
						9/23/2022	557	1.1E-08 1.2E-08	4.5256	-	-	-	-	
						9/28/2022	562	1.1E-08	4.5602	8.4	8.4	1140	_	
						9/30/2022	564	1.1E-08	4.5827	-	-	-	_	
						10/7/2022	571	1.1E-08	4.6360	8.0	8.1	1240	_	
						10/14/2022	578	1.1E-08	4.7000	8.3	8.3	1200	1101	
						10/21/2022	585	1.1E-08 1.1E-08	4.7606	-	-	-	-	
						10/24/2022	588	1.1E-08	4.7785	8.4	8.2	1253	_	
B2-ST-1 (1-3')	20L149	20.4	105.7	26.0	101.6	10/24/2022	592	1.1E-08 1.1E-08	4.7783	-	- 0.2	-	-	
B2-31-1 (1-3)	20L149	20.4	103.7	20.0	101.0	11/3/2022	598	1.1E-08 1.1E-08	4.8590	8.3	8.3	1207	-	
						11/4/2022	599	1.1E-08 1.1E-08	4.8705					
						11/4/2022	606	1.1E-08 1.1E-08	4.8703	8.5	8.4	1224	926	
						11/18/2022	613	9.7E-09	4.9876	- 0.5	- 0.7	-	-	
						11/23/2022	618	8.3E-09	5.0109	8.5	8.7	-	-	
						11/25/2022	620	9.8E-09	5.0305	-	-	-	-	
						12/2/2022	627	8.9E-09	5.0759	-	-	-	-	
						12/5/2022	630	8.8E-09	5.0894	8.4	8.5	1257	-	
						12/9/2022	634	1.0E-08	5.1250	-	-	-	-	
						12/16/2022	641	7.9E-09	5.1618	8.4	8.5	1190	894	2023 NSR
I						12/23/2022	648	8.8E-09	5.2138	-	-	-	-	2-29-101- NS

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 7)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial Co	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
		Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	Lab No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
														Kemarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
B2-ST-1 (1-3')	20L149	20.4	105.7	26.0	101.6	12/31/2022	656	8.7E-09	5.2624	-	-	-	-	
														2023 JER
														2.29.2023. NSR

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 1)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	onductivity	
Site ID	Lab No.	Moisture Content	Dry Unit Weight	Moisture Content	Dry Unit Weight		Days After Injection		Passed After Injection	In Flow	Out Flow	In Flow	Out Flow	Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						3/15/2021	0	2.4E-08	0.0000	-	-	-	-	
						3/22/2021	7	1.9E-08	0.0762	8.2	8.0	-	-	
						3/29/2021	14	2.0E-08	0.1547	8.2	8.1	-	-	
						4/05/2021	21	1.8E-08	0.2164	8.1	8.2	523	1271	
						4/12/2021	28	2.0E-08	0.2904	-	-	ı	-	
						4/13/2021	29	2.0E-08	0.2961	8.3	8.3	-	-	
						4/19/2021	35	2.0E-08	0.3672	8.2	8.1	-	-	
						4/26/2021	42	1.9E-08	0.4413	8.1	8.0	578	1313	
						4/30/2021	46	2.1E-08	0.4969	8.4	8.1	-	-	
						5/05/2021	51	2.1E-08	0.5617	8.4	8.2	-	-	
						5/07/2021	53	2.0E-08	0.5909	-	-	-	-	
B2-ST-4 (47-49')	20L152	36.6	84.2	39.0	83.2	5/10/2021	56	1.9E-08	0.6224	8.3	8.0	607	1081	
						5/14/2021	60	2.1E-08	0.6759	-	-	-	-	
						5/19/2021	65	2.0E-08	0.7406	8.0	8.2	-	-	
						5/21/2021	67	2.1E-08	0.7738	-	-	-	-	
						5/24/2021	70	2.1E-08	0.8050	8.2	8.2	666	1197	
						5/28/2021	74	2.1E-08	0.8595	8.3	8.1	-	-	
						6/02/2021	79	2.0E-08	0.9233	8.2	8.2	-	-	
						6/04/2021	81	2.1E-08	0.9549	-	-	-	-	
						6/07/2021	84	2.1E-08	0.9865	8.6	8.3	598	1074	
						6/11/2021	88	2.2E-08	1.0419	8.4	8.1	-	-	
						6/16/2021	93	2.1E-08	1.1071	8.4	8.0	-	-	3-29-2023 NSR
						6/18/2021	95	2.1E-08	1.1396	-	-	-	-	2-29-201- NSI

1- Based on Specimen Final Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 2)

Compatibility Test Results

Project Name: Belle River ALD Support Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	P	Н	Electrical C	conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						6/21/2021	98	2.0E-08	1.1710	8.4	8.2	665	944	
						6/25/2021	102	2.2E-08	1.2298	-	-	-	-	
						6/29/2021	106	2.1E-08	1.2848	8.6	8.4	-	-	
						7/02/2021	109	1.9E-08	1.3242	8.6	8.1	618	1000	
						7/07/2021	114	2.0E-08	1.3932	8.1	8.1	-	-	
						7/09/2021	116	1.9E-08	1.4223	-	-	-	-	
						7/13/2021	120	2.0E-08	1.4630	8.3	8.4	-	-	
						7/16/2021	123	2.1E-08	1.5068	-	-	-	-	
						7/19/2021	126	2.0E-08	1.5349	8.2	8.4	612	974	
						7/23/2021	130	2.1E-08	1.5898	8.2	8.1	-	-	
						7/29/2021	136	2.0E-08	1.6629	8.2	8.1	-	-	
B2-ST-4 (47-49')	20L152	36.6	84.2	39.0	83.2	7/30/2021	137	2.1E-08	1.6798	-	-	-	-	
						8/04/2021	142	1.8E-08	1.7315	8.3	8.2	610	933	
						8/06/2021	144	1.8E-08	1.7593	-	-	-	-	
						8/10/2021	148	2.0E-08	1.8002	8.2	8.1	-	-	
						8/13/2021	151	2.1E-08	1.8459	-	-	-	-	
						8/16/2021	154	2.1E-08	1.8754	8.3	8.1	-	-	
						8/20/2021	158	2.2E-08	1.9341	-	-	-	-	
						8/23/2021	161	1.9E-08	1.9568	8.1	8.3	582	857	
						8/27/2021	165	2.1E-08	2.0127	-	-	-	-	
						8/30/2021	168	2.1E-08	2.0365	8.5	8.3	-	-	
						9/03/2021	172	2.0E-08	2.0908	8.7	8.2	-	-	2-29-2023 NS
						9/08/2021	177	2.1E-08	2.1424	8.2	8.1	622	844	29-2021, 195

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 3)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	P	Н	Electrical C	Conductivity	
	Tab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	Lab No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						9/10/2021	179	2.1E-08	2.1734	-	-	-	-	
						9/13/2021	182	1.9E-08	2.2019	8.2	8.2	-	-	
						9/17/2021	186	2.0E-08	2.2564	-	-	-	-	
						9/20/2021	189	1.9E-08	2.2802	8.2	8.3	-	-	
						9/24/2021	193	2.1E-08	2.3353	8.2	8.2	597	879	
						10/01/2021	200	1.7E-08	2.4097	8.4	8.4	-	-	
						10/07/2021	206	2.0E-08	2.4809	8.3	8.2	-	-	
						10/08/2021	207	1.9E-08	2.4941	-	-	-	-	
						10/14/2021	213	1.8E-08	2.5518	8.4	8.4	589	818	
						10/15/2021	214	1.8E-08	2.5654	-	-	-	-	
						10/22/2021	221	1.7E-08	2.6261	8.7	8.5	-	-	
B2-ST-4 (47-49')	20L152	36.6	84.2	39.0	83.2	10/27/2021	226	2.0E-08	2.6889	8.6	8.4	-	-	
						10/29/2021	228	2.0E-08	2.7223	-	-	-	-	
						11/01/2021	231	2.1E-08	2.7543	8.1	8.1	610	831	
						11/05/2021	235	2.1E-08	2.8085	-	-	-	-	
						11/09/2021	239	1.8E-08	2.8361	8.8	8.5	-	-	
						11/12/2021	242	1.9E-08	2.8770	-	-	-	-	
						11/16/2021	246	1.8E-08	2.9080	8.8	8.3	-	-	
						11/19/2021	249	2.2E-08	2.9551	-	-	-	-	
						11/23/2021	253	2.2E-08	2.9935	8.8	8.3	661	783	
						11/26/2021	256	2.2E-08	3.0400	-	-	-	-	
						11/30/2021	260	1.9E-08	3.0726	8.8	8.3	-	-	3-29-2023 NSR
						12/03/2021	263	2.1E-08	3.1182	-	-	-	-	3-29-184. NS

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 4)

Compatibility Test Results

Project Name: Belle River ALD Support Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						12/06/2021	266	2.0E-08	3.1463	8.3	8.1	-	-	
						12/10/2021	270	1.9E-08	3.1951	8.4	8.1	671	741	
						12/14/2021	274	1.9E-08	3.2281	7.8	8.0	-	-	
						12/17/2021	277	2.0E-08	3.2715	-	-	-	-	
						12/20/2021	280	2.1E-08	3.3014	8.3	8.1	-	-	
						12/24/2021	284	2.0E-08	3.3522	8.6	8.1	645	721	
						12/30/2021	290	2.0E-08	3.4220	8.6	8.4	-	-	
						12/31/2021	291	2.0E-08	3.4396	-	-	-	-	
						01/04/2022	295	2.0E-08	3.4863	8.1	8.0	-	-	
						01/07/2022	298	1.9E-08	3.5276	-	-	-	-	
						1/10/2022	301	1.7E-08	3.5536	8.2	8.0	649	720	
B2-ST-4 (47-49')	20L152	36.6	84.2	39.0	83.2	1/14/2022	305	2.0E-08	3.6060	8.4	8.0	-	-	
						1/19/2022	310	1.9E-08	3.6684	8.5	8.1	-	-	
						1/21/2022	312	2.0E-08	3.7025	-	-	-	-	
						1/26/2022	317	1.8E-08	3.7442	8.3	8.4	1149	760	
						1/28/2022	319	1.8E-08	3.7723	-	-	-	-	
						2/1/2022	323	1.8E-08	3.8105	8.5	8.4	-	-	
						2/4/2022	326	1.9E-08	3.8526	-	-	-	-	
						2/7/2022	329	1.9E-08	3.8801	8.7	8.5	-	-	
						2/11/2022	333	1.9E-08	3.9313	-	-	-	-	
						2/14/2022	336	1.8E-08	3.9571	8.8	8.2	1191	770	
						2/18/2022	340	2.0E-08	4.0110	8.5	8.4	-	-	~W3 <er< td=""></er<>
						2/23/2022	345	2.0E-08	4.0726	8.8	8.4	1180	-	3-29-2023 NSP

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 5)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	P	Н	Electrical C	onductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	Lab No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						2/25/2022	347	2.0E-08	4.1040	-	-	-	-	
						2/28/2022	350	2.0E-08	4.1370	8.9	8.7	1200	765	
						3/4/2022	354	2.1E-08	4.1917	-	-	-	-	
						3/7/2022	357	2.2E-08	4.2179	8.6	8.7	-	-	
						3/11/2022	361	2.1E-08	4.2733	-	-	-	-	
						3/14/2022	364	1.9E-08	4.2968	8.5	8.6	-	-	
						3/18/2022	368	2.0E-08	4.3514	-	-	-	-	
						3/21/2022	371	1.8E-08	4.3743	8.8	8.8	1211	800	
						3/25/2022	375	2.2E-08	4.4317	8.9	8.2	1230	-	
						3/30/2022	380	2.1E-08	4.4978	8.2	8.6	1220	-	
						4/1/2022	382	2.1E-08	4.5292	-	-	-	-	
B2-ST-4 (47-49')	20L152	36.6	84.2	39.0	83.2	4/4/2022	385	2.1E-08	4.5628	8.1	8.6	1225	836	
						4/8/2022	389	2.1E-08	4.6180	-	-	-	-	
						4/9/2022	390	2.1E-08	4.6287	8.2	8.7	1222	-	
						4/14/2022	395	2.1E-08	4.6911	7.9	8.0	1278	-	
						4/15/2022	396	2.0E-08	4.7047	-	-	-	-	
						4/20/2022	401	1.8E-08	4.7578	7.8	7.9	1210		
						4/22/2022	403	1.9E-08	4.7842	-	-	-	-	
						4/27/2022	408	1.9E-08	4.8344	7.9	8.0	1214	-	
						4/29/2022	410	1.9E-08	4.8652	-	-	-	-	
						5/2/2022	413	2.0E-08	4.8997	7.9	8.0	1220	-	
						5/6/2022	417	2.1E-08	4.9558	-	-	-	-	3-29-2023 NSR
						5/7/2022	418	2.1E-08	4.9674	7.8	7.8	1236	873	3-29-202-131

1- Based on Specimen Initial Conditions.

2- Based on average of four readings.

Vbbio

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 6)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	onductivity	
Site ID	Lab No.	Moisture Content	Dry Unit Weight	Moisture Content	Dry Unit Weight		Days After Injection		Passed After Injection	In Flow	Out Flow	In Flow	Out Flow	Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						5/12/2022	423	2.1E-08	5.0318	7.7	7.9	1196	-	
						5/13/2022	424	2.1E-08	5.0504	-	-	-	-	
						5/17/2022	428	2.2E-08	5.1006	7.8	8.0	1239		
						5/20/2022	431	2.1E-08	5.1460	-	-	-	-	
						5/23/2022	434	2.1E-08	5.1748	7.9	8.3	1247	956	
						5/27/2022	438	2.2E-08	5.2328	-	-	-	-	
						5/28/2022	439	2.1E-08	5.2441	7.8	7.8	-	-	
						6/3/2022	445	2.1E-08	5.3162	8.0	8.1	1289	-	
						6/8/2022	450	2.1E-08	5.3852	8.0	8.1	1270	1536	
						6/10/2022	452	2.2E-08	5.4180	-	-	-	-	
						6/13/2022	455	2.2E-08	5.4529	8.2	8.3	1277	-	
B2-ST-4 (47-49')	20L152	36.6	84.2	39.0	83.2	6/17/2022	459	2.2E-08	5.5106	8.1	8.1	1264	-	
						6/22/2022	464	2.1E-08	5.5783	7.9	8.1	1250	1771	
						6/24/2022	466	2.1E-08	5.6113		-	-	-	
						6/27/2022	469	2.1E-08	5.6448	8.4	8.3	1199	-	
						7/1/2022	473	2.2E-08	5.7032	-	-	-	-	
						7/5/2022	477	2.3E-08	5.7361	8.2	8.2	1276	-	
						7/8/2022	480	2.1E-08	5.7838	-	-	-	-	
						7/11/2022	483	2.1E-08	5.8123	8.1	8.2	1271	1013	
						7/15/2022	487	2.2E-08	5.8711	-	-	-	-	
						7/18/2022	490	2.1E-08	5.8961	8.1	8.3	1251	-	
						7/22/2022	494	2.3E-08	5.9550	-	-	-	-	-03 .cR
						7/27/2022	499	2.2E-08	6.0271	8.5	8.6	1152	-	3-29-2023 NSR

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 7)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	P	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
									- 1,000					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						7/29/2022	501	2.2E-08	6.0446	8.0	8.2	1164	977	
						8/2/2022	505	2.2E-08	6.0952	7.9	8.2	1261	-	
						8/5/2022	508	2.2E-08	6.1437	-	-	-	-	
						8/8/2022	511	2.1E-08	6.1722	8.4	8.3	1264	-	
						8/12/2022	515	2.1E-08	6.2321	-	-	-	-	
						8/15/2022	518	2.2E-08	6.2569	8.9	8.4	1221	2090	
						8/19/2022	522	2.2E-08	6.3160	8.3	8.6	-	-	
						8/24/2022	527	2.1E-08	6.3850	7.9	8.1	1224	-	
						8/26/2022	529	2.2E-08	6.4180	-	-	-	-	
						8/29/2022	532	2.2E-08	6.4531	8.2	8.2	1244	1244	
						9/2/2022	536	2.2E-08	6.5122	8.3	8.3	1253	-	
B2-ST-4 (47-49')	20L152	36.6	84.2	39.0	83.2	9/7/2022	541	2.1E-08	6.5807	8.1	8.1	1250	-	
						9/9/2022	543	2.1E-08	6.6150	-	-	-	-	
						9/12/2022	546	2.1E-08	6.6491	8.0	8.1	1168	1783	
						9/16/2022	550	2.2E-08	6.7092	8.6	8.5	1283	-	
						9/21/2022	555	2.1E-08	6.7757	8.5	8.6	1191	-	
						9/23/2022	557	2.1E-08	6.8100	-	-	-	-	
						9/26/2022	560	2.2E-08	6.8445	8.4	8.2	1239	1059	
						9/30/2022	564	2.2E-08	6.9031	8.2	8.2	1196	-	
						10/7/2022	571	2.1E-08	7.0035	-	-	-	-	
						10/10/2022	574	2.1E-08	7.0365	8.9	8.3	1213	1045	
						10/14/2022	578	2.2E-08	7.0950	8.2	8.1	1207	-	23 22
						10/19/2022	583	2.0E-08	7.1600	8.4	8.3	1201	-	3-29-2023 NSR

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 8)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture			Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
								- 101000 - 00 -						
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						10/21/2022	585	1.9E-08	7.1910	-	-	-	-	
						10/24/2022	588	2.1E-08	7.2276	8.2	8.1	1190	-	
						10/28/2022	592	2.1E-08	7.2259	8.6	8.3	1231	-	
						11/2/2022	597	2.1E-08	7.3513	7.9	8.1	1312	-	
						11/4/2022	599	2.2E-08	7.3849	-	-	-	-	
						11/7/2022	602	2.2E-08	7.4202	8.3	8.2	1218	997	
						11/11/2022	606	2.2E-08	7.4791	8.1	8.3	-	-	
						11/18/2022	613	1.9E-08	7.5493	8.2	8.4	1215	-	
						11/23/2022	618	1.7E-08	7.5999	8.6	8.7	1193	1011	
B2-ST-4 (47-49')	20L152	36.6	84.2	39.0	83.2	11/25/2022	620	1.9E-08	7.6286	-	-	-	-	
						12/2/2022	627	1.8E-08	7.7056	-	-	-	-	
						12/3/2022	628	1.7E-08	7.7151	8.8	8.8	-	-	
						12/5/2022	630	1.7E-08	7.7292	8.6	8.6	1194	-	
						12/9/2022	634	1.9E-08	7.7785	-	-	-	-	
						12/13/2022	638	1.7E-08	7.8139	8.6	8.9	1238	1043	
						12/16/2022	641	1.8E-08	7.8475	-	-	-	-	
						12/20/2022	645	1.6E-08	7.8684	9.4	9.0	1290	-	
						12/23/2022	648	1.8E-08	7.9165	-	-	-	-	
						12/31/2022	656	1.6E-08	7.9960	-	-	-	-	
I														03 a
														3-29-2023, NSR

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 1)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial Co	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
Site ID	Lab No.	Moisture Content	Dry Unit Weight	Moisture Content	Dry Unit Weight		Days After Injection		Passed After Injection	In Flow	Out Flow	In Flow	Out Flow	Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						3/15/2021	0	2.2E-08	0.0000	-	-	-	-	
						3/22/2021	7	2.0E-08	0.1144	8.5	8.2	=	-	
						3/29/2021	14	1.9E-08	0.2120	8.1	8.2	-	-	
						4/05/2021	21	1.7E-08	0.3126	8.2	8.2	633	1118	
						4/12/2021	28	1.9E-08	0.4132	-	-	-	-	
						4/13/2021	29	1.9E-08	0.4221	8.3	8.1	-	-	
						4/19/2021	35	1.9E-08	0.5181	8.2	8.1	-	-	
						4/26/2021	42	1.7E-08	0.6197	8.4	8.0	648	1027	
						5/03/2021	49	1.9E-08	0.7283	8.5	8.1	-	-	
						5/10/2021	56	1.8E-08	0.8335	8.1	7.8	-	-	
						5/14/2021	60	1.9E-08	0.9042	8.5	8.1	719	980	
B3-ST-5 (77-79')	20L160	20.5	106.6	19.5	111.0	5/20/2021	66	1.8E-08	1.0021	8.6	8.4	-	-	
						5/21/2021	67	1.8E-08	1.0259	-	-	-	-	
						5/25/2021	71	1.9E-08	1.0878	8.1	8.1	-	-	
						5/28/2021	74	1.9E-08	1.1473	8.3	8.2	611	1024	
						6/04/2021	81	1.8E-08	1.2549	8.6	8.0	-	-	
						6/10/2021	87	1.9E-08	1.3556	8.8	8.6	-	-	
						6/11/2021	88	1.9E-08	1.3775	-	-	-	-	
						6/16/2021	93	1.8E-08	1.4522	8.5	8.1	699	927	
						6/18/2021	95	1.8E-08	1.4956	-	-	-	-	
						6/22/2021	99	1.8E-08	1.5517	8.2	7.9	-	-	
						6/25/2021	102	2.0E-08	1.6200	-	-	=	-	3-29-2023 NSR
						6/28/2021	105	1.9E-08	1.6642	8.3	8.6	-	-	3-29-184. MS

1- Based on Specimen Final Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 2)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	p	Н	Electrical (Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						7/02/2021	109	2.0E-08	1.7456	8.2	7.8	-	-	
						7/08/2021	115	1.8E-08	1.8481	8.2	8.2	735	816	
						7/09/2021	116	1.8E-08	1.8697	-	-	-	-	
						7/14/2021	121	1.9E-08	1.9475	8.3	8.1	-	-	
						7/16/2021	123	1.8E-08	1.9823	-	-	-	-	
						7/20/2021	127	1.9E-08	2.0134	8.2	8.2	-	-	
						7/23/2021	130	1.9E-08	2.0741	-	-	-	-	
						7/27/2021	134	1.8E-08	2.1274	8.7	8.2	681	862	
						7/30/2021	137	1.8E-08	2.1826	-	-	-	-	
						8/03/2021	141	1.6E-08	2.2278	8.4	8.3	-	-	
						8/06/2021	144	1.6E-08	2.2787	-	-	-	-	
B3-ST-5 (77-79')	20L160	20.5	106.6	19.5	111.0	8/10/2021	148	1.7E-08	2.3263	8.1	8.1	-	-	
						8/13/2021	151	1.8E-08	2.3830	-	-	-	-	
						8/16/2021	154	1.9E-08	2.4223	8.1	8.1	714	817	
						8/20/2021	158	1.8E-08	2.4934	-	-	-	-	
						8/23/2021	161	1.6E-08	2.5242	8.1	8.1	-	-	
						8/27/2021	165	1.8E-08	2.5950	-	-	-	-	
						8/30/2021	168	1.9E-08	2.6279	8.1	8.2	-	-	
						9/03/2021	172	1.8E-08	2.6980	8.4	8.1	647	811	
						9/09/2021	178	1.7E-08	2.7929	8.1	8.0	-	-	
						9/10/2021	179	1.7E-08	2.8139	-	-	-	-	
						9/14/2021	183	1.8E-08	2.8731	8.0	7.9	-	-	3-29-2023 NSR
						9/17/2021	186	1.7E-08	2.9252	-	-	-	-	2.29-201-14Ste

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 3)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						9/21/2021	190	1.8E-08	2.9740	8.3	8.1	600	792	
						9/24/2021	193	1.8E-08	3.0317	-	-	-	-	
						9/28/2021	197	1.6E-08	3.0759	8.1	8.0	-	-	
						10/01/2021	200	1.6E-08	3.1277	-	-	-	-	
						10/05/2021	204	1.8E-08	3.1790	8.2	8.1	-	-	
						10/08/2021	207	1.8E-08	3.2357	-	-	-	-	
						10/12/2021	211	1.7E-08	3.2808	8.1	8.0	580	777	
						10/15/2021	214	1.8E-08	3.3342	-	-	-	-	
						10/19/2021	218	1.4E-08	3.3741	8.1	8.2	-	-	
						10/22/2021	221	1.6E-08	3.4245	-	-	-	-	
						10/26/2021	225	1.7E-08	3.4754	8.5	8.2	-	-	
B3-ST-5 (77-79')	20L160	20.5	106.6	19.5	111.0	10/29/2021	228	1.8E-08	3.5315	-	-	-	-	
						11/01/2021	231	1.9E-08	3.5702	8.1	8.0	669	672	
						11/05/2021	235	1.9E-08	3.6440	-	-	-	-	
						11/09/2021	239	1.6E-08	3.6822	8.0	8.0	-	-	
						11/12/2021	242	1.7E-08	3.7371	-	-	-	-	
						11/16/2021	246	1.6E-08	3.7819	8.2	8.1	-	-	
						11/19/2021	249	2.1E-08	3.8441	-	-	-	-	
						11/24/2021	254	2.0E-08	3.9063	8.5	8.2	601	800	
						11/26/2021	256	2.1E-08	3.9536	-	-	-	-	
						12/02/2021	262	1.7E-08	4.0228	8.1	8.2	-	-	
						12/03/2021	263	1.7E-08	4.0475	-	-	-	-	3-29-2023 NSR
						12/08/2021	268	1.8E-08	4.1201	8.1	7.9	-	-	3-29-dBy.

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 4)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial Co	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	P	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						12/10/2021	270	1.8E-08	4.1674	-	-	-	-	
						12/14/2021	274	1.8E-08	4.2369	7.9	7.7	579	758	
						12/17/2021	277	1.8E-08	4.2936	-	-	-	-	
						12/20/2021	280	1.8E-08	4.3333	8.3	7.9	-	-	
						12/24/2021	284	1.8E-08	4.4010	-	-	-	-	
						12/28/2021	288	1.8E-08	4.4449	8.8	8.5	-	-	
						12/31/2021	291	1.9E-08	4.5034	-	-	-	-	
						01/04/2022	295	1.8E-08	4.5510	8.1	7.8	652	786	
						01/07/2022	298	1.8E-08	4.6086	1	-	-	-	
						1/10/2022	301	1.7E-08	4.6449	8.4	7.9	-	-	
						01/14/2022	305	1.8E-08	4.7178	-	-	=	-	
B3-ST-5 (77-79')	20L160	20.5	106.6	19.5	111.0	1/18/2022	309	1.6E-08	4.7602	8.0	7.9	-	-	
						1/21/2022	312	1.8E-08	4.8233	-	-	=	-	
						1/24/2022	315	1.8E-08	4.8581	8.2	7.9	1051	790	
						1/28/2022	319	1.8E-08	4.9267	-	-	-	-	
						1/31/2022	322	1.6E-08	5.0304	8.2	8.3	-	-	
						2/7/2022	329	1.7E-08	5.0640	8.4	8.2	-	-	
						2/11/2022	333	1.7E-08	5.1323	-	-	-	-	
						2/14/2022	336	1.7E-08	5.1676	8.5	8.5	1183	849	
						2/18/2022	340	1.9E-08	5.2408	8.5	8.0	-	-	
						2/23/2022	345	1.9E-08	5.3296	8.5	8.5	-	-	
						2/25/2022	347	1.9E-08	5.3705	-	-	-	-	03 cR
						2/28/2022	350	1.9E-08	5.4168	8.5	8.5	1177	729	3-29-2023 NSR

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 5)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	p	Н	Electrical C	conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						3/4/2022	354	1.9E-08	5.4927	-	-	-	-	
						3/7/2022	357	2.0E-08	5.5306	8.6	8.5	-	-	
						3/11/2022	361	2.0E-08	5.6092	-	-	-	-	
						3/14/2022	364	1.8E-08	5.6440	8.5	8.8	1	-	
						3/18/2022	368	1.9E-08	5.7181	-	-	-	-	
						3/21/2022	371	1.7E-08	5.7507	8.1	8.4	1150	783	
						3/25/2022	375	2.1E-08	5.8285	9.1	8.9	1230	-	
						3/31/2022	381	2.0E-08	5.9182	8.6	7.9	1208	-	
						4/1/2022	382	2.1E-08	5.9426	-	-	-	-	
						4/5/2022	386	1.9E-08	6.0087	8.2	8.6	1274	741	
						4/8/2022	389	2.0E-08	6.0719	-	-	-	-	
B3-ST-5 (77-79')	20L160	20.5	106.6	19.5	111.0	4/11/2022	392	1.8E-08	6.1097	7.5	7.6	1249	-	
						4/16/2022	397	2.0E-08	6.2036	7.7	8.1	1223	-	
						4/22/2022	403	1.7E-08	6.2945	-	-	-	-	
						4/23/2022	404	1.8E-08	6.3079	7.9	7.9	1261	972	
						4/29/2022	410	1.9E-08	6.4110	8.3	8.0	1241	-	
						5/5/2022	416	1.9E-08	6.5156	8.2	8.1	1294	-	
						5/6/2022	417	2.0E-08	6.5409	-	-	1	-	
						5/11/2022	422	1.9E-08	6.6190	7.9	8.0	1247	925	
						5/13/2022	424	2.0E-08	6.6666	-	-	-	-	
						5/16/2022	427	2.1E-08	6.7160	8.0	8.1	1284	-	
						5/20/2022	431	2.0E-08	6.7928	-	-	-	-	3.29.2023 NSR
						5/23/2022	434	1.9E-08	6.8273	7.9	8.1	1290	-	3-29-184. 73

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 6)

Compatibility Test Results

Project Name: Belle River ALD Support Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						5/27/2022	438	2.1E-08	6.9063	-	-	-	-	
						5/28/2022	439	2.0E-08	6.9218	7.9	8.0	1250	-	
						6/3/2022	445	2.0E-08	7.0243	8.1	8.1	1241	-	
						6/8/2022	450	2.1E-08	7.1197	8.4	8.1	1247	-	
						6/10/2022	452	2.1E-08	7.1652	-	-	-	-	
						6/13/2022	455	2.1E-08	7.2155	8.2	8.2	1249	813	
						6/17/2022	459	2.1E-08	7.2969	-	-	1	-	
						6/20/2022	462	2.0E-08	7.3329	8.2	8.1	1287	-	
						6/24/2022	466	2.1E-08	7.4128	-	-	-	-	
						6/27/2022	469	1.9E-08	7.4476	8.2	8.3	1210	-	
						7/1/2022	473	2.1E-08	7.5290	-	-	-	-	
B3-ST-5 (77-79')	20L160	20.5	106.6	19.5	111.0	7/5/2022	477	2.2E-08	7.5766	8.2	8.5	1183	1104	
						7/8/2022	480	2.1E-08	7.6424	-	-	-	-	
						7/11/2022	483	2.0E-08	7.6827	8.2	8.2	1250	-	
						7/15/2022	487	2.2E-08	7.7647	-	-	-	-	
						7/18/2022	490	2.0E-08	7.8010	8.1	8.2	1152	-	
						7/22/2022	494	2.2E-08	7.8825	-	-	-	-	
						7/25/2022	497	2.0E-08	7.9184	8.0	8.1	1118	834	
						7/28/2022	500	2.1E-08	7.9828	8.3	8.2	1191	-	
						7/29/2022	501	2.1E-08	8.0033	-	-	-	-	
						8/2/2022	505	2.1E-08	8.0774	7.9	8.1	1249	_	
						8/5/2022	508	2.1E-08	8.1445	-	-	-	-	3.79.7073 NSR
						8/8/2022	511	2.0E-08	8.1856	8.2	8.3	1203	-	3-29-101 NS

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 7)

Compatibility Test Results

Project Name: Belle River ALD Support Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						8/12/2022	515	2.2E-08	8.2683	-	-	-	-	
						8/15/2022	518	2.0E-08	8.3036	8.2	8.1	1224	-	
						8/19/2022	522	2.1E-08	8.3839	8.4	8.3	1178	-	
						8/24/2022	527	2.1E-08	8.4790	8.1	8.2	1231	801	
						8/26/2022	529	2.1E-08	8.5254	-	-	-	-	
						8/29/2022	532	2.1E-08	8.5751	8.1	8.3	1242	-	
						9/2/2022	536	2.2E-08	8.6559	8.1	8.3	1237	-	
						9/7/2022	541	2.0E-08	8.7501	8.1	8.2	1218	922	
						9/9/2022	543	2.0E-08	8.7965	-	-	-	-	
						9/12/2022	546	2.1E-08	8.8447	8.1	8.2	1194	-	
						9/16/2022	550	2.1E-08	8.9270	8.2	8.2	1179	-	
B3-ST-5 (77-79')	20L160	20.5	106.6	19.5	111.0	9/22/2022	556	1.9E-08	9.0316	7.9	8.0	1238	1133	
						9/23/2022	557	2.0E-08	9.0584	-	-	-	-	
						9/27/2022	561	2.1E-08	9.1280	8.1	8.1	1224	-	
						9/30/2022	564	2.1E-08	9.1938	-	-	-	-	
						10/3/2022	567	2.0E-08	9.2344	8.4	8.3	1212	-	
						10/7/2022	571	2.1E-08	9.3149	8.2	8.2	1195	982	
						10/12/2022	576	1.9E-08	9.4067	8.8	8.3	1250	-	
						10/14/2022	578	2.1E-08	9.4537	-	-	-	-	
						10/18/2022	582	1.9E-08	9.5122	8.5	8.2	1191	-	
						10/21/2022	585	1.9E-08	9.5717	-	-	-	-	
						10/24/2022	588	2.0E-08	9.6153	8.6	8.3	1186	870	2023 EQ
						10/28/2022	592	2.0E-08	9.6949	-	-	-	-	3-29-2023 NSF

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 8)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	Lab No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						10/31/2022	595	2.0E-08	9.7324	8.0	8.1	1236	-	
						11/4/2022	599	2.1E-08	9.8135	-	-	-	-	
						11/7/2022	602	2.0E-08	9.8507	8.2	8.3	1195	-	
						11/11/2022	606	2.1E-08	9.9319	8.1	8.3	1331	907	
						11/18/2022	613	1.7E-08	10.0270	8.3	8.4	1397	-	
						11/25/2022	620	1.6E-08	10.1139	-	-	-	-	
						11/30/2022	625	1.6E-08	10.1911	8.6	8.8	1256	-	
B3-ST-5 (77-79')	20L160	20.5	106.6	19.5	111.0	12/1/2022	626	1.6E-08	10.2008	8.5	8.6	1161	931	
						12/2/2022	627	1.5E-08	10.2170	-	-	-	-	
						12/8/2022	633	1.4E-08	10.2911	8.3	8.5	1376	-	
						12/9/2022	634	1.5E-08	10.3122	-	-	-	-	
						12/16/2022	641	1.5E-08	10.4070	8.6	8.7	1213	-	
						12/22/2022	647	1.3E-08	10.4771	8.6	8.6	1273	955	
						12/23/2022	648	1.5E-08	10.4994	-	-	-	-	
						12/31/2022	656	1.6E-08	10.6189	-	-	-	-	
														229-2023 NSR

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 1)

Compatibility Test Results

Project Name: Belle River ALD Support Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	conductivity	
	T .1	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	Lab No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						3/15/2021	0	2.7E-08	0.0000	-	-	-	-	
						3/19/2021	4	3.0E-08	0.0694	8.6	8.4	-	-	
						3/22/2021	7	2.9E-08	0.1236	-	-	-	-	
						3/24/2021	9	3.0E-08	0.1481	8.7	8.2	-	-	
						3/29/2021	14	2.5E-08	0.2201	8.4	8.3	565	910	
						4/02/2021	18	2.3E-08	0.2835	8.5	8.1	-	-	
						4/05/2021	21	2.3E-08	0.3313	-	-	-	-	
						4/07/2021	23	2.4E-08	0.3526	7.9	8.0	-	-	
						4/12/2021	28	2.6E-08	0.4258	-	-	-	-	
						4/13/2021	29	2.5E-08	0.4337	7.7	8.0	661	930	
						4/19/2021	35	2.4E-08	0.5144	8.0	8.0	-	-	
B4-ST-3 (47-49')	20L164	42.1	80.7	38.8	84.3	4/23/2021	39	2.5E-08	0.5782	8.5	8.7	-	-	
						4/26/2021	42	2.5E-08	0.6278	-	-	=	-	
						4/27/2021	43	2.5E-08	0.6412	8.1	8.0	586	823	
						5/03/2021	49	2.6E-08	0.7411	8.4	8.1	-	-	
						5/07/2021	53	2.7E-08	0.8047	8.7	8.1	-	-	
						5/12/2021	58	2.5E-08	0.8788	8.3	8.1	518	788	
						5/14/2021	60	2.6E-08	0.9138	-	-	=	-	
						5/17/2021	63	2.5E-08	0.9507	8.2	8.2	-	-	
						5/21/2021	67	2.6E-08	1.0152	7.7	7.8	-	-	
						5/25/2021	71	2.6E-08	1.0790	7.8	7.8	584	746	
						5/28/2021	74	2.7E-08	1.1324	7.8	8.0	-	-	329-2023 NSR
						6/01/2021	78	2.7E-08	1.1968	7.9	7.9	-	-	3-29-184. MS

1- Based on Specimen Final Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 2)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						6/04/2021	81	2.6E-08	1.2483	8.0	7.9	586	778	
						6/08/2021	85	2.6E-08	1.3136	8.1	8.2	-	-	
						6/11/2021	88	2.6E-08	1.3669	8.2	8.1	-	-	
						6/15/2021	92	2.6E-08	1.4316	8.2	8.2	597	730	
						6/18/2021	95	2.6E-08	1.4863	8.1	8.2	-	-	
						6/23/2021	100	2.5E-08	1.5629	8.4	8.3	-	-	
						6/25/2021	102	2.7E-08	1.6056	-	-	-	-	
						6/28/2021	105	2.6E-08	1.6453	8.5	8.3	650	774	
						7/02/2021	109	2.7E-08	1.7123	8.2	7.8	-	-	
						7/06/2021	113	2.7E-08	1.7795	8.3	8.4	-	-	
						7/09/2021	116	2.5E-08	1.8314	8.5	8.1	710	830	
B4-ST-3 (47-49')	20L164	42.1	80.7	38.8	84.3	7/14/2021	121	2.6E-08	1.9130	8.3	8.2	-	-	
						7/16/2021	123	2.8E-08	1.9569	-	-	-	-	
						7/19/2021	126	2.7E-08	1.9941	8.3	8.2	-	-	
						7/23/2021	130	2.6E-08	2.0575	8.4	8.2	651	734	
						7/28/2021	135	2.6E-08	2.1330	8.2	8.2	-	-	
						7/30/2021	137	2.6E-08	2.1727	-	-	-	-	
						8/03/2021	141	2.3E-08	2.2186	8.3	8.2	-	-	
						8/06/2021	144	2.4E-08	2.2681	-	-	-	-	
						8/09/2021	147	2.5E-08	2.3002	8.3	8.2	651	749	
						8/13/2021	151	2.7E-08	2.3653	8.1	8.1	-	-	
						8/17/2021	155	2.8E-08	2.4344	8.3	8.3	-	-	3-29-2023 NSR
						8/20/2021	158	2.7E-08	2.4869	8.3	8.2	611	671	3-29-10- NSF

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 3)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						8/25/2021	163	2.5E-08	2.5687	8.0	8.0	-	-	
						8/27/2021	165	2.5E-08	2.6071	-	-	-	-	
						8/30/2021	168	2.7E-08	2.6423	7.9	8.0	-	-	
						9/03/2021	172	2.5E-08	2.7066	8.1	8.1	571	696	
						9/07/2021	176	2.7E-08	2.7704	8.2	8.2	-	-	
						9/10/2021	179	2.6E-08	2.8255	8.4	8.2	-	-	
						9/14/2021	183	2.5E-08	2.8889	8.0	8.0	631	651	
						9/17/2021	186	2.4E-08	2.9386	-	-	-	-	
						9/20/2021	189	2.5E-08	2.9693	8.1	8.2	-	-	
						9/24/2021	193	2.6E-08	3.0364	8.0	8.0	-	-	
						9/28/2021	197	2.5E-08	3.0976	8.1	8.2	571	632	
B4-ST-3 (47-49')	20L164	42.1	80.7	38.8	84.3	10/01/2021	200	2.4E-08	3.1463	-	-	-	-	
						10/07/2021	206	2.6E-08	3.2321	8.2	8.1	-	-	
						10/08/2021	207	2.6E-08	3.2511	-	-	-	-	
						10/12/2021	211	2.4E-08	3.3017	8.1	8.1	568	659	
						10/15/2021	214	2.4E-08	3.3497	-	-	-	-	
						10/18/2021	217	2.1E-08	3.3766	8.4	8.2	-	-	
						10/22/2021	221	2.4E-08	3.4364	-	-	-	-	
						10/26/2021	225	2.6E-08	3.5019	8.2	8.1	527	653	
						10/29/2021	228	2.5E-08	3.5514	-	-	-	-	
						11/01/2021	231	2.5E-08	3.5824	8.2	8.2	-	-	
						11/05/2021	235	2.5E-08	3.6451	8.4	8.3	-	-	3-29-2023 NSR
						11/09/2021	239	2.4E-08	3.7083	8.5	8.2	667	662	3-129 By.

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 4)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	onductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						11/12/2021	242	2.4E-08	3.7578	-	-	-	-	
						11/16/2021	246	2.2E-08	3.7928	8.4	8.2	-	-	
						11/19/2021	249	2.7E-08	3.8436	-	-	-	-	
						11/21/2021	251	2.6E-08	3.8675	8.5	8.2	-	-	
						11/26/2021	256	2.5E-08	3.9386	-	-	-	-	
						11/30/2021	260	2.3E-08	3.9661	8.4	8.2	669	665	
						12/03/2021	263	2.5E-08	4.0184	-	-	-	-	
						12/07/2021	267	2.4E-08	4.0560	8.6	8.4	-	-	
						12/10/2021	270	2.4E-08	4.0703		-	-	-	
						12/14/2021	274	2.3E-08	4.1083	8.7	8.2	-	-	
						12/17/2021	277	2.5E-08	4.1600	-	-	-	-	
B4-ST-3 (47-49')	20L164	42.1	80.7	38.8	84.3	12/20/2021	280	2.5E-08	4.1905	8.2	8.0	580	688	
						12/24/2021	284	2.5E-08	4.2524	-	-	-	-	
						12/28/2021	288	2.4E-08	4.2850	8.2	8.1	-	-	
						12/31/2021	291	2.5E-08	4.3382	-	-	-	-	
						01/03/2022	294	2.5E-08	4.3687	8.9	8.5	-	-	
						01/07/2022	298	2.5E-08	4.4328	8.3	7.8	645	689	
						1/12/2022	303	2.5E-08	4.5079	8.7	8.8	-	-	
						1/14/2022	305	2.5E-08	4.5459	-	-	-	-	
						1/18/2022	309	2.5E-08	4.5933	8.1	8.0	-	-	
						1/22/2022	313	2.5E-08	4.6599	7.7	8.0	1072	668	
						1/28/2022	319	2.4E-08	4.7378	7.9	7.9	_	-	3-29-2023 NSR
						2/2/2022	324	2.3E-08	4.8125	9.0	8.6	_	-	29-2015 NSK

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 5)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	p	Н	Electrical C	conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						2/4/2022	326	2.4E-08	4.8490	-	-	-	-	
						2/7/2022	329	2.4E-08	4.8863	8.4	8.5	1148	672	
						2/11/2022	333	2.3E-08	4.9476	8.6	8.6	-	-	
						2/16/2022	338	2.4E-08	5.0232	8.2	8.3	1	-	
						2/18/2022	340	2.5E-08	5.0614	-	-	-	-	
						2/21/2022	343	2.5E-08	5.0994	8.3	8.6	1167	696	
						2/25/2022	347	2.6E-08	5.1632	8.9	8.6	-	-	
						3/3/2022	353	2.5E-08	5.2479	8.4	8.5	-	-	
						3/4/2022	354	2.5E-08	5.2686	-	-	-	-	
						3/7/2022	357	2.8E-08	5.3156	8.6	8.7	1167	697	
						3/11/2022	361	2.7E-08	5.3830	8.8	8.6	-	-	
B4-ST-3 (47-49')	20L164	42.1	80.7	38.8	84.3	3/16/2022	366	2.4E-08	5.4466	8.8	8.8	-	-	
						3/18/2022	368	2.6E-08	5.4857	-	-	-	-	
						3/21/2022	371	2.4E-08	5.5222	8.8	8.6	1174	726	
						3/25/2022	375	2.8E-08	5.5901	8.7	8.8	-	-	
						3/29/2022	379	2.6E-08	5.6584	8.6	8.8	-	-	
						4/1/2022	382	2.7E-08	5.7124	8.2	8.7	1196	811	
						4/5/2022	386	2.6E-08	5.7786	7.9	8.6	1232	-	
						4/8/2022	389	2.7E-08	5.8324	-	-	1	-	
						4/9/2022	390	2.7E-08	5.8467	7.9	8.3	1228	-	
						4/14/2022	395	2.6E-08	5.9226	8.1	8.2	1228	923	
						4/15/2022	396	2.6E-08	5.9412	-	-	-	-	3.29.2023 NSR
						4/20/2022	401	2.2E-08	6.0010	7.7	7.7	1246	-	3-29-1BY. N.

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 6)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
()		(/0)	(per)	(/0)	(per)	4/22/2022	403	2.0E-08	6.0228	-	-		- (μs/cm·)	
						4/27/2022	408	2.2E-08	6.0866	7.9	7.8	1228	-	
						4/29/2022	410	2.3E-08	6.1250	_	_	_	-	
						5/2/2022	413	2.6E-08	6.1651	7.8	8.0	1186	874	
						5/6/2022	417	2.7E-08	6.2322	8.0	8.0	1254	-	
						5/11/2022	422	2.6E-08	6.3207	7.9	8.0	1226	-	
						5/13/2022	424	2.6E-08	6.3694	-	-	-	-	
						5/17/2022	428	2.6E-08	6.4304	7.8	7.9	1214	871	
						5/20/2022	431	2.6E-08	6.4855	-	-	-	-	
						5/23/2022	434	2.5E-08	6.5173	8.1	8.1	1228	-	
						5/27/2022	438	2.8E-08	6.5863	7.9	8.0	1239	-	
B4-ST-3 (47-49')	20L164	42.1	80.7	38.8	84.3	5/31/2022	442	2.6E-08	6.6531	8.0	8.0	1246	-	
						6/3/2022	445	2.7E-08	6.7084	-	-	-	-	
						6/4/2022	446	2.7E-08	6.7244	7.9	7.9	1282	-	
						6/9/2022	451	2.5E-08	6.7984	7.9	8.0	1228	-	
						6/10/2022	452	2.6E-08	6.8198	-	-	-	-	
						6/13/2022	455	2.8E-08	6.8685	8.3	8.2	1212	1296	
						6/17/2022	459	2.8E-08	6.9374	7.9	8.1	1251	-	
						6/21/2022	463	2.8E-08	7.0059	7.9	8.1	1259	-	
						6/24/2022	466	2.7E-08	7.0614	-	-	-	-	
						6/27/2022	469	2.5E-08	7.0921	8.1	8.2	1229	1237	
						7/1/2022	473	2.8E-08	7.1605	8.1	8.2	1222	-	3-29-2023 NSR
						7/5/2022	477	3.0E-08	7.2337	8.0	8.2	1215	-	3-29 d By.

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 7)

Compatibility Test Results

Project Name: Belle River ALD Support Project No.: PN1017

1204

1222

1156

					-		1	est Information	ı			1		
			onditions		onditions	Date	Number of	Permeability	Pore Volumes	I	Н		Conductivity	
	Lab	Moisture		Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						7/8/2022	480	2.8E-08	7.2913	-	-	-	-	
						7/11/2022	483	2.6E-08	7.3233	8.1	8.2	1203	938	
						7/15/2022	487	2.8E-08	7.3925	8.3	8.3	1242	-	
						7/19/2022	491	2.8E-08	7.4631	8.0	8.0	1228	-	
						7/22/2022	494	2.8E-08	7.5214	-	-	-	-	
						7/25/2022	497	2.8E-08	7.5536	8.1	8.2	1176	1521	
						7/28/2022	500	2.7E-08	7.6087	8.1	8.2	1187	-	
						7/29/2022	501	2.8E-08	7.6296	-	-	-	-	
						8/1/2022	504	2.8E-08	7.6770	8.2	8.3	1266	-	
						8/5/2022	508	2.8E-08	7.7479	7.9	8.0	1174	1637	
						8/9/2022	512	2.7E-08	7.8162	8.3	8.5	1245	-	
B4-ST-3 (47-49')	20L164	42.1	80.7	38.8	84.3	8/12/2022	515	2.8E-08	7.8744	-	-	-	-	
						8/15/2022	518	2.7E-08	7.9059	8.1	8.2	1223	-	
						8/19/2022	522	2.7E-08	7.9746	8.2	8.3	1230	987	
						8/23/2022	526	2.8E-08	8.0433	8.1	8.2	1213	-	
						8/26/2022	529	2.7E-08	8.0997	8.3	8.3	1276	-	
						8/30/2022	533	2.8E-08	8.1695	7.9	8.0	1192	1371	
						9/2/2022	536	2.8E-08	8.2265	8.1	8.1	1228	-	
						9/6/2022	540	2.7E-08	8.2946	8.3	8.3	1275	-	
						9/9/2022	543	2.7E-08	8.3511	8.3	8.4	1208	977	
						9/13/2022	547	2.4E-08	8.4179	8.1	8.2	1218	-	
	1						1			1			1	

1- Based on Specimen Initial Conditions.

2- Based on average of four readings.

9/16/2022

9/20/2022

550

554

2.7E-08

2.6E-08

8.4749

8.5417

8.2

8.3

8.2

8.3

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 8)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						9/23/2022	557	2.6E-08	8.5957	-	-	-	-	
						9/26/2022	560	2.7E-08	8.6288	8.2	8.1	1201	-	
						9/30/2022	564	2.7E-08	8.6993	8.3	8.2	1118	-	
						10/5/2022	569	2.6E-08	8.7768	8.2	8.2	1143	973	
						10/7/2022	571	2.6E-08	8.8152	-	-	-	-	
						10/14/2022	578	2.7E-08	8.9223	-	-	-	-	
						10/19/2022	583	2.4E-08	8.9966	8.2	8.3	1172	1000	
						10/21/2022	585	2.4E-08	9.0314	-	-	-	-	
						10/28/2022	592	2.4E-08	9.1356	-	-	-	-	
						11/1/2022	596	2.5E-08	9.2011	8.4	8.4	1214	1062	
B4-ST-3 (47-49')	20L164	42.1	80.7	38.8	84.3	11/4/2022	599	2.6E-08	9.2557	-	-	-	-	
						11/11/2022	606	2.6E-08	9.3554	-	-	-	-	
						11/18/2022	613	2.2E-08	9.4592	8.0	8.1	1283	1042	
						11/25/2022	620	2.3E-08	9.5448		-	-	-	
						12/2/2022	627	2.1E-08	9.6363	-	-	-	-	
						12/9/2022	634	2.2E-08	9.7330	-	-	-	-	
						12/13/2022	638	2.1E-08	9.7763	-	-	-	-	
						12/16/2022	641	2.1E-08	9.8143	-	-	-	-	
						12/20/2022	645	1.9E-08	9.8368	8.5	8.5	1243	1090	
						12/23/2022	648	2.1E-08	9.8920	-	-	-	-	
						12/31/2022	656	2.1E-08	10.0045	-	-	-	-	
														3-29-2023. NSR

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 1)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
Site ID	Lab No.	Moisture Content	Dry Unit Weight	Moisture Content	Dry Unit Weight		Days After Injection		Passed After Injection	In Flow	Out Flow	In Flow	Out Flow	Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						3/15/2021	0	1.7E-08	0.0000	-	-	-	-	
						3/22/2021	7	1.6E-08	0.0979	8.4	8.0	-	-	
						3/29/2021	14	1.4E-08	0.1870	-	-	-	-	
						3/30/2021	15	1.4E-08	0.1939	8.4	8.3	-	-	
						4/02/2021	18	1.5E-08	0.2308	8.5	8.4	605	2010	
						4/05/2021	21	1.6E-08	0.2786	-	-	-	-	
						4/09/2021	25	1.5E-08	0.3212	7.9	8.0	-	-	
						4/12/2021	28	1.6E-08	0.3695	-	-	-	-	
						4/16/2021	32	1.5E-08	0.4124	8.6	8.5	-	-	
						4/19/2021	35	1.6E-08	0.4650	-	-	-	-	
						4/23/2021	39	1.3E-08	0.5034	8.5	8.3	676	1372	
B5-ST-5 (87-89')	20L172	21.6	107.5	20.1	110.9	4/26/2021	42	1.1E-08	0.5235	-	-	-	-	
						5/05/2021	51	7.7E-09	0.5955	8.5	8.2	-	-	
						5/07/2021	53	1.2E-08	0.6300	-	-	-	-	
						5/12/2021	58	1.5E-08	0.6886	8.5	8.3	-	-	
						5/14/2021	60	1.6E-08	0.7225	-	-	-	-	
						5/18/2021	64	1.6E-08	0.7744	8.3	8.2	697	1569	
						5/21/2021	67	1.4E-08	0.8261	-	-	-	-	
						5/24/2021	70	1.3E-08	0.8612	8.4	8.3	-	-	
						5/28/2021	74	1.8E-08	0.9284	8.5	8.1	-	-	
						6/04/2021	81	1.5E-08	1.0236	8.3	8.2	760	1192	
						6/11/2021	88	1.6E-08	1.1178	8.2	8.5	-	-	3-29-2023 NSR
						6/18/2021	95	1.5E-08	1.2151	8.1	8.4	-	-	3-29-184: NS

1- Based on Specimen Final Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 2)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	p	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						6/24/2021	101	1.6E-08	1.3021	8.6	8.0	679	1067	
						6/25/2021	102	1.6E-08	1.3213	-	-	-	-	
						6/29/2021	106	1.6E-08	1.3805	8.3	8.0	-	-	
						7/02/2021	109	1.6E-08	1.4321	-	-	1	-	
						7/06/2021	113	1.6E-08	1.4840	8.6	8.1	-	-	
						7/09/2021	116	1.5E-08	1.5320	-	-	-	-	
						7/13/2021	120	1.5E-08	1.5750	8.3	8.3	598	1134	
						7/16/2021	123	1.6E-08	1.6254	-	-	-	-	
						7/21/2021	128	1.4E-08	1.6776	8.2	8.1	-	-	
						7/23/2021	130	1.5E-08	1.7109	-	-	-	-	
						7/28/2021	135	1.5E-08	1.7692	8.1	8.1	-	-	
B5-ST-5 (87-89')	20L172	21.6	107.5	20.1	110.9	7/30/2021	137	1.3E-08	1.7980	-	-	-	-	
						8/06/2021	144	1.3E-08	1.8751	8.6	8.4	733	1040	
						8/13/2021	151	1.4E-08	1.9154	8.1	8.1	-	-	
						8/20/2021	158	1.4E-08	2.0174	8.2	8.1	-	-	
						8/26/2021	164	1.4E-08	2.1000	8.5	8.1	695	1100	
						8/27/2021	165	1.4E-08	2.1204	-	-	-	-	
						9/01/2021	170	1.5E-08	2.1843	8.1	8.2	-	-	
						9/03/2021	172	1.4E-08	2.2170	-	-	-	-	
						9/08/2021	177	1.4E-08	2.2738	8.1	8.1	-	-	
						9/10/2021	179	1.4E-08	2.3071	-	-	-	-	
						9/14/2021	183	1.4E-08	2.3527	8.2	8.1	569	832	3-29-2023 NSR
						9/17/2021	186	1.4E-08	2.3959	-	-	-	-	3-29-1BY. AS

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 3)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	onductivity	
	Lab	Moisture	Dry Unit	Moisture			Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						9/21/2021	190	1.5E-08	2.4412	8.1	8.1	-	-	
						9/24/2021	193	1.5E-08	2.4917	-	-	-	-	
						9/28/2021	197	1.4E-08	2.5334	8.2	8.1	-	-	
						10/01/2021	200	1.4E-08	2.5769	-	-	-	-	
						10/05/2021	204	1.5E-08	2.6225	8.1	8.1	555	771	
						10/08/2021	207	1.5E-08	2.6685	-	-	-	-	
						10/14/2021	213	1.3E-08	2.7240	8.0	8.1	-	-	
						10/15/2021	214	1.4E-08	2.7402	-	-	-	-	
						10/22/2021	221	1.2E-08	2.8132	8.5	8.1	-	-	
						10/28/2021	227	1.4E-08	2.8936	8.0	8.0	578	725	
						10/29/2021	228	1.4E-08	2.9101	-	-	-	-	
B5-ST-5 (87-89')	20L172	21.6	107.5	20.1	110.9	11/04/2021	234	1.4E-08	2.9821	8.2	8.1	-	-	
						11/05/2021	235	1.4E-08	2.9999	-	-	-	-	
						11/12/2021	242	1.2E-08	3.0737	8.3	8.3	-	-	
						11/19/2021	249	1.5E-08	3.1592	8.5	8.4	625	720	
						11/26/2021	256	1.1E-08	3.2346	-	-	-	-	
						12/02/2021	262	9.3E-09	3.2661	8.4	8.2	-	-	
						12/03/2021	263	1.1E-08	3.2826	-	-	-	-	
						12/08/2021	268	1.4E-08	3.3435	8.6	8.1	-	-	
						12/10/2021	270	1.3E-08	3.3706	-	-	-	-	
						12/14/2021	274	1.4E-08	3.4204	8.0	8.0	626	655	
						12/17/2021	277	1.4E-08	3.4663	-	-	-	-	3.29.2023 NSR
						1/0/1900	280	1.5E-08	3.5011	8.1	8.0	-	-	3-29 1 By.

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 4)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	p	Н	Electrical C	onductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						12/24/2021	284	1.4E-08	3.5588	-	-	-	-	
						12/28/2021	288	1.4E-08	3.5990	8.3	8.1	-	-	
						12/31/2021	291	1.5E-08	3.6488	-	-	-	-	
						1/3/2022	294	1.5E-08	3.6845	8.3	8.2	623	693	
						1/7/2022	298	1.4E-08	3.7440	-	-	-	-	
						1/11/2022	302	1.3E-08	3.7812	8.9	8.6	-	-	
						1/14/2022	305	1.5E-08	3.8292	-	-	-	-	
						1/18/2022	309	1.4E-08	3.8721	8.9	8.2	-	-	
						1/21/2022	312	1.4E-08	3.9238	-	-	-	-	
						1/26/2022	317	1.3E-08	3.9709	8.0	8.1	1120	720	
						2/2/2022	324	1.3E-08	4.0573	8.6	8.5	-	-	
B5-ST-5 (87-89')	20L172	21.6	107.5	20.1	110.9	2/4/2022	326	1.4E-08	4.0895	-	-	-	-	
						2/9/2022	331	1.3E-08	4.1462	8.2	8.4	1149	-	
						2/11/2022	333	1.3E-08	4.1762	-	-	-	-	
						2/16/2022	338	1.3E-08	4.2338	8.1	8.7	1192	715	
						2/18/2022	340	1.4E-08	4.2678	-	-	-	-	
						2/23/2022	345	1.4E-08	4.3260	8.7	8.3	-	-	
						2/25/2022	347	1.4E-08	4.3599	-	-	-	-	
						3/3/2022	353	1.3E-08	4.4259	8.3	8.4	-	-	
						3/4/2022	354	1.4E-08	4.4428	-	-	-	-	
						3/10/2022	360	1.5E-08	4.5205	8.8	9.1	1204	690	
						3/11/2022	361	1.5E-08	4.5388	-	-	_	-	3-29-2023 NSR
						1/0/1900	368	1.3E-08	4.6205	8.5	9.2	1186	-	3-29-202-131

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 5)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							Te	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	p	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	Lab No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						3/25/2022	375	1.5E-08	4.7141	7.6	8.4	-	-	
						4/1/2022	382	1.4E-08	4.8069	7.8	8.1	1223	685	
						4/8/2022	389	1.4E-08	4.9002	8.1	8.4	1227	-	
						4/15/2022	396	1.5E-08	4.9936	8.0	8.2	1242	-	
						4/22/2022	403	1.3E-08	5.0797	-	-	-	-	
						4/24/2022	405	1.3E-08	5.0977	7.7	7.9	1224	731	
						4/29/2022	410	1.4E-08	5.1686	-	-	-	-	
						5/2/2022	413	1.4E-08	5.1974	7.9	7.7	1206	-	
						5/6/2022	417	1.5E-08	5.2595	-	-	-	-	
						5/9/2022	420	1.4E-08	5.2913	8.0	8.0	1218	-	
						5/13/2022	424	1.6E-08	5.3559	-	-	-	-	
B5-ST-5 (87-89')	20L172	21.6	107.5	20.1	110.9	5/16/2022	427	1.5E-08	5.3892	7.9	8.0	1246	754	
						5/20/2022	431	1.5E-08	5.4522	-	-	-	-	
						5/23/2022	434	1.4E-08	5.4840	7.9	8.0	1260	-	
						5/27/2022	438	1.5E-08	5.5468	-	-	-	-	
						5/31/2022	442	1.3E-08	5.5849	7.8	7.9	1244	-	
						6/3/2022	445	1.4E-08	5.6347	-	-	-	-	
						6/7/2022	449	1.4E-08	5.6785	7.9	8.1	1250	-	
						6/10/2022	452	1.5E-08	5.7287	-	-	-	-	
						6/14/2022	456	1.5E-08	5.7743	8.3	8.2	1286	-	
						6/17/2022	459	1.6E-08	5.8244	-	-	-	-	
						6/21/2022	463	1.4E-08	5.8685	7.9	8.1	1213	-	3.29.2023 NSR
						1/0/1900	466	1.5E-08	5.9184	-	-	-	-	3-29-d By.

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 6)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
	Lab	Moisture	Dry Unit	Moisture	•		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						6/29/2022	471	1.4E-08	5.9709	8.2	8.2	1231	782	
						7/1/2022	473	1.5E-08	6.0063	-	-	-	-	
						7/6/2022	478	1.5E-08	6.0694	7.9	8.1	1241	-	
						7/8/2022	480	1.5E-08	6.1057	-	-	-	-	
						7/13/2022	485	1.4E-08	6.1651	8.0	8.1	1271	-	
						7/15/2022	487	1.4E-08	6.1651	-	-	-	-	
						7/22/2022	494	1.6E-08	6.3104	-	-	-	-	
						7/27/2022	499	1.4E-08	6.3650	8.9	8.2	1178	1219	
						7/29/2022	501	1.5E-08	6.4016	-	-	-	-	
						8/3/2022	506	1.4E-08	6.4599	8.0	8.1	1218	-	
						8/5/2022	508	1.5E-08	6.4953	-	-	-	-	
B5-ST-5 (87-89')	20L172	21.6	107.5	20.1	110.9	8/10/2022	513	1.4E-08	6.5550	8.3	8.2	1291	-	
						8/12/2022	515	1.5E-08	6.5901	-	-	-	-	
						8/16/2022	519	1.5E-08	6.6409	7.8	7.9	1215	1021	
						8/19/2022	522	1.5E-08	6.6928	-	-	-	-	
						8/23/2022	526	1.4E-08	6.7393	8.0	8.1	1199	-	
						8/26/2022	529	1.5E-08	6.7931	-	-	-	-	
						8/30/2022	533	1.4E-08	6.8354	8.0	8.1	1246	-	
						9/1/2022	535	1.5E-08	6.8882	-	-	-	-	
						9/6/2022	540	1.4E-08	6.9314	8.4	8.2	1198	768	
						9/9/2022	543	1.4E-08	6.9801	-	-	-	-	
						9/12/2022	546	1.4E-08	7.0155	8.0	8.1	1112	-	3-29-2023 NSR
						9/16/2022	550	1.5E-08	7.0797	-	-	-	-	3-29-202-132

1- Based on Specimen Initial Conditions.

2- Based on average of four readings.

Vbbir

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 7)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

							To	est Information						
		Initial C	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	F	Н	Electrical C	conductivity	
	Lab	Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						9/19/2022	553	1.4E-08	7.1115	8.3	8.2	1213	-	
						9/23/2022	557	1.6E-08	7.1767	-	-	-	-	
						9/26/2022	560	1.5E-08	7.2082	8.2	8.2	1210	777	
						9/30/2022	564	1.5E-08	7.2718	-	-	-	-	
						10/3/2022	567	1.4E-08	7.3024	8.3	8.2	1218	-	
						10/7/2022	571	1.5E-08	7.3643		-	-	-	
						10/11/2022	575	1.3E-08	7.4012	8.8	8.3	1210	-	
						10/14/2022	578	1.4E-08	7.4510	-	-	-	-	
						10/19/2022	583	1.3E-08	7.5011	8.4	8.3	1200	755	
						10/21/2022	585	1.3E-08	7.5309	-	-	-	-	
						10/27/2022	591	1.3E-08	7.5975	8.6	8.4	1250	-	
B5-ST-5 (87-89')	20L172	21.6	107.5	20.1	110.9	10/28/2022	592	1.3E-08	7.6149	-	-	-	-	
						11/3/2022	598	1.3E-08	7.6878	8.4	8.2	1193	-	
						11/4/2022	599	1.4E-08	7.7056	-	-	-	-	
						11/11/2022	606	1.4E-08	7.7986	8.0	8.0	1210	777	
						11/18/2022	613	1.1E-08	7.8742	8.4	8.3	1248	-	
						11/25/2022	620	1.3E-08	7.9526	-	-	-	-	
						11/30/2022	625	1.3E-08	8.0135	8.4	8.8	1203	-	
						12/2/2022	627	1.2E-08	8.0318	-	-	-	-	
						12/5/2022	630	1.2E-08	8.0552	8.5	8.5	1155	804	
						12/9/2022	634	1.3E-08	8.1093	-	-	-	-	
						12/13/2022	638	1.1E-08	8.1426	8.5	8.7	1204	-	3-29-2023 NER
						12/16/2022	641	1.2E-08	8.1834	-	-	-	-	3-29-1BY. Th

1- Based on Specimen Initial Conditions.

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary (Page 8)

Compatibility Test Results

Project Name: Belle River ALD Support

Project No.: PN1017

		Test Information												
		Initial Co	onditions	Final Co	onditions	Date	Number of	Permeability	Pore Volumes	I	Н	Electrical C	Conductivity	
		Moisture	Dry Unit	Moisture	Dry Unit		Days After		Passed After	In Flow	Out Flow	In Flow	Out Flow	
Site ID	Lab No.	Content	Weight	Content	Weight		Injection		Injection					Remarks
								Notes 1 & 2	Note 1					
(-)	(-)	(%)	(pcf)	(%)	(pcf)	(-)	(-)	(cm/s)	(-)	(-)	(-)	(µs/cm)	(µs/cm)	
						12/22/2022	647	9.4E-09	8.2299	8.7	8.4	1244	-	
B5-ST-5 (87-89')	20L172	21.6	107.5	20.1	110.9	12/23/2022	648	1.0E-08	8.2456	-	-	-	-	
						12/31/2022	656	9.7E-09	8.3209	-	-	-	-	
														3-29-2023. NSR
														29-2012 NSK
														3-4-010)

1- Based on Specimen Initial Conditions.

2- Based on average of four readings.

Ybbr,

APPENDIX L – GROUNDWATER PROTECTION STANDARD CALCULATIONS

Technical Memorandum

Date: November 24, 2021

To: Chris Scieszka, DTE Electric Company

From: Vince Buening, TRC

Sarah Holmstrom, TRC

Kristin Lowery, TRC

Project No.: 413591.0003.0000 Phase 1 Task 1

Subject: Groundwater Protection Standard Calculation – DTE Electric Company, Belle River

Power Plant Bottom Ash Basins

DTE Electric Company (DTE Electric) is pursuing an Alternate Liner Demonstration (ALD) for the Belle River Power Plant (BRPP) Bottom Ash Basins (BABs) coal combustion residual (CCR) unit. On November 12, 2020, the U.S. EPA published the Part B: Alternate Demonstration for Unlined Surface Impoundments amendments to the CCR Rule¹ ("Part B") that allows a facility to prepare demonstration to request approval to operate an existing CCR surface impoundment with an alternate liner. Although the BRPP BABs remain in detection monitoring, per § 257.71(d)(1)(ii)(C)(2), the ALD must demonstrate that, for each Appendix IV constituent, there is no reasonable probability that the peak groundwater concentration that may result from releases that occur over the active life of the CCR surface impoundment will exceed the groundwater protection standard (GWPS) at the waste boundary.

GWPSs are set as either specific regulatory standards identified in the CCR Rule or background groundwater concentrations, whichever is higher, for the Appendix IV constituents. Per the CCR Rule §257.95(h)², the EPA maximum contaminant levels (MCLs) will be the GWPSs for those constituents that have established MCLs. For Appendix IV constituents that do not have established MCLs, the GWPSs are based upon the EPA Regional Screening Levels (RSLs). For constituents that have statistically derived background levels higher than the MCL and/or RSL, the GWPS becomes equal to the background level.

This memorandum presents the background statistical limits and GWPS derived for the Appendix IV parameters for the BRPP BABs CCR unit using the aforementioned approach pursuant to §257.95(h). Per 40 CFR §257.94, a minimum of eight rounds of background sampling for the Appendix IV constituents were completed at the BRPP BABs from August 2016 through September 2017, as part of

¹ On April 17, 2015, the U.S. EPA issued the Final Rule: Disposal of CCR from Electric Utilities (CCR Rule), 40 CFR 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fired units.

² As amended per Phase One, Part One of the CCR Rule (83 FR 36435).

initiating the detection monitoring program. Since fluoride is in both the Appendix III and Appendix IV constituent lists, additional fluoride data were collected under the detection monitoring program subsequent to September 2017 and were also used in the development of the GWPS. All of the Appendix IV data used in this analysis (August 2016 through December 2020) and details on how the data were collected are included in the annual reports prepared in accordance with the CCR Rule through January 2021.

The background data for the BRPP BABs were evaluated in accordance with the Groundwater Statistical Evaluation Plan (Stats Plan) (TRC, October 2017). Per the Stats Plan, the BRPP BABs CCR unit uses an intra-well statistical approach. For intra-well methods, the background data set is comprised of the historical data established at each individual monitoring well, which accounts for natural spatial variability that occurs in background encountered across the site. Background data were evaluated utilizing ChemStat™ statistical software. ChemStat™ is a software tool that is commercially available for performing statistical evaluation consistent with procedures outlined in U.S. EPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities (Unified Guidance; UG). Within the ChemStat™ statistical program (and the UG), tolerance limits were selected to perform the statistical calculation for background limits. Use of tolerance limits is a streamlined approach that offers adequate statistical power and is an acceptable approach under the CCR Rule. As such, upper tolerance limits (UTLs) were calculated for each of the CCR Appendix IV parameters, and, given that intra-well methods have been established for this site, a background UTL was calculated for each monitoring well and used to compare to the respective MCL or RSL. The following narrative describes the methods employed and the results obtained for the UTL calculations and the resulting GWPSs. The ChemStat™ output files are included as an attachment.

The set of background wells utilized for BRPP BABs includes MW-16-01, MW-16-02, MW-16-03, MW-16-04, and MW-16-09. The background data evaluation included the following steps:

- Review of data quality checklists for the baseline/background data sets for CCR Appendix IV constituents;
- Graphical representation of the baseline data as time versus concentration (T v. C) by well/constituent pair;
- Outlier testing of individual data points that appear from the graphical representations as potential outliers;
- Evaluation of percentage of nondetects for each baseline/background well-constituent (w/c) pair;
- Distribution of the data:
- Calculation of the UTLs for each cumulative baseline/background data set; and
- Establishment of GWPS as the higher of the MCL/RSL or the UTL for each Appendix IV constituent.

The results of these evaluations are presented and discussed below.

Data Quality

Data from each sampling round were evaluated for completeness, overall quality and usability, method-specified sample holding times, precision and accuracy, and potential sample contamination. The review was completed using the following quality control (QC) information which at a minimum

included chain-of-custody forms, investigative sample results including blind field duplicates, and, as provided by the laboratory, method blanks, laboratory control spikes, laboratory duplicates. Data collected at MW-16-09 on 7/24/2017 were found to be anomalous due to high turbidity in the sample. Monitoring well MW-16-09 was resampled on 7/25/2017 with acceptable turbidity; therefore, the 7/24/2017 data was rejected and replaced with the 7/25/2017 data. The remaining data were found to be complete and usable for the purposes of the CCR monitoring program.

Time versus Concentration Graphs

The time versus concentration (T v. C) graphs (Attachment A) do not show potential or suspect outliers for any of the Appendix IV parameters.

While variations in results are present, the graphs show consistent baseline data and do not suggest that data sets, as a whole, likely have overall trending or seasonality. However, due to limitations on CCR Rule implementation timelines, the data sets, with the exception of fluoride, are of relatively short duration for making such observations regarding overall trending or seasonality.

Outlier Testing

No outliers were identified in the T v. C graphs. Therefore, outlier testing was not applicable.

As noted above, data collected at MW-16-09 on 7/24/2017 was found to be anomalous due to high turbidity in the sample. Therefore, these data were removed from the background data set and replaced with acceptable data from 7/25/2017. Outlier removal from the background data set is summarized in Table 1.

Distribution of the Data Sets

ChemStat™ was utilized to evaluate each data set for normality. If the skewness coefficient was calculated to be between negative one and one, then the data were assumed to be approximately normally distributed. If the skewness coefficient was calculated as greater than one (or less than negative one) then the calculation was performed on the natural log (Ln) of the data. If the Ln of the data still determined that the data appeared to be skewed, then the Shapiro-Wilk test of normality (Shapiro-Wilk) was performed. The Shapiro-Wilk statistic was calculated on both non-transformed data and the Ln-transformed data. If the Shapiro-Wilk statistic indicated that normal distributional assumptions were not valid, then the parameter was considered a candidate for non-parametric statistical evaluation. The data distributions are summarized in Table 2.

Tolerance Limits

Table 2 presents the calculated UTLs for the background/baseline data sets. As discussed above, the BRPP BABs CCR unit uses intra-well statistical methods; therefore, UTLs were calculated for each individual monitoring well. For normal and lognormal distributions, UTLs are calculated for 95 percent confidence using parametric methods. For non-normal background datasets, a nonparametric UTL is utilized, resulting in the highest value from the background dataset as the UTL. The achieved confidence levels for nonparametric tolerance limits depend entirely on the number of background data points, which are shown in the ChemStat™ outputs. The intra-well tolerance limits for each parameter were compared to the MCL/RSL and the higher value was established as the GWPS for that well.

Groundwater Protection Standards

The resulting GWPSs were established as the higher of the MCL/RSL or the UTL for each Appendix IV constituent at each monitoring well. The GWPSs are summarized in Table 3.

Attachments

Table 1 – Summary of Outlier Evaluation

Table 2 – Summary of Descriptive Statistics and Tolerance Limit Calculations

Table 3 – Summary of Groundwater Protection Standards

Attachment A – ChemStat™ Outputs

Tables

Table 1
Summary of Outlier Evaluation
DTE Electric Company – Belle River Power Plant Bottom Ash Basins

Parameter	Units	Monitoring Well	Sample Date	Data Outlier	Basis for Removal of Outlier
Antimony	ug/L	MW-16-09	7/24/2017	< 2.0	High turbidity in sample; results replaced by 7/25/2017 sample
Arsenic	ug/L	MW-16-09	7/24/2017	< 5.0	High turbidity in sample; results replaced by 7/25/2017 sample
Barium	ug/L	MW-16-09	7/24/2017	310	High turbidity in sample; results replaced by 7/25/2017 sample
Beryllium	ug/L	MW-16-09	7/24/2017	< 1.0	High turbidity in sample; results replaced by 7/25/2017 sample
Cadmium	ug/L	MW-16-09	7/24/2017	< 1.0	High turbidity in sample; results replaced by 7/25/2017 sample
Chromium	ug/L	MW-16-09	7/24/2017	18	High turbidity in sample; results replaced by 7/25/2017 sample
Cobalt	ug/L	MW-16-09	7/24/2017	6.3	High turbidity in sample; results replaced by 7/25/2017 sample
Fluoride	mg/L	MW-16-09	7/24/2017	1.6	High turbidity in sample; results replaced by 7/25/2017 sample
Lead	ug/L	MW-16-09	7/24/2017	5	High turbidity in sample; results replaced by 7/25/2017 sample
Lithium	ug/L	MW-16-09	7/24/2017	57	High turbidity in sample; results replaced by 7/25/2017 sample
Mercury	ug/L	MW-16-09	7/24/2017	< 0.20	High turbidity in sample; results replaced by 7/25/2017 sample
Molybdenum	ug/L	MW-16-09	7/24/2017	66	High turbidity in sample; results replaced by 7/25/2017 sample
Radium-226/228	pCi/L	MW-16-09	7/24/2017	1.67	High turbidity in sample; results replaced by 7/25/2017 sample
Selenium	ug/L	MW-16-09	7/24/2017	< 5.0	High turbidity in sample; results replaced by 7/25/2017 sample
Thallium	ug/L	MW-16-09	7/24/2017	< 1.0	High turbidity in sample; results replaced by 7/25/2017 sample

ug/L = micrograms per liter mg/L = milligrams per liter pCi/L = picocuries per liter

Table 2
Summary of Descriptive Statistics and Tolerance Limit Calculations
DTE Electric Company – Belle River Power Plant Bottom Ash Basins

Monitoring	Skewn	ess Test		Vilks Test cal Value)	Outliers	Tolerance Limit Test	95% Tolerance
Well	Un-Transformed Data	Natural Log Transformed Data	Un-Transformed Data	Natural Log Transformed Data	Removed		Limit
Antimony (ug/	L)						
MW-16-01		100% Noi	n-Detect		N	PQL	2.0
MW-16-02		100% Noi	n-Detect		N	PQL	2.0
MW-16-03		100% Noi	n-Detect		N	PQL	2.0
MW-16-04		100% Noi	n-Detect		N	PQL	2.0
MW-16-09		100% Noi		Υ	PQL	2.0	
Arsenic (ug/L)							
MW-16-01		100% Noi		N	PQL	5.0	
MW-16-02		100% Noi		N	PQL	5.0	
MW-16-03		100% Noi	n-Detect		N	PQL	5.0
MW-16-04		> 50% No	n-Detect		N	Non-Parametric	7.0
MW-16-09		> 50% No	n-Detect		Υ	Non-Parametric	7.2
Barium (ug/L)							
MW-16-01	1 < 1.93433	1 < 1.85565	0.829 > 0.647993	0.829 > 0.665248	N	Non-Parametric	300
MW-16-02	1 < 1.09096	1 < 1.04324	0.829 > 0.778715	0.829 > 0.789832	N	Non-Parametric	330
MW-16-03	-1.40422 < -1	-1.4678 < -1	0.818 > 0.800797	0.818 > 0.787552	N	Non-Parametric	310
MW-16-04	1 < 1.50819	1 < 1.41108	0.829 > 0.737494	0.829 > 0.756518	N	Non-Parametric	440
MW-16-09	-1 < -0.562075 < 1				Υ	Parametric	330
Beryllium (ug/	(L)						
MW-16-01	> 50% Non-Detect					Non-Parametric	2.8
MW-16-02	> 50% Non-Detect					Non-Parametric	2.8
MW-16-03		100% Noi		N	PQL	1.0	
MW-16-04		> 50% No			N	Non-Parametric	1.0
MW-16-09		100% Noi	n-Detect		Υ	PQL	1.0

PQL = Practical Quantitation Limit

ug/L = micrograms per liter

mg/L = milligrams per liter

Table 2
Summary of Descriptive Statistics and Tolerance Limit Calculations
DTE Electric Company – Belle River Power Plant Bottom Ash Basins

Monitoring	Skewno	ess Test		Wilks Test cal Value)	Outliers	Tolerance Limit	95% Tolerance
Well	Un-Transformed Data	Natural Log Transformed Data	Un-Transformed Data	Natural Log Transformed Data	Removed	Test	Limit
Cadmium (ug/	/L)						
MW-16-01		100% Noi	n-Detect		N	PQL	1.0
MW-16-02		100% Noi	n-Detect		N	PQL	1.0
MW-16-03		100% Noi	n-Detect		N	PQL	1.0
MW-16-04		100% Noi	n-Detect		N	PQL	1.0
MW-16-09		100% Noi	n-Detect		Υ	PQL	1.0
Chromium (ug	g/L)						
MW-16-01			N	Non-Parametric	13		
MW-16-02		> 50% No	n-Detect		N	Non-Parametric	19
MW-16-03		100% Noi	n-Detect		N	PQL	2.0
MW-16-04	1 < 1.19014	1 < 1.01083	0.829 > 0.703824	0.829 > 0.772663	N	Non-Parametric	27
MW-16-09	-1 < -0.0757045 < 1				Υ	Parametric	25
Cobalt (ug/L)							
MW-16-01		> 50% No	n-Detect		N	Non-Parametric	3.6
MW-16-02		> 50% No	n-Detect		N	Non-Parametric	3.9
MW-16-03		100% Noi	n-Detect		N	PQL	1.0
MW-16-04	1 < 1.05578	-1 < 0.709812 < 1			N	Parametric	13
MW-16-09	-1 < 0.577785 < 1				Υ	Parametric	7.7
Fluoride (mg/							
MW-16-01	-1 < -0.926404 < 1				N	Parametric	2.0
MW-16-02	-1 < -0.531685 < 1				N	Parametric	1.4
MW-16-03	-1 < -0.534079 < 1				N	Parametric	2.0
MW-16-04	-1 < -0.959228 < 1				N	Parametric	1.9
MW-16-09	-1 < -0.838747 < 1				Υ	Parametric	1.8

PQL = Practical Quantitation Limit

ug/L = micrograms per liter

mg/L = milligrams per liter

Table 2
Summary of Descriptive Statistics and Tolerance Limit Calculations
DTE Electric Company – Belle River Power Plant Bottom Ash Basins

Monitoring	Skewn	ess Test		Vilks Test cal Value)	Outliers	Tolerance Limit	95% Tolerance
Well	Un-Transformed Data	Natural Log Transformed Data	Un-Transformed Data	Natural Log Transformed Data	Removed	Test	Limit
Lead (ug/L)							
MW-16-01			N	Non-Parametric	3.5		
MW-16-02		> 50% No	n-Detect		N	Non-Parametric	2.9
MW-16-03		100% Noi	n-Detect		N	PQL	1.0
MW-16-04	1 < 1.03004	-1 < 0.630363 < 1			N	Parametric	12
MW-16-09	-1 < 0.692648 < 1		-		Υ	Parametric	6.9
Lithium (ug/L)							
MW-16-01	1 < 1.09646	-1 < -0.656345 < 1	-		N	Parametric	42
MW-16-02	1 < 1.83731	1 < 1.66952	0.829 > 0.693604	0.829 > 0.735502	N	Non-Parametric	19
MW-16-03	-1 < -0.163822 < 1				N	Parametric	24
MW-16-04	1 < 1.69658	1 < 1.51405	0.829 > 0.748153	0.829 > 0.790765	N	Non-Parametric	37
MW-16-09	-1 < 0.201671 < 1				Υ	Parametric	65
Mercury (ug/L							_
MW-16-01		100% Noi	n-Detect		N	PQL	0.20
MW-16-02		100% Noi			N	PQL	0.20
MW-16-03		100% Noi			N	PQL	0.20
MW-16-04		100% Noi			N	PQL	0.20
MW-16-09		100% Noi	n-Detect		Υ	PQL	0.20
Molybdenum ((ug/L)						
MW-16-01	-1 < 0.522804 < 1				N	Parametric	96
MW-16-02	1 < 2.33768	1 < 2.23139	0.829 > 0.55159	0.829 > 0.606275	N	Non-Parametric	65
MW-16-03	-1 < -0.738383 < 1				N	Parametric	110
MW-16-04	-1 < 0.881343 < 1				N	Parametric	120
MW-16-09	-1 < -0.202509 < 1				Υ	Parametric	69

PQL = Practical Quantitation Limit

ug/L = micrograms per liter

mg/L = milligrams per liter

Table 2
Summary of Descriptive Statistics and Tolerance Limit Calculations
DTE Electric Company – Belle River Power Plant Bottom Ash Basins

Monitoring	Skewne	ess Test	-	Vilks Test cal Value)	Outliers	Tolerance Limit	95% Tolerance
Well	in the second se		Un-Transformed Data	Natural Log Transformed Data	Removed	Test	Limit
Radium 226/2	28 (pCi/L)						
MW-16-01	-1 < 0.444198 < 1				N	Parametric	2.36
MW-16-02	1 < 1.14403	-1 < 0.68333 < 1			N	Parametric	3.63
MW-16-03	1 < 1.45519	-1 < 0.909563 < 1			N	Parametric	4.87
MW-16-04	-1 < 0.379575 < 1		-		N	Parametric	3.49
MW-16-09	-1 < 0.00907827 < 1		-		Υ	Parametric	4.14
Selenium (ug/	/L)						
MW-16-01		100% Noi	n-Detect		N	PQL	5.0
MW-16-02		100% Noi	n-Detect		N	PQL	5.0
MW-16-03		100% Noi	n-Detect		N	PQL	5.0
MW-16-04		100% Noi	n-Detect		N	PQL	5.0
MW-16-09		100% Noi	n-Detect		Υ	PQL	5.0
Thallium (ug/l	L)						
MW-16-01		100% Noi	n-Detect		N	PQL	1.0
MW-16-02	100% Non-Detect					PQL	1.0
MW-16-03	100% Non-Detect					PQL	1.0
MW-16-04		100% Non-Detect					1.0
MW-16-09		100% Noi	n-Detect		Υ	PQL	1.0

PQL = Practical Quantitation Limit

ug/L = micrograms per liter

mg/L = milligrams per liter

Table 3
Summary of Groundwater Protection Standards
DTE Electric Company – Belle River Power Plant Bottom Ash Basins

Constituent	Unit	GWPS	MCL/RSL	MW-	16-01	MW-	16-02	MW-	16-03	MW-	16-04	MW-	16-09
Constituent	Ollit	Selection	WICL/KOL	UTL	GWPS	UTL	GWPS	UTL	GWPS	UTL	GWPS	UTL	GWPS
Antimony	ug/L	MCL	6	2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0
Arsenic	ug/L	MCL	10	5.0	10	5.0	10	5.0	10	7.0	10	7.2	10
Barium	ug/L	MCL	2,000	300	2,000	330	2,000	310	2,000	440	2,000	330	2,000
Beryllium	ug/L	MCL	4	2.8	4.0	2.8	4.0	1.0	4.0	1.0	4.0	1.0	4.0
Cadmium	ug/L	MCL	5	1.0	5.0	1.0	5.0	1.0	5.0	1.0	5.0	1.0	5.0
Chromium	ug/L	MCL	100	13	100	19	100	2.0	100	27	100	25	100
		Background											
Cobalt	ug/L	or RSL	6	3.6	6.0	3.9	6.0	1.0	6.0	13	13	7.7	7.7
Fluoride	mg/L	MCL	4	2.0	4.0	1.4	4.0	2.0	4.0	1.9	4.0	1.8	4.0
Lead	ug/L	RSL	15	3.5	15	2.9	15	1.0	15	12	15	6.9	15
Lithium	ug/L	Background or RSL	40	42	42	19	40	24	40	37	40	65	65
Mercury	ug/L	MCL	2	0.20	2.0	0.20	2.0	0.20	2.0	0.20	2.0	0.20	2.0
		Background											
Molybdenum	ug/L	or RSL	100	96	100	65	100	110	110	120	120	69	100
Radium-226/228	pCi/L	MCL	5	2.36	5.00	3.63	5.00	4.87	5.00	3.49	5.00	4.14	5.00
Selenium	ug/L	MCL	50	5.0	50	5.0	50	5.0	50	5.0	50	5.0	50
Thallium	ug/L	MCL	2	1.0	2.0	1.0	2.0	1.0	2.0	1.0	2.0	1.0	2.0

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. Appendix IV GWPS is the higher of the MCL/RSL and UTL.

ug/L = micrograms per liter

mg/L = milligrams per liter

Attachment A ChemStat™ Outputs

Parameter: Antimony
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Measurements: 44 Total Non-Detect: 44 Percent Non-Detects: 100% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/1/2016	ND<2 U	ND<2 U
		, ,	9/20/2016	ND<2 U	ND<2 U
			11/7/2016	ND<2 U	ND<2 U
			1/9/2017	ND<2 U	ND<2 U
			2/27/2017	ND<2 U	ND<2 U
			4/17/2017	ND<2 U	ND<2 U
			6/5/2017	ND<2 U	ND<2 U
			7/24/2017	ND<2 U	ND<2 U
			9/11/2017	ND<2 U	ND<2 U
MW-16-02	9	9 (100%)	8/2/2016	ND<2 U	ND<2 U
			9/19/2016	ND<2 U	ND<2 U
			11/7/2016 ~	ND<2 U	ND<2 U
			1/9/2017	ND<2 U	ND<2 U
			2/27/2017	ND<2 U	ND<2 U
			4/17/2017	ND<2 U	ND<2 U
			6/5/2017	ND<2 U	ND<2 U
			7/24/2017	ND<2 U	ND<2 U
			9/12/2017	ND<2 U	ND<2 U
MW-16-03	8	8 (100%)	8/2/2016	ND<2 U	ND<2 U
		, ,	9/19/2016 ~	ND<2 U	ND<2 U
			11/7/2016	ND<2 U	ND<2 U
			1/9/2017 ~	ND<2 U	ND<2 U
			2/27/2017 ~	ND<2 U	ND<2 U
			4/17/2017 ~	ND<2 U	ND<2 U
			6/5/2017	ND<2 U	ND<2 U
			7/24/2017 ~	ND<2 U	ND<2 U
MW-16-04	9	9 (100%)	8/2/2016	ND<2 U	ND<2 U
		, ,	9/20/2016	ND<2 U	ND<2 U
			11/7/2016	ND<2 U	ND<2 U
			1/9/2017	ND<2 U	ND<2 U
			2/27/2017	ND<2 U	ND<2 U
			4/18/2017	ND<2 U	ND<2 U
			6/5/2017	ND<2 U	ND<2 U
			7/24/2017	ND<2 U	ND<2 U
			9/13/2017	ND<2 U	ND<2 U
MW-16-09	9	9 (100%)	8/2/2016	ND<2 U	ND<2 U
		, ,	9/20/2016	ND<2 U	ND<2 U
			11/9/2016	ND<2 U	ND<2 U
			1/10/2017	ND<2 U	ND<2 U
			2/28/2017	ND<2 U	ND<2 U
			4/17/2017	ND<2 U	ND<2 U
			6/5/2017	ND<2 U	ND<2 U
			7/25/2017	ND<2 U	ND<2 U
			9/14/2017	ND<2 U	ND<2 U
			· · · · · ·	ND<2 U	ND<2 U

Parameter: Arsenic

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 44
Total Non-Detect: 40

Percent Non-Detects: 90.9091% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/1/2016	ND<5 U	ND<5 U
		, ,	9/20/2016	ND<5 U	ND<5 U
			11/7/2016	ND<5 U	ND<5 U
			1/9/2017	ND<5 U	ND<5 U
			2/27/2017	ND<5 U	ND<5 U
			4/17/2017	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/24/2017	ND<5 U	ND<5 U
			9/11/2017	ND<5 U	ND<5 U
MW-16-02	9	9 (100%)	8/2/2016	ND<5 U	ND<5 U
		,	9/19/2016	ND<5 U	ND<5 U
			11/7/2016 ~	ND<5 U	ND<5 U
			1/9/2017	ND<5 U	ND<5 U
			2/27/2017	ND<5 U	ND<5 U
			4/17/2017	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/24/2017	ND<5 U	ND<5 U
			9/12/2017	ND<5 U	ND<5 U
MW-16-03	8	8 (100%)	8/2/2016	ND<5 U	ND<5 U
		,	9/19/2016 ~	ND<5 U	ND<5 U
			11/7/2016	ND<5 U	ND<5 U
			1/9/2017 ~	ND<5 U	ND<5 U
			2/27/2017 ~	ND<5 U	ND<5 U
			4/17/2017 ~	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/24/2017 ~	ND<5 U	ND<5 U
MW-16-04	9	7 (77.7778%)	8/2/2016	6	6
		,	9/20/2016	7	7
			11/7/2016	ND<5 U	ND<5 U
			1/9/2017	ND<5 U	ND<5 U
			2/27/2017	ND<5 U	ND<5 U
			4/18/2017	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/24/2017	ND<5 U	ND<5 U
			9/13/2017	ND<5 U	ND<5 U
MW-16-09	9	7 (77.7778%)	8/2/2016	7.2	7.2
		, ,	9/20/2016	6.9	6.9
			11/9/2016	ND<5 U	ND<5 U
			1/10/2017	ND<5 U	ND<5 U
			2/28/2017	ND<5 U	ND<5 U
			4/17/2017	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/25/2017	ND<5 U	ND<5 U
			9/14/2017	ND<5 U	ND<5 U
			7/24/2017	ND<5 U	ND<5 U
			1144/4011	ט פירשו	ט פֿיעאו

Parameter: Barium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 44
Total Non-Detect: 0
Percent Non-Detects: 0%

Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	0 (0%)	8/1/2016	300	300
			9/20/2016	260	260
			11/7/2016	240	240
			1/9/2017	250	250
			2/27/2017	240	240
			4/17/2017	240	240
			6/5/2017	240	240
			7/24/2017	250	250
			9/11/2017	240	240
MW-16-02	9	0 (0%)	8/2/2016	330	330
			9/19/2016	320	320
			11/7/2016 ~	270	270
			1/9/2017	290	290
			2/27/2017	280	280
			4/17/2017	270	270
			6/5/2017	280	280
			7/24/2017	270	270
			9/12/2017	280	280
MW-16-03	8	0 (0%)	8/2/2016	300	300
			9/19/2016 ~	290	290
			11/7/2016	270	270
			1/9/2017 ~	305	305
			2/27/2017 ~	300	300
			4/17/2017 ~	300	300
			6/5/2017	310	310
			7/24/2017 ~	300	300
MW-16-04	9	0 (0%)	8/2/2016	390	390
			9/20/2016	440	440
			11/7/2016	340	340
			1/9/2017	360	360
			2/27/2017	330	330
			4/18/2017	330	330
			6/5/2017	330	330
			7/24/2017	340	340
			9/13/2017	340	340
MW-16-09	9	0 (0%)	8/2/2016	280	280
			9/20/2016	280	280
			11/9/2016	250	250
			1/10/2017	270	270
			2/28/2017	290	290
			4/17/2017	290	290
			6/5/2017	310	310
			7/25/2017	290	290
			9/14/2017	290	290
			7/24/2017	310	310

Parameter: Beryllium
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Measurements: 44 Total Non-Detect: 41

Percent Non-Detects: 93.1818% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	8 (88.8889%)	8/1/2016 9/20/2016 11/7/2016 1/9/2017 2/27/2017 4/17/2017 6/5/2017 7/24/2017 9/11/2017	ND<1 U 2.8 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	ND<1 U 2.8 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-02	9	8 (88.8889%)	8/2/2016 9/19/2016 11/7/2016 ~ 1/9/2017 2/27/2017 4/17/2017 6/5/2017 7/24/2017 9/12/2017	ND<1 U 2.8 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	ND<1 U 2.8 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-03	8	8 (100%)	8/2/2016 9/19/2016 ~ 11/7/2016 1/9/2017 ~ 2/27/2017 ~ 4/17/2017 ~ 6/5/2017 7/24/2017 ~	ND<1 U ND<1 U ND<1 U ND<1 U^ ND<1 U ND<1 U ND<1 U ND<1 U	ND<1 U ND<1 U ND<1 U ND<1 U^ ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-04	9	8 (88.8889%)	8/2/2016 9/20/2016 11/7/2016 1/9/2017 2/27/2017 4/18/2017 6/5/2017 7/24/2017 9/13/2017	ND<1 U 1 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	ND<1 U 1 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-09	9	9 (100%)	8/2/2016 9/20/2016 11/9/2016 1/10/2017 2/28/2017 4/17/2017 6/5/2017 7/25/2017 9/14/2017 7/24/2017	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U

Parameter: Cadmium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 44
Total Non-Detect: 44
Percent Non-Detects: 100%
Total Background Measurements: 0
There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/1/2016	ND<1 U	ND<1 U
			9/20/2016	ND<1 U	ND<1 U
			11/7/2016	ND<1 U	ND<1 U
			1/9/2017	ND<1 U	ND<1 U
			2/27/2017	ND<1 U	ND<1 U
			4/17/2017	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/24/2017	ND<1 U	ND<1 U
			9/11/2017	ND<1 U	ND<1 U
MW-16-02	9	9 (100%)	8/2/2016	ND<1 U	ND<1 U
			9/19/2016	ND<1 U	ND<1 U
			11/7/2016 ~	ND<1 U	ND<1 U
			1/9/2017	ND<1 U	ND<1 U
			2/27/2017	ND<1 U	ND<1 U
			4/17/2017	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/24/2017	ND<1 U	ND<1 U
			9/12/2017	ND<1 U	ND<1 U
MW-16-03	8	8 (100%)	8/2/2016	ND<1 U	ND<1 U
			9/19/2016 ~	ND<1 U	ND<1 U
			11/7/2016	ND<1 U	ND<1 U
			1/9/2017 ~	ND<1 U	ND<1 U
			2/27/2017 ~	ND<1 U	ND<1 U
			4/17/2017 ~	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/24/2017 ~	ND<1 U	ND<1 U
MW-16-04	9	9 (100%)	8/2/2016	ND<1 U	ND<1 U
			9/20/2016	ND<1 U	ND<1 U
			11/7/2016	ND<1 U	ND<1 U
			1/9/2017	ND<1 U	ND<1 U
			2/27/2017	ND<1 U	ND<1 U
			4/18/2017	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/24/2017	ND<1 U	ND<1 U
			9/13/2017	ND<1 U	ND<1 U
MW-16-09	9	9 (100%)	8/2/2016	ND<1 U	ND<1 U
			9/20/2016	ND<1 U	ND<1 U
			11/9/2016	ND<1 U	ND<1 U
			1/10/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/17/2017	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/25/2017	ND<1 U	ND<1 U
			9/14/2017	ND<1 U	ND<1 U
			7/24/2017	ND<1 U	ND<1 U

Parameter: Chromium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 44
Total Non-Detect: 24

Percent Non-Detects: 54.5455% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	8 (88.8889%)	8/1/2016 9/20/2016 11/7/2016 1/9/2017 2/27/2017 4/17/2017 6/5/2017 7/24/2017 9/11/2017	13 ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U	13 ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U
MW-16-02	9	8 (88.8889%)	8/2/2016 9/19/2016 11/7/2016 ~ 1/9/2017 2/27/2017 4/17/2017 6/5/2017 7/24/2017 9/12/2017	19 ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U	19 ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U
MW-16-03	8	8 (100%)	8/2/2016 9/19/2016 ~ 11/7/2016 1/9/2017 ~ 2/27/2017 ~ 4/17/2017 ~ 6/5/2017 7/24/2017 ~	ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U	ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U ND<2 U
MW-16-04	9	0 (0%)	8/2/2016 9/20/2016 11/7/2016 1/9/2017 2/27/2017 4/18/2017 6/5/2017 7/24/2017 9/13/2017	27 26 13 13 9.8 8.7 9.5 9.4	27 26 13 13 9.8 8.7 9.5 9.4
MW-16-09	9	0 (0%)	8/2/2016 9/20/2016 11/9/2016 1/10/2017 2/28/2017 4/17/2017 6/5/2017 7/25/2017 9/14/2017 7/24/2017	15 17 9.8 7.6 11 13 16 18	15 17 9.8 7.6 11 13 16 18 8

Parameter: Cobalt

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 44 Total Non-Detect: 24

Percent Non-Detects: 54.5455% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	8 (88.8889%)	8/1/2016 9/20/2016 11/7/2016 1/9/2017 2/27/2017 4/17/2017 6/5/2017 7/24/2017 9/11/2017	3.6 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	3.6 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-02	9	8 (88.8889%)	8/2/2016 9/19/2016 11/7/2016 ~ 1/9/2017 2/27/2017 4/17/2017 6/5/2017 7/24/2017 9/12/2017	3.9 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	3.9 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-03	8	8 (100%)	8/2/2016 9/19/2016 ~ 11/7/2016 1/9/2017 ~ 2/27/2017 ~ 4/17/2017 ~ 6/5/2017 7/24/2017 ~	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-04	9	0 (0%)	8/2/2016 9/20/2016 11/7/2016 1/9/2017 2/27/2017 4/18/2017 6/5/2017 7/24/2017 9/13/2017	6.4 7.4 3.8 4.1 2.6 2.4 3.2 2.4 3	6.4 7.4 3.8 4.1 2.6 2.4 3.2 2.4 3
MW-16-09	9	0 (0%)	8/2/2016 9/20/2016 11/9/2016 1/10/2017 2/28/2017 4/17/2017 6/5/2017 7/25/2017 9/14/2017 7/24/2017	4.1 5.6 2.9 2.7 2.8 3.7 4.3 5.9 2.5 6.3	4.1 5.6 2.9 2.7 2.8 3.7 4.3 5.9 2.5 6.3

Parameter: Fluoride

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 79 Total Non-Detect: 0 Percent Non-Detects: 0%

Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	16	0 (0%)	8/1/2016	1.7	1.7
		,	9/20/2016	1.5	1.5
			11/7/2016	1.6	1.6
			1/9/2017	1.4	1.4
			2/27/2017	1.7	1.7
			4/17/2017	1.6	1.6
			6/5/2017	1.7	1.7
			7/24/2017	1.7	1.7
			9/11/2017	1.8	1.8
			10/2/2017	1.7	1.7
			3/26/2018	1.8	1.8
			10/1/2018	1.7	1.7
			3/18/2019 ~	1.6	1.6
			9/16/2019 ~	1.8	1.8
			3/17/2020 ~	1.8	1.8
			9/14/2020 ~	1.8	1.8
			0/14/2020	1.0	1.0
MW-16-02	16	0 (0%)	8/2/2016	1.1	1.1
			9/19/2016	1	1
			11/7/2016 ~	1.1	1.1
			1/9/2017	0.97	0.97
			2/27/2017	1.2	1.2
			4/17/2017	1.1	1.1
			6/5/2017	1.2	1.2
			7/24/2017	1.2	1.2
			9/12/2017	1.3	1.3
			10/2/2017	1.2	1.2
			3/26/2018	1.2	1.2
			10/1/2018	1.2	1.2
			3/18/2019	1.1	1.1
			9/16/2019	1.1	1.1
			3/17/2020	1.2	1.2
			9/15/2020	1.2	1.2
/W-16-03	15	0 (0%)	8/2/2016	1.6	1.6
71 V - 10-00	10	0 (070)	9/19/2016 ~	1.5	1.5
			11/7/2016	1.7	1.7
			1/9/2017 ~	1.7	1.5
			2/27/2017 ~	1.5	1.7
			4/17/2017 ~	1.7	1.7
			6/5/2017	1.8	1.8
			7/24/2017 ~	1.8	1.8
			10/2/2017	1.8	1.8
			3/26/2018	1.8	1.8
			10/1/2018 ~	1.7	1.7
			3/18/2019	1.6	1.6
			9/16/2019	1.8	1.8
			3/17/2020	1.8 1.7	1.8 1.7
			9/14/2020		

Loc.	Meas.	ND	Date	Conc.	Original
There are 0 u	nused location	s			
			7/24/2017	1.6	1.6
			9/15/2020	1.4	1.4
			3/19/2020	1.5	1.5
			9/17/2019	1.4	1.4
			3/20/2019	1.3	1.3
			10/4/2018	1.5	1.5
			3/27/2018	1.5	1.5
			9/14/2017 10/3/2017 ~	1.6	1.5
			7/25/2017 9/14/2017	1.6 1.6	1.6
			6/5/2017	1.6	1.6 1.6
			4/17/2017	1.4	1.4
			2/28/2017	1.5	1.5
			1/10/2017	1.1	1.1
			11/9/2016	1.5	1.5
			9/20/2016	1.2	1.2
MW-16-09	16	0 (0%)	8/2/2016	1.3	1.3
			9/15/2020	1.7	1.7
			3/17/2020	1.7	1.7
			9/16/2019	1.7	1.7
			3/18/2019	1.6	1.6
			10/1/2018	1.7	1.7
			3/26/2018	1.7	1.7
			10/2/2017	1.7	1.7
			9/13/2017	1.7	1.8
			6/5/2017 7/24/2017	1.7 1.7	1.7 1.7
			4/18/2017	1.6	1.6
			2/27/2017	1.7	1.7
			1/9/2017	1.4	1.4
			11/7/2016	1.5	1.5
			9/20/2016	1.5	1.5
MW-16-04	16	0 (0%)	8/2/2016	1.6	1.6

Parameter: Lead

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 44
Total Non-Detect: 24

Percent Non-Detects: 54.5455% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	8 (88.8889%)	8/1/2016 9/20/2016 11/7/2016 1/9/2017 2/27/2017 4/17/2017 6/5/2017 7/24/2017 9/11/2017	3.5 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	3.5 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-02	9	8 (88.8889%)	8/2/2016 9/19/2016 11/7/2016 ~ 1/9/2017 2/27/2017 4/17/2017 6/5/2017 7/24/2017 9/12/2017	2.9 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	2.9 ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-03	8	8 (100%)	8/2/2016 9/19/2016 ~ 11/7/2016 1/9/2017 ~ 2/27/2017 ~ 4/17/2017 ~ 6/5/2017 7/24/2017 ~	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U	ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U ND<1 U
MW-16-04	9	0 (0%)	8/2/2016 9/20/2016 11/7/2016 1/9/2017 2/27/2017 4/18/2017 6/5/2017 7/24/2017 9/13/2017	6.1 7.1 3.6 4.1 2.8 2.5 3.3 2.2	6.1 7.1 3.6 4.1 2.8 2.5 3.3 2.2
MW-16-09	9	0 (0%)	8/2/2016 9/20/2016 11/9/2016 1/10/2017 2/28/2017 4/17/2017 6/5/2017 7/25/2017 9/14/2017 7/24/2017	4.3 5.4 2.5 2.6 2.6 3.2 3.4 5.1 2.8	4.3 5.4 2.5 2.6 2.6 3.2 3.4 5.1 2.8

Parameter: Lithium

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 44
Total Non-Detect: 1

Percent Non-Detects: 2.27273% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	1 (11.1111%)	8/1/2016	23	23
		,	9/20/2016	13	13
			11/7/2016	12	12
			1/9/2017	9.5	9.5
			2/27/2017	9.6	9.6
			4/17/2017	11	11
			6/5/2017	10	10
			7/24/2017	12	12
			9/11/2017	ND<8 U	ND<8 U
MW-16-02	9	0 (0%)	8/2/2016	19	19
		•	9/19/2016	15	15
			11/7/2016 ~	12.5	12.5
			1/9/2017	12	12
			2/27/2017	13	13
			4/17/2017	13	13
			6/5/2017	13	13
			7/24/2017	13	13
			9/12/2017	12	12
MW-16-03	8	0 (0%)	8/2/2016	11	11
			9/19/2016 ~	13	13
			11/7/2016	13	13
			1/9/2017 ~	14.5	14.5
			2/27/2017 ~	16	16
			4/17/2017 ~	18	18
			6/5/2017	18	18
			7/24/2017 ~	18.5	18.5
MW-16-04	9	0 (0%)	8/2/2016	30	30
			9/20/2016	37	37
			11/7/2016	26	26
			1/9/2017	25	25
			2/27/2017	24	24
			4/18/2017	26	26
			6/5/2017	26	26
			7/24/2017	27	27
			9/13/2017	24	24
MW-16-09	9	0 (0%)	8/2/2016	39	39
			9/20/2016	50	50
			11/9/2016	39	39
			1/10/2017	37	37
			2/28/2017	40	40
			4/17/2017	49	49
			6/5/2017	46	46
			7/25/2017	55	55
			9/14/2017	32	32
			7/24/2017	57	57

Parameter: Mercury
Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Measurements: 44 Total Non-Detect: 44 Percent Non-Detects: 100% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/1/2016	ND<0.2 U	ND<0.2 U
		, ,	9/20/2016	ND<0.2 U	ND<0.2 U
			11/7/2016	ND<0.2 U	ND<0.2 U
			1/9/2017	ND<0.2 U	ND<0.2 U
			2/27/2017	ND<0.2 U	ND<0.2 U
			4/17/2017	ND<0.2 U	ND<0.2 U
			6/5/2017	ND<0.2 U	ND<0.2 U
			7/24/2017	ND<0.2 U	ND<0.2 U
			9/11/2017	ND<0.2 U	ND<0.2 U
MW-16-02	9	9 (100%)	8/2/2016	ND<0.2 U	ND<0.2 U
			9/19/2016	ND<0.2 U	ND<0.2 U
			11/7/2016 ~	ND<0.2 U	ND<0.2 U
			1/9/2017	ND<0.2 U	ND<0.2 U
			2/27/2017	ND<0.2 U	ND<0.2 U
			4/17/2017	ND<0.2 U	ND<0.2 U
			6/5/2017	ND<0.2 U	ND<0.2 U
			7/24/2017	ND<0.2 U	ND<0.2 U
			9/12/2017	ND<0.2 U	ND<0.2 U
MW-16-03	8	8 (100%)	8/2/2016	ND<0.2 U	ND<0.2 U
			9/19/2016 ~	ND<0.2 U	ND<0.2 U
			11/7/2016	ND<0.2 U	ND<0.2 U
			1/9/2017 ~	ND<0.2 U	ND<0.2 U
			2/27/2017 ~	ND<0.2 U	ND<0.2 U
			4/17/2017 ~	ND<0.2 U	ND<0.2 U
			6/5/2017	ND<0.2 U	ND<0.2 U
			7/24/2017 ~	ND<0.2 U	ND<0.2 U
MW-16-04	9	9 (100%)	8/2/2016	ND<0.2 U	ND<0.2 U
			9/20/2016	ND<0.2 U	ND<0.2 U
			11/7/2016	ND<0.2 U	ND<0.2 U
			1/9/2017	ND<0.2 U	ND<0.2 U
			2/27/2017	ND<0.2 U	ND<0.2 U
			4/18/2017	ND<0.2 U	ND<0.2 U
			6/5/2017	ND<0.2 U	ND<0.2 U
			7/24/2017	ND<0.2 U	ND<0.2 U
			9/13/2017	ND<0.2 U	ND<0.2 U
MW-16-09	9	9 (100%)	8/2/2016	ND<0.2 U	ND<0.2 U
			9/20/2016	ND<0.2 U	ND<0.2 U
			11/9/2016	ND<0.2 U	ND<0.2 U
			1/10/2017	ND<0.2 U	ND<0.2 U
			2/28/2017	ND<0.2 U	ND<0.2 U
			4/17/2017	ND<0.2 U	ND<0.2 U
			6/5/2017	ND<0.2 U	ND<0.2 U
			7/25/2017	ND<0.2 U	ND<0.2 U
			9/14/2017	ND<0.2 U	ND<0.2 U
			7/24/2017	ND<0.2 U	ND<0.2 U

Parameter: Molybdenum Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

Total Measurements: 44 Total Non-Detect: 0 Percent Non-Detects: 0%

Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	0 (0%)	8/1/2016	89	89
			9/20/2016	82	82
			11/7/2016	76	76
			1/9/2017	70	70
			2/27/2017	79	79
			4/17/2017	76	76
			6/5/2017	73	73
			7/24/2017	83	83
			9/11/2017	73	73
MW-16-02	9	0 (0%)	8/2/2016	65	65
			9/19/2016	39	39
			11/7/2016 ~	34.5	34.5
			1/9/2017	34	34
			2/27/2017	38	38
			4/17/2017	36	36
			6/5/2017	36	36
			7/24/2017	38	38
			9/12/2017	36	36
MW-16-03	8	0 (0%)	8/2/2016	100	100
			9/19/2016 ~	98.5	98.5
			11/7/2016	94	94
			1/9/2017 ~	89	89
			2/27/2017 ~	98.5	98.5
			4/17/2017 ~	98	98
			6/5/2017	93	93
			7/24/2017 ~	96	96
MW-16-04	9	0 (0%)	8/2/2016	96	96
			9/20/2016	110	110
			11/7/2016	94	94
			1/9/2017	81	81
			2/27/2017	87	87
			4/18/2017	91	91
			6/5/2017	87	87
			7/24/2017	94	94
			9/13/2017	93	93
MW-16-09	9	0 (0%)	8/2/2016	65	65
			9/20/2016	62	62
			11/9/2016	59	59
			1/10/2017	53	53
			2/28/2017	59	59
			4/17/2017	60	60
			6/5/2017	59	59
			7/25/2017	60	60
			9/14/2017	56	56
			7/24/2017	66	66

Concentrations (pci/L)

Parameter: Radium-226/228 Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

Total Measurements: 44
Total Non-Detect: 1

Percent Non-Detects: 2.27273% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	0 (0%)	8/1/2016	1.84	1.84
			9/20/2016	1.07	1.07
			11/7/2016	1.46	1.46
			1/9/2017	1.08	1.08
			2/27/2017	0.656	0.656
			4/17/2017	0.619	0.619
			6/5/2017	1.32	1.32
			7/24/2017	0.942	0.942
			9/11/2017	0.536	0.536
MW-16-02	9	0 (0%)	8/2/2016	2.65	2.65
			9/19/2016	1.46	1.46
			11/7/2016 ~	1.96	1.96
			1/9/2017	1.73	1.73
			2/27/2017	1.1	1.1
			4/17/2017	1.18	1.18
			6/5/2017	1.1	1.1
			7/24/2017	1.35	1.35
			9/12/2017	1.55	1.55
MW-16-03	8	0 (0%)	8/2/2016	1.43	1.43
			9/19/2016 ~	1.008	1.008
			11/7/2016	1.98	1.98
			1/9/2017 ~	1.66	1.66
			2/27/2017 ~	3.1365	3.1365
			4/17/2017 ~	1.074	1.074
			6/5/2017	1.36	1.36
			7/24/2017 ~	1.26	1.26
MW-16-04	9	1 (11.1111%)	8/2/2016	1.69	1.69
			9/20/2016	2.7	2.7
			11/7/2016	2.16	2.16
			1/9/2017	ND<1.65 U	ND<1.65 U
			2/27/2017	1.43	1.43
			4/18/2017	1.09	1.09
			6/5/2017	1.97	1.97
			7/24/2017	1.47	1.47
			9/13/2017	0.802	0.802
MW-16-09	9	0 (0%)	8/2/2016	2.07	2.07
			9/20/2016	3.2	3.2
			11/9/2016	2.83	2.83
			1/10/2017	2.51	2.51
			2/28/2017	1.1	1.1
			4/17/2017	1.67	1.67
			6/5/2017	1.75	1.75
			7/25/2017	1.9	1.9
			9/14/2017	2.49	2.49
			7/24/2017	1.67	1.67

Parameter: Selenium

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Measurements: 44 Total Non-Detect: 44 Percent Non-Detects: 100% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/1/2016	ND<5 U	ND<5 U
			9/20/2016	ND<5 U	ND<5 U
			11/7/2016	ND<5 U	ND<5 U
			1/9/2017	ND<5 U	ND<5 U
			2/27/2017	ND<5 U	ND<5 U
			4/17/2017	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/24/2017	ND<5 U	ND<5 U
			9/11/2017	ND<5 U	ND<5 U
MW-16-02	9	9 (100%)	8/2/2016	ND<5 U	ND<5 U
			9/19/2016	ND<5 U	ND<5 U
			11/7/2016 ~	ND<5 U	ND<5 U
			1/9/2017	ND<5 U	ND<5 U
			2/27/2017	ND<5 U	ND<5 U
			4/17/2017	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/24/2017	ND<5 U	ND<5 U
			9/12/2017	ND<5 U	ND<5 U
MW-16-03	8	8 (100%)	8/2/2016	ND<5 U	ND<5 U
			9/19/2016 ~	ND<5 U	ND<5 U
			11/7/2016	ND<5 U	ND<5 U
			1/9/2017 ~	ND<5 U	ND<5 U
			2/27/2017 ~	ND<5 U	ND<5 U
			4/17/2017 ~	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/24/2017 ~	ND<5 U	ND<5 U
MW-16-04	9	9 (100%)	8/2/2016	ND<5 U	ND<5 U
			9/20/2016	ND<5 U	ND<5 U
			11/7/2016	ND<5 U	ND<5 U
			1/9/2017	ND<5 U	ND<5 U
			2/27/2017	ND<5 U	ND<5 U
			4/18/2017	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/24/2017	ND<5 U	ND<5 U
			9/13/2017	ND<5 U	ND<5 U
MW-16-09	9	9 (100%)	8/2/2016	ND<5 U	ND<5 U
			9/20/2016	ND<5 U	ND<5 U
			11/9/2016	ND<5 U	ND<5 U
			1/10/2017	ND<5 U	ND<5 U
			2/28/2017	ND<5 U	ND<5 U
			4/17/2017	ND<5 U	ND<5 U
			6/5/2017	ND<5 U	ND<5 U
			7/25/2017	ND<5 U	ND<5 U
			9/14/2017	ND<5 U	ND<5 U
			7/24/2017	ND<5 U	ND<5 U

Parameter: Thallium

Original Data (Not Transformed)
Non-Detects Replaced with Detection Limit

Total Measurements: 44 Total Non-Detect: 44 Percent Non-Detects: 100% Total Background Measurements: 0 There are 0 background locations

Loc.	Meas.	ND	Date	Conc.	Original
There are 5 c	ompliance loca	tions			
Loc.	Meas.	ND	Date	Conc.	Original
MW-16-01	9	9 (100%)	8/1/2016	ND<1 U	ND<1 U
			9/20/2016	ND<1 U	ND<1 U
			11/7/2016	ND<1 U	ND<1 U
			1/9/2017	ND<1 U	ND<1 U
			2/27/2017	ND<1 U	ND<1 U
			4/17/2017	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/24/2017	ND<1 U	ND<1 U
			9/11/2017	ND<1 U	ND<1 U
MW-16-02	9	9 (100%)	8/2/2016	ND<1 U	ND<1 U
			9/19/2016	ND<1 U	ND<1 U
			11/7/2016 ~	ND<1 U	ND<1 U
			1/9/2017	ND<1 U	ND<1 U
			2/27/2017	ND<1 U	ND<1 U
			4/17/2017	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/24/2017	ND<1 U	ND<1 U
			9/12/2017	ND<1 U	ND<1 U
MW-16-03	8	8 (100%)	8/2/2016	ND<1 U	ND<1 U
			9/19/2016 ~	ND<1 U	ND<1 U
			11/7/2016	ND<1 U	ND<1 U
			1/9/2017 ~	ND<1 U	ND<1 U
			2/27/2017 ~	ND<1 U	ND<1 U
			4/17/2017 ~	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/24/2017 ~	ND<1 U	ND<1 U
MW-16-04	9	9 (100%)	8/2/2016	ND<1 U	ND<1 U
			9/20/2016	ND<1 U	ND<1 U
			11/7/2016	ND<1 U	ND<1 U
			1/9/2017	ND<1 U	ND<1 U
			2/27/2017	ND<1 U	ND<1 U
			4/18/2017	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/24/2017 9/13/2017	ND<1 U	ND<1 U
			9/13/2017	ND<1 U	ND<1 U
MW-16-09	9	9 (100%)	8/2/2016	ND<1 U	ND<1 U
			9/20/2016	ND<1 U	ND<1 U
			11/9/2016	ND<1 U	ND<1 U
			1/10/2017	ND<1 U	ND<1 U
			2/28/2017	ND<1 U	ND<1 U
			4/17/2017 6/5/2017	ND<1 U	ND<1 U
			6/5/2017	ND<1 U	ND<1 U
			7/25/2017 9/14/2017	ND<1 U ND<1 U	ND<1 U ND<1 U
			7/24/2017	ND<1 U	ND<1 U
			112412011	ט וישמו	ט ויישאו

Skewness Coefficient

Parameter: Barium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations					
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-16-01	9	251.111	19.6497	1.93433	
MW-16-02	9	287.778	22.2361	1.09096	
MW-16-03	8	296.875	12.2292	-1.40422	
MW-16-04	9	355.556	37.1184	1.50819	
MW-16-09	9	283.333	16.5831	-0.562075	

All Locations

Obs.	Mean	Std. Dev.	Skewness
44	294.886	41.3084	1.14494

Skewness Coefficient

Parameter: Barium

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	5.5234	0.0733807	1.85565
MW-16-02	9	5.65966	0.0745478	1.04324
MW-16-03	8	5.69254	0.0424051	-1.4678
MW-16-04	9	5.86924	0.0978708	1.41108
MW-16-09	9	5.64506	0.0596884	-0.725993

All Locations

Obs.	Mean	Std. Dev.	Skewness
44	5.67765	0.133294	0.658393

Parameter: Barium Location: MW-16-01

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	240	300	60	0.5888	35.328
2	240	260	20	0.3244	6.488
3	240	250	10	0.1976	1.976
4	240	250	10	0.0947	0.947
5	240	240	0		
6	250	240	-10		
7	250	240	-10		
8	260	240	-20		
9	300	240	-60		

Sum of b values = 44.739 Sample Standard Deviation = 19.6497 W Statistic = 0.647993

5% Critical value of 0.829 exceeds 0.647993 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.647993 Evidence of non-normality at 99% level of significance

Parameter: Barium Location: MW-16-01

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	5.48064	5.70378	0.223144	0.5888	0.131387
2	5.48064	5.56068	0.0800427	0.3244	0.0259659
3	5.48064	5.52146	0.040822	0.1976	0.00806643
4	5.48064	5.52146	0.040822	0.0947	0.00386584
5	5.48064	5.48064	0		
6	5.52146	5.48064	-0.040822		
7	5.52146	5.48064	-0.040822		
8	5.56068	5.48064	-0.0800427		
9	5.70378	5.48064	-0.223144		

Sum of b values = 0.169285 Sample Standard Deviation = 0.0733807 W Statistic = 0.665248

5% Critical value of 0.829 exceeds 0.665248 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.665248 Evidence of non-normality at 99% level of significance

Parameter: Barium Location: MW-16-02

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	270	330	60	0.5888	35.328
2	270	320	50	0.3244	16.22
3	270	290	20	0.1976	3.952
4	280	280	0	0.0947	0
5	280	280	0		
6	280	280	0		
7	290	270	-20		
8	320	270	-50		
9	330	270	-60		

Sum of b values = 55.5 Sample Standard Deviation = 22.2361 W Statistic = 0.778715

5% Critical value of 0.829 exceeds 0.778715 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 is less than 0.778715 Data is normally distributed at 99% level of significance

Parameter: Barium Location: MW-16-02

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	5.59842	5.79909	0.200671	0.5888	0.118155
2	5.59842	5.76832	0.169899	0.3244	0.0551152
3	5.59842	5.66988	0.071459	0.1976	0.0141203
4	5.63479	5.63479	0	0.0947	0
5	5.63479	5.63479	0		
6	5.63479	5.63479	0		
7	5.66988	5.59842	-0.071459		
8	5.76832	5.59842	-0.169899		
9	5.79909	5.59842	-0.200671		

Sum of b values = 0.18739 Sample Standard Deviation = 0.0745478 W Statistic = 0.789832

5% Critical value of 0.829 exceeds 0.789832 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 is less than 0.789832 Data is normally distributed at 99% level of significance

Parameter: Barium Location: MW-16-03

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 4 for 8 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	270	310	40	0.6052	24.208
2	290	305	15	0.3164	4.746
3	300	300	0	0.1743	0
4	300	300	0	0.0561	0
5	300	300	0		
6	300	300	0		
7	305	290	-15		
8	310	270	-40		

Sum of b values = 28.954 Sample Standard Deviation = 12.2292 W Statistic = 0.800797

5% Critical value of 0.818 exceeds 0.800797 Evidence of non-normality at 95% level of significance

1% Critical value of 0.749 is less than 0.800797 Data is normally distributed at 99% level of significance

Parameter: Barium Location: MW-16-03

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 4 for 8 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	5.59842	5.73657	0.13815	0.6052	0.0836086
2	5.66988	5.72031	0.0504309	0.3164	0.0159563
3	5.70378	5.70378	0	0.1743	0
4	5.70378	5.70378	0	0.0561	0
5	5.70378	5.70378	0		
6	5.70378	5.70378	0		
7	5.72031	5.66988	-0.0504309		
8	5.73657	5.59842	-0.13815		

Sum of b values = 0.0995649 Sample Standard Deviation = 0.0424051 W Statistic = 0.787552

5% Critical value of 0.818 exceeds 0.787552 Evidence of non-normality at 95% level of significance

1% Critical value of 0.749 is less than 0.787552 Data is normally distributed at 99% level of significance

Parameter: Barium Location: MW-16-04

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i $x(i)$ $x(n-i+1)$ $x(n-1+1)-x(i)$ $a(n-i+1)$ $b(i)$	Q
1 330 440 110 0.5888 64.76	5
2 330 390 60 0.3244 19.46	4
3 330 360 30 0.1976 5.928	
4 340 340 0 0.0947 0	
5 340 340 0	
6 340 340 0	
7 360 330 -30	
8 390 330 -60	
9 440 330 -110	

Sum of b values = 90.16 Sample Standard Deviation = 37.1184 W Statistic = 0.737494

5% Critical value of 0.829 exceeds 0.737494 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.737494 Evidence of non-normality at 99% level of significance

Parameter: Barium Location: MW-16-04

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	5.79909	6.08677	0.287682	0.5888	0.169387
2	5.79909	5.96615	0.167054	0.3244	0.0541923
3	5.79909	5.8861	0.0870114	0.1976	0.0171934
4	5.82895	5.82895	0	0.0947	0
5	5.82895	5.82895	0		
6	5.82895	5.82895	0		
7	5.8861	5.79909	-0.0870114		
8	5.96615	5.79909	-0.167054		
9	6.08677	5.79909	-0.287682		

Sum of b values = 0.240773 Sample Standard Deviation = 0.0978708 W Statistic = 0.756518

5% Critical value of 0.829 exceeds 0.756518 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.756518 Evidence of non-normality at 99% level of significance

Skewness Coefficient

Parameter: Chromium
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations			
Location Obs.	Mean	Std. Dev.	Skewness
MW-16-01 9	2.33333	4	2.47487
MW-16-02 9	3	6	2.47487
MW-16-03 8	1	0	Div 0
MW-16-04 9	14.0444	7.22947	1.19014
MW-16-09 9	12.8222	3.90697	-0.0757045

All Locations

Obs.	Mean	Std. Dev.	Skewness
44	6.76818	7.36676	1.12792

Skewness Coefficient

Parameter: Chromium

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations					
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-16-01	9	0.284994	0.854983	2.47487	
MW-16-02	9	0.32716	0.98148	2.47487	
MW-16-03	8	0	0	Div 0	
MW-16-04	9	2.54712	0.436647	1.01083	
MW-16-09	9	2.50634	0.324454	-0.313661	

All Locations

Obs.	Mean	Std. Dev.	Skewness
44	1.15888	1.30696	0.421281

Parameter: Chromium Location: MW-16-04

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	8.7	27	18.3	0.5888	10.775
2	9.4	26	16.6	0.3244	5.38504
3	9.5	13	3.5	0.1976	0.6916
4	9.8	13	3.2	0.0947	0.30304
5	10	10	0		
6	13	9.8	-3.2		
7	13	9.5	-3.5		
8	26	9.4	-16.6		
9	27	8.7	-18.3		

Sum of b values = 17.1547 Sample Standard Deviation = 7.22947 W Statistic = 0.703824

5% Critical value of 0.829 exceeds 0.703824 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.703824 Evidence of non-normality at 99% level of significance

Parameter: Chromium Location: MW-16-04

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	2.16332	3.29584	1.13251	0.5888	0.666824
2	2.24071	3.2581	1.01739	0.3244	0.33004
3	2.25129	2.56495	0.313658	0.1976	0.0619787
4	2.28238	2.56495	0.282567	0.0947	0.0267591
5	2.30259	2.30259	0		
6	2.56495	2.28238	-0.282567		
7	2.56495	2.25129	-0.313658		
8	3.2581	2.24071	-1.01739		
9	3.29584	2.16332	-1.13251		

Sum of b values = 1.0856 Sample Standard Deviation = 0.436647 W Statistic = 0.772663

5% Critical value of 0.829 exceeds 0.772663 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 is less than 0.772663 Data is normally distributed at 99% level of significance

Skewness Coefficient

Parameter: Cobalt Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location Obs. Mean Std. Dev. Skewness MW-16-01 9 0.8444444 1.033333 2.47487 MW-16-02 9 0.877778 1.133333 2.47487 MW-16-03 8 0.5 0 Div 0
MW-16-02 9 0.877778 1.13333 2.47487
MW 16 03 9 0.5 0. Div 0
10100 - 10-03 0 0.5 U DIV U
MW-16-04 9 3.92222 1.80401 1.05578
MW-16-09 9 3.83333 1.25996 0.577785

All Locations

Obs.	Mean	Std. Dev.	Skewness
44	2.02955	1.94321	1.08691

Skewness Coefficient

Parameter: Cobalt

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations					
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-16-01	9	-0.473805	0.658027	2.47487	
MW-16-02	9	-0.464911	0.684708	2.47487	
MW-16-03	8	-0.693147	0	Div 0	
MW-16-04	9	1.28578	0.411047	0.709812	
MW-16-09	9	1.29773	0.318513	0.309567	

All Locations

Obs.	Mean	Std. Dev.	Skewness
44	0.210406	1.02611	0.46083

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	•		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	1.68125	0.116726	-0.926404
MW-16-02	16	1.14812	0.085574	-0.531685
MW-16-03	15	1.69333	0.109978	-0.534079
MW-16-04	16	1.64375	0.103078	-0.959228
MW-16-09	16	1.43125	0.14477	-0.838747

Obs.	Mean	Std. Dev.	Skewness
79	1.51734	0.237701	-0.645165

Parameter: Lead

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	0.833333	1	2.47487
MW-16-02	9	0.766667	0.8	2.47487
MW-16-03	8	0.5	0	Div 0
MW-16-04	9	3.85556	1.67415	1.03004
MW-16-09	9	3.54444	1.11816	0.692648

Obs.	Mean	Std. Dev.	Skewness
44	1.93182	1.81554	1.10528

Parameter: Lead

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	-0.476935	0.648637	2.47487
MW-16-02	9	-0.49783	0.585953	2.47487
MW-16-03	8	-0.693147	0	Div 0
MW-16-04	9	1.27636	0.392994	0.630363
MW-16-09	9	1.22423	0.298626	0.509869

Obs.	Mean	Std. Dev.	Skewness
44	0.186074	0.997788	0.459565

Parameter: Lithium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	.		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	11.5667	5.01647	1.09646
MW-16-02	9	13.6111	2.20479	1.83731
MW-16-03	8	15.25	2.80306	-0.163822
MW-16-04	9	27.2222	4.08588	1.69658
MW-16-09	9	43	7.38241	0.201671

Obs.	Mean	Std. Dev.	Skewness
44	22.2864	12.8073	0.945088

Parameter: Lithium

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	2.36334	0.453983	-0.656345
MW-16-02	9	2.60087	0.144581	1.66952
MW-16-03	8	2.70913	0.190083	-0.33224
MW-16-04	9	3.29525	0.13616	1.51405
MW-16-09	9	3.74805	0.172324	-0.0300527

Obs.	Mean	Std. Dev.	Skewness
44	2.94865	0.568928	-0.0332975

Parameter: Lithium **Location: MW-16-02**

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	12	19	7	0.5888	4.1216
2	12	15	3	0.3244	0.9732
3	12.5	13	0.5	0.1976	0.0988
4	13	13	0	0.0947	0
5	13	13	0		
6	13	13	0		
7	13	12.5	-0.5		
8	15	12	-3		
9	19	12	-7		

Sum of b values = 5.1936 Sample Standard Deviation = 2.20479 W Statistic = 0.693604

5% Critical value of 0.829 exceeds 0.693604 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.693604 Evidence of non-normality at 99% level of significance

Parameter: Lithium **Location: MW-16-02**

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	2.48491	2.94444	0.459532	0.5888	0.270573
2	2.48491	2.70805	0.223144	0.3244	0.0723878
3	2.52573	2.56495	0.0392207	0.1976	0.00775001
4	2.56495	2.56495	0	0.0947	0
5	2.56495	2.56495	0		
6	2.56495	2.56495	0		
7	2.56495	2.52573	-0.0392207		
8	2.70805	2.48491	-0.223144		
9	2.94444	2.48491	-0.459532		

Sum of b values = 0.35071 Sample Standard Deviation = 0.144581 W Statistic = 0.735502

5% Critical value of 0.829 exceeds 0.735502 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.735502 Evidence of non-normality at 99% level of significance

Parameter: Lithium Location: MW-16-04

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	24	37	13	0.5888	7.6544
2	24	30	6	0.3244	1.9464
3	25	27	2	0.1976	0.3952
4	26	26	0	0.0947	0
5	26	26	0		
6	26	26	0		
7	27	25	-2		
8	30	24	-6		
9	37	24	-13		

Sum of b values = 9.996 Sample Standard Deviation = 4.08588 W Statistic = 0.748153

5% Critical value of 0.829 exceeds 0.748153 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.748153 Evidence of non-normality at 99% level of significance

Parameter: Lithium Location: MW-16-04

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	3.17805	3.61092	0.432864	0.5888	0.25487
2	3.17805	3.4012	0.223144	0.3244	0.0723878
3	3.21888	3.29584	0.076961	0.1976	0.0152075
4	3.2581	3.2581	0	0.0947	0
5	3.2581	3.2581	0		
6	3.2581	3.2581	0		
7	3.29584	3.21888	-0.076961		
8	3.4012	3.17805	-0.223144		
9	3.61092	3.17805	-0.432864		

Sum of b values = 0.342466 Sample Standard Deviation = 0.13616 W Statistic = 0.790765

5% Critical value of 0.829 exceeds 0.790765 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 is less than 0.790765 Data is normally distributed at 99% level of significance

Parameter: Molybdenum Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	.		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	77.8889	5.9675	0.522804
MW-16-02	9	39.6111	9.66236	2.33768
MW-16-03	8	95.875	3.6718	-0.738383
MW-16-04	9	92.5556	8.04846	0.881343
MW-16-09	9	59.2222	3.38296	-0.202509

Obs.	Mean	Std. Dev.	Skewness
44	72.5114	22.2618	-0.385541

Parameter: Molybdenum Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	4.35272	0.0755176	0.407973
MW-16-02	9	3.659	0.198488	2.23139
MW-16-03	8	4.56239	0.0388519	-0.787655
MW-16-04	9	4.52457	0.0846274	0.636649
MW-16-09	9	4.07983	0.0576437	-0.358962

Obs.	Mean	Std. Dev.	Skewness
44	4.22828	0.354139	-0.782091

Parameter: Molybdenum Location: MW-16-02

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	34	65	31	0.5888	18.2528
2	34.5	39	4.5	0.3244	1.4598
3	36	38	2	0.1976	0.3952
4	36	38	2	0.0947	0.1894
5	36	36	0		
6	38	36	-2		
7	38	36	-2		
8	39	34.5	-4.5		
9	65	34	-31		

Sum of b values = 20.2972 Sample Standard Deviation = 9.66236 W Statistic = 0.55159

5% Critical value of 0.829 exceeds 0.55159 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.55159 Evidence of non-normality at 99% level of significance

Parameter: Molybdenum Location: MW-16-02

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 4 for 9 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	3.52636	4.17439	0.648027	0.5888	0.381558
2	3.54096	3.66356	0.122602	0.3244	0.0397722
3	3.58352	3.63759	0.0540672	0.1976	0.0106837
4	3.58352	3.63759	0.0540672	0.0947	0.00512017
5	3.58352	3.58352	0		
6	3.63759	3.58352	-0.0540672		
7	3.63759	3.58352	-0.0540672		
8	3.66356	3.54096	-0.122602		
9	4.17439	3.52636	-0.648027		

Sum of b values = 0.437134 Sample Standard Deviation = 0.198488 W Statistic = 0.606275

5% Critical value of 0.829 exceeds 0.606275 Evidence of non-normality at 95% level of significance

1% Critical value of 0.764 exceeds 0.606275 Evidence of non-normality at 99% level of significance

Parameter: Radium-226/228 Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	9	1.05811	0.430503	0.444198
MW-16-02	9	1.56444	0.499828	1.14403
MW-16-03	8	1.61356	0.690404	1.45519
MW-16-04	9	1.57078	0.632875	0.379575
MW-16-09	9	2.16889	0.648911	0.00907827

Obs.	Mean	Std. Dev.	Skewness
44	1.59474	0.664125	0.701046

Parameter: Radium-226/228 Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location Obs. Mean Std. Dev. Skewness MW-16-01 9 -0.0193514 0.418258 -0.0790602 MW-16-02 9 0.407617 0.291247 0.68333 MW-16-03 8 0.413581 0.367002 0.909563
MW-16-02 9 0.407617 0.291247 0.68333
MW-16-03 8 0.413581 0.367002 0.909563
MW-16-04 9 0.375802 0.420285 -0.16482
MW-16-09 9 0.730349 0.324062 -0.577924

Obs.	Mean	Std. Dev.	Skewness
44	0.380873	0.42673	-0.220691

MW-16-01

Parameter: Barium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Background measurements (n) = 9
Maximum Background Concentration = 300
Minimum Coverage = 71.7%
Average Coverage = 90%

MW-16-01

Parameter: Beryllium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 88.8889%
Background measurements (n) = 9
Maximum Background Concentration = 2.8
Minimum Coverage = 71.7%
Average Coverage = 90%

MW-16-01

Parameter: Chromium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 88.8889%
Background measurements (n) = 9
Maximum Background Concentration = 13
Minimum Coverage = 71.7%
Average Coverage = 90%

MW-16-01

Parameter: Cobalt

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 88.8889%
Background measurements (n) = 9
Maximum Background Concentration = 3.6
Minimum Coverage = 71.7%
Average Coverage = 90%

Parametric Tolerance Interval Analysis

MW-16-01

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 16
Background mean = 1.68125
Background standard deviation = 0.116726
One-sided normal tolerance factor (K) at 95% confidence = 2.523
Upper tolerance limit = 1.97575

MW-16-01

Parameter: Lead

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 88.8889% Background measurements (n) = 9 Maximum Background Concentration = 3.5 Minimum Coverage = 71.7% Average Coverage = 90%

Significant Location Value **Date**

Parametric Tolerance Interval Analysis MW-16-01

Parameter: Lithium

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 2.36334
Background standard deviation = 0.453983
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 3.73936

Parametric Tolerance Interval Analysis

MW-16-01

Parameter: Molybdenum Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 77.8889
Background standard deviation = 5.9675
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 95.9764

Parametric Tolerance Interval Analysis

MW-16-01

Parameter: Radium-226/228
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 1.05811
Background standard deviation = 0.430503
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 2.36297

Parameter: Barium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Background measurements (n) = 9
Maximum Background Concentration = 330
Minimum Coverage = 71.7%
Average Coverage = 90%

Parameter: Beryllium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 88.8889% Background measurements (n) = 9 Maximum Background Concentration = 2.8 Minimum Coverage = 71.7% Average Coverage = 90%

Significant Location Value **Date**

Parameter: Chromium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 88.8889%
Background measurements (n) = 9
Maximum Background Concentration = 19
Minimum Coverage = 71.7%
Average Coverage = 90%

Parameter: Cobalt

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 88.8889%
Background measurements (n) = 9
Maximum Background Concentration = 3.9
Minimum Coverage = 71.7%
Average Coverage = 90%

Parametric Tolerance Interval Analysis MW-16-02

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 16
Background mean = 1.14812
Background standard deviation = 0.085574
One-sided normal tolerance factor (K) at 95% confidence = 2.523
Upper tolerance limit = 1.36403

MW-16-02

Parameter: Lead

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 88.8889% Background measurements (n) = 9 Maximum Background Concentration = 2.9 Minimum Coverage = 71.7% Average Coverage = 90%

Parameter: Lithium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Background measurements (n) = 9
Maximum Background Concentration = 19
Minimum Coverage = 71.7%
Average Coverage = 90%

Location Date Value Significant

MW-16-02

Parameter: Molybdenum Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Background measurements (n) = 9
Maximum Background Concentration = 65
Minimum Coverage = 71.7%
Average Coverage = 90%

Location Date Value Significant

MW-16-02

Parametric Tolerance Interval Analysis

MW-16-02

Parameter: Radium-226/228
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 0.407617
Background standard deviation = 0.291247
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 1.29039

MW-16-03

Parameter: Barium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Background measurements (n) = 8
Maximum Background Concentration = 310
Minimum Coverage = 68.8%
Average Coverage = 88.8889%

Parametric Tolerance Interval Analysis MW-16-03

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 15
Background mean = 1.69333
Background standard deviation = 0.109978
One-sided normal tolerance factor (K) at 95% confidence = 2.566
Upper tolerance limit = 1.97554

Parametric Tolerance Interval Analysis

MW-16-03

Parameter: Lithium

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 8
Background mean = 15.25
Background standard deviation = 2.80306
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 24.1862

MW-16-03

Parameter: Molybdenum Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 8
Background mean = 95.875
Background standard deviation = 3.6718
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 107.581

MW-16-03

Parameter: Radium-226/228
Natural Logarithm Transformation
Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 8
Background mean = 0.413581
Background standard deviation = 0.367002
One-sided normal tolerance factor (K) at 95% confidence = 3.188
Upper tolerance limit = 1.58358

Parameter: Arsenic

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 77.7778%

Background measurements (n) = 9

Maximum Background Concentration = 7

Minimum Coverage = 71.7%

Average Coverage = 90%

Parameter: Barium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Background measurements (n) = 9
Maximum Background Concentration = 440
Minimum Coverage = 71.7%
Average Coverage = 90%

Parameter: Beryllium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 88.8889% Background measurements (n) = 9 Maximum Background Concentration = 1 Minimum Coverage = 71.7% Average Coverage = 90%

Significant Location **Value Date**

Parameter: Chromium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Background measurements (n) = 9
Maximum Background Concentration = 27
Minimum Coverage = 71.7%
Average Coverage = 90%

Parameter: Cobalt

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 1.28578
Background standard deviation = 0.411047
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 2.53166

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 16
Background mean = 1.64375
Background standard deviation = 0.103078
One-sided normal tolerance factor (K) at 95% confidence = 2.523
Upper tolerance limit = 1.90381

Parameter: Lead

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 1.27636
Background standard deviation = 0.392994
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 2.46752

Parameter: Lithium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Background measurements (n) = 9
Maximum Background Concentration = 37
Minimum Coverage = 71.7%
Average Coverage = 90%

Parameter: Molybdenum Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 92.5556
Background standard deviation = 8.04846
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 116.95

Parameter: Radium-226/228
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 1.57078
Background standard deviation = 0.632875
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 3.48902

MW-16-09

Parameter: Arsenic

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 77.7778%

Background measurements (n) = 9

Maximum Background Concentration = 7.2

Minimum Coverage = 71.7%

Average Coverage = 90%

Parameter: Barium

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 283.333
Background standard deviation = 16.5831
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 333.597

MW-16-09

Parameter: Chromium
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 12.8222
Background standard deviation = 3.90697
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 24.6643

MW-16-09

Parameter: Cobalt

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 3.83333
Background standard deviation = 1.25996
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 7.65227

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 16
Background mean = 1.43125
Background standard deviation = 0.14477
One-sided normal tolerance factor (K) at 95% confidence = 2.523
Upper tolerance limit = 1.7965

Parameter: Lead

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 3.54444
Background standard deviation = 1.11816
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 6.93358

Parameter: Lithium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 43
Background standard deviation = 7.38241
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 65.3761

Parameter: Molybdenum Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 59.2222
Background standard deviation = 3.38296
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 69.476

MW-16-09

Parameter: Radium-226/228
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

USEPA 1989 Guidance Tolerance Limit Formula (One-Tailed)

Background observations = 9
Background mean = 2.16889
Background standard deviation = 0.648911
One-sided normal tolerance factor (K) at 95% confidence = 3.031
Upper tolerance limit = 4.13574

APPENDIX M – FATE AND TRANSPORT MODEL INPUTS

COMPUTATION COVER SHEET

Client:	<u>DTE</u>	Project: BR	PP ALD	Project/ Proposal No Task No.	.: GLP8017				
Title of Co	omputations	Vertical Da	arcy Velocity and Travel T		ons				
Computati	ions by:	Signature	No Willi	11/17/	2021				
		Printed Name	Nick Williams	Date					
		Title	Senior Staff Professional						
Assumption		Signature	Q Ud	11/17	/2021				
Procedure by:	s Checked	Printed Name	Jesse Varsho	Date					
(peer revie	ewer)	Title							
Computations Checked by:		Signature	Isaid Vaught	11/17	11/17/2021				
Checked b	oy:	Printed Name	Isaiah Vaught	Date					
		Title							
Computati		Signature	Am Willi	11/17/2	2021				
(originator		Printed Name	Nick Williams	Date					
Approved	by:	Title Signature	Quel.	11/24	/2021				
(pm or des	signate)	Printed Name	Omer Bozok	Date	Date				
		Title							
Approval:	notes:								
Revisions	(number and i	initial all revisions)						
No.	Sheet	Date	By Check	ked by	Approval				

TABLE OF CONTENTS

1.	PURPOSE	3
2.	ASSUMPTIONS	3
3.	SOLUTION	3
4.	TRAVEL TIME SOLUTION	4

1. PURPOSE

The purpose of this calculation package is to calculate the vertical Darcy velocity of the model lithology for input in Fate and Transport numerical model at the Belle River Power Plant Bottom Ash Basins (BAB). Following Darcy velocity calculation, the solution is used to calculate the time of travel from the BABs to the Uppermost Aquifer.

2. ASSUMPTIONS

- Vertical flow is the dominant influence on contaminant transport; horizontal flow is not considered since a one-dimensional model was selected.
- Vertical hydraulic conductivity calculated in the laboratory using samples collected from borings is representative of subsurface conditions.

3. SOLUTION

The Darcy velocity (q) through the model lithologies or layers is expressed in m/year =

$$= K(i) = K\left(\frac{H_1 - H_2}{l_1 - l_2}\right)$$

Where,

K = vertical hydraulic conductivity (laboratory measured)

i = vertical gradient

 $H_1 - H_2 =$ difference in hydraulic head between the BAB water level and

the upper most aquifer potentiometric surface

 $l_1 - l_2 =$ distance in direction of flow

Thus:

K = Geomean of Clay with Sand hydraulic conductivity value (data provided in Attachment 1) = 2.15 x 10⁻⁸ cm/s

 $H_I =$ Total head at the bottom of BAB = 590 ft

 H_2 = Average water level elevation from monitoring wells (data

provided in Attachment 2) = 574.28¹ ft

 $l_1 =$ Bottom of ash pond = 580 ft

 l_2 = Average elevation of well screen midpoints = 470.98^1 ft

q = Darcy velocity in m/year (= cm/s * 315360) = 1.02 x 10⁻³ m/year

¹ Value is an average taken from all monitoring wells

4. TRAVEL TIME SOLUTION

Travel time (T) through the model lithology is expressed in years =

$$T = t / \left(\frac{K * i}{n}\right)$$

Where:

t = minimum model thickness

K = vertical hydraulic conductivity (laboratory measured)

i = vertical gradient

n = effective porosity

Thus:

t = Minimum model thickness per EVS model = 26.21 m

K = Hydraulic conductivity = 2.15x10⁻⁸ cm/s

i = Calculated using variables in Section 3 = 0.15

n = Average of porosity data from Clay with Sand layer, converted to effective

porosity using Sara (1994) = 0.34

T = Travel time in years (= s / 31536000) = 8,762 years

Note: Time travel is not an input to Pollute model. It has been calculated to provide time estimate for the travel of water molecule from the bottom of BAB to top of uppermost aquifer.

				Hydraulic ty, k _v (cm/s)	Vertical Hydraulic Conductivity, kv (cm/s)				
Location ID	Layer	Elevation (ft)	DDW	Site Water	Clay	Clay with Sand	Dike		
B1-ST-3 (36-38)	Clay	555.8	2.20E-08		2.20E-08				
D1-31-3 (30-36)	Clay	555.8	2.60E-09		2.60E-09				
B2-ST-2 (7-9)	Dike	584.0	2.10E-08				2.10E-08		
D2-31-2 (7-9)	Dike	584.0	1.90E-08				1.90E-08		
D2 CT 7 (07 00)	Clay with Sand	494.0	3.30E-08			3.30E-08			
B2-ST-7 (97-99)	Clay with Sand	494.0	2.00E-08			2.00E-08			
B3-ST-1 (1-3)	Dike	590.0	9.50E-09				9.50E-09		
D4 CT 4 (67 (0)	Clay with Sand	518.0	2.80E-08			2.80E-08			
B4-ST-4 (67-69)	Clay with Sand	518.0	1.80E-08			1.80E-08			
D5 CT 2 (27 20)	Clay	563.3	3.40E-08		3.40E-08				
B5-ST-2 (27-29)	Clay	563.3	2.30E-08		2.30E-08				
DC CT 4 (47, 40)	Clay	541.3	2.50E-08		2.50E-08				
B6-ST-4 (47-49)	Clay	541.3	1.80E-08		1.80E-08				
D(CT 7 (07 00)	Clay with Sand	491.3	2.40E-08			2.40E-08			
B6-ST-7 (97-99)	Clay with Sand	491.3	1.20E-08			1.20E-08			
B1-ST-1 (7-9)	Dike	584.8		8.20E-09			8.20E-09		
B2-ST-1 (1-3)	Dike	590.0		1.20E-08			1.20E-08		
B2-ST-4 (47-49)	Clay	544.0		2.20E-08	2.20E-08				
B3-ST-5 (77-79)	Clay with Sand	514.0		1.90E-08		1.90E-08			
B4-ST-3 (47-49)	Clay	538.0		2.80E-08	2.80E-08				
B5-ST-5 (87-89)	Clay with Sand	503.3		1.50E-08		1.50E-08			
MW-16-01	Clay with Sand	537.2	2.90E-08			2.90E-08			
MW-16-05	Clay with Sand	537.3	2.70E-08			2.70E-08			
MW-16-07	Clay	538.9	2.90E-08		2.90E-08				
MW-16-02	Sand	491.7							
MW-16-03	Sand	453.7							
MW-16-06	Sand	452.5							
MW-16-08	Sand	453.8							
MW-16-09	Sand	449.9							
MW-16-10	Sand	441.8							
MW-16-11A	Sand	450.0							
SB-16-01	Clay	537.7	2.10E-08		2.10E-08				
				Parameter	Clay	Clay with	Dilzo		

Statistical Parameter	Clay	Clay with Sand	Dike
Mean	2.25E-08	2.25E-08	1.39E-08
GeoMean	1.94E-08	2.15E-08	1.30E-08
Maximum	3.40E-08	3.30E-08	2.10E-08
Minimum	2.60E-09	1.20E-08	8.20E-09
Count	10	10	5
Standard Deviation	8.37E-09	6.75E-09	5.74E-09

Table 1

Summary of Groundwater Elevation Data – March and September 2020 Belle River Power Plant Bottom Ash Basins – RCRA CCR Monitoring Program China Township, Michigan

Well ID	MW-	16-01	MW-16-02		MW-16-03		MW-16-04		MW-16-09	
Date Installed	3/17/2016		3/15/2016		6/1/2016		3/8/2016		6/2/2016	
TOC Elevation	590.06		588.94		590.66		590.51		590.80	
Geologic Unit of Screened Interval	า อสกด		Sand		Silty Sand		Sand		Sand	
Screened Interval Elevation	496.3 to 491.3		494.3 to 489.3		456.0 to 451.0		468.5 to 463.5		452.3 to 447.3	
Unit	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft
Measurement Date	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation
03/17/2020	15.83	574.23	13.28 575.66 16.13		574.53	16.48	574.03	16.31	574.49	
09/14/2020	16.16	573.90	13.58	575.36	16.46	574.20	16.83	573.68	16.60	574.20

Notes:

Elevations are reported in feet relative to the North American Vertical Datum of 1988.

ft BTOC - feet Below top of casing.

Well ID	MW-06-01	MW-06-02	MW-06-03	MW-06-04	MW-16-09
Screen Mid Point Elevation, I ₂ (ft)	493.8	491.8	453.5	466	449.8
Aquifer Water Level, H ₂ (ft)	573.9	575.4	574.2	573.7	574.2
Total Head Difference, $H_1 - H_2$ (ft)	16.1	14.6	15.8	16.3	15.8
Flow Distance, I ₁ - I ₂ (ft)	86.2	88.2	126.5	114	130.2
Gradient, i	0.19	0.17	0.12	0.14	0.12

590	Pond Water Elevation, H_1 (ft)
	Elevation of Pond
580	Outflow, I ₁ (ft)

Average Gradient	0.15
------------------	------

			Darcy Velocity		Max	Min							Eff.	Eff.		
		Darcy Velocity	for Sensitivity	Thickness	Thickness	Thickness		Kv		CoHD	CoHD	Effective	Porosity	Porosity	Dist.	Dry Density
Basin	Layer	(m/year)	(m/year)	(m)	(m)	(m)	Sublayers	(cm/s)	CoHD	+25%	-25%	Porosity	Max	Min	Coeff.	(kg/m3)
BAB	Clay	1.02E-03	2.03E-03	12.01	13.99	11.03	25	1.94E-08	0.019	0.02375	0.01425	0.37	0.45	0.28	0	1509.084
	Clay with Sand	1.02E-03	2.03E-03	19.29	23.62	15.18	40	2.15E-08	0.019	0.02375	0.01425	0.34	0.45	0.20	0	1509.084

Notes:

- 1. Kv = vertical hydraulic conductivity as determined by the analysis of field and laboratory data summarized in Table M-1
- 2. Analysis of vertical hydraulic conductivity includes data from long term tests updated on 8/20/2021
- 3. Kv of Clay with Sand selected for the calculation of the Darcy velocity as the higher and thus more conservative value of the two layers; POLLUTE only allows one input for Darcy velocity
- 4. CoHD = Coefficient of Hydrodynamic Dispersion
- 5. Effective Porosity determined by multiplying estimated porosity from field and lab data by 0.81, based on data provided by Sara, 1994

BARRIER SYSTEMS FOR WASTE DISPOSAL FACILITIES

2ND EDITION

R. Kerry Rowe, Robert M. Quigley, Richard W.I. Brachman & John R. Booker

Figure 8.10 Chloride and potassium concentration versus depth in sample for model D (modified from Rowe et al., 1988).

variation in concentration with depth in the soil at the end of each test. The consistency of results demonstrates the power of the analytical model (program POLLUTE) and provides some con-

Figure 8.11 Chloride and potassium concentration versus depth in sample for model E (modified from Rowe et al., 1988).

fidence in the parameters D and ρK_d for the clay and source fluids examined.

To provide an indication of parameter variation that might be expected for a given soil, a number of tests were duplicated. The diffusion coefficient, D, for chloride was deduced for each model and ranged between 0.018 and $0.02\,\mathrm{m}^2/\mathrm{a}$ with an average value of $0.019\,\mathrm{m}^2/\mathrm{a}$. This small variation in D does not appear to be related to small differences in Darcy velocity, nor does it appear to be particularly related to the nature of the associated cation (see Table 8.3). Rather, the variability from 0.018 to $0.02\,\mathrm{m}^2/\mathrm{a}$ is seen as an indication of the level of repeatability that may be achieved for this type of test.

The application of an effective stress to the soil sample adopted in these tests is not an essential part of the proposed technique for determining the parameters D and K_d . Tests performed for the particular combination of clay and permeants considered herein gave similar results both with and without the application of the effective stress. However, for some combinations of clay and permeant, shrinkage of the clay may occur in the absence of a confining stress and this can give quite misleading results (e.g., see Quigley and Fernandez, 1989). For these clays, and for GCLs (see Chapter 12), tests should be performed at an effective stress similar to that anticipated in the field.

8.3.2 Pure diffusion tests

In many cases, it is not necessary to perform an advection—diffusion test. Under these circumstances, a simple diffusion test can be performed for boundary conditions shown in Figure 8.2. In this test, the soil sample is placed in a Plexiglass cylinder by trimming the sample to a size marginally greater than the specimen and then pressing the specimen into the cylinder, using a cutting shoe attached to the cylinder, to perform the final trim. This procedure is found to work well for many clays. However, it does not work well for clays with a significant stone content because the

SITE ASSESSMENT and REMEDIATION Handbook Second

Martin N. Sara

Table 5-9 Porosity, Residual Saturation and Effective Porosity of Common Soils

26		Total	Residual	Effective
Texture	Sample	Porosity (φ)	Saturation (φr)	Porosity (φ _c)
Class	Size	cm ³ /cm ³	cm ³ /cm ³	cm ³ /cm ³
Sand	762	0.437 (0.374: 0.500)	0.020 (0.001: 0.039)	0.417 (0.354: 0.48
Loamy Sand	338	0.437 0.368: 0.506)	0.035 (0.003: 0.067)	0.401 (0.329: 0.473
Sandy Loam	666	0.453 (0.351: 0.555)	0.041 (0.0: 0.106)	0.412 (0.283: 0.54
Loam	383	0.463 0.375: 0.551)	0.027 (0.0: 0.074)	0.434 (0.334: 0.534
Silt Loam	1206	0.501 (0.420: 0.582)	0.015 (0.0: 0.058)	0.486 (0.394: 0.578
Sandy Clay Loam	498	0.398 (0.332: 0.464)	0.068 (0.0: 0.137)	0.330 (0.235: 0.425
Clay Loam	366	0.464 (0.409: 0.519)	0.076 (0.0: 0.174)	0.390 (0.279: 0.501
Silty Clay Loam	689	0.471 (0.428: 0.524)	0.040 (0.0: 0.118)	0.432 (0.347: 0.517
Sandy Clay	45	0.430 (0.370: 0.490)	0.109 (0.0: 0.205)	0.321 (0.207: 0.435
Silty Clay	127	0.479 (0.425: 0.533)	0.056 (0.0: 0.136)	0.423 (0.334: 0.512
Clay	291	0.475 (0.427: 0.523)	0.090 (0.0: 0.195)	0.385 (0.269: 0.501

First line is the mean value Second line is + one standard deviation about the mean

Adapted from: Rawls, W.J., D.C. Brakensiek, K.E. Saxton, 1982

The ratio of effective porosity to total porosity is 0.81 for Clay, and 0.88 for Silty Clay. Use 0.81 to be conservative.

APPENDIX N – FATE AND TRANSPORT MODEL OUTPUTS

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB Baseline

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.019 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.019 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.800E-01	2.803E-01
	9.600E-01	2.962E-02
	1.440E+00	1.059E-03
	1.920E+00	1.217E-05

2.400E+00	4.368E-08
2.880E+00	4.885E-11
3.360E+00	1.037E-13
3.840E+00	9.638E-15
4.320E+00	7.843E-16
4.800E+00	4.641E-17
5.280E+00	1.960E-18
5.760E+00	5.783E-20
6.240E+00	1.164E-21
6.720E+00	1.553E-23
7.200E+00	1.336E-25
7.680E+00	7.408E-28
8.160E+00	4.152E-30
8.640E+00	1.022E-31
9.120E+00	4.221E-33
9.600E+00	1.474E-34
1.008E+01	4.135E-36
1.056E+01	9.227E-38
1.104E+01	1.619E-39
1.152E+01	2.210E-41
1.200E+01	2.440E-43
1.248E+01	2.078E-45
1.296E+01	2.050E-47
1.345E+01	4.107E-49
1.393E+01	1.173E-50
1.441E+01	0.000E+00
1.489E+01	0.000E+00
1.538E+01	0.000E+00
1.586E+01	0.000E+00
1.634E+01	0.000E+00
1.682E+01	0.000E+00
1.730E+01	0.000E+00
1.779E+01	0.000E+00
1.779E+01 1.827E+01	0.000E+00 0.000E+00
1.875E+01	0.000E+00
1.923E+01	0.000E+00
1.972E+01	0.000E+00
2.020E+01	0.000E+00
2.068E+01	0.000E+00
2.116E+01	0.000E+00
2.165E+01	0.000E+00
2.213E+01	0.000E+00
2.261E+01	0.000E+00
2.309E+01	0.000E+00
2.357E+01	0.000E+00
2.406E+01	0.000E+00
2.454E+01	0.000E+00
2.502E+01	0.000E+00
2.50E+01	0.000E+00
2.530E+01 2.599E+01	0.000E+00 0.000E+00
2.647E+01	0.000E+00
2.695E+01	0.000E+00
2.743E+01	0.000E+00
2.791E+01	0.000E+00
2.840E+01	0.000E+00
2.888E+01	0.000E+00
2.936E+01	0.000E+00
·	•

2.994E=01			
3.081E-01		2.984E+01	0.000E+00
10 0.000E+00 1.000E+00 4.800E-01 4.514E-01 9.600E-01 1.279E-01 1.440E+00 2.162E-02 1.192E+00 2.115E-03 2.400E+00 1.176E-04 2.800E+00 3.360E+00 6.390E-08 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+00 3.800E+10 3.8		3.033E+01	0.000E+00
10		3.081E+01	0.000E+00
4.800E-01 9.600E-01 1.440E+00 1.279E-01 1.440E+00 1.176E-04 1.920E+00 2.115E-03 2.400E+00 1.176E-04 2.880E+00 3.673E-06 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E-10 4.320E+00 4.320E+00 4.320E+00 4.320E+00 4.320E+00 4.320E+00 5.281E-16 5.280E+00 5.281E-16 6.720E-10 7.200E+00 7.20E-17 7.20E+00 7.20E-17 7.20E+00 8.251E-18 7.680E+00 8.460E+00 9.398E-24 1.086E-01 9.740E-27 1.104E-01 1.08E-01 1.152E-01 1.26E-03 1.20E+04 1.26E-03 1.20E+04 1.26E-03		3.129E+01	0.000E+00
4.800E-01 9.600E-01 1.440E+00 1.279E-01 1.440E+00 1.176E-04 1.920E+00 2.115E-03 2.400E+00 1.176E-04 2.880E+00 3.673E-06 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E-10 4.320E+00 4.320E+00 4.320E+00 4.320E+00 4.320E+00 4.320E+00 5.281E-16 5.280E+00 5.281E-16 6.720E-10 7.200E+00 7.20E-17 7.20E+00 7.20E-17 7.20E+00 8.251E-18 7.680E+00 8.460E+00 9.398E-24 1.086E-01 9.740E-27 1.104E-01 1.08E-01 1.152E-01 1.26E-03 1.20E+04 1.26E-03 1.20E+04 1.26E-03			
9.600E-01 1.440E-00 1.40E-00 1.920E-00 1.920E-00 1.176E-04 2.480E-00 3.360E-00 3.360E-00 3.360E-00 3.360E-00 3.360E-10 4.320E-00 3.360E-10 4.320E-10 4.800E-00 3.345E-15 6.240E-10 4.5280E-00 3.345E-15 6.240E-10 6.720E-00 7.205E-17 7.200E-10 7.205E-17 7.200E-10 6.720E-00 7.205E-17 7.200E-10 7.205E-17 7.200E-10 8.160E-00 7.934E-19 8.160E-00 8.251E-18 7.680E-00 7.934E-19 8.160E-00 8.640E-00 9.399E-24 1.056E-01 1.056E-01 1.056E-01 1.056E-01 1.056E-01 1.152E-01 1.20E-01 1.	10		
1.440E+00 1.920E+00 2.115E-03 2.400E+00 2.115E-03 2.400E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+00 3.360E+10 4.320E+00 3.340E+00 4.320E+00 4.30E+10 4.30E+10 4.30E+10 5.760E+00 3.345E-15 6.240E+00 5.321E-16 6.720E+00 7.20E-17 7.200E+00 7.20E-17 7.20E+00 8.251E-18 7.680E+00 8.251E-18 7.680E+00 8.261E-18 8.160E+00 8.251E-18 9.120E+00 9.939E-24 1.08E+01 1.08E+01 1.08E+01 1.08E+01 1.08E+01 1.26E+01 1.26E+01 1.248E+01 1.248E+01 1.248E+01 1.338E+01 1.345E+01 1.348E+01 1.481E+01 1.538E+01		4.800E-01	4.514E-01
1,920E+00 2,115E-03 2,400E+00 1,176E-04 2,880E+00 3,673E-06 3,300E+00 6,399E-08 3,300E+00 6,399E-08 3,360E+00 3,640E+12 4,500E+00 3,640E+12 4,500E+00 1,5760E+00 1,5760E+00 3,345E-15 6,240E+00 7,205E-17 7,200E-10 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E+00 1,200E-10 1,200E+00 1,200E-10 1,200E+00 1,200E-10 1,200E+00 1,200E-10 1,20		9.600E-01	1.279E-01
2 400E+00		1.440E+00	2.162E-02
2 880E+00		1.920E+00	2.115E-03
3.360E+00 6.399E-08 3.840E+00 6.196E-10 4.320E+00 3.640E-12 4.800E+00 9.319E-14 5.280E+00 1.802E-14 5.760E+00 3.345E-15 6.240E+00 5.321E-16 6.720E+00 7.205E-17 7.200E+00 8.251E-18 7.680E+00 7.934E-19 8.160E+00 6.355E-20 8.640E+00 4.202E-21 9.120E+00 9.398E-24 1.008E+01 3.484E-25 1.056E+01 9.740E-27 1.104E+01 3.927E-31 1.248E-01 6.062E-30 1.200E+01 3.927E-31 1.248E+01 4.063E-32 1.296E+01 3.349E-35 1.441E+01 2.524E-38 1.489E+01 1.538E-01 1.538E-01 3.349E-35 1.441E-01 2.524E-38 1.489E+01 1.006E-38 1.538E-01 1.006E-38 1.538E-01 1.006E-38 1.538E-01 1.006E-38 1.538E-01 1.006E-38 1.538E-01 1.006E-38 1.538E-01 1.006E-38 1.538E-01 3.565E-44 1.779E+01 1.275E-40 1.837E-01 3.565E-44 1.779E+01 1.275E-40 1.837E-01 3.565E-44 1.779E+01 1.275E-40 1.837E-01 1.680E-50 2.020E+01 0.000E+00 2.165E-01 0.000E+00 2.215E-01 0.000E+00 2.215E-01 0.000E+00 2.20E+01 0.000E+00		2.400E+00	1.176E-04
3.840E+00 4.320E+00 3.640E-12 4.800E+00 9.319E-14 5.260E+00 1.802E-14 5.760E+00 3.345E-15 6.240E+00 5.321E-16 6.720E+00 7.205E-17 7.200E+00 7.205E-17 7.200E+00 7.205E-17 7.200E+00 7.205E-17 7.800E+00 8.251E-18 7.800E+00 8.355E-20 8.640E+00 4.202E-21 9.120E+00 9.139E-24 1.008E+01 1.086E+01 1.086E+01 1.086E+01 1.104E+01 2.264E-28 1.152E+01 6.062E-30 1.200E+01 3.927E-31 1.248E+01 4.063E-32 1.296E+01 4.139SE+01 3.392F-34 1.39SE+01 3.395E-34 1.39SE+01 1.39SE+01 1.49BE+01 1.69SE-37 1.538E+01 1.69SE-37 1.538E+01 1.69SE-37 1.538E+01 1.69SE-37 1.538E+01 1.69SE-37 1.538E+01 1.69SE-44 1.779E+01 1.837E-01 1.837E-01 1.837E-01 1.837E-01 1.837E-01 1.837E-01 1.837E-01 1.837E-01 1.838		2.880E+00	3.673E-06
4,320E+00 4,800E+00 5,280E+00 1,802E-14 5,760E+00 5,240E+00 6,240E+00 6,240E+00 6,720E+00 7,205E-17 7,200E+00 8,251E-18 7,880E+00 8,160E+00 8,251E-18 7,880E+00 8,160E+00 8,261E-18 7,880E+00 8,160E+00 8,261E-18 7,880E+00 8,160E+00 8,251E-18 7,880E+00 8,264E-19 8,160E+00 9,39E-21 9,120E+00 9,272E-22 9,600E+00 1,260E+01 1,06E+01 1,06E+01 1,06E+01 1,06E+01 1,26E+01 1,26E+01 1,248E+01 1,248E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,335E+01 1,336E+01 1,634E+01 1,6		3.360E+00	6.399E-08
4,800E+00 5,280E+00 1,802E-14 5,760E+00 3,345E-15 6,240E+00 7,205E-17 7,200E+00 7,205E-17 7,200E+00 8,251E-18 7,680E+00 8,261E-18 7,680E+00 8,261E-18 7,680E+00 8,261E-18 7,680E+00 8,261E-18 7,680E+00 8,261E-18 7,800E+00 8,261E-18 7,800E+00 8,261E-18 7,900E+00 9,399E-24 1,008E+01 1,008E+01 1,008E+01 1,008E+01 1,008E+01 1,104E+01 2,264E-28 1,152E+01 6,062E-30 1,200E+01 1,248E+01 4,063E-32 1,296E+01 1,345E-01 1,345E-01 1,345E-01 1,345E-01 1,345E-01 1,345E-01 1,345E-01 1,345E-01 1,345E-01 1,345E-01 1,345E-01 1,358E+01 1,586E+01 1,586E+01 1,586E+01 1,586E+01 1,586E+01 1,586E-01 1,586E+01 1,586E+01 1,586E+01 1,586E+01 1,586E+01 1,586E+01 1,586E+01 1,586E-01 1,586E		3.840E+00	6.196E-10
5.280E+00 5.760E+00 3.345E-15 6.240E+00 5.321E-16 6.720E+00 7.205E-17 7.20E+00 7.205E-17 7.20E+00 8.251E-18 7.680E+00 8.160E+00 8.355E-20 8.640E+00 8.160E+00 8.272E-21 9.120E+00 2.272E-22 9.600E+00 9.939E-24 1.008E+01 9.740E-27 1.104E+01 2.264E-28 1.152E+01 1.248E+01 1.248E+01 1.345E+01 3.349E-32 1.296E+01 3.349E-35 1.441E+01 2.524E-36 1.489E+01 1.683E-37 1.538E+01 1.683E-01 1.683E-40 1.779E+01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.887E-01 1.875E-01 2.038E-40 1.938E-40 1.938E-40 1.938E-40 1.1779E+01 1.127E-45 1.887E-01 1.887E-01 1.887E-01 1.880E-50 2.020E+01 2.165E-01 2.165E-01 2.165E-01 2.165E-01 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00		4.320E+00	3.640E-12
5.760E+00 5.321E-16 6.240E+00 5.321E-16 6.720E+00 7.20SE-17 7.200E+00 8.251E-18 7.680E+00 8.251E-18 7.680E+00 7.934E-19 8.160E+00 4.202E-21 9.120E+00 4.202E-21 9.120E+00 9.939E-24 1.008E+01 3.484E-25 1.056E+01 3.484E-27 1.104E+01 2.264E-28 1.152E+01 6.062E-30 1.200E+01 4.214E-33 1.248E+01 4.063E-32 1.296E+01 4.214E-33 1.345E+01 3.967E-34 1.393E+01 3.349E-35 1.441E+01 2.524E-36 1.489E+01 1.066E-37 1.538E+01 1.066E-37 1.538E+01 1.066E-38 1.586E-01 1.066E-38 1.586E-01 1.06E-38 1.586E-01 1.06E-38 1.586E-01 1.243SE-40 1.634E-01 9.869E-43 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 4.720E-47 1.875E+01 1.680E-50 2.020E+01 0.000E+00 2.165E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 2.213E-01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 2.2357E+01 0.000E+00 2.2357E+01 0.000E+00 2.2357E+01 0.000E+00 2.2357E+01 0.000E+00 2.2357E+01 0.000E+00 2.2357E+01 0.000E+00 2.256E+01 0.000E+00 2.256E+01 0.000E+00 2.2357E+01 0.000E+00 2.256E+01 0.000E+00		4.800E+00	9.319E-14
6.240E+00		5.280E+00	1.802E-14
6.720E+00 7.200E+00 7.20E+00 8.251E-18 7.680E+00 6.355E-20 8.640E+00 6.355E-20 8.640E+00 9.120E+00 9.39E-24 1.008E+01 1.056E+01 1.056E+01 1.056E+01 1.056E+01 1.152E+01 1.200E+01 1.200E+01 1.236E-01 1.248E+01 1.393E+01 1.393E+01 1.393E+01 1.393E+01 1.538E+01 1.682E+01 1.682E+01 1.682E+01 1.682E+01 1.779E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.992E-01 2.020E+01 2.166E+01 2.166E-01 2.166E-01 2.166E-01 2.166E-01 2.166E-01 1.875E+01 1.800E-50 2.000E+00 2.166E+01 0.000E+00 2.166E+01 0.000E+00 2.251E+01 0.000E+00 2.254F+01 0.000E+00 2.255F+01 0.000E+00 2.255F+01 0.000E+00 0.000E+00 0.200E+00 0.000E+00			3.345E-15
7.200E+00		6.240E+00	5.321E-16
7.680E+00 7.934E-19 8.160E+00 6.355E-20 8.640E+00 4.202E-21 9.120E+00 9.120E+00 9.393E-24 1.008E+01 3.484E-25 1.056E+01 9.740E-27 1.104E+01 2.264E-28 1.152E+01 6.052E-30 1.200E+01 4.214E-33 1.248E+01 4.063E-32 1.296E+01 4.214E-33 1.345E+01 3.349E-35 1.441E+01 2.524E-36 1.449E+01 1.093E-37 1.538E+01 1.096E-38 1.586E+01 1.066E-38 1.586E+01 5.275E-40 1.632E-01 9.869E-43 1.730E+01 9.869E-43 1.730E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.656T-48 1.923E+01 1.693E-30 1.972E+01 1.693E-30 1.972E+01 1.217E-45 1.827E+01 1.217E-45 1.827E+01 2.038E-49 1.972E+01 1.680E-50 2.002E+01 0.000E+00 2.166E+01 0.000E+00 2.213E+01 0.000E+00 2.2357E+01 0.000E+00 2.2357E+01 0.000E+00 2.2436E+01 0.000E+00 2.2357E+01 0.000E+00 2.2436E+01 0.000E+00 2.2357E+01 0.000E+00 2.245E+01 0.000E+00 2.255FE+01 0.000E+00		6.720E+00	7.205E-17
8.160E+00 6.355E-20 8.640E+00 4.20ZE-21 9.120E+00 2.27ZE-22 9.600E+00 9.939E-24 1.008E+01 3.484E-25 1.056E+01 9.740E-27 1.104E+01 2.264E-28 1.152E+01 6.06ZE-30 1.200E+01 4.214E-33 1.248E+01 4.063E-32 1.296E+01 4.214E-33 1.345E+01 3.967E-34 1.393E+01 3.349E-35 1.441E+01 2.524E-36 1.489E+01 1.693E-37 1.538E+01 1.006E-38 1.536E+01 5.275E-40 1.634E+01 9.869E-43 1.730E+01 3.565E-44 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.038E-49 1.972E+01 0.000E+00 2.068E+01 0.000E+00 2.165E+01 0.000E+00 2.165E+01 0.000E+00 2.239E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.26E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00		7.200E+00	8.251E-18
8.640E+00			7.934E-19
9.120E+00 9.600E+00 9.939E-24 1.008E+01 3.484E-25 1.056E+01 9.740E-27 1.104E+01 2.264E-28 1.152E+01 6.062E-30 1.200E+01 3.927E-31 1.248E+01 4.063E-32 1.296E+01 4.214E-33 1.345E+01 3.349E-35 1.441E+01 2.524E-36 1.489E+01 1.693E-37 1.538E+01 1.693E-37 1.538E+01 1.684E+01 1.682E+01 1.682E+01 1.682E+01 1.683E-01 1.779E+01 1.779E+01 1.779E+01 1.875E+01 1.827E+01 1.827E+01 1.827E+01 1.827E+01 1.827E+01 1.972E+01 1.680E-50 2.020E+01 2.036E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 1.2357E+01 0.000E+00 1.2357E+01 0.000E+00 1.200E+00 1.2357E+01 0.000E+00 1.200E+00		8.160E+00	6.355E-20
9.600E+00		8.640E+00	4.202E-21
1.008E+01 3.484E-25 1.056E+01 9.740E-27 1.104E+01 2.264E-28 1.152E+01 6.062E-30 1.200E+01 3.927E-31 1.248E+01 4.063E-32 1.296E+01 4.214E-33 1.345E+01 3.967E-34 1.393E+01 3.349E-35 1.441E+01 2.524E-36 1.489E+01 1.006E-38 1.538E+01 1.006E-38 1.538E+01 5.275E-40 1.634E+01 9.869E-43 1.730E+01 3.565E-44 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.038E-49 1.923E+01 0.000E+00 2.068E+01 0.000E+00 2.213E+01 0.000E+00 2.251E+01 0.000E+00 2.257E+01 0.000E+00		9.120E+00	2.272E-22
1.056E+01 9.740E-27 1.104E+01 2.264E-28 1.152E+01 6.062E-30 1.200E+01 3.927E-31 1.248E+01 4.063E-32 1.296E+01 4.214E-33 1.345E+01 3.967E-34 1.393E+01 3.349E-35 1.441E+01 2.524E-36 1.489E+01 1.693E-37 1.538E+01 5.275E-40 1.634E+01 9.869E-43 1.730E+01 1.243E-41 1.682E+01 9.869E-43 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.165E+01 0.000E+00 2.213E+01 0.000E+00 2.2357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00		9.600E+00	9.939E-24
1.104E+01		1.008E+01	3.484E-25
1.152E+01		1.056E+01	9.740E-27
1.200E+01 3.927E-31 1.248E+01 4.063E-32 1.296E+01 4.214E-33 1.345E+01 3.967E-34 1.393E+01 3.349E-35 1.441E+01 2.524E-36 1.489E+01 1.006E-38 1.538E+01 1.006E-38 1.586E+01 5.275E-40 1.634E+01 9.869E-43 1.730E+01 3.565E-44 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.038E-49 1.923E+01 2.038E-49 1.972E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.239E+01 0.000E+00 2.309E+01 0.000E+00			
1.248E+01			
1.296E+01		1.200E+01	3.927E-31
1.345E+01 3.967E-34 1.393E+01 3.349E-35 1.441E+01 2.524E-36 1.489E+01 1.693E-37 1.538E+01 1.006E-38 1.586E+01 5.275E-40 1.634E+01 2.433E-41 1.682E+01 9.869E-43 1.730E+01 3.565E-44 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.657E-48 1.923E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.166E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.2357E+01 0.000E+00 2.309E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00		1.248E+01	4.063E-32
1.393E+01 3.349E-35 1.441E+01 2.524E-36 1.489E+01 1.693E-37 1.538E+01 1.006E-38 1.586E+01 5.275E-40 1.634E+01 2.433E-41 1.682E+01 9.869E-43 1.730E+01 3.565E-44 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.657E-48 1.923E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.23E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00		1.296E+01	
1.441E+01		1.345E+01	
1.489E+01 1.693E-37 1.538E+01 1.006E-38 1.586E+01 5.275E-40 1.634E+01 2.433E-41 1.682E+01 9.869E-43 1.730E+01 3.565E-44 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.657E-48 1.923E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.165E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.399E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00		1.393E+01	
1.538E+01		1.441E+01	
1.586E+01 5.275E-40 1.634E+01 2.433E-41 1.682E+01 9.869E-43 1.730E+01 3.565E-44 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.657E-48 1.923E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00		1.489E+01	1.693E-37
1.634E+01			
1.682E+01 9.869E-43 1.730E+01 3.565E-44 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.657E-48 1.923E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00			
1.730E+01 3.565E-44 1.779E+01 1.217E-45 1.827E+01 4.720E-47 1.875E+01 2.657E-48 1.923E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00			
1.779E+01			
1.827E+01 4.720E-47 1.875E+01 2.657E-48 1.923E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00			
1.875E+01 2.657E-48 1.923E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00			
1.923E+01 2.038E-49 1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00		1.827E+01	4.720E-47
1.972E+01 1.680E-50 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.165E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00			
2.020E+01		1.923E+01	2.038E-49
2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.165E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00			
2.116E+01 0.000E+00 2.165E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00			
2.165E+01			
2.213E+01			
2.261E+01		2.165E+01	
2.309E+01		2.213E+01	
2.357E+01 0.000E+00 2.406E+01 0.000E+00		2.261E+01	0.000E+00
2.406E+01 0.000E+00		2.309E+01	0.000E+00
		2.357E+01	0.000E+00
2.454E+01 0.000E+00			
ı		2.454E+01	0.000E+00

	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	3.128L101	0.000E100
15	0.000E+00	1.000E+00
·-	4.800E-01	5.432E-01
	9.600E-01	2.180E-01
	1.440E+00	6.263E-02
	1.920E+00	1.261E-02
	2.400E+00	1.757E-03
	2.880E+00	1.678E-04
	3.360E+00	1.092E-05
	3.840E+00	4.820E-07
	4.320E+00	4.620E-07 1.439E-08
	4.800E+00	2.906E-10
	5.280E+00	4.293E-12
	5.760E+00	1.562E-13
	6.240E+00	3.611E-14
	6.720E+00	9.695E-15
	7.200E+00	2.366E-15
	7.200E+00 7.680E+00	5.201E-16
	8.160E+00	1.027E-16
	8.640E+00	1.814E-17
	9.120E+00	2.857E-18
	9.600E+00	3.994E-19
	1.008E+01	4.933E-20
	1.056E+01	5.357E-21
	1.036E+01	5.089E-22
	1.152E+01	4.205E-23
	1.200E+01	3.130E-24
	1.248E+01	1.905E-25
	1.296E+01	9.961E-27
	1.345E+01	4.599E-28
	1.393E+01	2.189E-29
	1.441E+01	1.653E-30
	1.489E+01	2.239E-31
	1.538E+01	3.623E-32
	1.586E+01	5.716E-33
	1.634E+01	8.453E-34
	1.682E+01	1.163E-34
	1.730E+01	1.103E-34 1.486E-35
	1.779E+01	1.758E-36
	1.827E+01	1.923E-37
	1.875E+01	1.940E-38
	1.923E+01	1.802E-39
_		
	1.972E+01	1.537E-40

	2.020E+01	1.203E-41
	2.068E+01	8.647E-43
	2.116E+01	5.763E-44
	2.165E+01	3.677E-45
	2.213E+01	2.449E-46
	2.261E+01	1.979E-47
	2.309E+01	2.100E-48
	2.357E+01	2.648E-49
	2.406E+01	3.480E-50
	2.454E+01	0.000E+00
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
		0.000E+00
	2.695E+01	
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
20	0.000E+00	1.000E+00
	4.800E-01	6.021E-01
	9.600E-01	2.900E-01
	1.440E+00	1.093E-01
	1.920E+00	3.172E-02
	0.400-	7.017E-03
	2.400E+00	7.017L-03
	2.880E+00	1.174E-03
	2.880E+00 3.360E+00	1.174E-03 1.479E-04
	2.880E+00 3.360E+00 3.840E+00	1.174E-03 1.479E-04 1.397E-05
	2.880E+00 3.360E+00 3.840E+00 4.320E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.104E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.884E-21
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.884E-21 2.319E-22
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.345E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.884E-21 2.319E-22 2.563E-23
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.884E-21 2.319E-22 2.563E-23 2.535E-24
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.345E+01	1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.884E-21 2.319E-22 2.563E-23

•		
	1.538E+01	1.255E-27
	1.586E+01	8.656E-29
	1.634E+01	7.250E-30
	1.682E+01	9.792E-31
	1.730E+01	1.880E-31
	1.779E+01	3.915E-32
	1.827E+01	7.956E-33
	1.875E+01	1.541E-33
	1.923E+01	2.829E-34
	1.972E+01	4.915E-35
	2.020E+01	8.068E-36
	2.068E+01	1.250E-36
	2.116E+01	1.825E-37
	2.165E+01	2.506E-38
	2.213E+01	3.236E-39
	2.261E+01	3.920E-40
	2.309E+01	4.452E-41
	2.357E+01	4.741E-42
	2.406E+01	
		4.745E-43
	2.454E+01	4.507E-44
	2.502E+01	4.172E-45
	2.550E+01	4.001E-46
	2.599E+01	4.394E-47
	2.647E+01	5.936E-48
	2.695E+01	9.487E-49
	2.743E+01	1.631E-49
	2.791E+01	2.821E-50
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
25	0.000E+00	1.000E+00
	/ Q∩∩⊏ ∩1	
	4.800E-01	6.439E-01
	4.800E-01 9.600E-01	
	9.600E-01	6.439E-01 3.476E-01
	9.600E-01 1.440E+00	6.439E-01 3.476E-01 1.547E-01
	9.600E-01 1.440E+00 1.920E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02
	9.600E-01 1.440E+00 1.920E+00 2.400E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02
	9.600E-01 1.440E+00 1.920E+00 2.400E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.800E+00 5.280E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00 8.160E+00 9.120E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14 4.118E-15
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14 4.118E-15 1.326E-15
	9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00 8.160E+00 9.120E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14 4.118E-15

	1.056E+01 1.104E+01 1.152E+01	1.135E-16 3.005E-17 7.447E-18
	1.132E101 1.200E+01 1.248E+01	1.785E-18 3.811E-19
	1.296E+01	7.543E-20
	1.345E+01	1.382E-20
	1.393E+01 1.441E+01	2.335E-21 3.635E-22
	1.489E+01	5.194E-23
	1.538E+01	6.795E-24
	1.586E+01 1.634E+01	8.122E-25 8.855E-26
	1.682E+01	8.831E-27
	1.730E+01	8.198E-28
	1.779E+01	7.583E-29
	1.827E+01 1.875E+01	8.408E-30 1.377E-30
	1.075E+01 1.923E+01	3.071E-31
	1.972E+01	7.550E-32
	2.020E+01	1.846E-32
	2.068E+01 2.116E+01	4.362E-33 9.891E-34
	2.165E+01	2.147E-34
	2.213E+01	4.459E-35
	2.261E+01	8.846E-36
	2.309E+01 2.357E+01	1.676E-36 3.027E-37
	2.406E+01	5.209E-38
	2.454E+01	8.531E-39
	2.502E+01	1.329E-39
	2.550E+01 2.599E+01	1.966E-40 2.761E-41
	2.647E+01	3.685E-42
	2.695E+01	4.684E-43
	2.743E+01	5.716E-44
	2.791E+01 2.840E+01	6.827E-45 8.322E-46
	2.888E+01	1.110E-46
	2.936E+01	1.731E-47
	2.984E+01	3.169E-48
	3.033E+01 3.081E+01	6.406E-49 1.340E-49
	3.129E+01	2.793E-50
30	0.000E+00	1.000E+00
	4.800E-01 9.600E-01	6.756E-01 3.946E-01
	9.600E-01 1.440E+00	3.946E-01 1.966E-01
	1.920E+00	8.274E-02
	2.400E+00	2.920E-02
	2.880E+00 3.360E+00	8.592E-03 2.100E-03
	3.840E+00 3.840E+00	2.100E-03 4.250E-04
	4.320E+00	7.107E-05
	4.800E+00	9.800E-06
	5.280E+00	1.113E-06

5.760E+00 6.240E+00 6.720E+00 7.200E+00	1.039E-07 7.979E-09 5.041E-10
6.720E+00 7.200E+00	5.041E-10
7.200E+00	
	2.665E-11
7.680E+00	1.409E-12
8.160E+00	1.774E-13
8.640E+00	6.128E-14
	2.484E-14
	9.733E-15
	3.628E-15
	1.284E-15
	4.311E-16
	1.375E-16
	4.295E-17
	1.217E-17
	3.249E-18
	8.170E-19
	1.931E-19
1.441E+01	4.282E-20
1.489E+01	8.893E-21
1.538E+01	1.727E-21
1.586E+01	3.127E-22
1.634E+01	5.273E-23
1.682E+01	8.262E-24
1.730E+01	1.201E-24
1.779E+01	1.616E-25
	2.017E-26
	2.354E-27
	2.655E-28
	3.184E-29
	4.867E-30
	1.044E-30
	2.756E-31
	7.703E-32
	2.135E-32
	5.747E-33
	1.495E-33
	3.753E-34
	9.078E-35
	2.115E-35
	4.742E-36
2.550E+01	1.022E-36
2.599E+01	2.118E-37
2.647E+01	4.214E-38
2.695E+01	8.043E-39
2.743E+01	1.472E-39
2.791E+01	2.581E-40
2.840E+01	4.333E-41
	6.971E-42
	1.076E-42
	1.601E-43
	2.320E-44
	3.353E-45
3.129E+U1	5.038E-46
0.000E+00	1.000E+00
4.800E-01	7.006E-01
_	9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.538E+01 1.634E+01 1.634E+01 1.682E+01 1.730E+01 1.779E+01 1.827E+01 1.827E+01 1.923E+01 1.972E+01 2.068E+01 2.165E+01 2.165E+01 2.165E+01 2.213E+01 2.261E+01 2.357E+01 2.357E+01 2.406E+01 2.454E+01 2.550E+01 2.550E+01 2.599E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.936E+01 2.936E+01 2.936E+01 3.033E+01 3.033E+01 3.031E+01 3.030E+01

9.600E-01	4.337E-01
1.440E+00	2.346E-01
1.920E+00	1.100E-01
2.400E+00	4.443E-02
2.880E+00	1.538E-02
3.360E+00	4.547E-03
3.840E+00	1.145E-03
4.320E+00	2.451E-04
4.800E+00	4.452E-05
5.280E+00	6.852E-06
5.760E+00	8.927E-07
6.240E+00	9.837E-08
6.720E+00	9.162E-09
7.200E+00	7.219E-10
7.680E+00	4.860E-11
8.160E+00	3.069E-12
8.640E+00	3.171E-13
9.120E+00	9.445E-14
9.600E+00	4.044E-14
1.008E+01	1.740E-14
1.056E+01	7.194E-15
1.104E+01	2.849E-15
1.152E+01	1.083E-15
1.200E+01	4.061E-16
1.248E+01	1.399E-16
1.296E+01	4.591E-17
1.345E+01	1.434E-17
1.393E+01	4.262E-18
1.441E+01	1.203E-18
1.489E+01	3.220E-19
1.538E+01	8.164E-20
1.586E+01	1.958E-20
1.634E+01	4.437E-21
1.682E+01	9.480E-22
1.730E+01	1.907E-22
1.779E+01	3.606E-23
1.827E+01	6.400E-24
1.875E+01	1.065E-24
1.923E+01	1.658E-25
1.972E+01	2.421E-26
2.020E+01	3.336E-27
2.068E+01	4.437E-28
2.116E+01	6.086E-29
2.165E+01	9.850E-30
2.213E+01	2.127E-30
2.261E+01	5.837E-31
2.309E+01	1.773E-31
2.357E+01	5.466E-32
2.406E+01	1.658E-32 4.894E-33
2.454E+01 2.502E+01	4.894E-33 1.402E-33
2.502E+01 2.550E+01	3.896E-34
2.550E+01 2.599E+01	1.049E-34
2.599E+01 2.647E+01	2.733E-35
2.647E+01 2.695E+01	6.891E-36
2.743E+01	1.681E-36
2.743E+01 2.791E+01	3.962E-37
[Z./81ETU1	J. 302L-J1

	2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	9.023E-38 1.984E-38 4.207E-39 8.605E-40 1.696E-40 3.222E-41 5.901E-42
40	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.800E+00 4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.160E+00 9.120E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.538E+01 1.538E+01 1.586E+01 1.682E+01 1.682E+01 1.779E+01 1.875E+01 1.875E+01 1.923E+01 1.923E+01 1.923E+01 1.923E+01 1.972E+01 2.020E+01 2.116E+01 2.116E+01 2.116E+01 2.116E+01	1.000E+00 7.210E-01 4.668E-01 2.689E-01 1.369E-01 6.120E-02 2.395E-02 8.170E-03 2.425E-03 6.249E-04 1.396E-04 2.699E-05 4.514E-06 6.524E-07 8.142E-08 8.772E-09 8.163E-10 6.612E-11 4.961E-12 5.024E-13 1.306E-13 5.687E-14 2.613E-14 1.168E-14 5.054E-15 2.166E-15 8.607E-16 3.284E-16 1.202E-16 4.218E-17 1.417E-17 4.558E-18 1.401E-18 4.113E-19 1.151E-19 3.072E-20 7.798E-21 1.881E-21 4.308E-22 9.352E-23 1.922E-23 3.734E-24 6.852E-25 1.187E-25 1.945E-26 3.034E-27 4.604E-28 7.193E-29

	2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	2.983E-30 8.642E-31 2.804E-31 9.357E-32 3.096E-32 1.003E-32 3.170E-33 9.752E-34 2.919E-34 8.498E-35 2.405E-35 6.611E-36 1.765E-36 4.574E-37 1.150E-37 2.804E-38 6.625E-39
45	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 9.600E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.586E+01 1.586E+01 1.586E+01 1.586E+01 1.586E+01 1.634E+01 1.682E+01 1.779E+01 1.827E+01	1.000E+00 7.380E-01 4.953E-01 2.999E-01 1.628E-01 7.884E-02 3.394E-02 1.295E-02 4.369E-03 1.301E-03 3.413E-04 7.884E-05 1.602E-05 2.859E-06 4.481E-07 6.164E-08 7.440E-09 7.886E-10 7.389E-11 6.430E-12 6.905E-13 1.666E-13 7.256E-14 3.501E-14 1.670E-14 7.925E-15 3.512E-15 1.503E-15 6.206E-16 2.471E-16 9.480E-17 3.502E-17 1.245E-17 4.254E-18 1.397E-18 4.400E-19 1.329E-19 3.847E-20 1.066E-20

1	1.875E+01	2.821E-21
	1.923E+01	7.133E-22
	1.972E+01	1.720E-22
	2.020E+01	3.954E-23
	2.068E+01	8.648E-24
	2.116E+01	1.798E-24
	2.165E+01	3.554E-25
	2.213E+01	6.675E-26
	2.261E+01	1.195E-26
	2.309E+01	2.055E-27
	2.357E+01	3.479E-28
	2.406E+01	6.139E-29
	2.454E+01	1.249E-29
	2.502E+01	3.187E-30
	2.550E+01	9.940E-31
	2.599E+01	3.436E-31
	2.647E+01	1.223E-31
	2.695E+01	4.333E-32
	2.743E+01	1.508E-32
	2.791E+01	5.136E-33
	2.840E+01	1.709E-33
	2.888E+01	5.549E-34
	2.936E+01	1.758E-34
	2.984E+01	5.433E-35
	3.033E+01	1.637E-35
	3.081E+01	4.806E-36
	3.129E+01	1.375E-36
	3.129E±01	1.575⊑-50
50	0.000E+00	1.000E+00
	4.800E-01	7.526E-01
	9.600E-01	5.201E-01
	1.440E+00	3.279E-01
	1.920E+00	1.875E-01
	2.400E+00	9.685E-02
	2.880E+00	4.502E-02
	3.360E+00	1.879E-02
		7.025E-03
	3.840E+00	
	4.320E+00	2.349E-03
	4.800E+00	7.012E-04
	5.280E+00	1.867E-04
	5.760E+00	4.432E-05
	5.760E+00 6.240E+00	4.432E-05 9.366E-06
	5.760E+00	4.432E-05
	5.760E+00 6.240E+00 6.720E+00	4.432E-05 9.366E-06 1.762E-06
	5.760E+00 6.240E+00 6.720E+00 7.200E+00	4.432E-05 9.366E-06 1.762E-06 2.947E-07
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13 1.981E-13
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13 1.981E-13 8.651E-14
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13 1.981E-13 8.651E-14 4.354E-14
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13 1.981E-13 8.651E-14 4.354E-14 2.233E-14
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13 1.981E-13 8.651E-14 4.354E-14 2.233E-14 1.078E-14
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13 1.981E-13 8.651E-14 4.354E-14 2.233E-14
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13 1.981E-13 8.651E-14 4.354E-14 2.233E-14 1.078E-14

1	1.393E+01	1.008E-15
	1.441E+01	4.292E-16
		1.768E-16
	1.489E+01	
	1.538E+01	7.039E-17
	1.586E+01	2.709E-17
	1.634E+01	1.006E-17
	1.682E+01	3.609E-18
	1.730E+01	1.248E-18
	1.779E+01	4.159E-19
		1.334E-19
	1.827E+01	
	1.875E+01	4.118E-20
	1.923E+01	1.222E-20
	1.972E+01	3.481E-21
	2.020E+01	9.514E-22
	2.068E+01	2.493E-22
	2.116E+01	6.255E-23
	2.165E+01	1.502E-23
	2.213E+01	3.446E-24
	2.261E+01	7.553E-25
	2.309E+01	1.581E-25
	2.357E+01	3.165E-26
	2.406E+01	6.081E-27
	2.454E+01	1.135E-27
	2.502E+01	2.120E-28
	2.550E+01	4.221E-29
	2.599E+01	9.821E-30
	2.647E+01	2.819E-30
	2.695E+01	9.560E-31
	2.743E+01	3.517E-31
	2.791E+01	1.323E-31
	2.840E+01	4.953E-32
	2.888E+01	1.825E-32
	2.936E+01	6.596E-33
	2.984E+01	2.334E-33
	3.033E+01	8.084E-34
	3.081E+01	2.739E-34
1		
	3.129E+01	9.072E-35
55	3.129E+01	9.072E-35
55	3.129E+01 0.000E+00	9.072E-35 1.000E+00
55	3.129E+01 0.000E+00 4.800E-01	9.072E-35 1.000E+00 7.651E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01	9.072E-35 1.000E+00 7.651E-01 5.420E-01
55	3.129E+01 0.000E+00 4.800E-01	9.072E-35 1.000E+00 7.651E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01	9.072E-35 1.000E+00 7.651E-01 5.420E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06 1.879E-07
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00	9.072E-35 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06 1.879E-07

9 120E+00 9 600E+00 1 6 332E-11 1 008E+01 1 0.008E+01 1 0.96E+01 1 0.96E+01 1 0.905E-12 1 0.96E+01 1 0.905E-13 1 1.104E+01 1 2.15E-13 1 1.152E-01 9 .850E-14 1 2.295E-14 1 2.295E-14 1 2.285E-01 1 3.35E-01 1 3.35E-01 1 3.35E-01 1 3.472E-15 1 4.41E+01 1 4.48E-15 1 4.38E+01 1 5.58E+01 1 5.58E+01 1 5.58E+01 1 5.86E+01 1 5.86E+01 1 5.86E+01 1 5.86E+01 1 5.86E+01 1 5.98E-16 1 5.98E-10 1 5.	1		- 446- 46
1.008E-01 9.016E-13 1.056E-01 9.016E-13 1.104E+01 1.215E-13 1.104E+01 1.2215E-13 1.152E+01 9.850E-14 1.200E+01 5.229E-14 1.248E+01 1.359E-14 1.296E+01 1.359E-14 1.296E+01 1.359E-14 1.296E+01 1.359E-14 1.248E+01 1.359E-14 1.343E+01 6.658E-15 1.393E+01 3.172E-15 1.441E+01 1.468E-15 1.498E+01 6.598E-16 1.538E+01 1.218E-16 1.538E+01 1.218E-16 1.538E+01 1.988E-17 1.730E+01 1.988E-17 1.730E+01 1.988E-17 1.730E+01 3.591E-18 1.877E+01 3.591E-19 1.923E+01 3.591E-19 1.923E+01 3.591E-19 1.923E+01 3.932E-20 2.020E+01 3.727E-21 2.116E+01 3.039E-22 2.13E+01 1.039E-22 2.13E+01 3.039E-22 2.213E+01 3.039E-22 2.213E+01 1.258E-24 2.357E+01 2.868E-23 2.20E+01 2.255E+01 2.556E-24 2.357E+01 5.260E-24 2.357E+01 5.260E-24 2.357E+01 5.260E-24 2.357E+01 5.260E-24 2.357E+01 5.260E-24 2.357E+01 5.260E-24 2.357E+01 5.260E-24 2.357E+01 5.260E-24 2.550E+01 1.258E-24 2.468E+01 6.279E-26 2.502E+01 1.324E-26 2.550E+01 5.438E-28 2.647E+01 1.120E-28 2.695E+01 1.274E-31 2.888E+01 3.161E-31 2.888E+01 3.161E-31 2.888E+01 3.161E-31 2.888E+01 3.161E-31 2.984E+01 4.888E-32 3.033E+01 1.247E-31 3.031E+01 7.156E-33			
1.056E-01 9.016E-13 1.104E+01 2.215E-13 1.152E+01 9.850E-14 1.200E+01 5.229E-14 1.248E+01 1.559E-14 1.248E+01 1.559E-14 1.248E+01 1.559E-14 1.345E+01 1.559E-14 1.345E+01 1.468E-15 1.393E+01 1.478E-15 1.441E+01 1.468E-15 1.538E+01 1.287E-16 1.538E+01 1.287E-16 1.538E+01 1.287E-16 1.538E+01 1.288E-16 1.634E+01 1.988E-17 1.730E+01 1.682E+01 1.988E-17 1.730E+01 1.682E+01 1.030E-18 1.779E+01 2.856E-18 1.875E+01 1.030E-19 1.972E+01 3.932E-20 2.020E+01 1.233E-20 2.020E+01 1.233E-20 2.020E+01 1.085E-21 2.116E+01 3.039E-2 2.213E+01 3.039E-2 2.213E+01 2.185E-23 2.261E+01 2.185E-23 2.261E+01 2.185E-23 2.261E+01 2.185E-24 2.357E+01 1.253E-24 2.406E+01 2.864E-25 2.454E+01 6.279E-26 2.502E+01 1.234E-26 2.502E+01 1.234E-26 2.502E+01 1.204E-27 2.599E+01 1.204E-28 2.647E+01 1.205E-30 2.743E+01 6.808E-30 2.743E+01 1.205E-30 2.840E+01 1.120E-28 2.656E-01 2.556E-99 2.743E+01 6.808E-30 2.791E+01 4.888E-32 3.033E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 1.887E-32 3.031E+01 7.156E-33			
1.104E-01			
1.152E-01			
1.200E+01			
1.248E+01			
1.296E+01			
1.345E+01			
1.393E+01			
1.441E+01 1.489E+01 1.586E+01 1.586E+01 1.586E+01 1.586E+01 1.586E+01 1.634E+01 1.632E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.779E+01 1.827E+01 1.875E+01 1.938E-18 1.877E+01 1.923E+01 1.923E+01 1.923E+01 1.923E+01 1.923E+02 2.020E+01 2.068E+01 2.165E+01 3.039E-22 2.213E+01 2.261E+01 2.165E+01 2.357E+01 2.357E+01 2.357E+01 2.365E+01 2.365E+01 2.357E+01 2.365E+01 3.039E-22 2.213E+01 2.357E+01 2.358E-23 2.261E+01 2.357E+01 2.358E-23 2.261E+01 2.358E-23 2.261E+01 2.358E-23 2.261E+01 2.358E-23 2.309E+01 2.526E-24 2.550E+01 2.550E+01 2.550E+01 2.550E+01 2.550E+01 2.550E+01 2.550E+01 2.536E-29 2.743E+01 2.265E-01 2.265E-01 2.265E-01 2.259E+01 2.255E-30 2.284E+01 3.161E-31 2.296E+01 4.888E-32 3.303E+01 1.887E-32 3.038E+01 7.156E-33			
1.489E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.634E+01 1.634E+01 1.682E+01 1.988E-17 1.730E+01 1.730E+01 1.2856E-18 1.779E+01 1.827E+01 1.030E-18 1.875E+01 1.923E+01 1.923E+01 1.923E+01 1.923E+01 1.923E-01 2.068E+01 2.165E+01 2.116E+01 2.116E+01 2.116E+01 2.116E+01 2.118E-23 2.201E+01 2.201E+01 2.205E-10 2.205E-01 2.205E-01 2.357E+01 2.250E+01 2.502E+01 2.502E+01 2.502E+01 2.502E+01 2.502E+01 2.502E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E+01 2.503E-01 2.503E+01 2.503E-01 2.503E+01 2.503E-01 3.161E-31 2.984E-01 4.888E-32 3.033E-01 7.156E-33			
1.538E+01			
1.586E+01			
1.634E+01			
1.682E+01			
1.730E+01 7.659E-18 1.779E+01 2.856E-18 1.827E+01 1.030E-18 1.875E+01 3.591E-19 1.923E+01 1.209E-19 1.972E+01 3.932E-20 2.020E+01 1.233E-20 2.068E+01 3.727E-21 2.116E+01 3.039E-22 2.213E+01 8.185E-23 2.261E+01 2.118E-23 2.261E+01 2.118E-23 2.261E+01 2.148E-25 4.246E+01 1.253E-24 2.466E+01 2.864E-25 2.454E+01 6.279E-26 2.550E+01 1.324E-26 2.550E+01 2.703E-27 2.599E+01 5.438E-28 2.64FE+01 1.120E-28 2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 3.161E-31 2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.936E+01 1.247E-31 2.936E+01 1.247E-31 2.936E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 1.887E-32 3.081E+01 1.887E-32 3.081E+01 1.887E-32 3.081E+01 1.887E-32			
1.779E+01			
1.827E+01			
1.875E+01 3.591E-19 1.923E+01 1.209E-19 1.972E+01 3.932E-20 2.020E+01 1.233E-20 2.068E+01 3.727E-21 2.116E+01 1.085E-21 2.165E+01 3.039E-22 2.213E+01 8.185E-23 2.261E+01 2.118E-23 2.309E+01 5.260E-24 2.357E+01 1.253E-24 2.406E+01 2.864E-25 2.454E+01 6.279E-26 2.502E+01 1.324E-26 2.502E+01 2.703E-27 2.599E+01 5.438E-28 2.647E+01 1.120E-28 2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
1.923E+01			
1.972E+01 3.932E-20 2.020E+01 1.233E-20 2.068E+01 3.72TE-21 2.116E+01 1.085E-21 2.165E+01 3.039E-22 2.213E+01 8.185E-23 2.261E+01 2.118E-23 2.309E+01 5.260E-24 2.357E+01 1.253E-24 2.406E+01 2.864E-25 2.454E+01 6.279E-26 2.502E+01 1.324E-26 2.550E+01 2.703E-27 2.599E+01 5.438E-28 2.647E+01 1.120E-28 2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.936E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.020E+01			
2.068E+01 3.727E-21 2.116E+01 1.085E-21 2.165E+01 3.039E-22 2.213E+01 8.185E-23 2.261E+01 2.118E-23 2.309E+01 5.260E-24 2.357E+01 1.253E-24 2.406E+01 2.864E-25 2.454E+01 6.279E-26 2.502E+01 1.324E-26 2.550E+01 2.703E-27 2.599E+01 5.438E-28 2.647E+01 5.438E-28 2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.986E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.116E+01			
2.165E+01 3.039E-22 2.213E+01 8.185E-23 2.261E+01 2.118E-23 2.309E+01 5.260E-24 2.357E+01 1.253E-24 2.406E+01 2.864E-25 2.454E+01 6.279E-26 2.502E+01 1.324E-26 2.550E+01 2.703E-27 2.599E+01 5.438E-28 2.647E+01 1.120E-28 2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.213E+01 8.185E-23 2.261E+01 2.118E-23 2.309E+01 5.260E-24 2.357E+01 1.253E-24 2.406E+01 2.864E-25 2.454E+01 6.279E-26 2.502E+01 1.324E-26 2.550E+01 2.703E-27 2.599E+01 5.438E-28 2.647E+01 1.120E-28 2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.986E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.261E+01			
2.309E+01			
2.357E+01			
2.406E+012.864E-252.454E+016.279E-262.502E+011.324E-262.550E+012.703E-272.599E+015.438E-282.647E+011.120E-282.695E+012.536E-292.743E+016.808E-302.791E+012.205E-302.840E+018.115E-312.888E+013.161E-312.936E+011.247E-312.984E+014.888E-323.033E+011.887E-323.081E+017.156E-33			
2.454E+01 6.279E-26 2.502E+01 1.324E-26 2.550E+01 2.703E-27 2.599E+01 5.438E-28 2.647E+01 1.120E-28 2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.984E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.502E+01			
2.550E+01 2.703E-27 2.599E+01 5.438E-28 2.647E+01 1.120E-28 2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.984E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.599E+01 5.438E-28 2.647E+01 1.120E-28 2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.984E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.647E+01			
2.695E+01 2.536E-29 2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.984E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.743E+01 6.808E-30 2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.984E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.791E+01 2.205E-30 2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.984E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.840E+01 8.115E-31 2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.984E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.888E+01 3.161E-31 2.936E+01 1.247E-31 2.984E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.936E+01 1.247E-31 2.984E+01 4.888E-32 3.033E+01 1.887E-32 3.081E+01 7.156E-33			
2.984E+01			
3.033E+01 1.887E-32 3.081E+01 7.156E-33			
3.081E+01 7.156E-33			
3.129E+01 2.662E-33			
		3.129E+01	2.662E-33

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB ExtendedRun

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.019 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.019 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.800E-01	2.803E-01
	9.600E-01	2.962E-02
	1.440E+00	1.059E-03
	1.920E+00	1.217E-05

2.400E+00	4.368E-08
2.880E+00	4.885E-11
3.360E+00	1.037E-13
3.840E+00	9.638E-15
4.320E+00	7.843E-16
4.800E+00	4.641E-17
5.280E+00	1.960E-18
5.760E+00	5.783E-20
6.240E+00	1.164E-21
6.720E+00	1.553E-23
7.200E+00	1.336E-25
7.680E+00	7.408E-28
8.160E+00	4.152E-30
8.640E+00	1.022E-31
9.120E+00	4.221E-33
9.600E+00	1.474E-34
1.008E+01	4.135E-36
1.056E+01	9.227E-38
1.104E+01	1.619E-39
1.152E+01	2.210E-41
1.200E+01	2.440E-43
1.248E+01	2.078E-45
1.296E+01	2.050E-47
1.345E+01	4.107E-49
1.393E+01	1.173E-50
1.441E+01	0.000E+00
1.489E+01	0.000E+00
1.538E+01	0.000E+00
1.586E+01	0.000E+00
1.634E+01	0.000E+00
1.682E+01	0.000E+00
1.730E+01	0.000E+00
1.779E+01	0.000E+00
1.779E+01 1.827E+01	0.000E+00 0.000E+00
1.875E+01	0.000E+00
1.923E+01	0.000E+00
1.972E+01	0.000E+00
2.020E+01	0.000E+00
2.068E+01	0.000E+00
2.116E+01	0.000E+00
2.165E+01	0.000E+00
2.213E+01	0.000E+00
2.261E+01	0.000E+00
2.309E+01	0.000E+00
2.357E+01	0.000E+00
2.406E+01	0.000E+00
2.454E+01	0.000E+00
2.502E+01	0.000E+00
2.50E+01	0.000E+00
2.530E+01 2.599E+01	0.000E+00 0.000E+00
2.647E+01	0.000E+00
2.695E+01	0.000E+00
2.743E+01	0.000E+00
2.791E+01	0.000E+00
2.840E+01	0.000E+00
2.888E+01	0.000E+00
2.936E+01	0.000E+00
·	•

2.984E+01 3.033E+01 3.035E+01 3.035E+01 3.030E+00 3.019E+01 3.129E+01 0.000E+00 3.129E+01 0.000E+00 1.000E			
3.081E+01		2.984E+01	0.000E+00
15 0.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+01 5.432E-01 9.600E-01 2.180E-01 1.440E+00 6.263E-02 1.2180E-01 1.261E-02 2.400E+00 1.757E-03 2.880E+00 1.678E-04 3.360E+00 1.092E-05 3.840E+00 4.820E-07 4.320E+00 1.439E-08 4.800E+00 1.532E-13 6.240E+00 1.5280E+00 1.582E-13 6.240E+00 1.582E-13 6.240E+00 1.582E-13 6.240E+00 1.582E-13 6.240E+00 1.582E-13 6.240E+00 9.698E-15 7.200E+00 9.698E-15 7.200E+00 9.698E-15 7.200E+00 9.236E-15 7.200E+00 9.236E-15 7.200E+00 9.236E-15 7.200E+00 9.236E-15 7.200E+00 9.257E-18 9.600E+00 1.027E-16 8.640E+00 1.814E-17 9.120E+00 9.809E-12 1.056E+01 5.357E-21 1.104E+01 5.089E-22 1.152E+01 4.248E+01 1.950E-01 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.26E-28 3.29E-28 1.296E-01 1.296E-01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.961E-27 1.296E+01 9.296E-28 3.29E-31 1.296E+01 9.961E-27 1.296E-01 1.29		3.033E+01	0.000E+00
15		3.081E+01	0.000E+00
4.800E-01 5.432E-01 9.600E-01 1.440E+00 6.263E-02 1.920E+00 1.261E-02 1.20E-00 1.261E-02 1.20E-00 1.261E-02 1.20E-00 1.261E-02 1.20E-00 1.678E-04 1.678E-04 3.360E+00 1.678E-04 3.360E+00 4.820E-07 4.320E+00 4.820E-07 4.320E+00 4.820E-07 4.320E+00 4.820E-07 4.320E+00 4.320E-00 4.293E-12 5.760E+00 4.293E-12 5.760E+00 4.293E-12 5.760E+00 3.611E-14 6.720E+00 3.611E-14 6.720E+00 3.661E-15 7.200E+00 2.366E-15 7.200E+00 2.366E-15 7.200E+00 3.94E-19 1.027E-16 8.640E+00 1.027E-16 8.640E+00 1.874E-17 9.120E+00 2.857E-18 9.600E+00 3.944E-19 1.008E-01 4.933E-20 1.152E+01 4.205E-23 1.152E+01 4.205E-23 1.20E-01 4.205E-23 1.20E-01 4.205E-23 1.20E-01 4.205E-25 1.20E-01 4.205E-25 1.20E-01 4.599E-28 1.393E+01 4.599E-28 1.393E+01 4.599E-28 1.393E+01 4.599E-28 1.393E+01 4.599E-28 1.586E+01 5.716E-33 1.634E-01 1.632E-30 1.634E-01 1.632E-30 1.779E+01 1.758E-36 1.277E+01 1.80E-35 1.779E+01 1.758E-36 1.277E+01 1.80E-39 1.972E+01 1.80E-39 1.972E+01 1.80E-39 1.972E+01 1.575E-40 2.20E-01 1.203E-41 2.20E-01 2.20E-01 2.20E-01		3.129E+01	0.000E+00
4.800E-01 5.432E-01 9.600E-01 1.440E+00 6.263E-02 1.920E+00 1.261E-02 1.20E-00 1.261E-02 1.20E-00 1.261E-02 1.20E-00 1.261E-02 1.20E-00 1.678E-04 1.678E-04 3.360E+00 1.678E-04 3.360E+00 4.820E-07 4.320E+00 4.820E-07 4.320E+00 4.820E-07 4.320E+00 4.820E-07 4.320E+00 4.320E-00 4.293E-12 5.760E+00 4.293E-12 5.760E+00 4.293E-12 5.760E+00 3.611E-14 6.720E+00 3.611E-14 6.720E+00 3.661E-15 7.200E+00 2.366E-15 7.200E+00 2.366E-15 7.200E+00 3.94E-19 1.027E-16 8.640E+00 1.027E-16 8.640E+00 1.874E-17 9.120E+00 2.857E-18 9.600E+00 3.944E-19 1.008E-01 4.933E-20 1.152E+01 4.205E-23 1.152E+01 4.205E-23 1.20E-01 4.205E-23 1.20E-01 4.205E-23 1.20E-01 4.205E-25 1.20E-01 4.205E-25 1.20E-01 4.599E-28 1.393E+01 4.599E-28 1.393E+01 4.599E-28 1.393E+01 4.599E-28 1.393E+01 4.599E-28 1.586E+01 5.716E-33 1.634E-01 1.632E-30 1.634E-01 1.632E-30 1.779E+01 1.758E-36 1.277E+01 1.80E-35 1.779E+01 1.758E-36 1.277E+01 1.80E-39 1.972E+01 1.80E-39 1.972E+01 1.80E-39 1.972E+01 1.575E-40 2.20E-01 1.203E-41 2.20E-01 2.20E-01 2.20E-01			
9.600E-01 1.440F+00 6.268E-02 1.920E+00 1.920E+00 1.757E-03 2.800E+00 1.757E-03 1.678E-04 3.360E+00 1.092E-05 3.840E+00 4.820E-07 4.320E+00 4.820E-07 4.320E+00 4.820E-07 4.320E+00 4.820E-07 4.320E+00 4.820E-00 1.439E-08 4.800F+00 2.906E-10 5.280E+00 4.293E-12 5.760E+00 1.562E-13 6.240E+00 9.695E-15 7.200E+00 9.695E-15 7.200E+00 5.201E-16 8.160E+00 1.027E-16 8.160E+00 1.027E-16 8.640E+00 1.1027E-16 8.640E+00 1.814E-17 9.120E+00 2.857E-18 9.600E+01 1.056E-01 1.056E-01 1.056E-01 1.056E-01 1.056E-01 1.152E-01 1.152E-01 1.152E-01 1.152E-01 1.335E-01 1.358	15		
1.440E+00 1.920E+00 1.920E+00 1.920E+00 1.261E+02 2.400E+00 1.678E-04 2.800E+00 1.678E-04 3.360E+00 3.840E+00 4.820E+12 5.760E+00 3.61E+14 6.720E+00 9.695E-15 7.200E+00 2.366E-15 7.800E+00 4.814E-17 9.120E+00 4.814E-17 9.120E+00 4.845E-18 9.600E+00 4.933E-20 1.056E+01 1.04E+01 1.04E+01 1.04E+01 1.246E+01 1.246E+01 1.335E-01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.358E+01			
1.920E+00			
2 400E+00			
2 880E+00			
3,30E+00 3,840E+00 4,820E-07 4,320E+00 1,439E-08 4,800E+00 5,280E+00 5,280E+00 1,562E-13 6,240E+00 3,611E-14 6,720E+00 3,611E-14 6,720E+00 3,611E-14 6,720E+00 3,611E-14 6,720E+00 3,61E-15 7,200E+00 2,366E-15 7,200E+00 1,027E-16 8,160E+00 1,027E-16 8,160E+00 1,027E-16 8,160E+00 1,814E-17 9,120E+00 2,857E-18 9,600E+00 3,994E-19 1,008E+01 1,008E+01 1,008E+01 1,008E-01 1,104E+01 1,008E-02 1,152E+01 1,248E+01 1,248E+01 1,335E+01 1,335E+01 1,335E+01 1,489E+01 1,538E-0			
3.840E+00 4.320E+00 1.439E-08 4.800E+00 2.906E-10 5.280E+00 4.293E-12 5.760E+00 1.562E-13 6.240E+00 3.611E-14 6.720E+00 9.695E-15 7.200E+00 2.366E-15 7.800E+00 2.366E-15 7.800E+00 1.027E-16 8.160E+00 1.027E-16 8.640E+00 1.027E-16 8.640E+00 1.027E-16 8.640E+00 1.027E-16 1.036E-01 1.006E-01 1.056E+01 1.056E+01 1.056E+01 1.056E+01 1.104E+01 1.266E+01 1.248E+01 1.296E+01 1.345E+01 1.345E+01 1.345E+01 1.458E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.653E-30 1.489E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.730E-01 1.779E+01 1.758E-36 1.827E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.577E-40 2.206E+01 2.239E-37 2.309E+01 2.449E-46 2.261E+01 2.399E-47 2.309E+01 2.449E-46 2.261E+01 2.449E-46 2.261E+01 2.496E-40 2.261E+01 2.449E-46 2.261E+01 2.496E-40 2.261E+01 2.496E-40 2.260E+01 2.449E-46 2.261E+01 2.496E-40 2.260E+01 2.449E-46 2.261E+01 2.390E+01 2.406E+01 2.449E-46 2.261E+01 2.200E+01			
4.320E+00 4.800E+00 2.906E-10 5.280E+00 4.293E-12 5.760E+00 4.293E-12 5.760E+00 3.611E-14 6.720E+00 9.695E-15 7.200E+00 2.366E-15 7.880E+00 8.160E+00 1.027E-16 8.640E+00 1.027E-16 8.640E+00 1.814E-17 9.120E+00 2.857E-18 9.600E+00 1.03E+01 1.03E+01 1.05EE+01 1.05EE+01 1.104E+01 1.205E-01 1.200E+01 1.3130E-24 1.248E+01 1.345E+01 1.345E+01 1.345E+01 1.358E+01 1.441E+01 1.538E+			
4.800E+00 5.280E+00 5.280E+00 5.280E+00 4.293E-12 5.760E+00 1.562E-13 6.240E+00 9.695E-15 7.200E+00 9.695E-15 7.200E+00 1.027E-16 8.160E+00 1.027E-16 8.640E+00 1.027E-16 8.640E+00 1.027E-16 8.640E+00 1.027E-16 8.640E+00 3.994E-19 1.008E+01 4.933E-20 1.056E+01 1.056E+01 1.104E+01 1.056E+01 1.248E+01 1.248E+01 1.248E+01 1.335E+01 1.335E+01 1.358E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.770E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.882E+01 1.882E+01 1.882E+01 1.882E+01 1.882E+01 1.882E+01 1.882E+01 1.882E+01 1.893E-01 1.896E-36 1.827E+01 1.895E-36 1.827E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-39 1.972E+01 1.802E-40 2.00E+01 2.00BE+01 2.449E-46 2.261E+01 2.99E-47 2.309E+01 2.449E-46 2.261E+01 2.99E-47 2.309E+01 2.406E+01 2.449E-46 2.261E+01 2.99E-47 2.309E+01 2.100E-48 2.456E+01 2.668E+01 2.668E+01 2.668E+01 2.668E+01 2.406E+01 3.480E-50			
5.280E+00			
5.760E+00			
6.240E+00			
6.720E+00			
7.200E+00 2.366E-15 7.680E+00 5.201E-16 8.160E+00 1.027E-16 8.640E+00 1.814E-17 9.120E+00 2.857E-18 9.600E+00 3.994E-19 1.008E+01 4.933E-20 1.056E+01 5.357E-21 1.104E+01 5.089E-22 1.152E+01 4.205E-23 1.200E+01 3.130E-24 1.248E+01 1.905E-25 1.296E+01 9.961E-27 1.345E+01 4.599E-28 1.393E+01 1.653E-30 1.489E+01 2.239E-31 1.538E+01 3.623E-32 1.586E+01 5.716E-33 1.634E+01 8.453E-34 1.682E+01 1.163E-34 1.779E+01 1.758E-36 1.877E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E-01 1.920E-39 1.972E+01 5.763E-34 2.213E+01 1.537E-40 2.202E+01 3.677E-45 2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.446E+01 1.979E-47 2.309E+01 2.100E-48 2.257E+01 2.648E-49 2.446E+01 1.979E-47 2.309E+01 2.100E-48 2.257E+01 2.648E-49 2.446E+01 1.979E-47			
7.680E+00 5.201E-16 8.160E+00 1.027E-16 8.640E+00 1.814E-17 9.120E+00 2.857E-18 9.600E+00 3.994E-19 1.008E+01 4.933E-20 1.056E+01 5.357E-21 1.104E+01 5.089E-22 1.152E+01 4.205E-23 1.200E+01 3.130E-24 1.248E+01 1.905E-25 1.296E+01 9.961E-27 1.345E+01 4.599E-28 1.393E+01 2.189E-29 1.441E+01 1.653E-30 1.489E+01 2.239E-31 1.538E+01 3.623E-32 1.586E+01 5.716E-33 1.634E+01 8.453E-34 1.634E+01 1.82E-39 1.730E+01 1.163E-34 1.730E+01 1.163E-34 1.875E+01 1.163E-34 1.875E+01 1.163E-34 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.93E-36 1.972E+01 1.537E-40 2.020E+01 1.5763E-44 2.165E+01 3.677E-45 2.213E+01 2.449E-46 2.261E+01 2.100E-48 2.357E+01 1.979E-47 2.309E+01 2.100E-48 2.266E+01 2.668E-49 2.406E+01 3.480E-50			
8.160E+00			
8.640E+00 1.814E-17 9.120E+00 2.857E-18 9.60DE+00 3.994E-19 1.008E+01 4.933E-20 1.056E+01 5.357E-21 1.104E+01 5.089E-22 1.152E+01 4.205E-23 1.200E+01 3.130E-24 1.296E+01 1.905E-25 1.296E+01 9.961E-27 1.345E+01 4.599E-28 1.393E+01 2.189E-29 1.441E+01 1.653E-30 1.489E+01 2.239E-31 1.538E+01 3.623E-32 1.586E+01 5.716E-33 1.634E+01 8.453E-34 1.639E+01 1.163E-34 1.739E+01 1.758E-36 1.827E+01 1.923E-37 1.875E+01 1.923E-37 1.875E+01 1.940E-38 1.923E+01 1.802E-39 1.972E+01 1.537E-40 2.020E+01 1.203E-41 2.068E+01 3.677E-45 2.213E-01 9.763E-44 2.16E+01 5.763E-44 2.16E+01 1.979E-47 2.309E+01			
9.120E+00 9.600E+00 3.994E-19 1.08E+01 4.933E-20 1.056E+01 5.357E-21 5.058E-22 1.104E+01 5.089E-22 1.152E+01 1.200E+01 3.130E-24 1.208E+01 1.248E+01 1.248E+01 1.393E+01 3.393E+01 3.393E+01 3.623E-32 1.586E+01 3.623E-32 1.586E+01 3.634E+01 1.634E+01 1.730E+01 1.779E+01 1.779E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.875E+01 1.802E-39 1.972E+01 2.020E+01 2.166E+01 2.165E+01 2.165E+01 2.165E+01 3.623E-32 1.537E-40 2.020E+01 3.623E-32 1.538E-40 2.165E+01 3.623E-34 1.799E-40 3.623E-34 1.799E-40 3.623E-34 3.67E-45 3.67E-45			
9.600E+00 1.008E+01 4.938E-20 1.056E+01 5.357E-21 1.104E+01 5.089E-22 1.152E+01 4.205E-23 1.200E+01 3.130E-24 1.248E+01 1.248E+01 1.345E+01 4.599E-28 1.345E+01 4.89E-29 1.441E+01 1.653E-30 1.489E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.634E+01 1.632B-32 1.586E+01 1.730E+01 1.730E+01 1.758E-36 1.827E+01 1.827E+01 1.823E-37 1.875E+01 1.802E-39 1.972E+01 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-39 1.972E+01 1.03E-44 2.06BE+01 3.677E-45 2.213E+01 2.2449E-46 2.261E+01 2.309E+01 2.309E+01 2.449E-46 2.261E+01 2.406E+01 3.480E-50			
1.008E+01			
1.056E+01			
1.104E+01			
1.152E+01			
1.200E+01			
1.248E+01			
1.296E+01			
1.345E+01			
1.393E+01			
1.441E+01			
1.489E+01 2.239E-31 1.538E+01 3.623E-32 1.586E+01 5.716E-33 1.634E+01 8.453E-34 1.682E+01 1.163E-34 1.730E+01 1.486E-35 1.779E+01 1.758E-36 1.827E+01 1.923E-37 1.875E+01 1.940E-38 1.923E+01 1.802E-39 1.972E+01 1.537E-40 2.020E+01 1.203E-41 2.068E+01 8.647E-43 2.116E+01 5.763E-44 2.213E+01 2.449E-46 2.2213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50			
1.538E+01			
1.586E+01 5.716E-33 1.634E+01 8.453E-34 1.682E+01 1.163E-34 1.730E+01 1.486E-35 1.779E+01 1.758E-36 1.827E+01 1.923E-37 1.875E+01 1.940E-38 1.923E+01 1.802E-39 1.972E+01 1.537E-40 2.020E+01 1.203E-41 2.068E+01 8.647E-43 2.116E+01 5.763E-44 2.213E+01 2.449E-46 2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50			
1.634E+01 8.453E-34 1.682E+01 1.163E-34 1.730E+01 1.486E-35 1.779E+01 1.758E-36 1.827E+01 1.923E-37 1.875E+01 1.940E-38 1.923E+01 1.537E-40 2.020E+01 1.203E-41 2.068E+01 8.647E-43 2.116E+01 5.763E-44 2.165E+01 3.677E-45 2.213E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50			
1.682E+01			
1.730E+01			
1.779E+01			
1.827E+01 1.923E-37 1.875E+01 1.940E-38 1.923E+01 1.802E-39 1.972E+01 1.537E-40 2.020E+01 1.203E-41 2.068E+01 8.647E-43 2.116E+01 5.763E-44 2.165E+01 3.677E-45 2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50			
1.875E+01 1.940E-38 1.923E+01 1.802E-39 1.972E+01 1.537E-40 2.020E+01 1.203E-41 2.068E+01 8.647E-43 2.116E+01 5.763E-44 2.165E+01 3.677E-45 2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50			
1.923E+01 1.802E-39 1.972E+01 1.537E-40 2.020E+01 1.203E-41 2.068E+01 8.647E-43 2.116E+01 5.763E-44 2.165E+01 3.677E-45 2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50			
1.972E+01 1.537E-40 2.020E+01 1.203E-41 2.068E+01 8.647E-43 2.116E+01 5.763E-44 2.165E+01 3.677E-45 2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50			
2.020E+01 1.203E-41 2.068E+01 8.647E-43 2.116E+01 5.763E-44 2.165E+01 3.677E-45 2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50			
2.116E+01 5.763E-44 2.165E+01 3.677E-45 2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50		2.020E+01	
2.165E+01 3.677E-45 2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50		2.068E+01	8.647E-43
2.213E+01 2.449E-46 2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50		2.116E+01	5.763E-44
2.261E+01 1.979E-47 2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50		2.165E+01	3.677E-45
2.309E+01 2.100E-48 2.357E+01 2.648E-49 2.406E+01 3.480E-50		2.213E+01	2.449E-46
2.357E+01 2.648E-49 2.406E+01 3.480E-50		2.261E+01	1.979E-47
2.406E+01 3.480E-50		2.309E+01	2.100E-48
		2.357E+01	2.648E-49
2.454E+01 0.000E+00		2.406E+01	
·		2.454E+01	0.000E+00

I	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00 0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	, ,	
25	0.000E+00	1.000E+00
	4.800E-01	6.439E-01
	9.600E-01	3.476E-01
	1.440E+00	1.547E-01
		1.547E-01 5.605E-02
	1.920E+00	
	2.400E+00	1.640E-02
	2.880E+00	3.847E-03
	3.360E+00	7.210E-04
	3.840E+00	1.075E-04
	4.320E+00	1.273E-05
	4.800E+00	1.194E-06
	5.280E+00	8.861E-08
	5.760E+00	5.197E-09
	6.240E+00	2.415E-10
	6.720E+00	9.257E-12
	7.200E+00	4.612E-13
	7.680E+00	9.118E-14
	8.160E+00	3.312E-14
	8.640E+00	1.202E-14
	9.120E+00	4.118E-15
	9.600E+00	1.326E-15
	1.008E+01	4.007E-16
	1.056E+01	1.135E-16
	1.104E+01	3.005E-17
	1.152E+01	7.447E-18
	1.200E+01	1.785E-18
	1.248E+01	3.811E-19
	1.296E+01	7.543E-20
	1.345E+01	1.382E-20
	1.393E+01	2.335E-21
	1.441E+01	3.635E-22
	1.489E+01	5.194E-23
	1.469E+01 1.538E+01	6.795E-24
	1.586E+01	8.122E-25
	1.634E+01	8.855E-26
	1.682E+01	8.831E-27
	1.730E+01	8.198E-28
	1.779E+01	7.583E-29
	1.827E+01	8.408E-30
	1.875E+01	1.377E-30
	1.923E+01	3.071E-31 7.550E-32
	1.972E+01	

	2.020E+01 2.068E+01 2.116E+01 2.165E+01 2.213E+01 2.261E+01 2.309E+01 2.357E+01	1.846E-32 4.362E-33 9.891E-34 2.147E-34 4.459E-35 8.846E-36 1.676E-36 3.027E-37
	2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01	5.209E-38 8.531E-39 1.329E-39 1.966E-40 2.761E-41 3.685E-42 4.684E-43 5.716E-44 6.827E-45 8.322E-46
35	2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	1.110E-46 1.731E-47 3.169E-48 6.406E-49 1.340E-49 2.793E-50
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	7.006E-01 4.337E-01 2.346E-01 1.100E-01 4.443E-02 1.538E-02 4.547E-03 1.145E-03 2.451E-04 4.452E-05 6.852E-06
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	8.927E-07 9.837E-08 9.162E-09 7.219E-10 4.860E-11 3.069E-12 3.171E-13 9.445E-14 4.044E-14 1.740E-14 7.194E-15
	1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01	2.849E-15 1.083E-15 4.061E-16 1.399E-16 4.591E-17 1.434E-17 4.262E-18 1.203E-18 3.220E-19

	1.538E+01 1.586E+01 1.634E+01 1.634E+01 1.682E+01 1.730E+01 1.779E+01 1.827E+01 1.875E+01 1.923E+01 2.020E+01 2.068E+01 2.116E+01 2.116E+01 2.213E+01 2.261E+01 2.357E+01 2.406E+01 2.454E+01 2.550E+01 2.599E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01	8.164E-20 1.958E-20 4.437E-21 9.480E-22 1.907E-22 3.606E-23 6.400E-24 1.065E-24 1.658E-25 2.421E-26 3.336E-27 4.437E-28 6.086E-29 9.850E-30 2.127E-30 5.837E-31 1.773E-31 5.466E-32 1.658E-32 4.894E-33 1.402E-33 3.896E-34 1.049E-34 2.733E-35 6.891E-36 1.681E-36 3.962E-37 9.023E-38 1.984E-38 4.207E-39 8.605E-40
45	3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.320E+00 5.280E+00 5.760E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00	3.222E-41 5.901E-42 1.000E+00 7.380E-01 4.953E-01 2.999E-01 1.628E-01 7.884E-02 3.394E-02 1.295E-02 4.369E-03 1.301E-03 3.413E-04 7.884E-05 1.602E-05 2.859E-06 4.481E-07 6.164E-08 7.440E-09 7.886E-10 7.389E-11 6.430E-12 6.905E-13

1	1.056E+01	7.256E-14
	1.104E+01	3.501E-14
	1.152E+01	1.670E-14
	1.200E+01	7.925E-15
	1.248E+01	3.512E-15
	1.296E+01	1.503E-15
	1.345E+01	6.206E-16
	1.393E+01	2.471E-16
	1.441E+01	9.480E-17
	1.489E+01	3.502E-17
	1.538E+01	1.245E-17
	1.586E+01	4.254E-18
	1.634E+01	1.397E-18
	1.682E+01	4.400E-19
	1.730E+01	1.329E-19
	1.730E+01	3.847E-20
	1.827E+01	1.066E-20
	1.875E+01	2.821E-21
	1.923E+01	7.133E-22
	1.972E+01	1.720E-22
	2.020E+01	3.954E-23
	2.068E+01	8.648E-24
	2.116E+01	1.798E-24
	2.165E+01	3.554E-25
	2.213E+01	6.675E-26
	2.261E+01	1.195E-26
	2.309E+01	2.055E-27
	2.357E+01	3.479E-28
	2.406E+01	6.139E-29
	2.454E+01	1.249E-29
	2.502E+01	3.187E-30
	2.550E+01	9.940E-31
	2.599E+01	3.436E-31
	2.647E+01	1.223E-31
	2.695E+01	4.333E-32
	2.743E+01	1.508E-32
	2.791E+01	5.136E-33
	2.840E+01	1.709E-33
	2.888E+01	5.549E-34
	2.936E+01	1.758E-34
	2.984E+01	5.433E-35
	3.033E+01	1.637E-35
	3.081E+01	4.806E-36
	3.129E+01	1.375E-36
	J. 123ETU I	1.57 JE-30
EE	0.0005 - 00	4 0005 : 00
55	0.000E+00	1.000E+00
	4.800E-01	7.651E-01
	9.600E-01	5.420E-01
	1.440E+00	3.533E-01
	1.920E+00	2.110E-01
	2.400E+00	1.149E-01
	2.880E+00	5.689E-02
	3.360E+00	2.556E-02
	3.840E+00	1.039E-02
	4.320E+00	3.821E-03
	4.800E+00	1.268E-03
	4.800E+00 5.280E+00	1.268E-03 3.794E-04

	5.760E+00	1.023E-04
	6.240E+00	2.483E-05
	6.720E+00	5.421E-06
	7.200E+00	1.065E-06
	7.680E+00	1.879E-07
	8.160E+00	2.981E-08
	8.640E+00	4.249E-09
	9.120E+00	5.449E-10
	9.600E+00	6.332E-11
	1.008E+01	6.967E-12
	1.056E+01	9.016E-13
	1.104E+01	2.215E-13
	1.152E+01	9.850E-14
	1.132E+01	5.229E-14
	1.248E+01	2.697E-14
	1.296E+01	1.359E-14
	1.345E+01	6.658E-15
	1.393E+01	3.172E-15
	1.441E+01	1.468E-15
	1.489E+01	6.598E-16
	1.538E+01	2.878E-16
	1.586E+01	1.218E-16
	1.634E+01	5.000E-17
	1.682E+01	1.988E-17
	1.730E+01	7.659E-18
	1.779E+01	2.856E-18
	1.827E+01	1.030E-18
	1.875E+01	3.591E-19
	1.923E+01	1.209E-19
	1.972E+01	3.932E-20
	2.020E+01	1.233E-20
	2.068E+01	3.727E-21
	2.116E+01	1.085E-21
	2.165E+01	3.039E-22
	2.213E+01	8.185E-23
	2.261E+01	2.118E-23
	2.309E+01	5.260E-24
	2.357E+01	1.253E-24
	2.406E+01	2.864E-25
	2.454E+01	6.279E-26
	2.502E+01	1.324E-26
	2.550E+01	2.703E-27
	2.599E+01	5.438E-28
	2.539E+01 2.647E+01	1.120E-28
		2.536E-29
	2.695E+01	
	2.743E+01	6.808E-30
	2.791E+01	2.205E-30
	2.840E+01	8.115E-31
	2.888E+01	3.161E-31
	2.936E+01	1.247E-31
	2.984E+01	4.888E-32
	3.033E+01	1.887E-32
	3.081E+01	7.156E-33
	3.129E+01	2.662E-33
85	0.000E+00	1.000E+00
03	0.000⊏±00	
00	4.800E-01	8.161E-01

9.600E-01	6.342E-01
1.440E+00	4.678E-01
1.920E+00	3.265E-01
2.400E+00	2.152E-01
2.880E+00	1.336E-01
3.360E+00	7.805E-02
3.840E+00	4.283E-02
4.320E+00 4.800E+00	2.205E-02 1.064E-02
5.280E+00	4.813E-03
5.760E+00	2.037E-03
6.240E+00	8.062E-04
6.720E+00	2.984E-04
7.200E+00	1.032E-04
7.680E+00	3.337E-05
8.160E+00	1.007E-05
8.640E+00	2.839E-06
9.120E+00	7.470E-07
9.600E+00	1.834E-07
1.008E+01	4.203E-08
1.056E+01	8.987E-09
1.104E+01	1.794E-09
1.152E+01 1.200E+01	3.350E-10 6.126E-11
1.248E+01	1.037E-11
1.296E+01	1.895E-12
1.345E+01	4.859E-13
1.393E+01	2.040E-13
1.441E+01	1.127E-13
1.489E+01	6.674E-14
1.538E+01	3.955E-14
1.586E+01	2.312E-14
1.634E+01	1.328E-14
1.682E+01	7.490E-15
1.730E+01	4.148E-15
1.779E+01	2.255E-15
1.827E+01	1.203E-15 6.295E-16
1.875E+01 1.923E+01	3.231E-16
1.972E+01	1.626E-16
2.020E+01	8.021E-17
2.068E+01	3.877E-17
2.116E+01	1.836E-17
2.165E+01	8.518E-18
2.213E+01	3.868E-18
2.261E+01	1.719E-18
2.309E+01	7.476E-19
2.357E+01	3.180E-19
2.406E+01	1.322E-19
2.454E+01	5.373E-20
2.502E+01 2.550E+01	2.133E-20 8.260E-21
2.550E+01 2.599E+01	8.269E-21 3.129E-21
2.599E+01 2.647E+01	1.155E-21
2.695E+01	4.160E-22
2.743E+01	1.461E-22
2.791E+01	4.996E-23
•	'

1	2.840E+01	1.665E-23
	2.888E+01	5.401E-24
	2.936E+01	1.706E-24
	2.984E+01	5.243E-25
	3.033E+01	1.569E-25
	3.081E+01	4.573E-26
	3.129E+01	1.302E-26

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this computer program. The user accepts full responsibility for assessing the validity and applicability of the results obtained with this program for any specific case.

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB Darcy

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00203 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.019 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.019 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.800E-01	2.899E-01
	9.600E-01	3.170E-02
	1.440E+00	1.173E-03
	1.920E+00	1.395E-05

2.400E+00	5.182E-08
2.880E+00	5.999E-11
3.360E+00	1.314E-13
3.840E+00	1.263E-14
4.320E+00	1.064E-15
4.800E+00	6.514E-17
5.280E+00	2.848E-18
5.760E+00	8.699E-20
6.240E+00	1.812E-21
6.720E+00	2.503E-23
7.200E+00	2.229E-25
7.680E+00	1.279E-27
8.160E+00	7.406E-30
8.640E+00	1.881E-31
9.120E+00	8.046E-33
9.600E+00	2.907E-34
1.008E+01	8.446E-36
1.056E+01	1.951E-37
1.104E+01	3.543E-39
1.104E+01	5.008E-41
1.132E+01 1.200E+01	5.723E-43
1.248E+01	5.059E-45
1.296E+01	5.171E-47
1.345E+01	1.074E-48
1.393E+01	3.182E-50
1.441E+01	0.000E+00
1.489E+01	0.000E+00
1.538E+01	0.000E+00
1.586E+01	0.000E+00
1.634E+01	0.000E+00
1.682E+01	0.000E+00
1.730E+01	0.000E+00
1.779E+01	0.000E+00
1.827E+01	0.000E+00
1.875E+01	0.000E+00
1.923E+01	0.000E+00
1.972E+01	0.000E+00
2.020E+01	0.000E+00
2.068E+01	0.000E+00
2.116E+01	0.000E+00
2.165E+01	0.000E+00
2.213E+01	0.000E+00
2.261E+01	0.000E+00
2.309E+01	0.000E+00
2.357E+01	0.000E+00
2.406E+01	0.000E+00
2.454E+01	0.000E+00
2.502E+01	0.000E+00
2.550E+01	0.000E+00
2.599E+01	0.000E+00
2.647E+01	0.000E+00
2.695E+01	0.000E+00 0.000E+00
2.743E+01	0.000E+00
2.791E+01	0.000E+00
2.840E+01	0.000E+00
2.888E+01	0.000E+00
2.936E+01	0.000E+00

	2.984E+01 3.033E+01 3.081E+01 3.129E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00
10		
	2.261E+01 2.309E+01 2.357E+01 2.406E+01 2.454E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
15	0.000E+00	1.000E+00
10	4.800E-01	5.613E-01
	9.600E-01	2.330E-01
	1.440E+00	6.923E-02
	1.920E+00	1.443E-02
	2.400E+00	2.080E-03
	2.880E+00	2.056E-04
	3.360E+00	1.385E-05
	3.840E+00	6.325E-07
	4.320E+00	1.954E-08
	4.800E+00	4.085E-10
	5.280E+00	6.240E-12
	5.760E+00	2.330E-13
	6.240E+00	5.558E-14
	6.720E+00	1.544E-14
	7.200E+00	3.900E-15
	7.680E+00	8.876E-16
	8.160E+00	1.814E-16
	8.640E+00	3.318E-17
	9.120E+00	5.408E-18
	9.600E+00	7.826E-19
	1.008E+01	1.001E-19
	1.056E+01	1.125E-20
	1.104E+01	1.106E-21
	1.152E+01	9.464E-23
	1.200E+01	7.294E-24
	1.248E+01	4.610E-25
	1.296E+01	2.503E-26
	1.345E+01	1.199E-27
	1.393E+01	5.909E-29
	1.441E+01	4.600E-30
	1.489E+01	6.445E-31
	1.538E+01	1.082E-31
	1.586E+01	1.772E-32
	1.634E+01	2.722E-33
	1.682E+01	3.890E-34
	1.730E+01	5.160E-35
	1.779E+01	6.341E-36
	1.827E+01	7.203E-37
	1.875E+01	7.548E-38
	1.923E+01	7.281E-39
		6.450E-40
	1.972E+01	· · · · · · · · · · · · · · · · · · ·

	2.020E+01	5.243E-41
	2.068E+01	3.914E-42
	2.116E+01	2.708E-43
	2.165E+01	1.792E-44
	2.213E+01	1.236E-45
	2.261E+01	1.032E-46
	2.309E+01	1.132E-47
	2.357E+01	1.479E-48
	2.406E+01	2.017E-49
	2.454E+01	2.688E-50
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	0.1202 * 0.1	0.0002 00
20	0.000E+00	1.000E+00
	4.800E-01	6.220E-01
	9.600E-01	3.097E-01
	1.440E+00	1.207E-01
	1.920E+00	3.624E-02
	2.400E+00	8.296E-03
		4 427F 02
	2.880E+00	1.437E-03
	2.880E+00 3.360E+00	1.437E-03 1.873E-04
	3.360E+00 3.840E+00 4.320E+00	1.873E-04
	3.360E+00 3.840E+00	1.873E-04 1.830E-05
	3.360E+00 3.840E+00 4.320E+00	1.873E-04 1.830E-05 1.337E-06
	3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.20E+00 7.680E+00 8.160E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17 5.965E-18
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.20E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17 5.965E-18 1.131E-18
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.20E+00 7.200E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17 5.965E-18 1.131E-18 1.955E-19
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17 5.965E-18 1.131E-18 1.955E-19 3.197E-20
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17 5.965E-18 1.131E-18 1.955E-19 3.197E-20 4.532E-21
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17 5.965E-18 1.131E-18 1.955E-19 3.197E-20 4.532E-21 5.791E-22
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.345E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17 5.965E-18 1.131E-18 1.955E-19 3.197E-20 4.532E-21 5.791E-22 6.648E-23
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17 5.965E-18 1.131E-18 1.955E-19 3.197E-20 4.532E-21 5.791E-22 6.648E-23 6.829E-24
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.345E+01	1.873E-04 1.830E-05 1.337E-06 7.288E-08 2.960E-09 9.038E-11 2.454E-12 2.092E-13 6.417E-14 2.148E-14 6.709E-15 1.939E-15 5.176E-16 1.273E-16 2.878E-17 5.965E-18 1.131E-18 1.955E-19 3.197E-20 4.532E-21 5.791E-22 6.648E-23

	1.538E+01	3.783E-27
	1.586E+01	2.704E-28
	1.634E+01	2.336E-29
	1.682E+01	3.250E-30
	1.730E+01	6.459E-31
	1.779E+01	1.395E-31
	1.827E+01	2.945E-32
	1.875E+01	5.923E-33
	1.923E+01	1.129E-33
	1.972E+01	2.038E-34
	2.020E+01	3.474E-35
	2.068E+01	5.590E-36
	2.116E+01	8.475E-37
	2.165E+01	1.209E-37
	2.213E+01	1.621E-38
	2.261E+01	2.040E-39
	2.309E+01	2.407E-40
	2.357E+01	2.662E-41
	2.406E+01	2.767E-42
	2.454E+01	2.728E-43
	2.502E+01	2.618E-44
	2.550E+01	2.598E-45
	2.599E+01	2.946E-46
	2.647E+01	4.109E-47
	2.695E+01	6.794E-48
	2.743E+01	1.211E-48
	2.791E+01	2.174E-49
	2.840E+01	3.811E-50
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.033E+01 3.081E+01	0.000E+00 0.000E+00
	3.033E+01	0.000E+00
25	3.033E+01 3.081E+01 3.129E+01	0.000E+00 0.000E+00 0.000E+00
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00	0.000E+00 0.000E+00 0.000E+00
25	3.033E+01 3.081E+01 3.129E+01	0.000E+00 0.000E+00 0.000E+00
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.720E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10 1.488E-11
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10 1.488E-11 7.609E-13
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10 1.488E-11 7.609E-13 1.541E-13
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10 1.488E-11 7.609E-13
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.320E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00 8.160E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10 1.488E-11 7.609E-13 1.541E-13 5.784E-14
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.320E+00 5.280E+00 5.280E+00 5.760E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10 1.488E-11 7.609E-13 1.541E-13 5.784E-14 2.173E-14
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.320E+00 5.280E+00 5.280E+00 5.760E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10 1.488E-11 7.609E-13 1.541E-13 5.784E-14 2.173E-14 7.705E-15
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.320E+00 5.280E+00 5.280E+00 5.760E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10 1.488E-11 7.609E-13 1.541E-13 5.784E-14 2.173E-14
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.320E+00 5.280E+00 5.280E+00 5.760E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	0.000E+00 0.000E+00 1.000E+00 6.650E-01 3.710E-01 1.707E-01 6.399E-02 1.936E-02 4.702E-03 9.118E-04 1.407E-04 1.724E-05 1.674E-06 1.286E-07 7.805E-09 3.753E-10 1.488E-11 7.609E-13 1.541E-13 5.784E-14 2.173E-14 7.705E-15

	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.586E+01 1.634E+01 1.730E+01 1.779E+01 1.827E+01 1.827E+01 1.923E+01 1.923E+01 2.020E+01 2.068E+01 2.16E+01 2.165E+01 2.213E+01	2.354E-16 6.455E-17 1.656E-17 4.109E-18 9.107E-19 1.872E-19 3.561E-20 6.251E-21 1.010E-21 1.499E-22 2.037E-23 2.529E-24 2.864E-25 2.965E-26 2.856E-27 2.735E-28 3.124E-29 5.263E-30 1.214E-30 3.094E-31 7.855E-32 1.927E-32 4.539E-33 1.023E-33 2.207E-34
	2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	1.269E-39 1.852E-40 2.567E-41 3.388E-42 4.290E-43 5.313E-44 6.703E-45 9.228E-46 1.484E-46 2.806E-47 5.872E-48 1.274E-48 2.757E-49
30	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.000E+00 6.974E-01 4.209E-01 2.168E-01 9.438E-02 3.445E-02 1.049E-02 2.653E-03 5.557E-04 9.615E-05 1.372E-05 1.613E-06

1	5.760E+00	1.559E-07
	6.240E+00	1.239E-08
	6.720E+00	8.099E-10
	7.200E+00	4.430E-11
	7.680E+00	2.413E-12
	8.160E+00	3.099E-13
	8.640E+00	1.102E-13
	9.120E+00	4.621E-14
	9.600E+00	1.874E-14
	1.008E+01	7.231E-15
	1.056E+01	2.649E-15
	1.104E+01	9.205E-16
	1.152E+01	3.039E-16
	1.200E+01	9.825E-17
	1.248E+01	2.890E-17
	1.246E+01	8.014E-18
	1.296E+01 1.345E+01	6.014E-16 2.093E-18
	1.345E+01 1.393E+01	5.136E-19
	1.441E+01	1.183E-19
	1.489E+01	2.551E-20
	1.538E+01	5.143E-21
	1.586E+01	9.675E-22
	1.634E+01	1.694E-22
	1.682E+01	2.757E-23
	1.730E+01	4.161E-24
	1.779E+01	5.817E-25
	1.827E+01	7.539E-26
	1.875E+01	9.134E-27
	1.923E+01	1.067E-27
	1.972E+01	1.322E-28
	2.020E+01	2.076E-29
	2.068E+01	4.582E-30
	2.116E+01	1.251E-30
	2.165E+01	3.628E-31
	2.213E+01	1.044E-31
	2.261E+01	2.919E-32
	2.309E+01	7.887E-33
	2.357E+01	2.056E-33
	2.406E+01	5.165E-34
	2.454E+01	1.250E-34
	2.502E+01	2.910E-35
	2.550E+01	6.518E-36
	2.599E+01	1.403E-36
	2.647E+01	2.899E-37
	2.695E+01	5.747E-38
	2.095E+01 2.743E+01	1.092E-38
	2.743E+01 2.791E+01	1.990E-39
		1.990E-39 3.470E-40
	2.840E+01	
	2.888E+01	5.799E-41
	2.936E+01	9.295E-42
	2.984E+01	1.436E-42
	3.033E+01	2.158E-43
	3.081E+01	3.230E-44
	3.129E+01	5.017E-45
35	0.000E+00	1.000E+00
	4.800E-01	7.231E-01

9.600E-01	4.624E-01
1.440E+00	2.586E-01
1.920E+00	1.254E-01
2.400E+00	5.238E-02
2.400E+00 2.880E+00	
	1.876E-02
3.360E+00	5.738E-03
3.840E+00	1.495E-03
4.320E+00	3.312E-04
4.800E+00	6.226E-05
5.280E+00	9.918E-06
5.760E+00	1.337E-06
6.240E+00	1.525E-07
6.720E+00	1.470E-08
7.200E+00	1.199E-09
7.680E+00	8.351E-11
8.160E+00	5.441E-12
8.640E+00	5.737E-13
9.120E+00	1.751E-13
9.600E+00	7.746E-14
1.008E+01	3.448E-14
1.056E+01	1.476E-14
1.104E+01	6.048E-15
1.152E+01	2.380E-15
1.200E+01	9.237E-16
1.248E+01	3.303E-16
1.246E+01	1.125E-16
1.345E+01	3.651E-17
1.393E+01	1.126E-17
1.441E+01	3.301E-18
1.489E+01	9.176E-19
1.538E+01	2.416E-19
1.586E+01	6.019E-20
1.634E+01	1.416E-20
1.682E+01	3.143E-21
1.730E+01	6.567E-22
1.779E+01	1.290E-22
1.827E+01	2.377E-23
1.875E+01	4.107E-24
1.923E+01	6.644E-25
1.972E+01	1.007E-25
2.020E+01	1.441E-26
2.068E+01	1.987E-27
2.116E+01	2.815E-28
2.165E+01	4.682E-29
2.213E+01	1.038E-29
2.261E+01	2.939E-30
2.309E+01	9.246E-31
2.357E+01	2.959E-31
2.406E+01	9.317E-32
2.454E+01	2.857E-32
2.502E+01	8.502E-33
2.550E+01	2.453E-33
2.550E+01 2.599E+01	6.858E-34
2.599E+01 2.647E+01	1.856E-34
2.647E+01 2.695E+01	4.862E-35
2.743E+01	1.232E-35
2.791E+01	3.017E-36

	2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	7.136E-37 1.630E-37 3.590E-38 7.628E-39 1.562E-39 3.082E-40 5.863E-41
40	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.120E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.538E+01 1.586E+01 1.682E+01 1.779E+01 1.877E+01 1.877E+01 1.877E+01 1.875E+01 1.923E+01 1.923E+01 1.972E+01 2.020E+01 2.165E+01 2.165E+01 2.213E+01 2.261E+01	1.000E+00 7.440E-01 4.975E-01 2.962E-01 1.559E-01 7.209E-02 2.917E-02 1.030E-02 3.163E-03 8.434E-04 1.950E-04 3.901E-05 6.753E-06 1.010E-06 1.305E-07 1.455E-08 1.401E-09 1.174E-10 9.096E-12 9.416E-13 2.497E-13 1.121E-13 5.331E-14 2.466E-14 1.104E-14 4.898E-15 2.020E-15 8.002E-16 3.041E-16 1.108E-16 3.866E-17 1.291E-17 4.121E-18 1.256E-18 3.652E-19 1.012E-19 2.667E-20 6.684E-21 1.590E-21 3.584E-22 7.651E-23 1.544E-23 2.943E-24 5.295E-25 9.008E-26 1.458E-26 2.293E-27 3.700E-28

	2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	1.617E-29 4.823E-30 1.619E-30 5.606E-31 1.926E-31 6.481E-32 2.127E-32 6.796E-33 2.113E-33 6.389E-34 1.878E-34 5.363E-35 1.487E-35 4.004E-36 1.046E-36 2.648E-37 6.501E-38
45	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 9.600E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01	1.000E+00 7.614E-01 5.277E-01 3.301E-01 1.852E-01 9.278E-02 4.131E-02 1.631E-02 5.692E-03 1.754E-03 4.762E-04 1.138E-04 2.393E-05 4.420E-06 7.171E-07 1.021E-07 1.275E-08 1.399E-09 1.356E-10 1.219E-11 1.339E-12 3.286E-13 1.473E-13 7.351E-14 3.628E-14 1.782E-14 8.196E-15 3.641E-15 1.561E-15 6.451E-16 2.570E-16 9.857E-17 3.638E-17 1.291E-17 4.401E-18 1.440E-18 4.518E-19 1.358E-19 3.906E-20

	1.875E+01	1.074E-20
	1.923E+01	2.821E-21
	1.972E+01	7.066E-22
	2.020E+01	1.687E-22
	2.068E+01	3.832E-23
	2.116E+01	8.278E-24
	2.165E+01	1.699E-24
	2.213E+01	3.314E-25
	2.261E+01	6.159E-26
	2.309E+01	1.099E-26
	2.357E+01	1.927E-27
	2.406E+01	3.507E-28
	2.454E+01	7.318E-29
	2.502E+01	1.914E-29
	2.550E+01	6.144E-30
	2.599E+01	2.197E-30
	2.647E+01	8.112E-31
	2.695E+01	2.983E-31
	2.743E+01	1.078E-31
	2.791E+01	3.814E-32
	2.840E+01	1.318E-32
	2.888E+01	4.445E-33
	2.936E+01	
		1.463E-33
	2.984E+01	4.696E-34
	3.033E+01	1.470E-34
	3.081E+01	4.482E-35
	3.129E+01	1.332E-35
	3.129E+01	1.332E-33
=-		
50	0.000E+00	1.000E+00
	4.800E-01	7.762E-01
	9.600E-01	5.539E-01
	1.440E+00	3.607E-01
	1.920E+00	2.132E-01
	2.400E+00	1.139E-01
	2.880E+00	5.476E-02
	3.360E+00	2.364E-02
	3.840E+00	9.143E-03
	4.320E+00	3.163E-03
	4.800E+00	9.770E-04
	5.280E+00	2.693E-04
	5.760E+00	6.613E-05
	6.240E+00	1.446E-05
	6.720E+00	2.816E-06
	7 000 - 00	4.876E-07
	/.ZUUE+UU	
	7.200E+00 7.680E+00	7 507⊑ 08
	7.680E+00	7.507E-08
	7.680E+00 8.160E+00	1.027E-08
	7.680E+00	
	7.680E+00 8.160E+00	1.027E-08
	7.680E+00 8.160E+00 8.640E+00 9.120E+00	1.027E-08 1.251E-09 1.365E-10
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	1.027E-08 1.251E-09 1.365E-10 1.391E-11
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.027E-08 1.251E-09 1.365E-10 1.391E-11 1.669E-12
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01	1.027E-08 1.251E-09 1.365E-10 1.391E-11 1.669E-12 4.032E-13
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.027E-08 1.251E-09 1.365E-10 1.391E-11 1.669E-12
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01	1.027E-08 1.251E-09 1.365E-10 1.391E-11 1.669E-12 4.032E-13 1.809E-13
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01	1.027E-08 1.251E-09 1.365E-10 1.391E-11 1.669E-12 4.032E-13 1.809E-13 9.410E-14
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	1.027E-08 1.251E-09 1.365E-10 1.391E-11 1.669E-12 4.032E-13 1.809E-13 9.410E-14 4.991E-14
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01	1.027E-08 1.251E-09 1.365E-10 1.391E-11 1.669E-12 4.032E-13 1.809E-13 9.410E-14 4.991E-14 2.502E-14
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	1.027E-08 1.251E-09 1.365E-10 1.391E-11 1.669E-12 4.032E-13 1.809E-13 9.410E-14 4.991E-14
	7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01	1.027E-08 1.251E-09 1.365E-10 1.391E-11 1.669E-12 4.032E-13 1.809E-13 9.410E-14 4.991E-14 2.502E-14

	1.393E+01	2.617E-15
	1.441E+01	1.156E-15
	1.489E+01	4.944E-16
	1.538E+01	2.044E-16
	1.586E+01	8.168E-17
	1.634E+01	3.152E-17
	1.682E+01	1.174E-17
	1.730E+01	4.214E-18
	1.779E+01	1.458E-18
	1.827E+01	4.859E-19
	1.875E+01	1.558E-19
	1.923E+01	4.799E-20
	1.972E+01	1.420E-20
	2.020E+01	4.032E-21
	2.068E+01	1.097E-21
	2.116E+01	2.860E-22
	2.165E+01	7.131E-23
	2.213E+01	1.700E-23
	2.261E+01	3.870E-24
	2.309E+01	8.415E-25
	2.357E+01	1.749E-25
	2.406E+01	3.488E-26
	2.454E+01	6.750E-27
	2.502E+01	1.304E-27
	2.550E+01	2.672E-28
	2.599E+01	6.367E-29
	2.647E+01	1.873E-29
	2.695E+01	6.539E-30
	2.743E+01	2.489E-30
	2.791E+01	9.711E-31
	2.840E+01	3.774E-31
	2.888E+01	1.444E-31
	2.936E+01	5.421E-32
	2.984E+01	1.993E-32
	3.033E+01	7.168E-33
	3.081E+01	2.522E-33
	3.129E+01	8.679E-34
	0.120E · 01	0.0732-04
5.F	0.000=+00	1,000 - 00
55	0.000E+00	1.000E+00
	4.800E-01	7.890E-01
	9.600E-01	5.770E-01
	1.440E+00	3.885E-01
	1.920E+00	2.397E-01
	2.400E+00	1.350E-01
	Z. TOOL . OU	
	2 880=+00	F 013F-03
	2.880E+00	6.913E-02
	3.360E+00	3.212E-02
	3.360E+00 3.840E+00	3.212E-02 1.351E-02
	3.360E+00 3.840E+00 4.320E+00	3.212E-02 1.351E-02 5.140E-03
	3.360E+00 3.840E+00	3.212E-02 1.351E-02
	3.360E+00 3.840E+00 4.320E+00	3.212E-02 1.351E-02 5.140E-03 1.765E-03
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	3.212E-02 1.351E-02 5.140E-03 1.765E-03 5.465E-04
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	3.212E-02 1.351E-02 5.140E-03 1.765E-03 5.465E-04 1.525E-04
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	3.212E-02 1.351E-02 5.140E-03 1.765E-03 5.465E-04 1.525E-04 3.829E-05
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	3.212E-02 1.351E-02 5.140E-03 1.765E-03 5.465E-04 1.525E-04 3.829E-05 8.654E-06
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00	3.212E-02 1.351E-02 5.140E-03 1.765E-03 5.465E-04 1.525E-04 3.829E-05 8.654E-06 1.759E-06
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	3.212E-02 1.351E-02 5.140E-03 1.765E-03 5.465E-04 1.525E-04 3.829E-05 8.654E-06
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00	3.212E-02 1.351E-02 5.140E-03 1.765E-03 5.465E-04 1.525E-04 3.829E-05 8.654E-06 1.759E-06
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00	3.212E-02 1.351E-02 5.140E-03 1.765E-03 5.465E-04 1.525E-04 3.829E-05 8.654E-06 1.759E-06 3.213E-07

9.120E+00 1.033E-09 9.600E+00 1.242E-10	
1.008E+01 1.410E-11	
1.056E+01 1.866E-12	
1.104E+01 4.650E-13	
1.152E+01 2.121E-13	
1.200E+01 1.163E-13	
1.248E+01 6.223E-14	
1.296E+01 3.253E-14	
1.345E+01 1.655E-14	
1.393E+01 8.183E-15	
1.441E+01 3.931E-15	
1.489E+01 1.834E-15	
1.538E+01 8.309E-16	
1.586E+01 3.651E-16	
1.634E+01 1.556E-16	
1.682E+01 6.425E-17	
1.730E+01 2.570E-17	
1.779E+01 9.949E-18	
1.827E+01 3.726E-18	
1.875E+01 1.349E-18	
1.923E+01 4.719E-19	
1.972E+01 1.593E-19	
2.020E+01 5.190E-20	
2.068E+01 1.629E-20	
2.116E+01 4.927E-21	
2.165E+01 1.433E-21	
2.213E+01 4.010E-22	
2.261E+01 1.078E-22	
2.309E+01 2.781E-23	
2.357E+01 6.882E-24	
2.406E+01 1.634E-24	
2.454E+01 3.720E-25	
2.502E+01 8.142E-26	
2.550E+01 1.725E-26	
2.599E+01 3.592E-27	
2.647E+01 7.637E-28	
2.695E+01 1.774E-28	
2.743E+01 4.871E-29	
2.791E+01 1.617E-29	
2.840E+01 6.137E-30	
2.888E+01 2.475E-30	
2.936E+01 1.013E-30	
2.984E+01 4.121E-31	
3.033E+01 1.652E-31	
3.081E+01 6.509E-32	
3.129E+01 2.515E-32	

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB CoHD High

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.02375 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.02375 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.800E-01	3.338E-01
	9.600E-01	5.164E-02
	1.440E+00	3.400E-03
	1.920E+00	9.115E-05

	2.400E+00	9.708E-07
	2.880E+00	4.053E-09
	3.360E+00	6.926E-12
	3.840E+00	6.577E-14
	4.320E+00	8.320E-15
	4.800E+00	8.803E-16
	5.280E+00	7.224E-17
	5.760E+00	4.538E-18
	6.240E+00 6.720E+00	2.150E-19 7.558E-21
	7.200E+00	1.934E-22
	7.680E+00	3.527E-24
	8.160E+00	4.501E-26
	8.640E+00	4.087E-28
	9.120E+00	4.009E-30
	9.600E+00	1.369E-31
	1.008E+01	7.950E-33
	1.056E+01	4.144E-34
	1.104E+01	1.821E-35
	1.152E+01	6.687E-37
	1.200E+01	2.121E-38
	1.248E+01	5.230E-40
	1.296E+01	1.051E-41
	1.345E+01	1.722E-43
	1.393E+01	2.411E-45
	1.441E+01	3.679E-47
	1.489E+01	9.715E-49
	1.538E+01	3.893E-50
	1.586E+01	0.000E+00
	1.634E+01	0.000E+00
	1.682E+01	0.000E+00
	1.730E+01 1.779E+01	0.000E+00 0.000E+00
	1.827E+01	0.000E+00 0.000E+00
	1.875E+01	0.000E+00 0.000E+00
	1.923E+01	0.000E+00
	1.972E+01	0.000E+00
	2.020E+01	0.000E+00
	2.068E+01	0.000E+00
	2.116E+01	0.000E+00
	2.165E+01	0.000E+00
	2.213E+01	0.000E+00
	2.261E+01	0.000E+00
	2.309E+01	0.000E+00
	2.357E+01	0.000E+00
	2.406E+01	0.000E+00
	2.454E+01	0.000E+00
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01 2.840E+01	0.000E+00 0.000E+00
	2.888E+01	0.000E+00 0.000E+00
	2.936E+01	0.000E+00 0.000E+00
1	2.0002 01	1 0.0002.00

10 0.000E+00 4.800E-01 4.997E-01 9.600E-01 1.729E-01 1.440E+00 3.965E-02 1.920E+00 2.400E+00 5.711E-04 2.880E+00 3.360E+00 3.360E+00 3.840E-05 3.360E+00 4.703E-10 4.800E+00 4.703E-10 4.800E+00 4.703E-10 4.800E+00 4.703E-10 4.800E+00 1.20E-13 5.760E+00 1.20E-15 6.720E+00 1.249E-15 7.200E+00 7.680E+00 3.552E-17 8.160E+00 4.899E-18 8.640E+00 5.867E-19 9.120E+00 9.600E+01 1.056E-01 1.056E-01 1.20E-0
[2.406E+01

	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	J. 129L 101	0.0002.00
15	0.000E+00	1.000E+00
	4.800E-01	5.854E-01
	9.600E-01	2.699E-01
	1.440E+00	9.561E-02
	1.920E+00	2.561E-02
	2.400E+00	5.127E-03
	2.880E+00	7.616E-04
	3.360E+00	8.346E-05
	3.840E+00	6.721E-06
	4.320E+00	3.966E-07
	4.800E+00	1.711E-08
	5.280E+00	5.399E-10
	5.760E+00	1.283E-11
	6.240E+00	3.836E-13
	6.720E+00	6.447E-14
	7.200E+00	2.010E-14
	7.680E+00	6.005E-15
	8.160E+00	1.655E-15
	8.640E+00	4.196E-16
	9.120E+00	9.755E-17
	9.600E+00	2.075E-17
	1.008E+01	4.027E-18
	1.056E+01	7.111E-19
	1.104E+01	1.139E-19
	1.152E+01	1.649E-20
	1.200E+01	2.238E-21
	1.248E+01	2.595E-22
	1.296E+01	2.685E-23
	1.345E+01	2.469E-24
	1.393E+01	2.011E-25
	1.441E+01	1.450E-26
	1.489E+01	9.391E-28
	1.538E+01	5.897E-29
	1.586E+01	4.633E-30
	1.634E+01	6.093E-31
	1.682E+01	1.123E-31
	1.730E+01	2.202E-32
	1.779E+01	4.173E-33
	1.827E+01	7.498E-34
	1.875E+01	1.272E-34
	1.923E+01	2.033E-35
Į.		3.058E-36
	1.972E+01	· · · · · · · · · · · · · · · · · · ·

	2.020E+01	4.322E-37
	2.068E+01	5.730E-38
	2.116E+01	7.115E-39
	2.165E+01	8.263E-40
	2.213E+01	8.963E-41
	2.261E+01	9.074E-42
	2.309E+01	8.583E-43
	2.357E+01	7.635E-44
	2.406E+01	6.513E-45
	2.454E+01	5.607E-46
	2.502E+01	5.374E-47
	2.550E+01	6.342E-48
	2.599E+01	9.145E-49
	2.647E+01	1.458E-49
	2.695E+01	2.364E-50
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
20	0.000E+00	1.000E+00
	4.800E-01	6.396E-01
	9.600E-01	3.430E-01
	1.440E+00	1.516E-01
	1.440E+00 1.920E+00	1.516E-01 5.455E-02
	1.920E+00	5.455E-02
	1.920E+00 2.400E+00	5.455E-02 1.585E-02
	1.920E+00 2.400E+00 2.880E+00	5.455E-02 1.585E-02 3.693E-03
	1.920E+00 2.400E+00 2.880E+00 3.360E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.20E+00 7.680E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00 8.160E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15 3.474E-16 9.769E-17
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15 3.474E-16 9.769E-17 2.570E-17
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15 3.474E-16 9.769E-17 2.570E-17 6.322E-18
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15 3.474E-16 9.769E-17 2.570E-17 6.322E-18 1.505E-18
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.360E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15 3.474E-16 9.769E-17 2.570E-17 6.322E-18 1.505E-18 3.188E-19
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.360E+00 4.320E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.152E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15 3.474E-16 9.769E-17 2.570E-17 6.322E-18 1.505E-18 3.188E-19 6.263E-20
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.360E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15 3.474E-16 9.769E-17 2.570E-17 6.322E-18 1.505E-18 3.188E-19 6.263E-20 1.138E-20
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15 3.474E-16 9.769E-17 2.570E-17 6.322E-18 1.505E-18 3.188E-19 6.263E-20 1.910E-21
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.360E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	5.455E-02 1.585E-02 3.693E-03 6.872E-04 1.018E-04 1.197E-05 1.115E-06 8.214E-08 4.784E-09 2.208E-10 8.406E-12 4.163E-13 8.183E-14 2.952E-14 1.064E-14 3.621E-15 1.158E-15 3.474E-16 9.769E-17 2.570E-17 6.322E-18 1.505E-18 3.188E-19 6.263E-20 1.138E-20

	1.538E+01 1.586E+01 1.634E+01 1.682E+01 1.730E+01 1.779E+01 1.827E+01 1.875E+01 1.923E+01	5.432E-24 6.442E-25 6.971E-26 6.899E-27 6.356E-28 5.837E-29 6.430E-30 1.046E-30 2.317E-31
	1.972E+01 2.020E+01 2.068E+01 2.116E+01 2.165E+01 2.213E+01 2.261E+01 2.309E+01 2.357E+01	5.653E-32 1.372E-32 3.217E-33 7.239E-34 1.560E-34 3.214E-35 6.328E-36 1.189E-36 2.132E-37
	2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01	3.641E-38 5.919E-39 9.147E-40 1.343E-40 1.872E-41 2.480E-42 3.128E-43 3.788E-44
	2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	4.491E-45 5.435E-46 7.199E-47 1.115E-47 2.028E-48 4.069E-49 8.449E-50 1.748E-50
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.000E+00 6.778E-01 3.996E-01 2.024E-01 8.716E-02 3.172E-02 9.700E-03 2.483E-03 5.306E-04 9.442E-05 1.397E-05 1.715E-06
	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	1.746E-07 1.473E-08 1.029E-09 6.011E-11 3.191E-12 2.774E-13 7.725E-14 3.135E-14 1.266E-14 4.884E-15

	1.056E+01	1.794E-15
	1.104E+01	6.266E-16
	1.152E+01	2.085E-16
	1.200E+01	6.811E-17
	1.248E+01	2.024E-17
	1.296E+01	5.686E-18
	1.345E+01	1.509E-18
	1.393E+01	3.777E-19
	1.441E+01	8.901E-20
	1.489E+01	1.972E-20
	1.538E+01	4.099E-21
	1.586E+01	7.982E-22
	1.634E+01	1.453E-22
	1.682E+01	2.468E-23
	1.730E+01	3.905E-24
	1.779E+01	5.745E-25
	1.827E+01	7.851E-26
	1.875E+01	9.990E-27
	1.923E+01	1.197E-27
	1.923E+01	1.403E-28
	2.020E+01	1.403E-28 1.790E-29
	2.020E+01 2.068E+01	1.790E-29 2.963E-30
	2.116E+01	6.749E-31
	2.165E+01	1.840E-31
	2.213E+01	5.246E-32
	2.261E+01	1.479E-32
	2.309E+01	4.057E-33
	2.357E+01	1.076E-33
	2.406E+01	2.759E-34
	2.454E+01	6.825E-35
	2.502E+01	1.629E-35
	2.550E+01	3.746E-36
	2.599E+01	8.299E-37
	2.647E+01	1.770E-37
	2.695E+01	3.630E-38
	2.743E+01	7.155E-39
	2.791E+01	1.355E-39
	2.840E+01	2.462E-40
	2.888E+01	4.293E-41
	2.936E+01	7.183E-42
	2.984E+01	1.154E-42
	3.033E+01	1.788E-43
	3.081E+01	2.691E-44
	3.129E+01	4.007E-45
	= .	
30	0.000E+00	1.000E+00
	4.800E-01	7.066E-01
	9.600E-01	4.449E-01
	1.440E+00	2.472E-01
	1.920E+00	1.203E-01
	2.400E+00	5.092E-02
	2.880E+00	1.869E-02
	3.360E+00	5.922E-03
	3.840E+00	1.617E-03
	4.320E+00	3.794E-04
	4.800E+00	7.640E-05
	5.280E+00	1.319E-05
1	J.200L 100	1.0181-00

	5.760E+00	1.950E-06
	6.240E+00 6.720E+00	2.465E-07 2.665E-08
	7.200E+00	2.663E-06 2.463E-09
	7.200E+00 7.680E+00	1.952E-10
	8.160E+00	1.360E-11
	8.640E+00	1.019E-12
	9.120E+00	1.683E-13
	9.600E+00	6.369E-14
	1.008E+01	2.830E-14
	1.056E+01	1.234E-14
	1.104E+01	5.181E-15
	1.152E+01	2.096E-15
	1.200E+01	8.385E-16
	1.248E+01	3.094E-16
	1.296E+01	1.093E-16
	1.345E+01	3.688E-17
	1.393E+01 1.441E+01	1.189E-17 3.658E-18
	1.441E+01 1.489E+01	1.072E-18
	1.538E+01	2.993E-19
	1.586E+01	7.941E-20
	1.634E+01	2.001E-20
	1.682E+01	4.782E-21
	1.730E+01	1.082E-21
	1.779E+01	2.315E-22
	1.827E+01	4.679E-23
	1.875E+01	8.914E-24
	1.923E+01	1.599E-24
	1.972E+01	2.699E-25
	2.020E+01	4.284E-26
	2.068E+01	6.420E-27
	2.116E+01	9.192E-28
	2.165E+01	1.305E-28
	2.213E+01 2.261E+01	2.009E-29 3.847E-30
	2.309E+01	9.682E-31
	2.357E+01	2.900E-31
	2.406E+01	9.214E-32
	2.454E+01	2.930E-32
	2.502E+01	9.138E-33
	2.550E+01	2.776E-33
	2.599E+01	8.202E-34
	2.647E+01	2.353E-34
	2.695E+01	6.556E-35
	2.743E+01	1.772E-35
	2.791E+01	4.644E-36
	2.840E+01	1.180E-36
	2.888E+01	2.904E-37
	2.936E+01	6.921E-38
	2.984E+01	1.596E-38
	3.033E+01	3.560E-39
	3.081E+01	7.675E-40
	3.129E+01	1.599E-40
25	0.000E+00	1.000E+00
35	4.800E-01	7.292E-01

9.600E-01	4.821E-01
1.440E+00	2.866E-01
	1.523E-01
1.920E+00	
2.400E+00	7.192E-02
2.880E+00	3.008E-02
3.360E+00	1.111E-02
3.840E+00	3.615E-03
4.320E+00	1.034E-03
4.800E+00	2.598E-04
5.280E+00	5.721E-05
5.760E+00	1.104E-05
6.240E+00	1.865E-06
6.720E+00	2.755E-07
7.200E+00	3.559E-08
7.680E+00	4.019E-09
8.160E+00	3.973E-10
8.640E+00	3.479E-11
9.120E+00	2.932E-12
9.600E+00	3.622E-13
1.008E+01	1.086E-13
1.056E+01	4.930E-14
1.104E+01	2.334E-14
1.152E+01	1.082E-14
1.200E+01	4.982E-15
1.248E+01	2.138E-15
1.296E+01	8.845E-16
1.345E+01	3.527E-16
1.393E+01	1.354E-16
1.441E+01	5.004E-17
1.489E+01	1.778E-17
1.538E+01	6.069E-18
1.586E+01	1.989E-18
1.634E+01	6.250E-19
1.682E+01	1.882E-19
1.730E+01	5.426E-20
1.779E+01	1.496E-20
1.827E+01	3.939E-21
1.875E+01	9.897E-22
1.923E+01	2.370E-22
1.972E+01	5.403E-23
2.020E+01	1.171E-23
2.068E+01	2.412E-24
2.116E+01	4.713E-25
2.165E+01	8.738E-26
2.213E+01	1.540E-26
2.261E+01	2.593E-27
2.309E+01	4.252E-28
2.357E+01	7.107E-29
2.406E+01	1.329E-29
2.454E+01	3.085E-30
2.502E+01	8.975E-31
2.550E+01	2.980E-31
2.599E+01	1.034E-31
2.647E+01	3.590E-32
2.695E+01	1.226E-32
2.743E+01	4.098E-33
2.791E+01	1.337E-33

	2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	4.257E-34 1.321E-34 3.998E-35 1.178E-35 3.383E-36 9.453E-37 2.570E-37
40	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.320E+00 6.240E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.345E+01 1.393E+01 1.441E+01 1.538E+01	1.000E+00 7.477E-01 5.133E-01 3.214E-01 1.826E-01 9.365E-02 4.324E-02 1.792E-02 6.654E-03 2.209E-03 6.550E-04 1.732E-04 4.083E-05 8.570E-06 1.601E-06 2.660E-07 3.929E-08 5.160E-09 6.029E-10 6.312E-11 6.189E-12 7.218E-13 1.710E-13 7.421E-14 3.710E-14 1.889E-14 9.055E-15 4.210E-15 1.897E-15 8.277E-16 3.496E-16 1.429E-16 5.648E-17 2.157E-17 7.954E-18 2.831E-18 9.714E-19 3.212E-19 1.023E-19 1.023E-19 3.133E-20 9.223E-21 2.608E-21 7.074E-22 1.839E-22 4.580E-23 1.091E-23 2.485E-24 5.405E-25

	2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	2.230E-26 4.253E-27 7.880E-28 1.462E-28 2.891E-29 6.687E-30 1.908E-30 6.428E-31 2.348E-31 8.767E-32 3.257E-32 1.191E-32 4.272E-33 1.500E-33 5.156E-34 1.733E-34 5.698E-35
45	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 9.120E+00 9.120E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01	1.000E+00 7.630E-01 5.400E-01 3.523E-01 2.109E-01 1.154E-01 5.759E-02 2.612E-02 1.075E-02 4.008E-03 1.352E-03 4.124E-04 1.136E-04 2.823E-05 6.328E-06 1.279E-06 2.329E-07 3.820E-08 5.644E-09 7.516E-10 9.065E-11 1.019E-11 1.242E-12 2.549E-13 1.026E-13 5.365E-14 2.780E-14 1.412E-14 6.983E-15 3.360E-15 1.572E-15 7.149E-16 3.158E-16 1.355E-16 5.639E-17 2.277E-17 8.912E-18 3.380E-18 1.241E-18

		_
	1.875E+01	4.410E-19
	1.923E+01	1.515E-19
	1.972E+01	5.033E-20
	2.020E+01	1.614E-20
	2.068E+01	4.994E-21
	2.116E+01	1.490E-21
	2.165E+01	4.284E-22
	2.213E+01	1.186E-22
	2.261E+01	3.156E-23
	2.309E+01	8.077E-24
	2.357E+01	1.985E-24
	2.406E+01	4.685E-25
	2.454E+01	1.061E-25
	2.502E+01	2.310E-26
	2.550E+01	4.850E-27
	2.599E+01	9.922E-28
	2.647E+01	2.025E-28
	2.695E+01	4.329E-29
	2.743E+01	1.047E-29
	2.791E+01	3.040E-30
	2.840E+01	1.045E-30
	2.888E+01	3.964E-31
	2.936E+01	1.561E-31
	2.984E+01	6.177E-32
	3.033E+01	2.419E-32
	3.081E+01	9.324E-33
	3.129E+01	3.530E-33
50	0.0005.00	1,0005.00
50	0.000E+00	1.000E+00
	4.800E-01	7.761E-01
	9.600E-01	5.630E-01
	1.440E+00	3.799E-01
	1.920E+00	2.373E-01
	2.400E+00	1.369E-01
	2.880E+00	7.266E-02
	3.360E+00	3.542E-02
	3.840E+00	1.584E-02
	4.320E+00	6.480E-03
	4.800E+00	2.425E-03
	5.280E+00	8.289E-04
	5.760E+00	2.586E-04
	6.240E+00	7.360E-05
	6.720E+00	1.910E-05
	7.200E+00	4.514E-06
I	7.680E+00	9.718E-07
	/ DOUETUU	
		1 905F_07
	8.160E+00	1.905E-07 3.399E-08
	8.160E+00 8.640E+00	3.399E-08
	8.160E+00 8.640E+00 9.120E+00	3.399E-08 5.519E-09
	8.160E+00 8.640E+00 9.120E+00 9.600E+00	3.399E-08 5.519E-09 8.163E-10
	8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	3.399E-08 5.519E-09 8.163E-10 1.104E-10
	8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01	3.399E-08 5.519E-09 8.163E-10 1.104E-10 1.395E-11
	8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	3.399E-08 5.519E-09 8.163E-10 1.104E-10
	8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01	3.399E-08 5.519E-09 8.163E-10 1.104E-10 1.395E-11
	8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01	3.399E-08 5.519E-09 8.163E-10 1.104E-10 1.395E-11 1.835E-12 3.569E-13
	8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01	3.399E-08 5.519E-09 8.163E-10 1.104E-10 1.395E-11 1.835E-12 3.569E-13 1.361E-13
	8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	3.399E-08 5.519E-09 8.163E-10 1.104E-10 1.395E-11 1.835E-12 3.569E-13 1.361E-13 6.921E-14
	8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01	3.399E-08 5.519E-09 8.163E-10 1.104E-10 1.395E-11 1.835E-12 3.569E-13 1.361E-13

	1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.586E+01 1.634E+01 1.682E+01 1.730E+01 1.779E+01 1.827E+01 1.827E+01 1.923E+01 2.020E+01 2.068E+01 2.165E+01 2.213E+01 2.261E+01 2.309E+01 2.357E+01 2.406E+01 2.454E+01 2.550E+01 2.599E+01 2.695E+01 2.743E+01	1.027E-14 5.210E-15 2.577E-15 1.243E-15 5.838E-16 2.672E-16 1.191E-16 5.167E-17 2.181E-17 8.949E-18 3.569E-18 1.383E-18 5.202E-19 1.899E-19 6.721E-20 2.306E-20 7.662E-21 2.464E-21 7.667E-22 2.306E-22 6.700E-23 1.879E-23 5.084E-24 1.326E-24 3.335E-25 8.084E-26 1.892E-26 4.289E-27 9.516E-28
	2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	4.289E-27 9.516E-28 2.111E-28 4.893E-29 1.265E-29 3.849E-30 1.372E-30 5.406E-31 2.226E-31 9.257E-32
55	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	1.000E+00 7.874E-01 5.833E-01 4.046E-01 2.619E-01 1.577E-01 8.811E-02 4.559E-02 2.181E-02 9.633E-03 3.924E-03 1.473E-03 5.089E-04 1.618E-04 4.732E-05 1.272E-05 3.140E-06 7.121E-07 1.483E-07

1	9.120E+00	2.835E-08
	9.600E+00	4.975E-09
	1.008E+01	8.020E-10
	1.056E+01	1.192E-10
	1.104E+01	1.664E-11
	1.152E+01	2.378E-12
	1.200E+01	4.763E-13
	1.248E+01	1.661E-13
	1.296E+01	8.416E-14
	1.345E+01	4.648E-14
	1.393E+01	2.562E-14
	1.441E+01	1.386E-14
	1.489E+01	7.335E-15
	1.538E+01	3.796E-15
	1.586E+01	1.919E-15
	1.634E+01	9.484E-16
	1.682E+01	4.577E-16
	1.730E+01	2.156E-16
	1.779E+01	9.914E-17
	1.827E+01	4.447E-17
	1.875E+01	1.945E-17
	1.923E+01	8.296E-18
	1.972E+01	3.447E-18
	2.020E+01	1.395E-18
	2.068E+01	5.495E-19
	2.116E+01	2.106E-19
	2.165E+01	7.850E-20
	2.213E+01	2.844E-20
	2.261E+01	1.001E-20
	2.309E+01	3.421E-21
	2.357E+01	1.135E-21
	2.406E+01	3.649E-22
	2.454E+01	1.138E-22
	2.502E+01	3.435E-23
	2.550E+01	1.004E-23
	2.599E+01	2.840E-24
	2.647E+01	7.769E-25
	2.695E+01	2.055E-25
	2.743E+01	5.262E-26
	2.791E+01	1.305E-26
	2.840E+01	3.153E-27
	2.888E+01	7.494E-28
	2.936E+01	1.793E-28
	2.984E+01	4.499E-29
	3.033E+01	1.256E-29
	3.081E+01	4.079E-30
	3.129E+01	1.528E-30

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB CoHD Low

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.01425 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.01425 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.800E-01	2.131E-01
	9.600E-01	1.205E-02
	1.440E+00	1.567E-04
	1.920E+00	4.396E-07

	2.400E+00	2.590E-10
	2.880E+00	1.363E-13
	3.360E+00	8.267E-15
	3.840E+00	4.334E-16
	4.320E+00	1.477E-17
	4.800E+00	3.176E-19
	5.280E+00	4.163E-21
	5.760E+00	3.191E-23
	6.240E+00	1.370E-25
	6.720E+00	3.310E-28
	7.200E+00	1.168E-30
	7.680E+00	2.505E-32
	8.160E+00	5.805E-34
	8.640E+00	1.017E-35
	9.120E+00	1.315E-37
	9.600E+00	1.236E-39
	1.008E+01	8.309E-42
[1.056E+01	4.014E-44
	1.104E+01	1.686E-46
	1.152E+01	1.365E-48
		2.308E-50
	1.200E+01	
	1.248E+01	0.000E+00
	1.296E+01	0.000E+00
	1.345E+01	0.000E+00
	1.393E+01	0.000E+00
	1.441E+01	0.000E+00
	1.489E+01	0.000E+00
	1.538E+01	0.000E+00
	1.586E+01	0.000E+00
	1.634E+01	0.000E+00
	1.682E+01	0.000E+00
	1.730E+01	0.000E+00
	1.779E+01	0.000E+00
	1.827E+01	0.000E+00
	1.875E+01	0.000E+00
	1.923E+01	0.000E+00
	1.972E+01	0.000E+00
	2.020E+01	0.000E+00
	2.068E+01	0.000E+00
	2.116E+01	0.000E+00
	2.165E+01	0.000E+00
	2.213E+01	0.000E+00
	2.261E+01	0.000E+00
	2.309E+01	0.000E+00
	2.357E+01	0.000E+00
	2.406E+01	0.000E+00
	2.454E+01	0.000E+00
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00 0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
1	2.936E+01	0.000E+00
-		.

	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
10	0.000E+00	1.000E+00
	4.800E-01	3.859E-01
	9.600E-01	7.908E-02
	1.440E+00	8.025E-03
	1.920E+00	3.879E-04
	2.400E+00	8.739E-06
	2.880E+00	9.056E-08
	3.360E+00	4.292E-10
	3.840E+00	1.174E-12
	4.320E+00	5.004E-14
	4.800E+00	7.766E-15
	5.280E+00	1.001E-15
	5.760E+00	1.044E-16
	6.240E+00	8.714E-18
	6.720E+00	5.762E-19
	7.200E+00	2.980E-20
	7.680E+00	1.189E-21
	8.160E+00	3.603E-23
	8.640E+00	8.164E-25
	9.120E+00	1.369E-26
	9.600E+00	1.793E-28
	1.008E+01	3.152E-30
	1.056E+01	1.699E-31
	1.104E+01	1.295E-32
	1.152E+01 1.200E+01	8.982E-34
	1.248E+01	5.637E-35 2.896E-36
	1.296E+01	1.273E-37
	1.290E+01 1.345E+01	4.757E-39
	1.343E+01 1.393E+01	1.503E-40
	1.441E+01	3.997E-42
	1.489E+01	9.025E-44
	1.538E+01	1.845E-45
	1.586E+01	4.392E-47
	1.634E+01	1.716E-48
	1.682E+01	9.340E-50
	1.730E+01	0.000E+00
	1.779E+01	0.000E+00
	1.827E+01	0.000E+00
	1.875E+01	0.000E+00
	1.923E+01	0.000E+00
	1.972E+01	0.000E+00
	2.020E+01	0.000E+00
	2.068E+01	0.000E+00
	2.116E+01	0.000E+00
	2.165E+01	0.000E+00
	2.213E+01	0.000E+00
	2.261E+01	0.000E+00
	2.309E+01	0.000E+00
	2.357E+01	0.000E+00
	2.406E+01	0.000E+00
	2.454E+01	0.000E+00
	1 2.1012.01	0.0002.00

	2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
15	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 1.08E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.538E+01 1.586E+01 1.634E+01 1.682E+01 1.779E+01 1.875E+01 1.923E+01 1.972E+01	1.000E+00 4.845E-01 1.557E-01 3.172E-02 3.990E-03 3.046E-04 1.397E-05 3.817E-07 6.194E-09 6.011E-11 5.503E-13 5.673E-14 1.266E-14 2.519E-15 4.361E-16 6.535E-17 8.432E-18 9.309E-19 8.734E-20 6.912E-21 4.578E-22 2.515E-23 1.137E-24 4.199E-26 1.286E-27 3.924E-29 1.898E-30 1.950E-31 2.398E-32 2.786E-33 2.950E-34 2.832E-35 2.457E-36 1.920E-37 1.346E-38 8.449E-40 4.730E-41 2.362E-42 1.061E-43 4.462E-45 1.998E-46 1.190E-47

	2.020E+01	9.916E-49
	2.068E+01	9.499E-50
	2.116E+01	0.000E+00
	2.165E+01	0.000E+00
	2.213E+01	0.000E+00
	2.261E+01	0.000E+00
	2.309E+01	0.000E+00
	2.357E+01	0.000E+00
	2.406E+01	0.000E+00
	2.454E+01	0.000E+00
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	5252 5.	0.000= 00
20	0.000E+00	1.000E+00
	4.800E-01	5.493E-01
	9.600E-01	2.230E-01
	1.440E+00	6.479E-02

		1 320F-02
	1.920E+00	1.320E-02 1.861E-03
	1.920E+00 2.400E+00	1.861E-03
	1.920E+00 2.400E+00 2.880E+00	1.861E-03 1.798E-04
	1.920E+00 2.400E+00 2.880E+00 3.360E+00	1.861E-03 1.798E-04 1.183E-05
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20 6.886E-21
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20 6.886E-21
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.152E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20 6.886E-21 6.617E-22 5.532E-23
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20 6.886E-21 6.617E-22 5.532E-23 4.167E-24
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20 6.886E-21 6.617E-22 5.532E-23 4.167E-24 2.568E-25
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20 6.886E-21 6.617E-22 5.532E-23 4.167E-24 2.568E-25 1.360E-26
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20 6.886E-21 6.617E-22 5.532E-23 4.167E-24 2.568E-25 1.360E-26 6.358E-28
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20 6.886E-21 6.617E-22 5.532E-23 4.167E-24 2.568E-25 1.360E-26 6.358E-28 3.063E-29
	1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	1.861E-03 1.798E-04 1.183E-05 5.283E-07 1.595E-08 3.260E-10 4.871E-12 1.789E-13 4.181E-14 1.135E-14 2.803E-15 6.235E-16 1.245E-16 2.226E-17 3.546E-18 5.015E-19 6.267E-20 6.886E-21 6.617E-22 5.532E-23 4.167E-24 2.568E-25 1.360E-26 6.358E-28

i		
	1.538E+01	5.248E-32
	1.586E+01	8.386E-33
	1.634E+01	1.256E-33
	1.682E+01	1.750E-34
	1.730E+01	2.264E-35
	1.779E+01	2.714E-36
	1.827E+01	3.006E-37
	1.875E+01	3.072E-38
	1.923E+01	2.890E-39
	1.972E+01	2.497E-40
	2.020E+01	1.979E-41
	2.068E+01	1.441E-42
	2.116E+01	9.725E-44
	2.165E+01	6.282E-45
	2.213E+01	4.234E-46
	2.261E+01	3.460E-47
	2.309E+01	3.715E-48
	2.357E+01	4.741E-49
	2.406E+01	6.309E-50
	2.454E+01	0.000E+00
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
		0.000E+00
	2.599E+01	
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.081E+01 3.129E+01	0.000E+00 0.000E+00
05	3.129E+01	0.000E+00
25	3.129E+01 0.000E+00	0.000E+00 1.000E+00
25	3.129E+01	0.000E+00
25	3.129E+01 0.000E+00 4.800E-01	0.000E+00 1.000E+00 5.960E-01
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01	0.000E+00 1.000E+00 5.960E-01 2.797E-01
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01	0.000E+00 1.000E+00 5.960E-01 2.797E-01
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13 8.295E-14
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13 8.295E-14 2.633E-14
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13 8.295E-14 2.633E-14 8.017E-15
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13 8.295E-14 2.633E-14
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.320E+00 5.280E+00 5.760E+00 6.720E+00 7.680E+00 8.160E+00	0.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13 8.295E-14 2.633E-14 8.017E-15 2.251E-15
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	1.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13 8.295E-14 2.633E-14 8.017E-15 2.251E-15 5.813E-16
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13 8.295E-14 2.633E-14 8.017E-15 5.813E-16 1.377E-16
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	1.000E+00 1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13 8.295E-14 2.633E-14 8.017E-15 2.251E-15 5.813E-16
25	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	1.000E+00 5.960E-01 2.797E-01 1.009E-01 2.754E-02 5.616E-03 8.498E-04 9.486E-05 7.782E-06 4.678E-07 2.056E-08 6.609E-10 1.600E-11 4.860E-13 8.295E-14 2.633E-14 8.017E-15 5.813E-16 1.377E-16

1,056E-01			
1.104E-01 1.152E-01 1.20E-01 1.20E-01 1.20E-01 1.20E-01 1.28E-01 1.248E-01 1.248E-01 1.248E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.342E-25 1.441E-01 2.533E-01 1.538E-01 1]	1.056E+01	1.061E-18
1.152E-01 1.200E-01 1.200E-01 1.248E-01 1.248E-01 1.248E-01 1.278E-01 1.248E-01 1.278E-22 1.248E-01 1.347E-24 1.393E-01 3.444E-24 1.393E-01 3.444E-25 1.441E-01 2.533E-26 1.449E-01 1.536E			
1.200E+01			
1.248E+01			
1.296E+01			
1.345E+01			
1.393E+01			
1.441E-01 1.489E-01 1.489E-01 1.538E-01 1.538E-01 1.538E-01 1.538E-01 1.538E-01 1.538E-01 1.632E-01 1.632E-01 1.632E-01 1.632E-01 1.632E-01 1.779E-01 1.632E-01 1.739E-01 1.839E-33 1.827E-01 1.827E-01 1.829E-33 1.827E-01 1.929E-01 1.929E-01 1.926E-01 1.948E-37 2.068E-01 1.924E-37 2.116E-01 2.201E-01 2.213E-01 2.213E-01 2.231E-01 2.231E-01 2.231E-01 2.231E-01 2.2357E-01 2.2357E-01 2.456E-42 2.357E-01 2.456E-40 2.550E-01 1.488E-45 2.502E-01 2.559E-01 2.559E-01 2.743E-01 2.695E-01 2.743E-01 2.888E-01 2.936E-01 2.93		1.345E+01	4.142E-24
1.489E-01 1.538E-01 1.538E-01 1.538E-01 1.634E-01 1.634E-01 1.634E-01 1.634E-01 1.634E-01 1.634E-01 1.636E-01 1.636E-01 1.730E-01 1.839E-30 1.779E-01 1.839E-33 1.875E-01 1.827E-01 1.839E-33 1.875E-01 1.923E-01 1.923E-01 1.923E-01 1.924E-37 2.068E-01 2.020E-01 1.9563E-37 2.068E-01 1.294E-37 2.116E-01 1.294E-37 2.116E-01 1.246E-32 2.155E-01 2.235E-01 2.235E-01 2.235E-01 2.246E-01 2.235E-01 2.246E-01 2.235E-01 2.309E-01 2.46E-42 2.357E-01 1.448E-43 2.406E-01 1.453E-46 2.550E-01 1.453E-46 2.550E-01 1.453E-46 2.550E-01 1.745E-47 2.599E-01 2.550E-01 2.743E-01 2.849E-01 3.033E-01 0.000E-00 3.038E-01 0.000E-00 3.129E-01 1.440E-00 1.369E-01 1.473E-03 3.360E-00 3.452E-03 3.360E-00 3.852E-04 4.743E-05 4.320E-00 4.743E-05		1.393E+01	3.442E-25
1.489E-01 1.538E-01 1.538E-01 1.538E-01 1.634E-01 1.634E-01 1.634E-01 1.634E-01 1.634E-01 1.634E-01 1.636E-01 1.636E-01 1.730E-01 1.839E-30 1.779E-01 1.839E-33 1.875E-01 1.827E-01 1.839E-33 1.875E-01 1.923E-01 1.923E-01 1.923E-01 1.924E-37 2.068E-01 2.020E-01 1.9563E-37 2.068E-01 1.294E-37 2.116E-01 1.294E-37 2.116E-01 1.246E-32 2.155E-01 2.235E-01 2.235E-01 2.235E-01 2.246E-01 2.235E-01 2.246E-01 2.235E-01 2.309E-01 2.46E-42 2.357E-01 1.448E-43 2.406E-01 1.453E-46 2.550E-01 1.453E-46 2.550E-01 1.453E-46 2.550E-01 1.745E-47 2.599E-01 2.550E-01 2.743E-01 2.849E-01 3.033E-01 0.000E-00 3.038E-01 0.000E-00 3.129E-01 1.440E-00 1.369E-01 1.473E-03 3.360E-00 3.452E-03 3.360E-00 3.852E-04 4.743E-05 4.320E-00 4.743E-05		1.441E+01	2.533E-26
1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.632E+01 1.632E+01 1.147E-30 1.632E+01 1.779E+01 1.339E-33 1.827E+01 1.529E-33 1.875E+01 1.529E-33 1.875E+01 1.923E+01 1.923E+01 2.647E-34 1.923E+01 2.020E			
1.586E+01			
1.634E+01			
1.682E+01			
1.730E+01			
1.779E+01			
1.827E+01		1.730E+01	4.311E-32
1.875E+01		1.779E+01	8.339E-33
1.875E+01			
1.923E+01			
1.972E+01			
2.020E+01 9.563E-37 2.068E+01 1.294E-37 2.116E+01 1.640E-38 2.116SE+01 1.944E-39 2.213E+01 2.252E-40 2.261E+01 2.223E-41 2.309E+01 2.146E-42 2.357E+01 1.948E-43 2.406E+01 1.695E-44 2.456E+01 1.488E-45 2.502E+01 1.745E-47 2.599E+01 2.564E-48 2.647E+01 4.169E-49 2.695E+01 4.169E-49 2.695E+01 6.898E-50 2.743E+01 0.000E+00 2.888E+01 0.000E+00 2.984E+01 0.000E+00 3.033E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.081E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.276E-01 1.440E+00 1.369E-01 1.369E-01 1.369E-01 1.369E-01 1.369E-01 3.276E-01 3.276E-01 3.860E+00 3.852E-04 3.840E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-05			
2.068E+01 1.294E-37 2.116E+01 1.640E-38 2.165E+01 1.944E-39 2.213E+01 2.152E-40 2.261E+01 2.223E-41 2.309E+01 1.948E-43 2.406E+01 1.948E-43 2.406E+01 1.948E-43 2.406E+01 1.695E-44 2.454E+01 1.453E-46 2.550E+01 1.745E-47 2.599E+01 2.564E-48 2.647E+01 4.169E-49 2.695E+01 6.898E-50 2.743E+01 0.000E+00 2.846E+01 0.000E+00 2.936E+01 0.000E+00 2.936E+01 0.000E+00 3.033E+01 0.000E+00 3.033E+01 0.000E+00 3.035E+01 0.000E+00 3.035E+01 0.000E+00 3.035E+01 0.000E+00 3.035E+01 0.000E+00 3.035E+01 0.000E+00 3.035E+01 0.000E+00 3.035E+01 0.000E+00 3.03E+01 0.000E+00 3.03E+01 0.000E+00 3.03E+01 0.000E+00 3.03E+01 0.000E+00 3.03E+01 0.000E+00 3.03E+01 0.000E+00 3.03E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.129E+01 0.000E+00 3.276E-01 1.440E+00 1.369E-01 4.544E-02 2.400E+00 3.852E-04 3.840E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06			
2.116E+01			
2.165E+01			
2.213E+01		2.116E+01	1.640E-38
2.261E+01 2.23E-41 2.309E+01 2.146E-42 2.357E+01 1.948E-43 1.948E-43 1.948E-43 1.948E-43 1.695E-44 1.695E-44 1.2454E+01 1.488E-45 1.2502E+01 1.453E-46 1.2550E+01 1.745E-47 1.2599E+01 1.745E-47 1.2599E+01 1.745E-47 1.2599E+01 1.169E-49 1.2695E+01 1.116E-50 1.2791E+01 1.000E+00 1.2840E+01 1.000E+00 1.2840E+01 1.000E+00 1.2848E+01 1.000E+00 1.2984E+01 1.000E+00 1.3.033E+01 1.0.000E+00 1.3.033E+01 1.0.000E+00 1.3.031E+01 1.0.000E+00 1.3.031E+01 1.0.000E+00 1.3.031E+01 1.300E+00 1.3.031E+01 1.300E+00 1.3.030E+01 1.920E+00 1.3.276E-01 1.440E+00 1.369E-01 1.920E+00 1.3276E-01 1.920E+00 1.3276E-01 1.187E-02 1.2880E+00 1.3840E+00 1.3852E-04 1.320E+00 1.320E		2.165E+01	1.944E-39
2.261E+01 2.23E-41 2.309E+01 2.146E-42 2.357E+01 1.948E-43 1.948E-43 1.948E-43 1.948E-43 1.695E-44 1.695E-44 1.2454E+01 1.488E-45 1.2502E+01 1.453E-46 1.2550E+01 1.745E-47 1.2599E+01 1.745E-47 1.2599E+01 1.745E-47 1.2599E+01 1.169E-49 1.2695E+01 1.116E-50 1.2791E+01 1.000E+00 1.2840E+01 1.000E+00 1.2840E+01 1.000E+00 1.2848E+01 1.000E+00 1.2984E+01 1.000E+00 1.3.033E+01 1.0.000E+00 1.3.033E+01 1.0.000E+00 1.3.031E+01 1.0.000E+00 1.3.031E+01 1.0.000E+00 1.3.031E+01 1.300E+00 1.3.031E+01 1.300E+00 1.3.030E+01 1.920E+00 1.3.276E-01 1.440E+00 1.369E-01 1.920E+00 1.3276E-01 1.920E+00 1.3276E-01 1.187E-02 1.2880E+00 1.3840E+00 1.3852E-04 1.320E+00 1.320E		2.213E+01	2.152E-40
2.309E+01			
2.357E+01			
2.406E+01			
2.454E+01			
2.502E+01			
2.550E+01			
2.599E+01			
2.647E+01		2.550E+01	1.745E-47
30		2.599E+01	2.564E-48
30 2.743E+01 2.791E+01 2.840E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.033E+01 3.029E+01 3.0400E+00 4.800E-01 4.840E+01 1.000E+00 4.840E+01 1.000E+00 4.840E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+00 1.3852E+04 3.360E+00 3.3852E+04 3.840E+00 4.743E+05 4.320E+00 4.514E+06		2.647E+01	4.169E-49
30 2.743E+01 2.791E+01 2.840E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.033E+01 3.029E+01 3.0400E+00 4.800E-01 4.840E+01 1.000E+00 4.840E+01 1.000E+00 4.840E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+01 1.369E+00 1.3852E+04 3.360E+00 3.3852E+04 3.840E+00 4.743E+05 4.320E+00 4.514E+06			
2.791E+01			
2.840E+01			
2.888E+01			
2.936E+01			
2.984E+01			
3.033E+01			
3.081E+01			
3.129E+01 0.000E+00 0.000E+00 1.000E+00 4.800E-01 6.315E-01 9.600E-01 3.276E-01 1.440E+00 1.369E-01 1.920E+00 4.544E-02 2.400E+00 1.187E-02 2.880E+00 2.425E-03 3.360E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06		3.033E+01	0.000E+00
3.129E+01 0.000E+00 0.000E+00 1.000E+00 4.800E-01 6.315E-01 9.600E-01 3.276E-01 1.440E+00 1.369E-01 1.920E+00 4.544E-02 2.400E+00 1.187E-02 2.880E+00 2.425E-03 3.360E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06		3.081E+01	0.000E+00
30 0.000E+00 1.000E+00 4.800E-01 6.315E-01 9.600E-01 3.276E-01 1.440E+00 1.369E-01 1.920E+00 4.544E-02 2.400E+00 1.187E-02 2.880E+00 2.425E-03 3.360E+00 3.852E-04 4.320E+00 4.743E-05 4.320E+00 4.514E-06			
4.800E-01 6.315E-01 9.600E-01 3.276E-01 1.440E+00 1.369E-01 1.920E+00 4.544E-02 2.400E+00 1.187E-02 2.880E+00 2.425E-03 3.360E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06		5 <u>_</u> 5	3.332 - 33
4.800E-01 6.315E-01 9.600E-01 3.276E-01 1.440E+00 1.369E-01 1.920E+00 4.544E-02 2.400E+00 1.187E-02 2.880E+00 2.425E-03 3.360E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06	30	0.000E+00	1 000F+00
9.600E-01 3.276E-01 1.440E+00 1.369E-01 1.920E+00 4.544E-02 2.400E+00 1.187E-02 2.880E+00 2.425E-03 3.360E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06			
1.440E+00			
1.920E+00 4.544E-02 2.400E+00 1.187E-02 2.880E+00 2.425E-03 3.360E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06			
2.400E+00			
2.880E+00 2.425E-03 3.360E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06			
3.360E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06		2.400E+00	1.187E-02
3.360E+00 3.852E-04 3.840E+00 4.743E-05 4.320E+00 4.514E-06		2.880E+00	2.425E-03
3.840E+00 4.743E-05 4.320E+00 4.514E-06			
4.320E+00 4.514E-06			
4.800E+00 3.314E-07			
5.280E+00 1.874E-08	1	J.∠8UE+UU	1.874E-U8

1	5.760E+00	8.163E-10
	6.240E+00	2.792E-11
	6.720E+00	9.915E-13
	7.200E+00	1.306E-13
	7.680E+00	4.394E-14
	8.160E+00	1.533E-14
	8.640E+00	5.021E-15
	9.120E+00	1.535E-15
	9.600E+00	4.375E-16
	1.008E+01	1.160E-16
	1.056E+01	2.853E-17
	1.104E+01	6.501E-18
	1.152E+01	1.371E-18
	1.200E+01	2.771E-19
	1.248E+01	4.928E-20
	1.296E+01	8.029E-21
	1.345E+01	1.195E-21
	1.393E+01	1.621E-22
	1.441E+01	1.995E-23
	1.489E+01	2.224E-24
	1.538E+01	2.238E-25
	1.586E+01	2.037E-26
	1.634E+01	1.700E-27
	1.682E+01	1.387E-28
	1.730E+01	1.343E-29
	1.779E+01	1.983E-30
	1.827E+01	4.131E-31
	1.875E+01	9.526E-32
	1.923E+01	2.173E-32
	1.972E+01	4.763E-33
	2.020E+01	9.964E-34
	2.068E+01	1.986E-34
	2.116E+01	3.765E-35
	2.16E+01	6.784E-36
	2.103E+01 2.213E+01	1.160E-36
	2.261E+01	1.882E-37
	2.309E+01	2.891E-38
	2.357E+01	4.200E-39
	2.406E+01	5.766E-40
	2.454E+01	7.473E-41
	2.454E+01 2.502E+01	9.148E-42
	2.550E+01	9.146E-42 1.060E-42
	2.599E+01	1.000E-42 1.171E-43
	2.599E+01 2.647E+01	1.171E-43 1.261E-44
	2.695E+01	1.261E-44 1.385E-45
	2.743E+01	1.385E-45 1.684E-46
	2.743E+01 2.791E+01	1.084E-46 2.444E-47
	2.791E+01 2.840E+01	2.444E-47 4.209E-48
	2.840E+01 2.888E+01	4.209E-48 7.979E-49
	2.888E+01 2.936E+01	7.979E-49 1.553E-49
	2.936E+01 2.984E+01	1.553E-49 2.986E-50
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
35	0.000E+00	1.000E+00

9.600E-01	3.683E-01
1.440E+00	1.712E-01
1.920E+00	6.546E-02
2.400E+00	2.043E-02
2.880E+00	5.174E-03
3.360E+00	1.058E-03
3.840E+00	1.742E-04
4.320E+00	2.302E-05
4.800E+00	2.439E-06
5.280E+00	2.067E-07
5.760E+00	1.401E-08
6.240E+00	7.593E-10
6.720E+00	3.345E-11
7.200E+00	1.466E-12
7.680E+00	1.778E-13
8.160E+00	6.083E-14
8.640E+00	2.330E-14
9.120E+00	8.513E-15
9.600E+00	2.935E-15
1.008E+01	9.533E-16
1.056E+01	2.912E-16
1.104E+01	8.357E-17
1.152E+01	2.253E-17
1.200E+01	5.901E-18
1.248E+01	1.385E-18
1.296E+01	3.028E-19
1.345E+01	6.159E-20 1.163E-20
1.393E+01 1.441E+01	2.032E-21
1.441E+01 1.489E+01	3.279E-22
1.469E+01 1.538E+01	4.876E-23
1.586E+01	6.663E-24
1.634E+01	8.350E-25
1.682E+01	9.588E-26
1.730E+01	1.012E-26
1.779E+01	1.003E-27
1.827E+01	1.001E-28
1.875E+01	1.212E-29
1.923E+01	2.138E-30
1.972E+01	5.034E-31
2.020E+01	1.297E-31
2.068E+01	3.329E-32
2.116E+01	8.270E-33
2.165E+01	1.976E-33
2.213E+01	4.529E-34
2.261E+01	9.954E-35
2.309E+01	2.095E-35
2.357E+01	4.219E-36
2.406E+01	8.123E-37
2.454E+01	1.494E-37
2.502E+01	2.621E-38
2.550E+01	4.385E-39
2.599E+01	6.986E-40
2.647E+01	1.060E-40
2.695E+01	1.530E-41
2.743E+01	2.107E-42
2.791E+01	2.779E-43

	2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	3.559E-44 4.552E-45 6.138E-46 9.363E-47 1.678E-47 3.422E-48 7.443E-49
40	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 7.680E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.586E+01 1.586E+01 1.586E+01 1.634E+01 1.634E+01 1.730E+01 1.779E+01 1.827E+01 1.827E+01 1.827E+01 1.923E+01 1.923E+01 1.972E+01 2.020E+01 2.165E+01 2.165E+01 2.261E+01 2.261E+01 2.261E+01 2.261E+01 2.261E+01	1.000E+00 6.830E-01 4.034E-01 2.033E-01 8.653E-02 3.089E-02 9.194E-03 2.273E-03 4.654E-04 7.873E-05 1.098E-05 1.262E-06 1.192E-07 9.259E-09 5.917E-10 3.164E-11 1.691E-12 2.145E-13 7.485E-14 3.069E-14 1.217E-14 4.588E-15 1.643E-15 5.579E-16 1.800E-16 5.689E-17 1.632E-17 4.415E-18 1.124E-18 2.691E-19 6.043E-20 1.271E-20 2.500E-21 4.585E-22 7.831E-23 1.243E-23 1.829E-24 2.493E-25 3.151E-26 3.725E-27 4.252E-28 5.157E-29 7.962E-30 1.725E-30 4.608E-31 1.304E-31 3.660E-32 9.980E-33 2.630E-33

	2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	6.686E-34 1.638E-34 3.865E-35 8.776E-36 1.917E-36 4.022E-37 8.104E-38 1.567E-38 2.904E-39 5.157E-40 8.771E-41 1.429E-41 2.234E-42 3.366E-43 4.939E-44 7.223E-45 1.098E-45
45	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 9.600E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.586E+01 1.586E+01 1.586E+01 1.586E+01 1.634E+01 1.682E+01 1.779E+01 1.827E+01	1.000E+00 7.024E-01 4.340E-01 2.331E-01 1.079E-01 4.278E-02 1.445E-02 4.142E-03 1.005E-03 2.060E-04 3.560E-05 5.181E-06 6.341E-07 6.523E-08 5.637E-09 4.099E-10 2.558E-11 1.640E-12 2.339E-13 8.492E-14 3.674E-14 1.551E-14 6.271E-15 2.423E-15 8.963E-16 3.267E-16 1.091E-16 3.467E-17 1.046E-17 2.994E-18 8.118E-19 2.082E-19 5.044E-20 1.153E-20 2.480E-21 5.017E-22 9.522E-23 1.693E-23 2.816E-24

1	1.875E+01	4.377E-25
	1.923E+01	
		6.356E-26
	1.972E+01	8.667E-27
	2.020E+01	1.130E-27
	2.068E+01	1.486E-28
	2.116E+01	2.240E-29
	2.165E+01	4.483E-30
	2.213E+01	1.177E-30
	2.261E+01	3.507E-31
	2.309E+01	1.072E-31
	2.357E+01	3.226E-32
	2.406E+01	9.452E-33
	2.454E+01	2.685E-33
	2.502E+01	7.389E-34
	2.550E+01	1.967E-34
	2.599E+01	5.066E-35
	2.647E+01	1.261E-35
	2.695E+01	3.031E-36
	2.743E+01	7.035E-37
	2.791E+01	1.575E-37
	2.840E+01	3.400E-38
	2.888E+01	7.071E-39
	2.936E+01	1.416E-39
	2.984E+01	2.729E-40
	3.033E+01	5.062E-41
	3.081E+01	9.041E-42
	3.129E+01	1.558E-42
	5.1252×61	1.0002 12
50	0.000E+00	1.000E+00
50		
	4.800E-01	7.190E-01
	9.600E-01	4.609E-01
	1.440E+00	2.607E-01
	1.920E+00	1.292E-01
	2.400E+00	5.570E-02
	2.880E+00	2.082E-02
	3.360E+00	6.720E-03
	3.840E+00	1.869E-03
	4.320E+00	4.467E-04
	4.800E+00	9.164E-05
	5.280E+00	1.612E-05
	5.280E+00 5.760E+00	1.612E-05 2.427E-06
	5.280E+00 5.760E+00 6.240E+00	1.612E-05 2.427E-06 3.126E-07
	5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.612E-05 2.427E-06 3.126E-07 3.443E-08
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09
	5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.612E-05 2.427E-06 3.126E-07 3.443E-08
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13 9.087E-14
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13 9.087E-14 4.112E-14
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13 9.087E-14 4.112E-14 1.827E-14
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13 9.087E-14 4.112E-14 1.827E-14 7.811E-15
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13 9.087E-14 4.112E-14 1.827E-14 7.811E-15 3.219E-15
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13 9.087E-14 4.112E-14 1.827E-14 7.811E-15
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.152E+01 1.200E+01	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13 9.087E-14 4.112E-14 1.827E-14 7.811E-15 3.219E-15 1.312E-15
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13 9.087E-14 4.112E-14 1.827E-14 7.811E-15 3.219E-15 1.312E-15 4.940E-16
	5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.152E+01 1.200E+01	1.612E-05 2.427E-06 3.126E-07 3.443E-08 3.241E-09 2.616E-10 1.856E-11 1.413E-12 2.363E-13 9.087E-14 4.112E-14 1.827E-14 7.811E-15 3.219E-15 1.312E-15

	1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.538E+01 1.586E+01 1.634E+01 1.682E+01 1.730E+01 1.779E+01 1.827E+01 1.827E+01 1.923E+01 2.020E+01 2.068E+01 2.16E+01 2.165E+01 2.213E+01 2.261E+01 2.309E+01 2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.550E+01	2.018E-17 6.333E-18 1.895E-18 5.396E-19 1.461E-19 3.758E-20 9.164E-21 2.116E-21 4.622E-22 9.532E-23 1.854E-23 3.394E-24 5.845E-25 9.471E-26 1.448E-26 2.115E-27 3.060E-28 4.793E-29 9.325E-30 2.386E-30 7.279E-31 2.358E-31 7.653E-32 2.436E-32 7.552E-33
	2.502E+01	2.436E-32
55	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01	1.188E-38 2.613E-39 5.557E-40 1.000E+00 7.334E-01 4.848E-01
	1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	2.863E-01 1.499E-01 6.931E-02 2.815E-02 1.002E-02 3.114E-03 8.444E-04 1.994E-04 4.094E-05 7.303E-06 1.131E-06 1.520E-07 1.770E-08 1.789E-09 1.574E-10 1.249E-11

I	I 0.400E:00	4.4005.40
	9.120E+00	1.129E-12
	9.600E+00	2.265E-13
	1.008E+01	9.312E-14
	1.056E+01	4.385E-14
	1.104E+01	2.032E-14
	1.152E+01	9.138E-15
	1.200E+01	4.074E-15
	1.248E+01	1.689E-15
	1.296E+01	6.736E-16
	1.345E+01	2.581E-16
	1.393E+01	9.496E-17
	1.441E+01	3.352E-17
	1.489E+01	1.134E-17
	1.538E+01	3.675E-18
	1.586E+01	1.139E-18
	1.634E+01	3.375E-19
	1.682E+01	9.547E-20
	1.730E+01	2.575E-20
	1.779E+01	6.617E-21
	1.827E+01	1.618E-21
	1.875E+01	3.757E-22
	1.923E+01	8.282E-23
	1.972E+01	1.730E-23
	2.020E+01	3.422E-24
	2.068E+01	6.401E-25
	2.116E+01	1.133E-25
	2.165E+01	1.901E-26
	2.213E+01	3.055E-27
	2.261E+01	4.832E-28
	2.309E+01	8.055E-29
	2.357E+01	1.590E-29
	2.406E+01	4.035E-30
	2.454E+01	1.249E-30
	2.502E+01	4.222E-31
	2.550E+01	1.452E-31
	2.599E+01	4.935E-32
	2.647E+01	1.642E-32
	2.695E+01	5.330E-33
	2.743E+01	1.686E-33
	2.791E+01	5.191E-34
	2.840E+01	1.556E-34
	2.888E+01	4.536E-35
	2.936E+01	1.286E-35
	2.984E+01	3.545E-36
	3.033E+01	9.491E-37
	3.081E+01	2.467E-37
	3.129E+01	6.226E-38

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB ClayPoro High

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.019 m2/a	0.45	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.019 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.800E-01	2.786E-01
	9.600E-01	2.926E-02
	1.440E+00	1.040E-03
	1.920E+00	1.187E-05

2.880E+00	2.400E+00	4.235E-08
3.360E+00 3.840E+00 4.320E+00 4.320E+00 4.320E+00 5.280E+00 5.280E+00 1.832E+18 5.760E+00 6.7428E-17 5.280E+00 1.7428E-18 5.760E+00 6.720E+00 1.278E-23 7.200E+00 1.278E-23 7.200E+00 1.278E-23 7.200E+00 1.278E-23 7.200E+00 1.278E-23 7.200E+00 3.740E-30 8.160E+00 3.740E-30 8.160E+00 3.757E-33 9.600E+00 1.303E-34 1.008E-01 3.835E-36 1.056E+01 1.056E+01 1.907E-41 1.200E+01 1.907E-41 1.200E+01 1.346E+01 1.346E+01 1.346E+01 1.346E+01 1.346E+01 1.346E+01 1.346E+01 1.358E+01 1.358E-01 1.300E+00 1.358E-01 0.000E+00 1.358E-01 0.000E+00 1.358E-01 0.000E+00 1.358E-01 0.000E+00 1.258E-01 0.000E+00 1.258E-01 0.000E+00 1.258E-01 0.000E+00 1.258E-01 0.000E+00 1.258E-01 0.000E+00 1.258E-01 0.000E+00 1.258E-01 0.000E+00 1.259E-01 0.000E+00 0.00		
3.840E+00		
4.320E+00		
4.800E+00 5.280E+00 5.280E+00 5.280E+00 6.240E+00 6.240E+00 6.240E+00 1.074E-21 6.720E+00 1.218E-23 7.200E+00 1.218E-28 7.680E+00 6.715E-28 8.160E+00 3.740E-30 8.640E+00 9.150E-32 9.120E+00 3.757E-33 9.600E+00 1.303E-34 1.008E+01 3.635E-36 1.056E+01 1.04E+01 1.102E-01 1.102E-01 1.248E-01 1.248E-01 1.248E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.345E-01 1.358E-01 1.538E-01 0.000E+00 1.538E-01 0.000E+00 1.538E-01 0.000E+00 1.538E-01 0.000E+00 1.538E-01 0.000E+00 1.538E-01 0.000E+00 1.538E-01 0.000E+00 1.538E-01 0.000E+00 1.538E-01 0.000E+00 1.538E-01 0.000E+00 1.538E-01 0.000E+00 0.00E+00		
5.280E+00		
5.760E+00 6.24DE+00 1.074E-21 6.72DE+00 1.174E-21 6.72DE+00 1.218E-23 7.200E+00 1.218E-25 7.680E+00 8.713E-28 8.160E+00 3.740E-32 9.120E+00 3.757E-33 9.600E+00 1.303E-34 1.008E+01 3.635E-36 1.056E+01 1.104E+01 1.200E+01 1.200E+01 1.248E+01 1.248E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.358E+01 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.730E+01 1.730E+01 0.000E+00 1.730E+01 0.000E+00 1.730E+01 0.000E+00 1.730E+01 0.000E+00 1.730E+01 0.000E+00 0.000E		
6.240E+00		
6.720E+00		
7.200E+00 7.680E+00 8.160E+00 8.160E+00 8.160E+00 9.150E-32 9.120E+00 9.150E-32 9.120E+00 9.150E-32 9.120E+00 1.303E-34 1.008E+01 1.056E+01 1.056E+01 1.162E-01 1.162E-01 1.152E+01 1.20E+01 1.248E-01 1.248E-01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.358E+01 1.358E+01 1.358E+01 1.358E+01 1.556E+01 1.558E+01 1.556E+	6.240E+00	1.074E-21
7 680E+00 6.713E-28 8 160E+00 3.740E-30 8 640E+00 9.150E-32 9 1.20E+00 3.757E-33 9 600E+00 1.303E-34 1.008E+01 3.63SE-36 1.056E+01 8.661E-38 1.104E+01 1.405E-39 1.152E+01 1.907E-41 1.200E+01 2.287E-43 1.248E+01 1.948E-45 1.296E+01 1.921E-47 1.345E+01 3.851E-49 1.393E+01 1.00E-50 1.441E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.536E+01 0.000E+00 1.730E+01 0.000E+00 1.739E+01 0.000E+00 1.779E+01 0.000E+00 1.875E+01 0.000E+00 1.923E+01 0.000E+00 2.020E+01 0.000E+00 2.16E+01 0.000E+00 2.16E+01 0.000E+00 2.16E+01 0.000E+00 2.213E+01 0.000E+00 2.26E+01	6.720E+00	1.425E-23
8.160E+00	7.200E+00	1.218E-25
8.640E+00	7.680E+00	6.713E-28
8.640E+00	8.160E+00	3.740E-30
9.120E+00 9.600E+00 1.303E-34 1.008E+01 1.086E+01 1.056E+01 1.150E+01 1.150E+01 1.150E+01 1.200E+01	8.640E+00	9.150E-32
9.600E+00 1.036E+01 3.635E-36 1.056E+01 1.056E+01 1.104E+01 1.140E+01 1.140E+39 1.140E+39 1.152E+01 1.200E+01 1.228TE-43 1.248E+01 1.345E+01 1.345E+01 1.393E+01 1.100E-50 1.441E+01 1.393E+01 1.100E-50 1.441E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.634E+01 0.000E+00 1.730E+01 0.000E+00 1.875E+01 0.000E+00 1.877E+01 0.000E+00 1.877E+01 0.000E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+01 0.000E+00 0.00E+01 0.00E+01 0.000E+00 0.00E+01 0.000E+01 0.000E+00 0.00E+01 0.000E+00 0.20E+01 0.000E+00 0.20E+01 0.000E+00 0.20SE+01 0.000E+00 0.20SE+01 0.000E+00 0.20SE+01 0.000E+00 0.20SE+01 0.000E+00 0.20SE+01 0.000E+00 0.20SE+01 0.000E+00 0.20SE+01 0.000E+00 0.20SE+01 0.000E+00 0.23SE+01 0.000E+00 0.245E+01 0.000E+00 0.25SE+01 0.000E+00 0.25SE+01 0.000E+00 0.25SE+01 0.000E+00 0.25SE+01 0.000E+00 0.25SE+01 0.000E+00 0.25SE+01 0.000E+00 0.25SE+01 0.000E+00 0.25SE+01 0.000E+00 0.25SE+01 0.000E+00 0.25SE+01 0.000E+00 0.273E+01 0.000E+00 0.273E+01 0.000E+00 0.273E+01 0.000E+00 0.273E+01 0.000E+00 0.273E+01 0.000E+00 0.273E+01 0.000E+00 0.273E+01 0.000E+00 0.28AE+01 0.000E+00 0.28AE+01 0.000E+00 0.28AE+01 0.000E+00 0.000E+00 0.28AE+01 0.000E+00 0.000E+00 0.28AE+01 0.000E+00 0.000E+00		
1.008E+01		
1.056E+01		
1.104E+01 1.405E-38 1.152E+01 1.907E-41 1.200E+001 2.287E-43 1.248E+01 1.948E-45 1.296E+01 1.948E-45 1.296E+01 1.935E-47 1.345E+01 1.935E-49 1.393E+01 1.100E-50 1.441E+01 0.000E+00 1.439E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.632E-01 0.000E+00 1.632E-01 0.000E+00 1.730E+01 0.000E+00 1.739E+01 0.000E+00 1.875E+01 0.000E+00 1.875E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 2.208E+01 0.000E+00 2.268E+01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.213E-01 0.000E+00 2.255E+01 0.000E+00 2.357E+01 0.000E+00 2.357E+01 0.000E+00 2.555		
1.152E+01		
1.200E+01		
1.248E+01 1.948E-45 1.296E+01 1.921E-47 1.345E+01 1.936E+01 1.921E-47 1.345E+01 1.000E+00 1.441E+01 0.000E+00 1.489E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.634E+01 0.000E+00 1.682E+01 0.000E+00 1.779E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 1.925E+01 0.000E+00 1.925E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.206E+01 0.000E+00 1.216E+01 0.000E+00 1.216E+01 0.000E+00 1.235E+01 0.000E+00 1.235E+01 0.000E+00 1.235E+01 0.000E+00 1.235E+01 0.000E+00 1.2550E+01 0.000E+00 1.2550E+01 0.000E+00 1.2550E+01 0.000E+00 1.2550E+01 0.000E+00 1.2695E+01 0.000E+00 1.2695E+01 0.000E+00 1.2695E+01 0.000E+00 1.2731E+01 0.000E+00 1.2695E+01 0.000E+00 1.2731E+01 0.000E+00 1.2695E+01 0.000E+00 1.2731E+01 0.000E+00 1.2731E+01 0.000E+00 1.2880E+01		
1.296E+01 1.345E+01 1.345E+01 1.393E+01 1.100E-50 1.441E+01 0.000E+00 1.489E+01 0.000E+00 1.586E+01 0.000E+00 1.586E+01 0.000E+00 1.634E+01 0.000E+00 1.730E+01 0.000E+00 1.730E+01 0.000E+00 1.730E+01 0.000E+00 1.779E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 2.020E+01 0.000E+00 2.165E+01 0.000E+00 2.213E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 0.2550E+01 0.000E+00 0.2550E+01 0.000E+00 0.2550E+01 0.000E+00 0.2647E+01 0.000E+00 0.2647E+01 0.000E+00 0.2647E+01 0.000E+00 0.265E+01 0.000E+00 0.265E+01 0.000E+00 0.265E+01 0.000E+00 0.265E+01 0.000E+00 0.00E+00 0.265E+01 0.000E+00		
1.345E+01		
1.393E+01 1.441E+01 1.49E+01 1.49E+01 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.632E+01 0.000E+00 1.632E+01 0.000E+00 1.730E+01 0.000E+00 1.779E+01 0.000E+00 1.827E+01 0.000E+00 1.875E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 2.020E+01 2.068E+01 0.000E+00 2.165E+01 0.000E+00 2.213E+01 0.000E+00 2.239E+01 0.000E+00 2.337E+01 0.000E+00 2.357E+01 0.000E+00 2.454E+01 0.000E+00 2.559E+01 0.000E+00 0.2550E+01 0.000E+00		
1.441E+01		
1.489E+01 1.538E+01 1.538E+01 1.634E+01 1.634E+01 1.634E+01 1.634E+01 1.730E+01 1.779E+01 1.779E+01 1.827E+01 1.923E+01 1.923E+01 0.000E+00 1.972E+01 2.068E+01 2.116E+01 2.213E+01 0.000E+00 2.261E+01 2.357E+01 0.000E+00 2.357E+01 0.000E+00		
1.538E+01		
1.586E+01		
1.634E+01		
1.682E+01 1.730E+01 1.730E+01 1.779E+01 1.827E+01 1.827E+01 1.827E+01 1.923E+01 1.923E+01 1.972E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 0.599E+01 0.000E+00 0.000E+00 0.000E+00 0.2695E+01 0.000E+00 0.000E+00 0.2791E+01 0.000E+00	1.586E+01	0.000E+00
1.730E+01	1.634E+01	0.000E+00
1.779E+01	1.682E+01	0.000E+00
1.827E+01 0.000E+00 1.875E+01 0.000E+00 1.923E+01 0.000E+00 1.972E+01 0.000E+00 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.239E+01 0.000E+00 2.357E+01 0.000E+00 2.46E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.590E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.743E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.840E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00	1.730E+01	0.000E+00
1.827E+01 0.000E+00 1.875E+01 0.000E+00 1.923E+01 0.000E+00 1.972E+01 0.000E+00 2.020E+01 0.000E+00 2.068E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.239E+01 0.000E+00 2.357E+01 0.000E+00 2.46E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.590E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.743E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.840E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00	1.779E+01	0.000E+00
1.875E+01	1.827E+01	
1.923E+01		
1.972E+01		
2.020E+01		
2.068E+01		
2.116E+01 2.165E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00 2.454E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.743E+01 0.000E+00 2.743E+01 0.000E+00 2.840E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		
2.165E+01		
2.213E+01		
2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00		
2.309E+01		
2.357E+01 0.000E+00 2.406E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00		
2.406E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00		
2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00		
2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00		
2.550E+01		
2.599E+01		
2.647E+01		
2.695E+01		
2.743E+01		
2.791E+01		
2.840E+01 0.000E+00 2.888E+01 0.000E+00	2.743E+01	0.000E+00
2.840E+01 0.000E+00 2.888E+01 0.000E+00		
2.888E+01 0.000E+00		
,		

	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
10	0.000E+00	1.000E+00
	4.800E-01	4.487E-01
	9.600E-01	1.264E-01
	1.440E+00	2.123E-02
	1.920E+00	2.064E-03
	2.400E+00	1.140E-04
	2.880E+00	3.540E-06
	3.360E+00	6.129E-08
	3.840E+00	5.898E-10
	4.320E+00	3.444E-12
	4.800E+00	8.769E-14
	5.280E+00	1.686E-14
	5.760E+00	3.109E-15
	6.240E+00	4.915E-16
	6.720E+00	6.615E-17
	7.200E+00	7.529E-18
	7.680E+00	7.195E-19
	8.160E+00	5.727E-20
	8.640E+00	3.763E-21
	9.120E+00	2.022E-22
	9.600E+00	8.792E-24
	1.008E+01	3.062E-25
	1.056E+01	8.509E-27
	1.104E+01	1.966E-28
	1.152E+01	5.237E-30
	1.200E+01	3.684E-31
	1.248E+01	3.813E-32
	1.296E+01	3.954E-33
	1.345E+01	3.722E-34
	1.393E+01	3.141E-35
	1.441E+01	2.368E-36
	1.489E+01	1.588E-37
	1.538E+01	9.434E-39
	1.586E+01	4.947E-40
	1.634E+01	2.282E-41
	1.682E+01	9.255E-43
	1.730E+01	3.343E-44
	1.779E+01	1.141E-45
	1.827E+01	4.427E-47
	1.875E+01	2.493E-48
	1.923E+01	1.912E-49
	1.972E+01	1.576E-50
	2.020E+01	0.000E+00
	2.068E+01	0.000E+00
	2.116E+01	0.000E+00
	2.165E+01	0.000E+00
	2.213E+01	0.000E+00
	2.261E+01	0.000E+00
	2.309E+01	0.000E+00
	2.357E+01	0.000E+00
	2.406E+01	0.000E+00
	2.454E+01	0.000E+00

	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	3.129ETU1	0.000⊑+00
15	0.000E+00	1.000E+00
	4.800E-01	5.400E-01
	9.600E-01	2.154E-01
	1.440E+00	6.150E-02
	1.920E+00	1.231E-02
	2.400E+00	1.705E-03
	2.880E+00	1.618E-04
	3.360E+00	1.046E-05
	3.840E+00	4.589E-07
	4.320E+00	4.369E-07 1.361E-08
	4.800E+00	2.733E-10
	5.280E+00	4.013E-12
	5.760E+00	1.453E-13
	6.240E+00	3.338E-14
	6.720E+00	8.906E-15
	7.200E+00	2.160E-15
	7.200E+00 7.680E+00	4.720E-16
	8.160E+00	9.261E-17
	8.640E+00	1.626E-17
	9.120E+00	2.545E-18
	9.600E+00	3.535E-19
	1.008E+01	4.340E-20
	1.056E+01	4.684E-21
	1.104E+01	4.421E-22
	1.152E+01	3.632E-23
	1.200E+01	2.936E-24
	1.248E+01	1.786E-25
	1.296E+01	9.342E-27
	1.345E+01	4.313E-28
	1.393E+01	2.054E-29
	1.441E+01	1.551E-30
	1.489E+01	2.102E-31
	1.538E+01	3.401E-32
	1.586E+01	5.366E-33
	1.634E+01	7.934E-34
	1.682E+01	1.092E-34
	1.730E+01	1.394E-35
	1.779E+01	1.650E-36
	1.827E+01	1.804E-37
	1.875E+01	1.820E-38
	1.923E+01	1.690E-39
ĺ	1.923E+01 1.972E+01	1.690E-39 1.442E-40
	2 U / /E-401	1.00.20-00.

	2.020E+01	1.128E-41
	2.068E+01	8.111E-43
	2.116E+01	5.406E-44
	2.165E+01	3.449E-45
	2.213E+01	2.298E-46
	2.261E+01	1.857E-47
	2.309E+01	1.971E-48
	2.357E+01	2.485E-49
	2.406E+01	3.266E-50
	2.454E+01	0.000E+00
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.791E-01 2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
20	0.000E+00	1.000E+00
	4.800E-01	5.985E-01
	9.600E-01	2.866E-01
	1.440E+00	1.073E-01
	1.920E+00	3.096E-02
	2.400E+00	6.807E-03
	2.880E+00	1.132E-U3
	2.880E+00 3.360F+00	1.132E-03 1.417F-04
	3.360E+00	1.417E-04
	3.360E+00 3.840E+00	1.417E-04 1.330E-05
	3.360E+00 3.840E+00 4.320E+00	1.417E-04 1.330E-05 9.329E-07
	3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17 2.500E-18 4.550E-19
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.152E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17 2.500E-18 4.550E-19 7.567E-20
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17 2.500E-18 4.550E-19 7.567E-20 1.296E-20
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17 2.500E-18 4.550E-19 7.567E-20 1.296E-20 1.768E-21
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17 2.500E-18 4.550E-19 7.567E-20 1.296E-20 1.768E-21 2.176E-22
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17 2.500E-18 4.550E-19 7.567E-20 1.296E-20 1.768E-21 2.176E-22 2.405E-23
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17 2.500E-18 4.550E-19 7.567E-20 1.296E-20 1.768E-21 2.176E-22 2.405E-23 2.378E-24
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	1.417E-04 1.330E-05 9.329E-07 4.882E-08 1.904E-09 5.584E-11 1.461E-12 1.210E-13 3.575E-14 1.150E-14 3.447E-15 9.567E-16 2.452E-16 5.789E-17 1.256E-17 2.500E-18 4.550E-19 7.567E-20 1.296E-20 1.768E-21 2.176E-22 2.405E-23

	1.538E+01	1.177E-27
	1.586E+01	8.120E-29
	1.634E+01	6.804E-30
	1.682E+01	9.195E-31
	1.730E+01	1.766E-31
	1.779E+01	3.676E-32
	1.827E+01	7.472E-33
	1.875E+01	1.447E-33
	1.923E+01	2.656E-34
	1.972E+01	4.614E-35
	2.020E+01	7.574E-36
	2.068E+01	1.173E-36
	2.116E+01	1.713E-37
	2.165E+01	2.352E-38
	2.213E+01	3.037E-39
	2.261E+01	3.678E-40
	2.309E+01	4.178E-41
	2.357E+01	4.448E-42
	2.406E+01	4.452E-43
	2.454E+01	4.229E-44
	2.502E+01	3.914E-45
	2.550E+01	3.754E-46
	2.599E+01	4.124E-47
	2.647E+01	5.573E-48
	2.695E+01	8.907E-49
	2.743E+01	1.531E-49
	2.791E+01	2.648E-50
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	0.1202.01	0.000= 00
25		
25	0.000E+00	1.000E+00
25	0.000E+00 4.800E-01	1.000E+00 6.401E-01
25	0.000E+00 4.800E-01 9.600E-01	1.000E+00 6.401E-01 3.435E-01
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01
25	0.000E+00 4.800E-01 9.600E-01	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09 2.230E-10
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09 2.230E-10 8.496E-12
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09 2.230E-10 8.496E-12 4.211E-13
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09 2.230E-10 8.496E-12 4.211E-13 8.283E-14
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09 2.230E-10 8.496E-12 4.211E-13 8.283E-14 2.990E-14
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09 2.230E-10 8.496E-12 4.211E-13 8.283E-14
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09 2.230E-10 8.496E-12 4.211E-13 8.283E-14 2.990E-14 1.079E-14
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09 2.230E-10 8.496E-12 4.211E-13 8.283E-14 2.990E-14 1.079E-14 3.673E-15
25	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	1.000E+00 6.401E-01 3.435E-01 1.519E-01 5.471E-02 1.591E-02 3.710E-03 6.909E-04 1.024E-04 1.205E-05 1.123E-06 8.284E-08 4.829E-09 2.230E-10 8.496E-12 4.211E-13 8.283E-14 2.990E-14 1.079E-14

1	1.056E+01	9.933E-17
	1.104E+01	2.615E-17
	1.152E+01	6.467E-18
	1.200E+01	1.677E-18
	1.248E+01	3.578E-19
	1.296E+01	7.082E-20
	1.345E+01	1.297E-20
	1.393E+01	2.192E-21
	1.441E+01	3.412E-22
	1.489E+01	4.874E-23
	1.538E+01	6.377E-24
	1.586E+01	7.621E-25
	1.634E+01	8.309E-26
	1.682E+01	8.285E-27
	1.730E+01	7.691E-28
	1.779E+01	7.115E-29
	1.827E+01	7.894E-30
	1.875E+01	1.293E-30
	1.923E+01	2.886E-31
	1.972E+01	7.093E-32
	2.020E+01	1.734E-32
	2.068E+01	4.098E-33
	2.116E+01	9.290E-34
	2.165E+01	2.017E-34
	2.213E+01	4.187E-35
	2.261E+01	8.307E-36
	2.309E+01	1.573E-36
	2.357E+01	
		2.842E-37
	2.406E+01	4.890E-38
	2.454E+01	8.009E-39
	2.502E+01	1.247E-39
	2.550E+01	1.845E-40
	2.599E+01	2.592E-41
	2.647E+01	3.459E-42
	2.695E+01	4.396E-43
	2.743E+01	5.364E-44
	2.791E+01	6.407E-45
	2.840E+01	7.811E-46
	2.888E+01	1.042E-46
	2.936E+01	1.626E-47
	2.984E+01	2.976E-48
	3.033E+01	6.016E-49
	3.081E+01	1.259E-49
	3.129E+01	2.623E-50
	J. 123L · U I	2.0201-00
30	0.000E+00	1.000E+00
30		
	4.800E-01	6.716E-01
	9.600E-01	3.899E-01
	1.440E+00	1.931E-01
	1.920E+00	8.077E-02
	2.400E+00	2.833E-02
	2.880E+00	8.285E-03
	3.360E+00	2.013E-03
	3.840E+00	4.048E-04
	4.320E+00	6.728E-05
	4.800E+00	9.220E-06
	5.280E+00	1.040E-06

	5.760E+00	9.658E-08
	6.240E+00	7.369E-09
	6.720E+00	4.627E-10
	7.200E+00	2.431E-11
	7.680E+00	1.279E-12
	8.160E+00	1.602E-13
	8.640E+00	5.502E-14
	9.120E+00	2.216E-14
	9.600E+00	8.632E-15
	1.008E+01	3.198E-15
	1.056E+01	1.125E-15
	1.104E+01	3.755E-16
	1.152E+01	1.199E-16
	1.200E+01	4.036E-17
	1.248E+01	1.143E-17
	1.296E+01	3.053E-18
	1.345E+01	7.675E-19
	1.393E+01	1.814E-19
	1.441E+01	4.021E-20
	1.489E+01	8.351E-21
	1.538E+01	1.621E-21
	1.586E+01	2.936E-22
	1.634E+01	4.950E-23
	1.682E+01	7.755E-24
	1.730E+01	1.127E-24
	1.779E+01	1.516E-25
	1.827E+01	1.893E-26
	1.875E+01	2.209E-27
	1.923E+01	2.491E-28
	1.972E+01	2.989E-29
	2.020E+01	4.572E-30
	2.068E+01	9.807E-31
	2.116E+01	2.590E-31
	2.165E+01	7.239E-32
	2.213E+01	2.006E-32
	2.261E+01	5.400E-33
	2.309E+01	1.405E-33
	2.357E+01	3.526E-34
	2.406E+01	8.528E-35
	2.454E+01	1.987E-35
	2.502E+01	4.454E-36
	2.550E+01	9.601E-37
	2.599E+01	1.989E-37
	2.647E+01	3.957E-38
	2.695E+01	7.552E-39
	2.743E+01	1.382E-39
	2.791E+01	2.423E-40
	2.840E+01	4.068E-41
	2.888E+01	6.544E-42
	2.936E+01	1.010E-42
	2.984E+01	1.503E-43
	3.033E+01	2.178E-44
	3.081E+01	3.147E-45
	3.129E+01	4.730E-46
	J. 129ETU1	4.730E-40
25	0.0005.00	4.0005.00
35	0.000E+00	1.000E+00
1	4.800E-01	6.965E-01

9.600E-01	4.286E-01
1.440E+00	2.305E-01
1.920E+00	1.074E-01
2.400E+00	4.311E-02
2.880E+00	1.483E-02
3.360E+00	4.359E-03
3.840E+00 4.320E+00	1.091E-03 2.321E-04
4.320E+00 4.800E+00	4.189E-05
5.280E+00	6.408E-06
5.760E+00	8.297E-07
6.240E+00	9.086E-08
6.720E+00	8.410E-09
7.200E+00	6.586E-10
7.680E+00	4.407E-11
8.160E+00	2.767E-12
8.640E+00	2.845E-13
9.120E+00	8.432E-14
9.600E+00	3.589E-14
1.008E+01	1.534E-14
1.056E+01	6.306E-15
1.104E+01	2.485E-15
1.152E+01	9.481E-16
1.200E+01	3.819E-16
1.248E+01	1.315E-16
1.296E+01	4.316E-17
1.345E+01 1.393E+01	1.348E-17 4.006E-18
1.393E+01 1.441E+01	1.130E-18
1.489E+01	3.025E-19
1.538E+01	7.670E-20
1.586E+01	1.839E-20
1.634E+01	4.167E-21
1.682E+01	8.902E-22
1.730E+01	1.791E-22
1.779E+01	3.386E-23
1.827E+01	6.009E-24
1.875E+01	9.994E-25
1.923E+01	1.556E-25
1.972E+01	2.272E-26
2.020E+01	3.131E-27
2.068E+01	4.165E-28
2.116E+01	5.714E-29
2.165E+01	9.252E-30
2.213E+01 2.261E+01	1.999E-30 5.487E-31
2.309E+01	1.666E-31
2.357E+01	5.139E-32
2.406E+01	1.558E-32
2.454E+01	4.600E-33
2.502E+01	1.318E-33
2.550E+01	3.661E-34
2.599E+01	9.852E-35
2.647E+01	2.567E-35
2.695E+01	6.474E-36
2.743E+01	1.579E-36
2.791E+01	3.722E-37

	2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	8.475E-38 1.863E-38 3.951E-39 8.081E-40 1.593E-40 3.026E-41 5.541E-42
40	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+01 1.036E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01	1.000E+00 7.168E-01 4.613E-01 2.642E-01 1.336E-01 5.940E-02 2.310E-02 7.832E-03 2.310E-03 5.917E-04 1.313E-04 2.524E-05 4.196E-06 6.026E-07 7.475E-08 8.004E-09 7.402E-10 5.960E-11 4.445E-12 4.480E-13 1.159E-13 5.018E-14 2.293E-14 1.021E-14 4.443E-15 2.038E-15 8.097E-16 3.089E-16 1.130E-16 3.966E-17 1.333E-17 4.285E-18 1.317E-18 3.865E-19 1.082E-19 2.886E-20 7.325E-21 1.767E-21 4.047E-22 8.783E-23 3.506E-24 6.433E-25 1.114E-25 1.826E-26 2.848E-27 4.322E-28 6.754E-29

	2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	2.804E-30 8.126E-31 2.636E-31 8.798E-32 2.911E-32 9.432E-33 2.980E-33 9.167E-34 2.744E-34 7.987E-35 2.260E-35 6.212E-36 1.659E-36 4.298E-37 1.080E-37 2.634E-38 6.223E-39
45	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 9.120E+00 9.120E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.586E+01 1.682E+01 1.682E+01 1.779E+01 1.779E+01 1.827E+01	1.000E+00 7.337E-01 4.895E-01 2.946E-01 1.590E-01 7.652E-02 3.274E-02 1.242E-02 4.163E-03 1.232E-03 3.213E-04 7.375E-05 1.489E-05 2.641E-06 4.114E-07 5.625E-08 6.748E-09 7.108E-10 6.619E-11 5.726E-12 6.120E-13 1.470E-13 6.371E-14 3.064E-14 1.474E-14 7.461E-15 3.306E-15 1.415E-15 5.840E-16 2.325E-16 8.918E-17 3.294E-17 1.171E-17 4.000E-18 1.313E-18 4.136E-19 1.249E-19 3.616E-20 1.001E-20

1.875E+01	
1.923E+01 6.701E-22 1.972E+01 1.616E-22 2.020E+01 3.714E-23 2.068E+01 8.121E-24 2.116E+01 1.689E-24 2.165E+01 3.337E-25 2.213E+01 6.268E-26 2.261E+01 1.122E-26 2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
1.972E+01 1.616E-22 2.020E+01 3.714E-23 2.068E+01 8.121E-24 2.116E+01 1.689E-24 2.165E+01 3.337E-25 2.213E+01 6.268E-26 2.261E+01 1.122E-26 2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.020E+01 3.714E-23 2.068E+01 8.121E-24 2.116E+01 1.689E-24 2.165E+01 3.337E-25 2.213E+01 6.268E-26 2.261E+01 1.122E-26 2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.068E+01 8.121E-24 2.116E+01 1.689E-24 2.165E+01 3.337E-25 2.213E+01 6.268E-26 2.261E+01 1.122E-26 2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.116E+01 1.689E-24 2.165E+01 3.337E-25 2.213E+01 6.268E-26 2.261E+01 1.122E-26 2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.116E+01 1.689E-24 2.165E+01 3.337E-25 2.213E+01 6.268E-26 2.261E+01 1.122E-26 2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.165E+01 3.337E-25 2.213E+01 6.268E-26 2.261E+01 1.122E-26 2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.213E+01 6.268E-26 2.261E+01 1.122E-26 2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.261E+01 1.122E-26 2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.309E+01 1.929E-27 2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.357E+01 3.267E-28 2.406E+01 5.766E-29	
2.406E+01 5.766E-29	
	ļ
0.4545.04 4.4705.00	ļ
2.454E+01 1.173E-29	ļ
2.502E+01 2.996E-30	ļ
	ļ
2.550E+01 9.348E-31	ļ
2.599E+01 3.232E-31	ļ
2.647E+01 1.150E-31	ļ
2.695E+01 4.075E-32	ļ
	ļ
2.743E+01 1.418E-32	ļ
2.791E+01 4.829E-33	ļ
2.840E+01 1.607E-33	ļ
2.888E+01 5.217E-34	ļ
2.936E+01	ļ
2.984E+01 5.107E-35	ļ
3.033E+01 1.539E-35	ļ
3.081E+01 4.517E-36	
3.129E+01 1.292E-36	
3.1292101	
50 0.000E+00 1.000E+00	ļ
4.800E-01 7.482E-01	ļ
9.600E-01 5.141E-01	ļ
1.440E+00 3.221E-01	ļ
1.920E+00 1.831E-01	ļ
2.400E+00 9.400E-02	ļ
2.880E+00 4.344E-02	ļ
3.360E+00 1.802E-02	
3.840E+00 1.002E-02	
	ļ
4.320E+00 2.224E-03	ļ
4.800E+00 6.600E-04	ļ
5.280E+00 1.747E-04	ļ
5.760E+00 4.120E-05	ļ
	ļ
6.240E+00 8.655E-06	ļ
6.720E+00 1.618E-06	ļ
7.200E+00 2.690E-07	ļ
7.680E+00 3.977E-08	ļ
	ļ
8.160E+00 5.227E-09	ļ
8.640E+00 6.113E-10	ļ
9.120E+00 6.404E-11	ļ
9.600E+00 6.284E-12	ļ
1.008E+01 7.335E-13	ļ
	ļ
1.056E+01 1.740E-13	ļ
1.104E+01 7.584E-14	ļ
1.152E+01 3.858E-14	ļ
1.200E+01 2.103E-14	ļ
	ļ
1.248E+01 1.016E-14	ļ
1.296E+01 4.757E-15	ļ
1.345E+01 2.159E-15	ļ
	ļ

	1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.586E+01 1.634E+01	9.491E-16 4.039E-16 1.663E-16 6.622E-17 2.548E-17
	1.441E+01 1.489E+01 1.538E+01 1.586E+01 1.634E+01	1.663E-16 6.622E-17 2.548E-17
	1.489E+01 1.538E+01 1.586E+01 1.634E+01	1.663E-16 6.622E-17 2.548E-17
	1.538E+01 1.586E+01 1.634E+01	6.622E-17 2.548E-17
	1.586E+01 1.634E+01	2.548E-17
	1.634E+01	
	4 0005 104	9.467E-18
	1.682E+01	3.394E-18
	1.730E+01	1.174E-18
	1.779E+01	3.910E-19
	1.827E+01	1.254E-19
	1.875E+01	3.871E-20
	1.923E+01	1.148E-20
	1.972E+01	3.271E-21
	2.020E+01	8.940E-22
	2.068E+01	2.342E-22
	2.116E+01	5.876E-23
	2.165E+01	1.411E-23
	2.213E+01	3.237E-24
	2.261E+01	7.094E-25
	2.309E+01	1.485E-25
	2.357E+01	2.972E-26
	2.406E+01	5.710E-27
	2.454E+01	1.066E-27
	2.502E+01	1.991E-28
	2.550E+01	3.966E-29
	2.599E+01	9.232E-30
	2.647E+01	2.651E-30
	2.695E+01	8.994E-31
	2.743E+01	3.309E-31
	2.791E+01	1.245E-31
	2.840E+01	4.659E-32
	2.888E+01	1.717E-32
	2.936E+01	6.204E-33
	2.984E+01	2.195E-33
	3.033E+01	7.602E-34
	3.081E+01	2.575E-34
	3.129E+01	8.530E-35
55	0.000E+00	1.000E+00
	4.800E-01	7.607E-01
	9.600E-01	5.357E-01
	1.440E+00	3.472E-01
	1.920E+00	2.060E-01
	2.400E+00	1.115E-01
	2.880E+00	5.489E-02
	3.360E+00	2.451E-02
	3.840E+00	9.907E-03
	4.320E+00	3.620E-03
	4.800E+00	1.194E-03
	5.280E+00	3.550E-04
	5.760E+00	9.512E-05
	6.240E+00	2.294E-05
	6.720E+00	4.979E-06
	7.200E+00	9.718E-07
	7.200⊑±00	9.7 10⊏-07
	7 0005 00	4 7055 07
	7.680E+00	1.705E-07
	7.680E+00 8.160E+00 8.640E+00	1.705E-07 2.688E-08 3.808E-09

1	0.4005.00	4.0505.40
	9.120E+00	4.852E-10
	9.600E+00	5.604E-11
	1.008E+01	6.131E-12
	1.056E+01	7.900E-13
	1.104E+01	1.942E-13
	1.152E+01	8.750E-14
	1.200E+01	4.929E-14
	1.248E+01	2.542E-14
	1.296E+01	1.280E-14
	1.345E+01	6.272E-15
	1.393E+01	2.987E-15
	1.441E+01	1.382E-15
	1.489E+01	6.212E-16
	1.538E+01	2.709E-16
	1.586E+01	1.147E-16
	1.634E+01	4.705E-17
	1.682E+01	1.871E-17
	1.730E+01	7.205E-18
	1.779E+01	2.686E-18
	1.827E+01	9.686E-19
	1.875E+01	3.377E-19
	1.923E+01	1.137E-19
	1.972E+01	3.696E-20
	2.020E+01	1.159E-20
	2.068E+01	3.503E-21
	2.116E+01	1.020E-21
	2.165E+01	2.856E-22
	2.213E+01	7.690E-23
	2.261E+01	1.990E-23
	2.309E+01	4.941E-24
	2.357E+01	1.177E-24
	2.406E+01	2.690E-25
	2.454E+01	5.897E-26
	2.502E+01	1.243E-26
	2.550E+01	2.539E-27
	2.599E+01	5.107E-28
	2.647E+01	1.053E-28
	2.695E+01	2.383E-29
	2.743E+01	6.402E-30
	2.791E+01	2.074E-30
	2.840E+01	7.636E-31
	2.888E+01	2.974E-31
	2.936E+01	1.174E-31
	2.984E+01	4.599E-32
	3.033E+01	1.775E-32
	3.081E+01	6.732E-33
	3.129E+01	2.504E-33

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB ClayPoro Low

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.019 m2/a	0.27	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.019 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration	
year	m	mg/L	
5	0.000E+00	1.000E+00	
	4.800E-01	2.839E-01	
	9.600E-01	3.038E-02	
	1.440E+00	1.101E-03	
	1.920E+00	1.281E-05	

2.400E+00 4.657E-08 2.880E+00 5.275E-11 3.360E+00 1.133E-13 3.840E+00 1.067E-14 4.320E+00 8.793E-16 4.800E+00 5.270E-17 5.280E+00 2.255E-18 5.760E+00 6.740E-20
2.880E+00 5.275E-11 3.360E+00 1.133E-13 3.840E+00 1.067E-14 4.320E+00 8.793E-16 4.800E+00 5.270E-17 5.280E+00 2.255E-18 5.760E+00 6.740E-20
3.360E+00 1.133E-13 3.840E+00 1.067E-14 4.320E+00 8.793E-16 4.800E+00 5.270E-17 5.280E+00 2.255E-18 5.760E+00 6.740E-20
3.840E+00 1.067E-14 4.320E+00 8.793E-16 4.800E+00 5.270E-17 5.280E+00 2.255E-18 5.760E+00 6.740E-20
4.320E+00 8.793E-16 4.800E+00 5.270E-17 5.280E+00 2.255E-18 5.760E+00 6.740E-20
4.800E+00 5.270E-17 5.280E+00 2.255E-18 5.760E+00 6.740E-20
5.280E+00 2.255E-18 5.760E+00 6.740E-20
5.760E+00 6.740E-20
6.240E+00 1.374E-21
6.720E+00 1.857E-23
7.200E+00 1.619E-25
7.680E+00 9.091E-28
8.160E+00 5.158E-30
8.640E+00 1.285E-31
9.120E+00 5.377E-33
9.600E+00 1.901E-34
1.008E+01 5.406E-36
1.056E+01 1.222E-37
1.104E+01 2.172E-39
1.152E+01 3.003E-41
1.200E+01 2.853E-43
1.248E+01 2.430E-45
1.296E+01 2.395E-47
1.393E+01 1.370E-50
1.441E+01 0.000E+00
1.489E+01 0.000E+00
1.538E+01 0.000E+00
1.586E+01 0.000E+00
1.634E+01 0.000E+00
1.682E+01 0.000E+00
1.730E+01 0.000E+00
1.779E+01 0.000E+00
1.827E+01 0.000E+00
1.875E+01 0.000E+00
1.923E+01 0.000E+00
1.972E+01 0.000E+00
2.020E+01 0.000E+00
2.068E+01
2.116E+01 0.000E+00
2.165E+01 0.000E+00
2.213E+01 0.000E+00
2.261E+01 0.000E+00
2.309E+01
2.357E+01 0.000E+00
2.406E+01 0.000E+00
2.454E+01 0.000E+00
2.502E+01 0.000E+00
2.550E+01 0.000E+00
2.599E+01 0.000E+00
2.647E+01 0.000E+00
2.695E+01 0.000E+00
2.743E+01 0.000E+00
2.791E+01 0.000E+00
2.840E+01 0.000E+00
2.888E+01
2.936E+01 0.000E+00

	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
10	0.000E+00	1.000E+00
	4.800E-01	4.571E-01
	9.600E-01	1.312E-01
	1.440E+00	2.246E-02
	1.920E+00	2.225E-03
	2.400E+00	1.253E-04
	2.880E+00	3.965E-06
	3.360E+00	6.997E-08
	3.840E+00	6.864E-10
	4.320E+00	4.083E-12
	4.800E+00	1.057E-13
	5.280E+00	2.070E-14
	5.760E+00	3.891E-15
	6.240E+00	6.271E-16
	6.720E+00	8.601E-17
	7.200E+00	9.979E-18
	7.680E+00	9.720E-19
	8.160E+00	7.886E-20
	8.640E+00	5.282E-21
	9.120E+00	2.893E-22
	9.600E+00	1.282E-23
	1.008E+01	4.553E-25
	1.056E+01 1.104E+01	1.290E-26
	1.104E+01 1.152E+01	3.036E-28 8.218E-30
	1.152E+01 1.200E+01	4.578E-31
	1.248E+01	4.576E-31 4.737E-32
	1.248E+01 1.296E+01	4.737E-32 4.913E-33
	1.345E+01	4.627E-34
	1.393E+01	3.907E-35
	1.441E+01	2.945E-36
	1.489E+01	1.976E-37
	1.538E+01	1.976E-37 1.174E-38
	1.586E+01	6.158E-40
	1.634E+01	2.841E-41
	1.682E+01	1.153E-42
	1.730E+01	4.163E-44
	1.779E+01	1.421E-45
	1.827E+01	5.510E-47
	1.875E+01	3.100E-48
	1.923E+01	2.377E-49
	1.972E+01	1.960E-50
	2.020E+01	0.000E+00
	2.068E+01	0.000E+00
	2.116E+01	0.000E+00
	2.165E+01	0.000E+00
	2.213E+01	0.000E+00
	2.261E+01	0.000E+00
	2.309E+01	0.000E+00
	2.357E+01	0.000E+00
	2.406E+01	0.000E+00
	2.454E+01	0.000E+00
	2.1012.01	0.0002.00

1	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.791E+01 2.840E+01	0.000E+00 0.000E+00
1		
1	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	J. 129L 101	0.000E100
15	0.000E+00	1.000E+00
.0	4.800E-01	5.500E-01
1	9.600E-01	2.235E-01
1		
1	1.440E+00	6.504E-02
	1.920E+00	1.327E-02
1	2.400E+00	1.872E-03
1	2.880E+00	1.811E-04
1	3.360E+00	1.194E-05
1	3.840E+00	5.337E-07
1	4.320E+00	1.614E-08
1		
1	4.800E+00	3.302E-10
1	5.280E+00	4.940E-12
1	5.760E+00	1.816E-13
1	6.240E+00	4.249E-14
1	6.720E+00	1.155E-14
	7.200E+00	2.856E-15
1	7.680E+00	6.361E-16
1		
1	8.160E+00	1.272E-16
	8.640E+00	2.277E-17
	9.120E+00	3.632E-18
	9.600E+00	5.143E-19
	1.008E+01	6.435E-20
	1.056E+01	7.080E-21
	1.104E+01	6.813E-22
	1.152E+01	5.699E-23
	1.200E+01	3.653E-24
	1.248E+01	2.223E-25
	1.296E+01	1.163E-26
	1.345E+01	5.370E-28
	1.393E+01	2.554E-29
1		
	1.441E+01	1.926E-30
1	1.489E+01	2.607E-31
	1.538E+01	4.218E-32
1	1.586E+01	6.657E-33
1	1.634E+01	9.846E-34
	1.682E+01	1.355E-34
1	1.730E+01	1.731E-35
	1.779E+01	2.049E-36
	1.827E+01	2.242E-37
	1.875E+01	2.262E-38
	1.923E+01	2.101E-39
,		1.793E-40
	1.972E+01	1 7 37. 11 =4()

	_	
	2.020E+01	1.403E-41
	2.068E+01	1.009E-42
	2.116E+01	6.725E-44
	2.165E+01	4.291E-45
	2.213E+01	2.857E-46
	2.261E+01	2.307E-47
	2.309E+01	2.447E-48
	2.357E+01	3.085E-49
	2.406E+01	4.054E-50
	2.454E+01	0.000E+00
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	3.1292101	0.000100
20	0.000E+00	1.000E+00
	4.800E-01	6.096E-01
	9.600E-01	2.973E-01
	1.440E+00	1.135E-01
	1.920E+00	3.335E-02
		7.473E-03
	1 2.400E±00	
	2.400E+00 2.880E+00	
	2.880E+00	1.267E-03
	2.880E+00 3.360E+00	1.267E-03 1.616E-04
	2.880E+00 3.360E+00 3.840E+00	1.267E-03 1.616E-04 1.546E-05
	2.880E+00 3.360E+00 3.840E+00 4.320E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18 6.992E-19
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18 6.992E-19 1.180E-19
	2.880E+00 3.360E+00 3.360E+00 4.320E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18 6.992E-19 1.180E-19 1.608E-20
	2.880E+00 3.360E+00 3.360E+00 4.320E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18 6.992E-19 1.180E-19 1.608E-20 2.196E-21
	2.880E+00 3.360E+00 3.360E+00 4.320E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18 6.992E-19 1.180E-19 1.608E-20
	2.880E+00 3.360E+00 3.360E+00 4.320E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18 6.992E-19 1.180E-19 1.608E-20 2.196E-21
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18 6.992E-19 1.180E-19 1.608E-20 2.196E-21 2.703E-22 2.988E-23
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+01 1.056E+01 1.152E+01 1.200E+01 1.248E+01 1.345E+01 1.393E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18 6.992E-19 1.180E-19 1.608E-20 2.196E-21 2.703E-22 2.988E-23 2.956E-24
	2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	1.267E-03 1.616E-04 1.546E-05 1.105E-06 5.896E-08 2.344E-09 7.005E-11 1.865E-12 1.568E-13 4.717E-14 1.546E-14 4.724E-15 1.336E-15 3.491E-16 8.401E-17 1.859E-17 3.770E-18 6.992E-19 1.180E-19 1.608E-20 2.196E-21 2.703E-22 2.988E-23

	1.538E+01	1.464E-27
	1.586E+01	1.010E-28
	1.634E+01	8.446E-30
	1.682E+01	1.139E-30
	1.730E+01	2.186E-31
	1.779E+01	4.553E-32
	1.827E+01	9.256E-33
	1.875E+01	1.793E-33
	1.923E+01	3.293E-34
	1.972E+01	5.722E-35
	2.020E+01	9.395E-36
	2.068E+01	1.456E-36
	2.116E+01	2.125E-37
	2.165E+01	2.920E-38
	2.213E+01	3.771E-39
	2.261E+01	4.569E-40
	2.309E+01	
		5.190E-41
	2.357E+01	5.527E-42
	2.406E+01	5.533E-43
	2.454E+01	5.256E-44
	2.502E+01	4.864E-45
	2.550E+01	4.663E-46
	2.599E+01	5.119E-47
	2.647E+01	6.911E-48
	2.695E+01	1.104E-48
	2.743E+01	1.898E-49
	2.791E+01	3.283E-50
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	3.129L101	0.0002100
25	0.000E+00	1.000E+00
25		
	4.800E-01	6.518E-01
	9.600E-01	3.563E-01
	1.440E+00	1.606E-01
	1.920E+00	5.892E-02
	2.400E+00	1.746E-02
	2.880E+00	4.149E-03
	3.360E+00	7.876E-04
	3.840E+00	1.190E-04
	4.320E+00	1.427E-05
	4.800E+00	1.356E-06
	5.280E+00	1.019E-07
	5.760E+00	6.054E-09
	6.240E+00	2.849E-10
	6.720E+00	1.106E-11
	7.200E+00	5.569E-13
	7.680E+00	1.112E-13
	8.160E+00	4.089E-14
	8.640E+00	1.503E-14
	0.400 = .00	F 047F 4F
	9.120E+00	5.217E-15
	9.600E+00	1.702E-15

1.056E+01 1.494E-16	
1.104E+01 4.008E-17	
1.152E+01 9.990E-18	
1.200E+01 2.076E-18	
1.248E+01 4.433E-19	
1.296E+01 8.777E-20	
1.345E+01 1.608E-20	
1.393E+01 2.719E-21	
1.441E+01 4.233E-22	
1.489E+01 6.051E-23	
1.538E+01 7.919E-24	
1.586E+01 9.467E-25	
1.634E+01 1.032E-25	
1.682E+01 1.030E-26	
1.730E+01 9.559E-28	
1.779E+01 8.838E-29	
1.827E+01 9.788E-30	
1.875E+01 1.601E-30	
1.923E+01 3.569E-31	
1.972E+01 8.773E-32	
2.020E+01 2.146E-32	
2.068E+01 5.071E-33	
2.116E+01 1.150E-33	
2.213E+01 5.186E-35	
2.261E+01 1.029E-35	
2.309E+01 1.950E-36	
2.357E+01 3.523E-37	
2.406E+01 6.064E-38	
2.454E+01 9.934E-39	
2.502E+01 1.547E-39	
2.550E+01 2.290E-40	
2.599E+01 3.217E-41	
2.647E+01 4.294E-42	
2.695E+01 5.459E-43	
2.743E+01 6.661E-44	
2.791E+01 7.955E-45	
2.840E+01 9.695E-46	
2.888E+01 1.292E-46	
2.984E+01 3.686E-48	
3.033E+01 7.449E-49	
3.081E+01 1.559E-49	
3.129E+01 3.248E-50	
30 0.000E+00 1.000E+00	
4.800E-01 6.838E-01	
9.600E-01 4.044E-01	
1.440E+00 2.040E-01	
1.920E+00 8.696E-02	
2.400E+00 3.108E-02	
2.880E+00 9.263E-03	
3.360E+00 2.293E-03	
3.840E+00 4.701E-04	
4.320E+00 7.963E-05	
4.800E+00 1.112E-05	
5.280E+00 1.112E-03	

	5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.345E+01 1.393E+01 1.441E+01 1.538E+01 1.586E+01 1.682E+01 1.779E+01 1.875E+01 1.875E+01 1.923E+01 1.923E+01 2.068E+01 2.165E+01 2.165E+01 2.213E+01 2.261E+01 2.309E+01 2.454E+01 2.550E+01 2.599E+01 2.599E+01	1.210E-07 9.412E-09 6.023E-10 3.225E-11 1.725E-12 2.190E-13 7.652E-14 3.141E-14 1.247E-14 4.708E-15 1.688E-15 5.735E-16 1.831E-16 4.985E-17 1.413E-17 3.775E-18 9.496E-19 2.245E-19 4.980E-20 1.035E-20 2.009E-21 3.640E-22 6.140E-23 9.623E-24 1.399E-24 1.883E-25 2.350E-26 2.744E-27 3.094E-28 3.707E-29 5.659E-30 1.212E-30 3.199E-31 8.943E-32 2.479E-32 6.675E-33 1.737E-33 4.361E-34 1.055E-34 2.459E-35 5.513E-36 1.189E-36 2.464E-37 4.902E-38
	2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01	1.055E-34 2.459E-35 5.513E-36 1.189E-36 2.464E-37 4.902E-38
	2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01	9.359E-39 1.713E-39 3.004E-40 5.045E-41 8.118E-42 1.253E-42 1.864E-43
35	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01	2.702E-44 3.904E-45 5.865E-46 1.000E+00 7.091E-01

9.600E-01	4.444E-01
1.440E+00	2.434E-01
1.920E+00	1.156E-01
2.400E+00	4.728E-02
2.880E+00	1.658E-02
3.360E+00	4.964E-03
3.840E+00	1.266E-03
4.320E+00	2.745E-04
4.800E+00	5.051E-05
5.280E+00	7.874E-06
5.760E+00	1.039E-06
6.240E+00	1.160E-07
6.720E+00	1.094E-08
7.200E+00	8.733E-10
7.680E+00	5.955E-11
8.160E+00	3.806E-12
8.640E+00	3.966E-13
9.120E+00	1.193E-13
9.600E+00	5.173E-14
1.008E+01	2.254E-14
1.056E+01	9.438E-15
1.104E+01	3.779E-15
1.152E+01	1.432E-15
1.200E+01	4.707E-16
1.248E+01	1.622E-16
1.296E+01	5.325E-17
1.345E+01	1.665E-17
1.393E+01	4.948E-18
1.441E+01	1.397E-18
1.489E+01	3.740E-19
1.538E+01	9.488E-20
1.586E+01	2.276E-20
1.634E+01	5.159E-21
1.682E+01	1.103E-21
1.730E+01	2.219E-22
1.779E+01	4.197E-23
1.827E+01	7.451E-24
1.875E+01	1.240E-24
1.923E+01	1.931E-25
1.972E+01	2.820E-26
2.020E+01	3.886E-27
2.068E+01	5.169E-28
2.116E+01	7.085E-29
2.165E+01	1.145E-29
2.213E+01	2.469E-30
2.261E+01	6.771E-31
	2.056E-31
2.309E+01	
2.357E+01	6.342E-32
2.406E+01	1.924E-32
2.454E+01	5.680E-33
2.502E+01	1.628E-33
2.550E+01	4.524E-34
2.599E+01	1.218E-34
2.647E+01	3.174E-35
2.695E+01	8.007E-36
2.743E+01	1.953E-36
2.791E+01	4.606E-37

	2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	1.049E-37 2.307E-38 4.893E-39 1.001E-39 1.973E-40 3.750E-41 6.868E-42
40	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.343E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.586E+01 1.634E+01 1.682E+01 1.779E+01 1.875E+01 1.875E+01 1.923E+01 1.923E+01 1.972E+01 2.020E+01 2.165E+01 2.116E+01 2.116E+01 2.116E+01 2.116E+01 2.261E+01	1.000E+00 7.297E-01 4.783E-01 2.790E-01 1.438E-01 6.511E-02 2.580E-02 8.916E-03 2.680E-03 6.996E-04 1.583E-04 3.100E-05 5.252E-06 7.689E-07 9.721E-08 1.061E-08 1.000E-09 8.205E-11 6.231E-12 6.368E-13 1.670E-13 7.356E-14 3.422E-14 1.545E-14 6.631E-15 2.506E-15 9.963E-16 3.803E-16 1.393E-16 4.889E-17 1.644E-17 5.288E-18 1.626E-18 4.774E-19 1.337E-19 3.568E-20 9.061E-21 2.187E-21 5.009E-22 1.088E-22 2.236E-23 4.345E-24 7.975E-25 1.382E-25 2.265E-26 3.533E-27 5.360E-28 8.369E-29

	2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.936E+01 3.033E+01 3.081E+01 3.129E+01	3.462E-30 1.002E-30 3.250E-31 1.085E-31 3.590E-32 1.164E-32 3.677E-33 1.132E-33 3.388E-34 9.864E-35 2.792E-35 7.677E-36 2.050E-36 5.314E-37 1.336E-37 3.259E-38 7.701E-39
45	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 9.120E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01	1.000E+00 7.469E-01 5.074E-01 3.110E-01 1.710E-01 8.385E-02 3.656E-02 1.413E-02 4.828E-03 1.456E-03 3.870E-04 9.054E-05 1.863E-05 3.368E-06 5.347E-07 7.452E-08 9.111E-09 9.781E-10 9.283E-11 8.177E-12 8.865E-13 2.155E-13 9.484E-14 4.613E-14 2.175E-14 9.154E-15 4.059E-15 1.738E-15 7.180E-16 2.860E-16 1.098E-16 4.057E-17 1.443E-17 4.932E-18 1.620E-18 5.105E-19 1.543E-19 4.467E-20 1.238E-20

	1.875E+01 1.923E+01 1.972E+01	3.278E-21 8.289E-22 2.000E-22
	2.020E+01 2.068E+01 2.116E+01 2.165E+01 2.213E+01	4.597E-23 1.006E-23 2.092E-24 4.135E-25 7.769E-26
	2.261E+01 2.309E+01 2.357E+01 2.406E+01	1.391E-26 2.392E-27 4.048E-28 7.139E-29
	2.454E+01 2.502E+01 2.550E+01 2.599E+01	1.450E-29 3.695E-30 1.152E-30 3.981E-31
	2.647E+01 2.695E+01 2.743E+01 2.791E+01	1.417E-31 5.020E-32 1.748E-32 5.954E-33
	2.840E+01 2.888E+01 2.936E+01 2.984E+01	1.981E-33 6.435E-34 2.039E-34 6.303E-35
	3.033E+01 3.081E+01 3.129E+01	1.899E-35 5.578E-36 1.596E-36
50	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00	1.000E+00 7.615E-01 5.328E-01 3.400E-01 1.969E-01
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	1.030E-01 4.849E-02 2.049E-02 7.760E-03 2.628E-03
	4.800E+00 5.280E+00 5.760E+00 6.240E+00	7.946E-04 2.143E-04 5.153E-05 1.103E-05
	6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	2.102E-06 3.562E-07 5.367E-08 7.190E-09 8.569E-10
	9.120E+00 9.600E+00 1.008E+01 1.056E+01	9.149E-11 9.141E-12 1.082E-12 2.590E-13
	1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01	1.136E-13 5.632E-14 2.575E-14 1.244E-14 5.832E-15
	1.296E+01 1.345E+01	2.649E-15

1 393E-01			
1 441E-01		1 393F+01	1 165F-15
1.489E-01 1.539E-01 1.539E-01 1.539E-01 1.539E-01 1.539E-17 1.682E-01 1.682E-01 1.682E-01 1.682E-10 1.730E-01 1.47E-18 1.779E-01 1.47E-18 1.779E-01 1.87E-01 1.87E-01 1.87E-01 1.87E-01 1.87E-01 1.923E-01 1.923E-01 1.923E-01 1.923E-01 1.923E-01 1.923E-01 1.925E-01 1.935E-01 1.925E-01			
1.538E-01 1.588E-01 1.588E-01 1.682E-10 1.682E-01 1.682E-10 1.682E-10 1.730E-01 1.487E-18 1.779E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.923E-01 1.448E-20 1.923E-01 1.05E-21 2.020E-01 1.05E-21 2.020E-01 2.068E-01 2.286E-22 2.116E-01 2.213E-01 2.213E-01 2.213E-01 2.237E-01 3.682E-26 2.237E-01 3.682E-26 2.237E-01 3.682E-26 2.240E-01 2.255E-01 2.454E-01 2.550E-01 2.456E-29 2.559E-01 2.647E-01 2.647E-01 2.646E-28 2.599E-01 1.139E-29 2.647E-01 2.648E-30 2.743E-01 2.743E-01 3.368E-30 2.888E-01 1.107E-30 2.743E-01 3.308E-01 3.368E-01 3.46E-02 3.360E-00 4.274E-03 4.800E-00 1.221E-01 2.880E-00 4.274E-03 4.800E-00			
1,586E+01 1,634E+01 1,636E+17 1,636E+17 1,636E+17 1,636E+17 1,730E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E		1.489E+01	2.045E-16
1,586E+01 1,634E+01 1,636E+17 1,636E+17 1,636E+17 1,636E+17 1,730E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E+01 1,300E		1 538F+01	8 147F-17
1.634E+01			
1,682E-01 1,730E-01 1,730E-01 1,730E-01 1,730E-01 1,779E+01 1,827E-01 1,875E-01 1,875E-01 1,972E			
1,730E+01		1.634E+01	1.166E-17
1,730E+01		1 682F+01	4 182F-18
1.779E+01			
1.827E+01		1.730E+01	1.447E-18
1.827E+01		1.779E+01	4.823E-19
1.875E-01 1.923E+01 1.923E+01 1.972E+01 1.972E+01 2.020E+01 2.020E+01 2.036E+01 2.036E+01 2.036E+01 2.036E+01 2.036E-01 2.116E+01 2.116E			
1.923E+01			
1.972E-01 2.020E+01 1.105E-21 2.068E+01 2.068E+01 2.896E-22 2.116E+01 7.269E-23 2.166SE+01 1.745E-23 2.213E+01 4.006E-24 2.261E+01 8.784E-25 2.309E+01 1.839E-25 2.357E+01 3.682E-26 2.454E+01 2.454E+01 2.502E+01 2.454E+01 2.550E+01 4.905E-29 2.599E+01 3.266E-30 2.695E+01 3.266E-30 2.647E+01 3.266E-30 2.695E+01 4.071E-31 2.791E+01 5.735E-32 2.888E+01 2.936E+01 7.641E-33 3.033E+01 3.033E+01 3.033E+01 3.129E+01 55 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.62E-02 3.860E+00 4.274E-03 4.800E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.437E-03 3.840E+00 1.221E-01 2.880E+00 1.437E-03 4.800E+00 1.437E-03 4.800E+00 1.437E-03 5.280E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.274E-03 4.300E+00 4.274E-03 4.300E+00 4.274E-03 4.300E+00 4.274E-03 4.300E+00 4.374E-03 5.280E+00 6.720E+00 6.455E-06 7.200E+00 6.465E-06 7.200E+00 6.465E-06 7.200E+00 6.465E-06 7.200E+00 6.465E-06 7.200E+00 6.8		1.875E+01	4.779E-20
1.972E-01 2.020E+01 1.105E-21 2.068E+01 2.068E+01 2.896E-22 2.116E+01 7.269E-23 2.166SE+01 1.745E-23 2.213E+01 4.006E-24 2.261E+01 8.784E-25 2.309E+01 1.839E-25 2.357E+01 3.682E-26 2.454E+01 2.454E+01 2.502E+01 2.454E+01 2.550E+01 4.905E-29 2.599E+01 3.266E-30 2.695E+01 3.266E-30 2.647E+01 3.266E-30 2.695E+01 4.071E-31 2.791E+01 5.735E-32 2.888E+01 2.936E+01 7.641E-33 3.033E+01 3.033E+01 3.033E+01 3.129E+01 55 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.62E-02 3.860E+00 4.274E-03 4.800E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.221E-01 2.880E+00 1.437E-03 3.840E+00 1.221E-01 2.880E+00 1.437E-03 4.800E+00 1.437E-03 4.800E+00 1.437E-03 5.280E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.274E-03 4.300E+00 4.274E-03 4.300E+00 4.274E-03 4.300E+00 4.274E-03 4.300E+00 4.374E-03 5.280E+00 6.720E+00 6.455E-06 7.200E+00 6.465E-06 7.200E+00 6.465E-06 7.200E+00 6.465E-06 7.200E+00 6.465E-06 7.200E+00 6.8		1 923F+01	1 418F-20
2 020E+01			
2.088E+01			
2.088E+01		2.020E+01	1.105E-21
2.116E+01			
2.165E+01			
2.213E+01		2.116E+01	7.269E-23
2.213E+01		2 165F+01	1 745F-23
2.261E+01			
2.309E+01			
2.309E+01		2.261E+01	8.784E-25
2.357E+01			
2.406E+01 7.075E-27 2.454E+01 1.321E-27 2.502E+01 2.466E-28 2.550E+01 4.905E-29 2.599E+01 1.139E-29 2.647E+01 3.266E-30 2.695E+01 1.107E-30 2.743E+01 1.532E-31 2.743E+01 1.532E-31 2.840E+01 5.735E-32 2.888E+01 2.114E-32 2.936E+01 7.641E-33 2.984E+01 2.705E-33 3.033E+01 3.69E-34 3.031E+01 3.175E-34 3.129E+01 1.052E-34 55 0.000E+00 1.000E+00 4.800E-01 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.880E+00 6.125E-02 3.360E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 1.148E-02 4.320E+00 4.274E-03 4.800E-01 1.448E-02 4.320E+00 4.274E-03 4.800E-00 1.148E-02 4.320E+00 4.274E-03 4.800E-00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06 7.200E+00 1.286E-06			
2.454E+01		2.357E+01	3.682E-26
2.454E+01		2.406E+01	7.075E-27
2.502E+01			
2.550E+01			
2.599E+01		2.502E+01	2.466E-28
2.599E+01		2 550E+01	4 905F-29
2.647E+01 3.266E-30 1.107E-30 2.695E+01 4.071E-31 1.107E-30 1.107E-30 1.107E-30 1.107E-30 1.107E-30 1.2743E+01 4.071E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-31 1.532E-32 1.2986E+01 1.2705E-33 1.2984E+01 1.2705E-33 1.2984E+01 1.2052E-34 1.205			
2.695E+01			
2.695E+01		2.647E+01	3.266E-30
2.743E+01		2 605E+01	
2.791E+01			
2.840E+01 5.735E-32 2.888E+01 2.114E-32 2.936E+01 7.641E-33 2.994E+01 2.705E-33 3.033E+01 9.369E-34 3.081E+01 3.175E-34 3.129E+01 1.052E-34 55 0.000E+00 1.000E+00 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 5.760E+00 4.354E-04 6.240E+00 6.240E+00 6.2923E-05 6.720E+00 7.200E+00 6.465E-06 7.680E+00 9.169E-08		2.743E+01	4.0/1E-31
2.840E+01 5.735E-32 2.888E+01 2.114E-32 2.936E+01 7.641E-33 2.994E+01 2.705E-33 3.033E+01 9.369E-34 3.081E+01 3.175E-34 3.129E+01 1.052E-34 55 0.000E+00 1.000E+00 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 5.760E+00 4.354E-04 6.240E+00 6.240E+00 6.2923E-05 6.720E+00 7.200E+00 6.465E-06 7.680E+00 9.169E-08		2.791E+01	1.532E-31
2.888E+01			
2.936E+01 7.641E-33 2.984E+01 3.705E-33 3.033E+01 9.369E-34 3.081E+01 3.175E-34 3.129E+01 1.052E-34 1.052E			
2.984E+01		2.888E+01	2.114E-32
2.984E+01		2 936F+01	7 641F-33
3.033E+01 3.081E+01 3.175E-34 3.129E+01 55 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.200E+00 2.215E-01 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.360E+00 3.360E+00 4.320E+00 4.320E+00 4.320E+00 4.320E+00 5.760E+00 6.240E+00 6.240E+00 5.760E+00 6.240E+00 6.240E+00 6.230E-04 6.240E+00 6.240E+00 6.240E+00 6.230E-06 7.200E+00 7.200E+00 7.200E+00 7.680E+00 8.160E+00 3.695E-08			
3.081E+01 3.175E-34 1.052E-34 55 0.000E+00 1.000E+00 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.840E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 6.240E+00 6.465E-06 6.720E+00 7.200E+00 7.680E+00 9.309E-07 8.160E+00 3.695E-08			
3.129E+01 1.052E-34 55 0.000E+00 1.000E+00 4.800E-01 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08		3.033E+01	9.369E-34
3.129E+01 1.052E-34 55 0.000E+00 1.000E+00 4.800E-01 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08		3 081F+01	3 175⋤₋34
55 0.000E+00 1.000E+00 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 1.221E-01 2.400E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 4.354E-04 5.760E+00 5.280E+00 6.465E-06 7.200E+00 7.680E+00 9.3695E-08			
4.800E-01 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08		3.129E+01	1.052E-34
4.800E-01 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08			
4.800E-01 7.742E-01 9.600E-01 5.551E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08	55	0.000E+00	1.000E+00
9.600E-01 1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 5.760E+00 5.760E+00 6.240E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 3.695E-08			
1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08			
1.440E+00 3.664E-01 1.920E+00 2.215E-01 2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08		9.600E-01	5.551E-01
1.920E+00		1 440F+00	
2.400E+00 1.221E-01 2.880E+00 6.125E-02 3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08			
2.880E+00			
2.880E+00		2.400E+00	1.221E-01
3.360E+00 2.787E-02 3.840E+00 1.148E-02 4.320E+00 4.274E-03 4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08			
3.840E+00			
4.320E+00			
4.320E+00		3.840E+00	1.148E-02
4.800E+00 1.437E-03 5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08			
5.280E+00 4.354E-04 5.760E+00 1.189E-04 6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08			
5.760E+00			4 4075 00
5.760E+00		4.800E+00	
6.240E+00 2.923E-05 6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08		4.800E+00	
6.720E+00 6.465E-06 7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08		4.800E+00 5.280E+00	4.354E-04
7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08		4.800E+00 5.280E+00 5.760E+00	4.354E-04 1.189E-04
7.200E+00 1.286E-06 7.680E+00 2.300E-07 8.160E+00 3.695E-08		4.800E+00 5.280E+00 5.760E+00	4.354E-04 1.189E-04
7.680E+00 2.300E-07 8.160E+00 3.695E-08		4.800E+00 5.280E+00 5.760E+00 6.240E+00	4.354E-04 1.189E-04 2.923E-05
8.160E+00 3.695E-08		4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	4.354E-04 1.189E-04 2.923E-05 6.465E-06
		4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00	4.354E-04 1.189E-04 2.923E-05 6.465E-06 1.286E-06
		4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00	4.354E-04 1.189E-04 2.923E-05 6.465E-06 1.286E-06
0.040E±00 0.333E-09		4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00	4.354E-04 1.189E-04 2.923E-05 6.465E-06 1.286E-06 2.300E-07
		4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	4.354E-04 1.189E-04 2.923E-05 6.465E-06 1.286E-06 2.300E-07 3.695E-08

9.120E+00 9.600E+00 1.008E+01 1.008E+01 1.008E+01 1.056E+01 1.155E-12 1.104E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.586E-15 1.448E+01 1.586E+01 1.586E+01 1.586E+01 1.586E+01 1.682E+01 1.779E+01 1.827E+01 1.823E+01 1.875E+01 1.923E+01 1.923E+01 1.923E+01 1.923E+01 1.923E+01 1.922E+09 1.923E+01 1.928E-10 1.186E-19 1.402E-19
1.008E+01 9.082E-12 1.056E+01 1.185E-12 1.104E+01 2.912E-13 1.152E+01 1.268E-13 1.200E+01 6.022E-14 1.248E+01 3.108E-14 1.296E+01 1.566E-14 1.345E+01 7.681E-15 1.393E+01 3.661E-15 1.441E+01 1.695E-15 1.489E+01 7.623E-16 1.538E+01 3.327E-16 1.586E+01 1.409E-16 1.634E+01 5.784E-17 1.682E+01 2.301E-17 1.730E+01 8.868E-18 1.779E+01 3.308E-18 1.875E+01 1.193E-18 1.875E+01 4.162E-19
1.056E+01
1.104E+01
1.152E+01 1.268E-13 1.200E+01 6.022E-14 1.248E+01 3.108E-14 1.296E+01 1.566E-14 1.345E+01 7.681E-15 1.393E+01 3.661E-15 1.441E+01 1.695E-15 1.489E+01 7.623E-16 1.538E+01 3.327E-16 1.586E+01 1.409E-16 1.634E+01 5.784E-17 1.682E+01 2.301E-17 1.730E+01 8.868E-18 1.779E+01 3.308E-18 1.827E+01 1.193E-18 1.875E+01 4.162E-19
1.200E+01 6.022E-14 1.248E+01 3.108E-14 1.296E+01 1.566E-14 1.345E+01 7.681E-15 1.393E+01 3.661E-15 1.441E+01 1.695E-15 1.489E+01 7.623E-16 1.538E+01 3.327E-16 1.586E+01 1.409E-16 1.634E+01 5.784E-17 1.682E+01 2.301E-17 1.730E+01 8.868E-18 1.779E+01 3.308E-18 1.827E+01 1.193E-18 1.875E+01 4.162E-19
1.248E+01
1.296E+01
1.345E+01 7.681E-15 1.393E+01 3.661E-15 1.441E+01 1.695E-15 1.489E+01 7.623E-16 1.538E+01 3.327E-16 1.586E+01 1.409E-16 1.634E+01 5.784E-17 1.682E+01 2.301E-17 1.730E+01 8.868E-18 1.779E+01 3.308E-18 1.827E+01 1.193E-18 1.875E+01 4.162E-19
1.393E+01 3.661E-15 1.441E+01 1.695E-15 1.489E+01 7.623E-16 1.538E+01 3.327E-16 1.586E+01 1.409E-16 1.634E+01 5.784E-17 1.682E+01 2.301E-17 1.730E+01 8.868E-18 1.779E+01 3.308E-18 1.827E+01 1.193E-18 1.875E+01 4.162E-19
1.441E+01 1.695E-15 1.489E+01 7.623E-16 1.538E+01 3.327E-16 1.586E+01 1.409E-16 1.634E+01 5.784E-17 1.682E+01 2.301E-17 1.730E+01 8.868E-18 1.779E+01 3.308E-18 1.827E+01 1.193E-18 1.875E+01 4.162E-19
1.489E+01 7.623E-16 1.538E+01 3.327E-16 1.586E+01 1.409E-16 1.634E+01 5.784E-17 1.682E+01 2.301E-17 1.730E+01 8.868E-18 1.779E+01 3.308E-18 1.827E+01 1.193E-18 1.875E+01 4.162E-19
1.538E+01 3.327E-16 1.586E+01 1.409E-16 1.634E+01 5.784E-17 1.682E+01 2.301E-17 1.730E+01 8.868E-18 1.779E+01 3.308E-18 1.827E+01 1.193E-18 1.875E+01 4.162E-19
1.586E+01 1.409E-16 1.634E+01 5.784E-17 1.682E+01 2.301E-17 1.730E+01 8.868E-18 1.779E+01 3.308E-18 1.827E+01 1.193E-18 1.875E+01 4.162E-19
1.634E+015.784E-171.682E+012.301E-171.730E+018.868E-181.779E+013.308E-181.827E+011.193E-181.875E+014.162E-19
1.682E+012.301E-171.730E+018.868E-181.779E+013.308E-181.827E+011.193E-181.875E+014.162E-19
1.730E+018.868E-181.779E+013.308E-181.827E+011.193E-181.875E+014.162E-19
1.779E+013.308E-181.827E+011.193E-181.875E+014.162E-19
1.827E+01 1.193E-18 1.875E+01 4.162E-19
1.875E+01 4.162E-19
1.923E+01 1.402E-19
4.0705.04
1.972E+01 4.560E-20
2.020E+01 1.431E-20
2.068E+01 4.325E-21
2.116E+01 1.259E-21
2.165E+01 3.529E-22
2.213E+01 9.507E-23
2.261E+01 2.460E-23
2.309E+01 6.113E-24
2.357E+01 1.457E-24
2.406E+01 3.330E-25
2.454E+01 7.302E-26
2.502E+01 1.540E-26
2.550E+01 3.144E-27
2.599E+01 6.323E-28
2.647E+01 1.302E-28
2.695E+01 2.943E-29
2.743E+01 7.890E-30
2.791E+01 2.552E-30
2.840E+01 9.388E-31
2.888E+01 3.657E-31
2.936E+01 1.443E-31
2.984E+01 5.656E-32
3.033E+01 2.184E-32
3.081E+01 8.285E-33
3.129E+01 3.083E-33

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB SandPoro High

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.019 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.019 m2/a	0.45	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration	
year	m	mg/L	
5	0.000E+00	1.000E+00	
	4.800E-01	2.803E-01	
	9.600E-01	2.962E-02	
	1.440E+00	1.059E-03	
	1.920E+00	1.217E-05	
	2.400E+00	4.368E-08	

2.880E+00	4.885E-11
3.360E+00	1.037E-13
3.840E+00	9.638E-15
4.320E+00	7.843E-16
4.800E+00	4.641E-17
5.280E+00	1.960E-18
5.760E+00	5.783E-20
6.240E+00	1.164E-21
6.720E+00	1.553E-23
7.200E+00	1.336E-25
7.680E+00	7.408E-28
8.160E+00	4.152E-30
8.640E+00	1.022E-31
9.120E+00	4.221E-33
9.600E+00	1.474E-34
1.008E+01	4.135E-36
1.056E+01	9.227E-38
1.104E+01	1.619E-39
1.152E+01	2.210E-41
1.200E+01	2.139E-43
1.248E+01	1.806E-45
1.296E+01	1.766E-47
1.345E+01	3.509E-49
1.393E+01	0.000E+00
1.441E+01	0.000E+00
1.489E+01	0.000E+00
1.538E+01	0.000E+00
1.586E+01	0.000E+00
1.634E+01	0.000E+00
1.682E+01	0.000E+00
1.730E+01	0.000E+00
1.779E+01	0.000E+00
1.827E+01	0.000E+00
1.875E+01	0.000E+00
1.923E+01	0.000E+00
1.972E+01	0.000E+00
2.020E+01	0.000E+00
2.068E+01	0.000E+00
2.116E+01	0.000E+00
2.165E+01	0.000E+00
2.213E+01	0.000E+00
2.261E+01	0.000E+00
2.309E+01	0.000E+00
2.357E+01	0.000E+00
2.406E+01	0.000E+00
2.454E+01	0.000E+00
2.502E+01	0.000E+00
2.550E+01	0.000E+00
2.599E+01	0.000E+00
2.647E+01	0.000E+00
2.695E+01	0.000E+00
2.743E+01	0.000E+00
2.791E+01	0.000E+00
2.791E+01 2.840E+01	0.000E+00 0.000E+00
2.888E+01	0.000E+00
2.936E+01	0.000E+00
2.984E+01	0.000E+00

1	I 0000 04	
	3.033E+01	0.000E+00
	3.081E+01 3.129E+01	0.000E+00 0.000E+00
	3.1296+01	0.000E+00
10	0.000E+00	1.000E+00
	4.800E-01	4.514E-01
	9.600E-01	1.279E-01
	1.440E+00	2.162E-02
	1.920E+00	2.115E-03
	2.400E+00	1.176E-04
	2.880E+00	3.673E-06
	3.360E+00	6.399E-08
	3.840E+00	6.196E-10
	4.320E+00	3.640E-12
	4.800E+00	9.319E-14
	5.280E+00	1.802E-14
	5.760E+00	3.345E-15
	6.240E+00	5.321E-16
	6.720E+00	7.205E-17
	7.200E+00	8.251E-18
	7.680E+00	7.934E-19
	8.160E+00	6.355E-20
	8.640E+00	4.202E-21
	9.120E+00	2.272E-22
	9.600E+00	9.939E-24
	1.008E+01	3.484E-25
	1.056E+01	9.740E-27
	1.104E+01	2.264E-28
	1.152E+01	6.057E-30
	1.200E+01	3.442E-31
	1.248E+01 1.296E+01	3.531E-32 3.631E-33
	1.290E+01 1.345E+01	3.389E-34
	1.343E+01 1.393E+01	2.837E-35
	1.441E+01	2.120E-36
	1.489E+01	1.410E-37
	1.538E+01	8.304E-39
	1.586E+01	4.318E-40
	1.634E+01	1.975E-41
	1.682E+01	7.941E-43
	1.730E+01	2.844E-44
	1.779E+01	9.624E-46
	1.827E+01	3.702E-47
	1.875E+01	2.067E-48
	1.923E+01	1.572E-49
	1.972E+01	1.285E-50
	2.020E+01	0.000E+00
	2.068E+01	0.000E+00
	2.116E+01	0.000E+00
	2.165E+01	0.000E+00
	2.213E+01	0.000E+00
	2.261E+01	0.000E+00
	2.309E+01	0.000E+00
	2.357E+01	0.000E+00
	2.406E+01	0.000E+00
	2.454E+01	0.000E+00
I	2.502E+01	0.000E+00

I	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.886E+01	0.000E+00 0.000E+00
		0.000E+00 0.000E+00
	2.984E+01	
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
15	0.000E+00	1.000E+00
	4.800E-01	5.432E-01
	9.600E-01	2.180E-01
	1.440E+00	6.263E-02
	1.920E+00	1.261E-02
	2.400E+00	1.757E-03
	2.880E+00	1.678E-04
	3.360E+00	1.092E-05
	3.840E+00	4.820E-07
	4.320E+00	1.439E-08
	4.800E+00	2.906E-10
	5.280E+00	4.293E-12
	5.760E+00	1.562E-13
	6.240E+00	3.611E-14
	6.720E+00	9.695E-15
	7.200E+00	9.093E-13 2.366E-15
	7.680E+00	5.201E-16
	8.160E+00	1.027E-16
	8.640E+00	1.814E-17
	9.120E+00	2.857E-18
	9.600E+00	3.994E-19
	1.008E+01	4.933E-20
	1.056E+01	5.357E-21
	1.104E+01	5.089E-22
	1.152E+01	4.202E-23
	1.200E+01	2.744E-24
	1.248E+01	1.655E-25
	1.296E+01	8.583E-27
	1.345E+01	3.929E-28
	1.393E+01	1.855E-29
	1.441E+01	1.389E-30
	1.441E+01 1.489E+01	
		1.865E-31
	1.538E+01	2.992E-32
	1.586E+01	4.681E-33
	1.634E+01	6.863E-34
	1.682E+01	9.364E-35
	1.730E+01	1.186E-35
	1.779E+01	1.391E-36
	1.779E+01 1.827E+01	1.591E-36 1.509E-37
	1.875E+01	1.509E-38
	1.923E+01	1.390E-39
	1.972E+01	1.175E-40
_	2.020E+01	9.118E-42

	2.068E+01	6.499E-43
	2.006E+01	4.295E-44
	2.116E+01 2.165E+01	2.717E-45
	2.213E+01	1.794E-46
	2.261E+01	1.438E-47
	2.309E+01	1.514E-48
	2.357E+01	1.892E-49
	2.406E+01	2.466E-50
	2.454E+01	0.000E+00
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
		0.000E+00
	2.695E+01	
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	J. 129L 101	0.000L100
20	0.000E+00	1.000E+00
	4.800E-01	6.021E-01
	9.600E-01	2.900E-01
	1.440E+00	1.093E-01
	1.920E+00	3.172E-02
	2.400E+00	7.017E-03
	2.880E+00	1.174E-03
	3.360E+00	1.479E-04
	3.840E+00	1.397E-05
	4.320E+00	9.858E-07
	4.800E+00	5.191E-08
	5.280E+00	2.037E-09
	5.760E+00	6.011E-11
	6.240E+00	1.582E-12
	6.720E+00	1.317E-13
	7.200E+00	3.914E-14
	7.680E+00	1.266E-14
	8.160E+00	3.820E-15
	8.640E+00	1.067E-15
	9.120E+00	2.751E-16
	9.600E+00	6.535E-17
	1.008E+01	1.427E-17
	1.000⊑+01	1.721 = 11
	1.056E+01	2.858E-18
	1.056E+01	2.858E-18
	1.056E+01 1.104E+01	2.858E-18 5.232E-19
	1.056E+01 1.104E+01 1.152E+01	2.858E-18 5.232E-19 8.719E-20
	1.056E+01 1.104E+01 1.152E+01 1.200E+01	2.858E-18 5.232E-19 8.719E-20 1.210E-20
	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01	2.858E-18 5.232E-19 8.719E-20 1.210E-20 1.638E-21
	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01	2.858E-18 5.232E-19 8.719E-20 1.210E-20 1.638E-21 1.998E-22
	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	2.858E-18 5.232E-19 8.719E-20 1.210E-20 1.638E-21 1.998E-22 2.190E-23
	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01	2.858E-18 5.232E-19 8.719E-20 1.210E-20 1.638E-21 1.998E-22
	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	2.858E-18 5.232E-19 8.719E-20 1.210E-20 1.638E-21 1.998E-22 2.190E-23
	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01	2.858E-18 5.232E-19 8.719E-20 1.210E-20 1.638E-21 1.998E-22 2.190E-23 2.148E-24
	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01	2.858E-18 5.232E-19 8.719E-20 1.210E-20 1.638E-21 1.998E-22 2.190E-23 2.148E-24 1.879E-25

1	1.586E+01	7.086E-29
	1.634E+01	5.886E-30
	1.682E+01	7.886E-31
	1.730E+01	1.501E-31
	1.779E+01	3.100E-32
	1.827E+01	6.247E-33
	1.875E+01	1.200E-33
	1.923E+01	2.184E-34
	1.972E+01	3.761E-35
	2.020E+01	6.121E-36
	2.068E+01	9.401E-37
	2.116E+01	1.361E-37
	2.165E+01	1.853E-38
	2.213E+01	2.372E-39
	2.261E+01	2.849E-40
	2.309E+01	3.208E-41
	2.357E+01	3.387E-42
	2.406E+01	3.361E-43
	2.454E+01	3.165E-44
	2.502E+01	2.904E-45
	2.550E+01	
		2.762E-46
	2.599E+01	3.009E-47
	2.647E+01	4.033E-48
	2.695E+01	6.392E-49
	2.743E+01	1.090E-49
	2.791E+01	1.868E-50
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.0002.01	0.000⊑∶00
	2 084 ⊑ ± 0.1	0.000=+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.033E+01 3.081E+01	0.000E+00 0.000E+00
	3.033E+01	0.000E+00
25	3.033E+01 3.081E+01 3.129E+01	0.000E+00 0.000E+00 0.000E+00
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00	0.000E+00 0.000E+00 0.000E+00
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.439E-01
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	0.000E+00 0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.720E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00 8.160E+00 8.640E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00 8.160E+00 8.640E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.360E+00 4.320E+00 4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14 4.118E-15
25	3.033E+01 3.081E+01 3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00	0.000E+00 0.000E+00 1.000E+00 6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14 4.118E-15 1.326E-15

1	1.104E+01	3.005E-17
	1.152E+01	7.402E-18
	1.200E+01	1.565E-18
	1.248E+01	3.312E-19
	1.296E+01	6.501E-20
	1.345E+01	1.181E-20
	1.343E+01 1.393E+01	1.181E-20 1.979E-21
	1.393E+01 1.441E+01	
		3.053E-22
	1.489E+01	4.326E-23
	1.538E+01	5.612E-24
	1.586E+01	6.650E-25
	1.634E+01	7.189E-26
	1.682E+01	7.108E-27
	1.730E+01	6.542E-28
	1.779E+01	6.001E-29
	1.827E+01	6.600E-30
	1.875E+01	1.072E-30
	1.923E+01	2.372E-31
	1.972E+01	5.781E-32
	2.020E+01	1.402E-32
	2.068E+01	3.284E-33
	2.116E+01	7.382E-34
	2.165E+01	1.589E-34
	2.213E+01	3.271E-35
	2.261E+01	6.435E-36
	2.309E+01	1.208E-36
	2.357E+01	2.164E-37
	2.406E+01	3.692E-38
	2.454E+01	5.996E-39
	2.502E+01	9.257E-40
	2.550E+01	1.358E-40
	2.599E+01	1.891E-41
	2.647E+01	2.502E-42
	2.695E+01	3.153E-43
	2.095E+01 2.743E+01	3.815E-44
	2.743E+01 2.791E+01	4.518E-45
	2.840E+01	5.462E-46
	2.888E+01	7.226E-47
	2.936E+01	1.118E-47
	2.984E+01	2.030E-48
	3.033E+01	4.070E-49
	3.081E+01	8.443E-50
	3.129E+01	1.744E-50
	2 2225 22	4 0005 00
30	0.000E+00	1.000E+00
	4.800E-01	6.756E-01
	9.600E-01	3.946E-01
	1.440E+00	1.966E-01
	1.920E+00	8.274E-02
	2.400E+00	2.920E-02
	2.880E+00	8.592E-03
	3.360E+00	2.100E-03
	3.840E+00	4.250E-04
	4.320E+00	7.107E-05
	4.800E+00	9.800E-06
	5.280E+00	1.113E-06
	5.760E+00	1.039E-07
1		,

6.240E+00 7.979E-09 6.240E+10 7.200E+00 7.200E+00 5.041E+10 7.200E+00 2.655E+11 7.800E+00 1.409E+12 8.160E+00 1.774E+13 8.440E+00 6.128E+14 9.800E+00 9.733E+15 1.000E+01 3.628E+15 1.000E+01 1.204E+15 1.104E+01 1.306E+01 1.204E+15 1.104E+01 1.306E+01 1.406E+01 1.536E+01 1.406E+01 1.536E+01 1.406E+01 1.536E+01 1.406E+01 1.536E+01 1.406E+01 1.536E+01 1.206E+01 1.536E+01 1.206E+01 1.536E+01 1.206E+01 1.536E+01 1.206E+01 1.536E+01 1.206E+01 1.536E+01 1.206E+01 1.506E			
6.720E+00		6.240E+00	7.979E-09
7.200E+00			
7,680E+00 1.409E-12 8 160E+00 5.1774E-13 8 640E+00 6.128E-14 9 120E+00 2.484E-14 9 600E+00 9.73SE-15 1.008E+01 3.628E-15 1.008E+01 1.284E-15 1.104E+01 4.307E-16 1.152E+01 3.765E-17 1.248E+01 1.361E-16 1.200E+01 3.765E-17 1.248E+01 1.838E-19 1.393E+01 1.838E-19 1.393E+01 1.838E-19 1.441E+01 3.598E-20 1.488E+01 1.426E-21 1.536E-01 1.426E-21 1.536E-01 1.426E-21 1.536E-01 4.282E-23 1.682E-01 9.53SE-20 1.779E-01 1.296E-21 1.586E-01 1.2561E-22 1.586E-01 1.2561E-22 1.586E-01 1.2561E-22 1.586E-01 1.2561E-22 1.586E-01 1.2561E-22 1.586E-01 1.2561E-21 1.596E-01 1.2561E-21 1.596E-01 1.2561E-21 1.596E-01 1.2561E-21 1.596E-01 1.2561E-22 1.596E-01 1.2561E-22 1.596E-01 1.2561E-22 1.596E-01 1.2561E-23 1.2561E-21 1.596E-26 1.2561E-21 1.596E-26 1.2561E-21 1.596E-26 1.2561E-21 1.596E-26 1.2561E-21 1.596E-26 1.2561E-21 1.596E-26 1.2561E-21 1.596E-26 1.2561E-21 1.596E-30 1.266E-31 1.266E-31 1.216E-01 1.296E-30 1.216E-01 1.296E-31 1.216E-01 1.296E-31 1.216E-01 1.296E-31 1.216E-01 1.296E-31 1.2561E-			
8.160E+00			
8.640E+00 6.128E-14 9.120E+00 2.484E-14 9.600E+00 9.73SE-15 1.008E+01 3.628E-15 1.056E+01 1.284E-15 1.104E+01 4.307E-16 1.104E-01 4.307E-16 1.120E+01 3.765E-17 1.246E+01 1.057E-17 1.296E+01 2.801E-18 1.345E+01 6.883E-19 1.349E+01 1.636E-19 1.341E-01 3.598E-20 1.489E+01 7.409E-21 1.538E+01 1.426E-21 1.538E+01 4.282E-23 1.634E+01 4.282E-23 1.634E+01 9.583E-25 1.779E+01 1.279E-25 1.827E+01 1.582E-26 1.875E+01 1.582E-26 1.875E+01 1.827E-01 1.875E+01 1.827E-01 1.875E+01 1.827E-01 1.875E+01 1.827E-01 1.875E+01 1.828E-29 2.020E+01 2.086E-31 2.166E+01 5.705E-32 2.213E+01 1.566E-31 2.215E+01 1.567E-32 2.215E+01 1.579E-33 2.357E+01 2.686E-34 2.406E+01 4.184E-35 2.502E+01 1.48E-35 2.502E+01 1.48E-36 2.502E+01 1.579E-32 2.215E+01 1.579E-33 2.357E+01 2.686E-34 2.406E+01 1.48E-35 2.502E+01 1.48E-36 2.502E+01 1.49E-46 3.50E-40 1.49E-46 3.50E-40 1.49E-46 3.50E-40 1.49E-46 3.50E-40 1.49E-46 3.50E-40 1.47E-44 3.08E-41 1.47E-44 3.08E-41 1.47E-44 3.08E-41 1.47E-44 3.08E-41 1.47E-44 3.08E-40 1.470E-46			
9.120E+00 9.600E+00 9.600E+00 1.008E+01 1.008E+01 1.056E+01 1.1056E+01 1.1056E+01 1.1056E+01 1.1050E+01 1.152E+01 1.152E+01 1.152E+01 1.248E+01 1.25E+01 1.248E+01 1.25E+01 1.248E+01 1.25E+01 1.349E+01 1.359E+01 1.393E+01 1.393E+01 1.393E+01 1.393E+01 1.3598E-01 1.441E+01 1.538E+01 2.438E+01 2.438E+01 2.438E-29 2.243E+01 2.258E-31 2.261E+01 2.358E-31 2.261E+01 2.358E-31 2.261E+01 2.358E-31 2.261E+01 2.358E-31 2.261E+01 2.358E-31 2.262E+01 2.358E-01 2.358E-01 2.468E-01 2.458E-01 2.550E+01 2.550E+01 2.588E+01 2.588E+01 2.588E+01 2.888E+01 2.888E+01 2.888E+01 2.888E+01 2.988E+01 2.988E+01 2.988E+01 2.988E+01 2.988E+01 2.988E+01 3.033E+01 3.033E+01 3.033E+01 3.03E+01 3.03E+01 3.03E+01 3.03E+01 3.03E+01 3.03E+01 3.03E+01 3.03E+01 3.03E+01 3.03E+01 3.00E+00 4.800E-01 7.00EE-01			
9.600E+00 1.008E+01 1.056E+01 1.056E+01 1.056E+01 1.056E+01 1.104E+01 1.104E+01 1.152E+01 1.104E+01 1.200E+01 1.200E+01 1.200E+01 1.200E+01 1.200E+01 1.289E-16 1.200E+01 1.289E-17 1.296E+01 2.801E-18 1.345E+01 2.801E-18 1.345E+01 1.393E+01 1.393E+01 1.436E-01 1.458E-01 1.538E+01 1.538E-25 1.779E+01 1.279E-25 1.877E+01 1.279E-25 1.875E+01 1.832E-27 1.923E+01 2.048E-28 1.972E+01 2.048E-28 1.972E+01 2.058E-31 2.16E+01 2.058E-31 2.215E+01 1.567E-32 2.261E+01 4.184E-33 2.309E+01 2.2550E+01 2.2550E+01 2.550E+01 2.550E+01 2.550E+01 2.550E+01 2.550E+01 2.550E+01 2.538E-40 2.743E+01 2.743E+01 2.848E-41 2.938E+01 2.743E+01 2.848E-41 2.938E+01 3.033E+01 3.033E+01 3.033E+01 3.033E+01 3.035E+01 3.035E-01 3.000E-00 4.800E-01 4.800E-01			
1.008E+01 1.056E+01 1.056E+01 1.056E+01 1.104E+01 1.150E+01 1.150E+01 1.20E-01 1.20E+01 1.20E			
1.056E+01 1.104E+01 1.104E+01 1.152E+01 1.152E+01 1.152E+01 1.206E+01 1.206E+01 1.206E+01 1.296E+01 1.296E+01 1.296E+01 1.393E+01 1.393E+01 1.434E+01 1.436E+01 1.436E+01 1.436E+01 1.436E+01 1.436E+01 1.436E+01 1.436E+01 1.536E+01 1.536E+01 1.536E+01 1.536E+01 1.536E+01 1.536E+01 1.536E+01 1.536E+01 1.536E+01 1.730E+01 1.730E+01 1.730E+01 1.730E+01 1.279E+25 1.877E+01 1.293E+01 1.923E+01 1.922E+01 2.020E+01 2.068E+01 2.165E			
1.104E+01 1.152E+01 1.152E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.20E+01 1.30E+01 1.34SE+01 1.34SE+01 1.34SE+01 1.358E+01 1.42E-21 1.58E+01 1.58E+01 1.58E+01 1.58E+01 1.58E+01 1.58E+01 1.58E+01 1.58E+01 1.58E+01 1.58E+01 1.779E+01 1.279E-25 1.827E+01 1.87SE+01 1.87SE+01 1.87SE+01 1.87SE+01 1.87SE+01 1.82E-27 1.92SE+01 1.92SE+01 2.048E-28 1.972E+01 2.048E-28 2.020E+01 2.05BE-01 2.16E+01 2.16SE+01 2.16SE+01 2.16SE+01 2.261E+01 2.261E+01 2.357E+01 2.261E+01 2.357E+01 2.261E+01 2.44BE-33 2.30FE-01 2.261E+01 2.44BE-33 2.30FE-01 3.30FE-36 2.50E+01 3.30FE-36 2.50E+01 3.30FE-32 2.50E+01 3.30FE-36 2.50E+01 2.59SE+01 2.5			
1.152E+01			
1.200E+01			
1.248E+01 1.296E+01 1.296E+01 1.345E+01 1.345E+01 1.339E+01 1.339E+01 1.481E+01 1.441E+01 1.438E+01 1.438E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.538E+01 1.632E+01 1.632E+01 1.632E+01 1.632E+01 1.632E+01 1.532E-26 1.779E+01 1.79E+01 1.87E+01 1.87E+01 1.832E-27 1.932E+01 1.932E+01 2.048E-28 1.972E+01 2.048E-28 1.972E+01 2.058E-30 2.068E+01 2.168E+01 2.168E+01 2.168E+01 2.1587E-32 2.213E+01 1.1079E-33 2.357E+01 2.266E-34 2.406E+01 2.436E-32 2.261E+01 3.309E+01 2.436E-34 2.406E+01 3.41E-35 2.454E+01 3.307E-36 2.599E+01 2.688E-31 2.599E+01 2.688E-34 2.406E+01 2.468E-34 2.406E+01 2.468E-34 2.406E+01 2.468E-34 2.406E+01 2.846E-34 2.406E+01 2.840E-31 2.599E+01 2.688E-34 2.695E+01 2.695E-30 2.743E+01 2.840E-41 3.031E+01 3.033E+01 3.129E+01 3.144E-43 3.031E+01 3.144E-43 3.031E+01 3.144E-43 3.031E+01 3.144CE-44 3.081E-40 3.129E-40 3.144CE-44 3.081E-40 3.129E-40 3.144CE-44 3.081E-40 3.129E-40 3.144CE-44 3.081E-40 3.129E-40 3.144CE-44 3.081E-40 3.144CE-44 3.081E-40 3.144CE-44 3.081E-40 3.144CE-44 3.081E-40 3.144CE-44 3.081E-40 3.144CE-44 3.081E-40 3.144CE-44 3.081E-40 3.144CE-44 3.081E-40 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-44 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144CE-46 3.1490E-01 3.144C-46 3.1490E-01 3.144C-46 3.1490E-01 3.144C-46 3.1490E-01 3.1490E-01			
1.296E+01		1.200E+01	3.765E-17
1.345E+01		1.248E+01	1.057E-17
1.393E+01		1.296E+01	2.801E-18
1.393E+01		1.345E+01	6.983E-19
1.441E+01			
1.489E+01 7.409E-21 1.538E+01 1.426E-21 1.538E+01 1.426E-21 1.588E+01 2.561E-22 1.634E+01 4.282E-23 1.682E+01 6.652E-24 1.730E+01 1.279E-25 1.779E+01 1.279E-25 1.827E+01 1.582E-26 1.875E+01 1.832E-27 1.923E+01 2.048E-28 1.972E+01 3.695E-30 2.068E+01 7.860E-31 2.16E+01 2.058E-31 2.16E+01 5.705E-32 2.213E+01 4.184E-33 2.309E+01 1.079E-33 2.357E+01 4.184E-35 2.454E+01 1.488E-35 2.454E+01 1.488E-35 2.502E+01 7.069E-37 2.599E+01 7.069E-37 2.647E+01 2.846E-41 2.888E+01 2.888E+01 2.888E+01 2.984E+01 1.709E-40 2.846E-41 3.031E+01 2.984E+01 1.2984E-01 1.2984E-01 1.2984E-01 1.2846E-01 2.846E-01 4.539E-42 2.936E+01 5.420E-39 2.743E+01 2.846E-41 4.539E-42 2.936E+01 6.946E-43 3.033E+01 1.024E-43 3.033E+01 1.472E-44 3.081E+01 2.109E-45 3.129E+01 2.109E-45 3.129E+01 1.420E-40 3.04E-46 3.129E+01 3.144E-46 3.000E+00 4.800E-01 1.000E+00 4.800E-01 1.000E+00 4.800E-01 1.000E+00 4.800E-01 1.000E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 4.800E-01 5.00E+00 5.00E+			
1.538E+01		=	
1.586E+01			
1.634E+01			
1.682E+01			
1.730E+01 9.583E-25 1.779E+01 1.279E-25 1.827E+01 1.582E-26 1.875E+01 1.832E-27 1.923E+01 2.048E-28 1.972E+01 2.436E-29 2.020E+01 3.695E-30 2.068E+01 7.860E-31 2.116E+01 2.058E-31 2.165E+01 5.705E-32 2.213E+01 1.567E-32 2.213E+01 1.567E-32 2.261E+01 4.184E-33 2.309E+01 1.079E-33 2.357E+01 2.686E-34 2.406E+01 6.441E-35 2.454E+01 1.488E-35 2.502E+01 3.307E-36 2.550E+01 7.069E-37 2.599E+01 1.452E-37 2.647E+01 2.886E-38 2.695E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 2.846E-41 2.888E+01 2.846E-41 2.936E+01 6.946E-43 3.033E+01 1.024E-43 3.033E+01 1.024E-43 3.033E+01 1.024E-43 3.033E+01 1.024E-43 3.033E+01 1.024E-43 3.031E+01 2.100E+00 4.800E-01 7.006E-01			
1.779E+01 1.875E+01 1.875E+01 1.832E-27 1.923E+01 2.048E-28 1.972E+01 2.048E-28 1.972E+01 2.068E+01 2.068E+01 2.166E+01 2.166E+01 2.166E+01 2.167E-32 2.213E+01 2.261E+01 2.309E+01 2.309E+01 2.309E+01 2.458E-33 2.309E+01 2.454E+01 2.458E-35 2.250E+01 2.550E+01 2.599E+01 2.647E+01 2.864E-38 2.695E+01 2.745E+01 2.846E-41 2.888E+01 2.888E+01 2.984E+01 3.033E+01 3.033E+01 2.984E+01 3.033E+01 2.984E+01 3.033E+01 3.033E+01 3.033E+01 3.033E+01 3.033E+01 3.033E+01 3.033E+01 3.033E+01 3.033E+01 3.033E+01 3.033E+01 3.034E-04 3.031E+04 3.031E+04 3.129E+01 3.100E+00 4.800E-01 1.000E+00 4.800E-01 1.000E+00 4.800E-01 1.000E+00 4.800E-01			
1.827E+01			
1.875E+01			
1.923E+01			
1.972E+01 2.436E-29 2.020E+01 3.695E-30 2.068E+01 7.860E-31 2.116E+01 2.058E-31 2.165E+01 5.705E-32 2.213E+01 1.567E-32 2.2261E+01 4.184E-33 2.309E+01 1.079E-33 2.357E+01 2.686E-34 2.406E+01 6.441E-35 2.454E+01 1.488E-35 2.502E+01 3.307E-36 2.550E+01 7.069E-37 2.599E+01 1.452E-37 2.647E+01 2.864E-38 2.695E+01 2.864E-38 2.695E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 2.846E-41 2.888E+01 4.539E-42 2.936E+01 6.946E-43 3.033E+01 1.472E-44 3.031E+01 3.144E-46			
2.020E+01 3.695E-30 2.068E+01 7.860E-31 2.116E+01 2.058E-31 2.116E+01 5.705E-32 2.213E+01 1.567E-32 2.2213E+01 4.184E-33 2.309E+01 4.184E-33 2.309E+01 5.765E-32 2.406E+01 5.765E-32 2.454E+01 5.686E-34 2.406E+01 5.426E-36 2.550E+01 7.069E-37 2.550E+01 7.069E-37 2.599E+01 1.452E-37 2.647E+01 2.864E-38 2.695E+01 9.832E-40 2.791E+01 9.832E-40 2.791E+01 2.840E-41 2.888E+01 4.539E-42 2.936E+01 5.420E-33 2.984E+01 1.024E-43 3.033E+01 3.033E+01 1.024E-43 3.081E+01 3.129E+01 3.144E-46			
2.068E+01 7.860E-31 2.116E+01 2.058E-31 2.165E+01 5.705E-32 2.213E+01 1.567E-32 2.261E+01 4.184E-33 2.309E+01 1.079E-33 2.357E+01 2.686E-34 2.406E+01 6.441E-35 2.454E+01 1.488E-35 2.502E+01 3.307E-36 2.550E+01 7.069E-37 2.599E+01 1.452E-37 2.647E+01 2.864E-38 2.695E+01 5.420E-39 2.743E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 2.846E-41 2.888E+01 4.539E-42 2.936E+01 5.42E-3 3.033E+01 1.024E-43 3.033E+01 1.024E-43 3.031E+01 2.109E-45 3.129E+01 3.144E-46			
2.116E+01			
2.165E+01 5.705E-32 2.213E+01 1.567E-32 2.261E+01 4.184E-33 2.309E+01 1.079E-33 2.357E+01 2.686E-34 2.406E+01 6.441E-35 2.454E+01 3.307E-36 2.550E+01 7.069E-37 2.599E+01 1.452E-37 2.647E+01 2.864E-38 2.695E+01 9.832E-40 2.743E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 9.832E-40 2.791E+01 1.709E-40 2.846E-41 2.888E+01 2.846E-41 2.936E+01 6.946E-43 3.033E+01 1.024E-43 3.033E+01 3.144E-46			
2.213E+01		2.116E+01	2.058E-31
2.261E+01		2.165E+01	5.705E-32
2.309E+01		2.213E+01	1.567E-32
2.309E+01		2.261E+01	4.184E-33
2.357E+01			1.079E-33
2.406E+01 6.441E-35 2.454E+01 1.488E-35 2.502E+01 3.307E-36 2.550E+01 7.069E-37 2.599E+01 1.452E-37 2.647E+01 2.864E-38 2.695E+01 5.420E-39 2.743E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 2.846E-41 2.888E+01 4.539E-42 2.936E+01 6.946E-43 2.936E+01 1.024E-43 3.033E+01 3.033E+01 3.144E-46 35 0.000E+00 1.000E+00 4.800E-01 7.006E-01			
2.454E+01			
2.502E+01 3.307E-36 2.550E+01 7.069E-37 2.599E+01 1.452E-37 2.647E+01 2.864E-38 2.695E+01 5.420E-39 2.743E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 2.846E-41 2.888E+01 4.539E-42 2.936E+01 6.946E-43 2.984E+01 1.024E-43 3.033E+01 1.472E-44 3.081E+01 2.109E-45 3.129E+01 3.144E-46			
2.550E+01 7.069E-37 2.599E+01 1.452E-37 2.647E+01 2.864E-38 2.695E+01 5.420E-39 2.743E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 2.846E-41 2.888E+01 4.539E-42 2.936E+01 6.946E-43 2.984E+01 1.024E-43 3.033E+01 1.472E-44 3.081E+01 2.109E-45 3.129E+01 3.144E-46			
2.599E+01			
2.647E+01 2.864E-38 2.695E+01 5.420E-39 2.743E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 2.840E+01 2.888E+01 4.539E-42 2.936E+01 6.946E-43 2.984E+01 1.024E-43 3.033E+01 1.472E-44 3.081E+01 3.129E+01 3.144E-46 35 0.000E+00 1.000E+00 7.006E-01			
2.695E+01 5.420E-39 2.743E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 2.846E-41 4.539E-42 2.936E+01 6.946E-43 2.984E+01 1.024E-43 3.033E+01 1.472E-44 3.081E+01 2.109E-45 3.129E+01 3.144E-46			
2.743E+01 9.832E-40 2.791E+01 1.709E-40 2.840E+01 2.846E-41 2.888E+01 4.539E-42 2.936E+01 6.946E-43 2.984E+01 1.024E-43 3.033E+01 1.472E-44 3.081E+01 2.109E-45 3.129E+01 3.144E-46			
2.791E+01			
2.840E+01			
2.888E+01			
2.936E+01 6.946E-43 2.984E+01 1.024E-43 3.033E+01 1.472E-44 3.081E+01 2.109E-45 3.129E+01 3.144E-46 35 0.000E+00 1.000E+00 4.800E-01 7.006E-01			
2.984E+01			
3.033E+01 1.472E-44 3.081E+01 2.109E-45 3.129E+01 3.144E-46 35 0.000E+00 1.000E+00 4.800E-01 7.006E-01			
3.081E+01 2.109E-45 3.129E+01 3.144E-46 3.000E+00 1.000E+00 4.800E-01 7.006E-01			
3.129E+01 3.144E-46 0.000E+00 1.000E+00 4.800E-01 7.006E-01			
35 0.000E+00 1.000E+00 4.800E-01 7.006E-01		3.081E+01	2.109E-45
4.800E-01 7.006E-01		3.129E+01	3.144E-46
4.800E-01 7.006E-01	35	0.000E+00	1 0005+00
9.000E-01 4.33/E-01			
	I	9.000⊏-01	4.33 <i>1</i> ⊑ - 0 l

1.440E+00	2.346E-01
1.920E+00	1.100E-01
2.400E+00	4.443E-02
2.880E+00	1.538E-02
3.360E+00	4.547E-03
3.840E+00	1.145E-03
4.320E+00	2.451E-04
4.800E+00	4.452E-05
5.280E+00	6.852E-06
5.760E+00	8.927E-07
6.240E+00	9.837E-08
6.720E+00	9.162E-09
7.200E+00	7.219E-10
7.680E+00	4.860E-11
8.160E+00	3.069E-12
8.640E+00	3.171E-13
9.120E+00	9.445E-14
9.600E+00	4.044E-14
9.600E+00 1.008E+01	
	1.740E-14
1.056E+01	7.192E-15
1.104E+01	2.844E-15
1.152E+01	1.067E-15
1.200E+01	3.560E-16
1.248E+01	1.216E-16
1.296E+01	3.957E-17
1.345E+01	1.226E-17
1.393E+01	3.612E-18
1.441E+01	1.011E-18
1.489E+01	2.683E-19
1.538E+01	6.746E-20
1.586E+01	1.604E-20
1.634E+01	3.604E-21
1.682E+01	7.634E-22
1.730E+01	1.523E-22
1.779E+01	2.855E-23
1.827E+01	5.024E-24
1.875E+01	8.285E-25
1.923E+01	1.279E-25
1.972E+01	1.852E-26
2.020E+01	2.530E-27
2.068E+01	3.337E-28
2.116E+01	4.540E-29
2.165E+01	7.290E-30
2.213E+01	1.562E-30
2.261E+01	4.252E-31
2.309E+01	1.281E-31
2.357E+01	3.915E-32
2.406E+01	1.177E-32
2.454E+01	3.446E-33
2.434E101 2.502E+01	9.790E-34
2.502E+01 2.550E+01	2.697E-34
2.599E+01	7.195E-35
2.647E+01	1.859E-35
2.695E+01	4.648E-36
2.743E+01	1.124E-36
2.791E+01	2.627E-37
2.840E+01	5.931E-38

	2.888E+01	1.293E-38
	2.936E+01	2.718E-39
	2.984E+01	5.512E-40
	3.033E+01	1.077E-40
	3.081E+01	2.029E-41
	3.129E+01	3.684E-42
40	0.000E+00	1.000E+00
	4.800E-01	7.210E-01
	9.600E-01 1.440E+00	4.668E-01 2.689E-01
	1.920E+00	1.369E-01
	2.400E+00	6.120E-02
	2.880E+00	2.395E-02
	3.360E+00	8.170E-03
	3.840E+00	2.425E-03
	4.320E+00	6.249E-04
	4.800E+00	1.396E-04
	5.280E+00	2.699E-05
	5.760E+00	4.514E-06
	6.240E+00	6.524E-07
	6.720E+00	8.142E-08
	7.200E+00	8.772E-09
	7.680E+00	8.163E-10
	8.160E+00	6.612E-11
	8.640E+00 9.120E+00	4.961E-12 5.024E-13
	9.120E+00 9.600E+00	1.306E-13
	1.008E+01	5.686E-14
	1.056E+01	2.612E-14
	1.104E+01	1.165E-14
	1.152E+01	4.955E-15
	1.200E+01	1.899E-15
	1.248E+01	7.482E-16
	1.296E+01	2.831E-16
	1.345E+01	1.028E-16
	1.393E+01	3.575E-17
	1.441E+01	1.191E-17
	1.489E+01	3.799E-18
	1.538E+01	1.158E-18 3.370E-19
	1.586E+01 1.634E+01	3.370E-19 9.356E-20
	1.682E+01	9.336E-20 2.475E-20
	1.730E+01	6.228E-21
	1.779E+01	1.490E-21
	1.827E+01	3.383E-22
	1.875E+01	7.281E-23
	1.923E+01	1.483E-23
	1.972E+01	2.858E-24
	2.020E+01	5.199E-25
	2.068E+01	8.931E-26
	2.116E+01	1.451E-26
	2.165E+01	2.244E-27
	2.213E+01 2.261E+01	3.376E-28 5.232E-29
	2.261E+01 2.309E+01	5.232E-29 9.334E-30
	2.357E+01	9.334E-30 2.137E-30
I	Z.337 ETU I	Z.137 E-30

	2.406E+01	6.141E-31
	2.454E+01	1.976E-31
	2.502E+01	6.538E-32
	2.550E+01	2.145E-32
	2.599E+01	6.892E-33
	2.647E+01	2.159E-33
	2.695E+01	6.585E-34
	2.743E+01	1.954E-34
	2.791E+01	5.641E-35
	2.840E+01	1.582E-35
	2.840E+01 2.888E+01	
		4.313E-36
	2.936E+01	1.142E-36
	2.984E+01	2.934E-37
	3.033E+01	7.312E-38
	3.081E+01	1.767E-38
	3.129E+01	4.140E-39
	1	
45	0.000E+00	1.000E+00
	4.800E-01	7.380E-01
	9.600E-01	4.953E-01
	1.440E+00	2.999E-01
	1.920E+00	1.628E-01
	2.400E+00	7.884E-02
	2.880E+00	3.394E-02
	3.360E+00	1.295E-02
	3.840E+00	4.369E-03
	4.320E+00	1.301E-03
	4.800E+00	3.413E-04
	5.280E+00	7.884E-05
	5.760E+00	1.602E-05
	6.240E+00	2.859E-06
	6.720E+00	4.481E-07
	7.200E+00	6.164E-08
	7.680E+00	7.440E-09
	8.160E+00	7.886E-10
	8.640E+00	7.389E-11
	9.120E+00	6.430E-12
	9.600E+00	6.905E-13
	1.008E+01	1.666E-13
	1.056E+01	7.250E-14
	1.104E+01	3.485E-14
	1.152E+01	1.630E-14
	1.200E+01	6.948E-15
	1.248E+01	3.054E-15
	1.296E+01	1.296E-15
	1.345E+01	5.306E-16
	1.343E+01	2.095E-16
	1.393E+01 1.441E+01	
		7.970E-17
	1.489E+01	2.920E-17
	1.538E+01	1.029E-17
	1.586E+01	3.487E-18
	1.634E+01	1.135E-18
	1.682E+01	3.546E-19
	1.730E+01	1.062E-19
	1.730E+01 1.779E+01	3.048E-20
	1.827E+01	8.370E-21
	1.875E+01	2.197E-21

	1.923E+01 1.972E+01 2.020E+01 2.068E+01 2.16E+01 2.165E+01 2.213E+01 2.261E+01 2.309E+01 2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.848E+01 3.033E+01 3.031E+01 3.081E+01 3.129E+01	5.508E-22 1.317E-22 3.001E-23 6.508E-24 1.342E-24 2.629E-25 4.896E-26 8.688E-27 1.482E-27 2.488E-28 4.355E-29 8.790E-30 2.226E-30 6.890E-31 2.363E-31 8.339E-32 2.929E-32 1.011E-32 3.413E-33 1.126E-33 3.624E-34 1.138E-34 3.488E-35 1.042E-35 3.033E-36 8.600E-37
50	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01	1.000E+00 7.526E-01 5.201E-01 3.279E-01 1.875E-01 9.685E-02 4.502E-02 1.879E-02 7.025E-03 2.349E-03 7.012E-04 1.867E-04 4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.325E-13 1.979E-13 8.597E-14 4.230E-14 1.957E-14 9.376E-15 4.355E-15 1.961E-15 8.550E-16

	1.441E+01	3.609E-16
	1.489E+01	1.474E-16
	1.538E+01	5.820E-17
	1.586E+01	2.221E-17
	1.634E+01	8.182E-18
	1.682E+01	2.909E-18
	1.730E+01	9.976E-19
	1.779E+01	3.296E-19
	1.827E+01	1.048E-19
	1.875E+01	3.209E-20
	1.923E+01	9.438E-21
	1.972E+01	2.666E-21
	2.020E+01	7.225E-22
	2.068E+01	1.877E-22
	2.116E+01	4.670E-23
	2.165E+01	1.111E-23
	2.213E+01	2.529E-24
	2.261E+01	5.495E-25
	2.201E+01 2.309E+01	1.141E-25
	2.357E+01	2.263E-26
	2.406E+01	4.312E-27
	2.454E+01	7.980E-28
	2.502E+01	1.479E-28
	2.550E+01	2.921E-29
	2.599E+01	6.745E-30
	2.647E+01	1.922E-30
	2.695E+01	6.466E-31
	2.743E+01	2.359E-31
	2.791E+01	8.801E-32
	2.840E+01	3.266E-32
	2.888E+01	1.193E-32
	2.936E+01	4.276E-33
	2.984E+01	1.500E-33
	3.033E+01	5.152E-34
	3.081E+01	1.730E-34
	3.129E+01	5.682E-35
	0.0005+00	1,000 - 1,00
55	0.000E+00	1.000E+00
	4.800E-01	7.651E-01
	9.600E-01	5.420E-01
	1.440E+00	3.533E-01
	1.920E+00	2.110E-01
	2.400E+00	1.149E-01
	2.880E+00	5.689E-02
	3.360E+00	2.556E-02
		
	3.840E+00	1,039E-02
	3.840E+00 4.320E+00	1.039E-02 3.821E-03
	4.320E+00	3.821E-03
	4.320E+00 4.800E+00	3.821E-03 1.268E-03
	4.320E+00 4.800E+00 5.280E+00	3.821E-03 1.268E-03 3.794E-04
	4.320E+00 4.800E+00 5.280E+00 5.760E+00	3.821E-03 1.268E-03 3.794E-04 1.023E-04
	4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05
	4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06
	4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05
	4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06
	4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00	3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06
	4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00	3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06 1.879E-07
	4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06 1.879E-07 2.981E-08

1	9.600E+00	6.332E-11
	9.600E+00 1.008E+01	6.332E-11 6.967E-12
	1.056E+01	9.009E-13
	1.104E+01	9.009E-13 2.201E-13
	1.152E+01	9.540E-14
	1.200E+01	4.585E-14
	1.248E+01	2.345E-14
	1.296E+01	1.172E-14
	1.345E+01	5.694E-15
	1.393E+01	2.690E-15
	1.441E+01	1.235E-15
	1.489E+01	5.503E-16
	1.538E+01	2.381E-16
	1.586E+01	9.991E-17
	1.634E+01	4.066E-17
	1.682E+01	1.603E-17
	1.730E+01	6.124E-18
	1.779E+01	2.264E-18
	1.827E+01	8.096E-19
	1.875E+01	2.799E-19
	1.923E+01	9.346E-20
	1.972E+01	3.013E-20
	2.020E+01	9.368E-21
	2.068E+01	2.807E-21
	2.116E+01	8.103E-22
	2.165E+01 2.213E+01	2.250E-22 6.009E-23
	2.213E+01 2.261E+01	1.542E-23
	2.309E+01	3.796E-24
	2.357E+01	8.968E-25
	2.406E+01	2.032E-25
	2.454E+01	4.416E-26
	2.502E+01	9.232E-27
	2.550E+01	1.869E-27
	2.599E+01	3.729E-28
	2.647E+01	7.621E-29
	2.695E+01	1.712E-29
	2.743E+01	4.562E-30
	2.791E+01	1.466E-30
	2.791E+01 2.840E+01	5.355E-31
	2.888E+01	2.069E-31
	2.936E+01	8.094E-32
	2.984E+01	3.145E-32
	3.033E+01	1.204E-32
	3.081E+01	4.526E-33
	3.129E+01	1.670E-33
	3.1232 - 01	52 55

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this computer program. The user accepts full responsibility for assessing the validity and applicability of the results

obtained with this program for any specific case.

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB SandPoro Low

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.019 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.019 m2/a	0.20	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.800E-01	2.803E-01
	9.600E-01	2.962E-02
	1.440E+00	1.059E-03
	1.920E+00	1.217E-05

2.400E+00 2.880E+00 3.80E+00 3.80E+00 3.80E+00 3.80E+00 9.838E-15 4.320E+00 7.843E-16 4.800E+00 7.843E-16 4.800E+00 4.841E-17 5.280E+00 5.780E+00 5.783E-20 6.240E+00 1.194E-21 6.720E+00 1.336E-25 7.80E+00 1.336E-25 7.80E+00 1.336E-25 7.80E+00 1.336E-25 7.80E+00 1.32E-31 9.10E+00 1.02E-31 9.10E+00 1.135E-30 8.640E+00 1.1474E-34 1.008E+01 1.158E-01 1.158E-01 1.158E-01 1.158E-01 1.280E+01 1.280E+01 1.280E+01 1.385E-01 1.000E-00 1.385E-01 1.385E-01 1.000E-00 1.385E-01 1.000E-00 1.385E-01 1.000E-00 1.385E-01 1.000E-00 1.285E-01 1.000E-			
2.880E+00 3.840E+00 9.638E-15 3.840E+00 9.638E-15 4.20DE+00 4.80DE+00 4.841E-17 5.280E+00 5.780E+00 6.240E+00 6.240E+00 1.164E-21 6.720E+00 1.255E-23 7.20DE+00 1.336E-23 7.20DE+00 1.336E-23 7.20DE+00 1.336E-23 7.860DE+00 4.152E-30 8.160E+00 4.152E-31 9.120E+00 4.152E-31 9.120E+00 4.21E-33 9.600DE+00 4.221E-33 9.600DE+00 4.221E-33 1.108E+01 4.135E-36 1.108E+01 1.20E+01 1	1	2.400⊑±00	4 369E 09
3,360E+00 3,360E+00 4,320E+00 4,320E+00 4,320E+00 4,641E+17 5,280E+00 5,780E+00 5,780E+00 6,240E+00 1,164E-21 6,720E+00 1,1336E-21 7,720DE+00 1,336E-25 7,680E+00 7,408E-28 8,160E+00 1,122E-31 9,120E+00 1,122E-31 9,120E+00 1,127E-33 9,120E+00 1,127E-33 9,120E+00 1,127E-33 1,106E+01 1,10			
3.840E+00 9.638E-15 4.800E+00 1.800E+16 4.800E+00 4.841E-17 5.280E+00 1.900E+18 5.760E+00 5.763E-20 6.240E+00 1.164E-21 6.720E+00 1.153SE-23 7.200E+00 1.336E-25 7.680E+00 4.152E-31 9.120E+00 4.152E-31 9.120E+00 4.152E-31 9.120E+00 4.152E-31 9.120E+00 4.121E-33 9.120E+00 4.121E-33 9.120E+00 4.121E-33 1.108E+01 4.135E-36 1.106E+01 4.135E-36 1.106E+01 1.1619E-39 1.152E+01 2.210E-41 1.200E+01 3.094E-43 1.120E+01 3.094E-43 1.226E+01 2.774E-45 1.296E+01 2.775E-47 1.345E+01 1.37			
4.320E+00			
4.800E+00		3.840E+00	9.638E-15
4.800E+00		4.320E+00	7.843E-16
5.280E+00			
5.760E+00 5.783E-20 6.240E+00 1.164E-21 6.720E+00 1.553E-23 7.200E+00 1.336E-25 7.880E+00 7.880E+00 7.488E-28 8.160E+00 4.152E-30 8.160E+00 4.152E-31 9.120E+00 4.22TE-33 9.600E+00 4.22TE-33 9.600E+00 4.22TE-33 9.600E+00 4.135E-36 9.22TE-38 1.108E+01 4.135E-36 9.22TE-38 1.108E+01 1.674E-01 1.619E-39 1.152E+01 2.714E-45 1.200E+01 2.714E-45 1.200E+01 2.775E-47 1.345E+01 2.774E-45 1.393E+01 5.691E-49 1.393E+01 1.674E-50 1.674E			
6.240E+00			
1.553E-23 7.20E+00 1.356E-25 7.680E+00 1.356E-25 7.680E+00 7.408E-28 8.160E+00 4.152E-30 8.640E+00 4.152E-30 8.640E+00 4.122E-31 9.120E+00 4.221E-33 9.600E+00 1.474E-34 1.008E+01 4.135E-36 1.056E+01 1.619E-39 1.152E+01 2.210E-41 1.619E-39 1.152E+01 2.210E-41 1.240E+01 2.774E-45 1.296E+01 2.774E-45 1.296E+01 2.774E-45 1.296E+01 2.757E-47 1.345E-90 1.674E-50 1.441E-01 0.000E+00 1.489E+01 0.000E+00 1.586E+01 0.000E+00 1.586E+01 0.000E+00 1.586E+01 0.000E+00 1.730E+01 0.000E+00 1.730E+01 0.000E+00 1.730E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 2.20E+01 0.000E+00 2.20E+01 0.000E+00 2.20E+01 0.000E+00 2.25E+01			
7.200E+00 7.680E+00 7.680E+00 8.160E+00 7.408E-28 8.160E+00 8.160E+00 1.022E-31 9.120E+00 9.120E+00 1.022E-31 9.600E+00 1.474E-34 1.08E+01 1.08E+01 1.056E+01 1.056E+01 1.152E+01 1.152E+01 1.20E+01 1.20E+01 1.248E+01 1.248E+01 1.398E+01 1.398E+01 1.398E+01 1.441E+01 1.398E+01 1.588E+01 1.588E+01 1.588E+01 1.588E+01 1.588E+01 1.684E+01 1.779E+01 1.730E+01			
7.680E+00			
8.160E+00			1.336E-25
8.640E+00		7.680E+00	7.408E-28
9.120E+00 9.600E+00 1.474E-34 1.008E+01 1.056E+01 1.056E+01 1.152E+01 1.152E+01 1.20E+01 1.20E+01 1.20E+01 1.298E+01 1.393E+01 1.44E+01 1.393E+01 1.489E+01 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.634E+01 0.000E+00 1.730E+01 0.187E+01 0.000E+00 1.875E+01 0.000E+00 1.875E+01 0.000E+00 0.1730E+01 0.000E+00 0.1730E+01 0.000E+00 0.250E+01 0.000E+00 0.550E+01 0.000E+00 0.550E+01 0.000E+00 0.550E+01 0.000E+00 0.550E+01 0.000E+00 0.550E+01 0.000E+00 0.000E+00 0.574SE+01 0.000E+00 0.000E+00 0.574SE+01 0.000E+00 0.000E+00 0.000E+00 0.274SE+01 0.000E+00 0.000E+00 0.274SE+01 0.000E+00 0.000E+00 0.2791E+01 0.000E+00		8.160E+00	4.152E-30
9.120E+00 9.600E+00 1.474E-34 1.008E+01 1.056E+01 1.056E+01 1.152E+01 1.152E+01 1.20E+01 1.20E+01 1.20E+01 1.298E+01 1.393E+01 1.44E+01 1.393E+01 1.489E+01 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.634E+01 0.000E+00 1.730E+01 0.187E+01 0.000E+00 1.875E+01 0.000E+00 1.875E+01 0.000E+00 0.1730E+01 0.000E+00 0.1730E+01 0.000E+00 0.250E+01 0.000E+00 0.550E+01 0.000E+00 0.550E+01 0.000E+00 0.550E+01 0.000E+00 0.550E+01 0.000E+00 0.550E+01 0.000E+00 0.000E+00 0.574SE+01 0.000E+00 0.000E+00 0.574SE+01 0.000E+00 0.000E+00 0.000E+00 0.274SE+01 0.000E+00 0.000E+00 0.274SE+01 0.000E+00 0.000E+00 0.2791E+01 0.000E+00		8.640E+00	1.022E-31
9.600E+00 1.474E-34 1.008E+01 1.056E+01 1.056E+01 1.056E+01 1.104E+01 1.1619E-39 1.1152E+01 1.20DE+01 1.20DE+01 1.20DE+01 1.248E+01 1.248E+01 1.248E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 1.345E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.634E+01 0.000E+00 1.634E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 2.20DE+01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 0.00E+00			
1.008E+01			
1.056E+01			
1.104E+01			
1.152E+01 1.200E+01 3.094E-43 1.248E+01 2.714E-45 1.296E+01 2.75TE-47 1.345E+01 5.691E-49 1.393E+01 1.674E-50 1.441E+01 0.000E+00 1.489E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 0.000E+00 1.634E+01 0.000E+00 1.730E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 0.559E+01 0.000E+00			
1.200E+01 1.248E+01 2.714E-45 1.296E+01 2.757E-47 1.345E+01 5.891E-49 1.393E+01 1.441E+01 0.000E+00 1.489E+01 0.000E+00 1.538E+01 0.000E+00 1.586E+01 0.000E+00 1.634E+01 0.000E+00 1.730E+01 0.000E+00 1.779E+01 0.000E+00 1.875E+01 0.000E+00 1.875E+01 0.000E+00 0.216E+01 0.000E+00 0.2261E+01 0.000E+00 0.2309E+01 0.000E+00 0.2406E+01 0.000E+00 0.2406E+01 0.000E+00 0.2454E+01 0.000E+00 0.2550E+01 0.000E+00 0.2599E+01 0.000E+00 0.2647E+01 0.000E+00 0.2791E+01 0.000E+00			
1.248E+01		1.152E+01	2.210E-41
1.248E+01 2.714E-45 1.296E+01 5.691E-49 1.345E+01 1.674E-50 1.441E+01 0.000E+00 1.488E+01 0.000E+00 1.538E+01 0.000E+00 1.538E+01 0.000E+00 1.586E+01 0.000E+00 1.634E+01 0.000E+00 1.730E+01 0.000E+00 1.739E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.923E+01 0.000E+00 1.923E+01 0.000E+00 2.020E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.235E+01 0.000E+00 2.235F+01 0.000E+00 2.357E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.550E+01 0.000E+00 2.550E+01 0.000E+00 2.647E+01 0.000E+00 2.743E+01 0.000E+00 2.595E+01 0.000E+00 2.595E+01 0.000E+00 2.595E+01 0.000E+00 2.595E+01 0.000E+00 2.595E+01 0.000E+00 2.595E+01 0.000E+00 2.595E+01 0.000E+00 2.595E+01 0.000E+00 2.743E+01 0.000E+00 2.88BE+01 0.000E+00 2.88BE+01 0.000E+00		1.200E+01	3.094E-43
1.296E+01			
1.345E+01 5.691E-49 1.393E+01 1.674E-50 1.441E+01 0.000E+00 1.489E+01 0.000E+00 1.538E+01 0.000E+00 1.586E+01 0.000E+00 1.684E+01 0.000E+00 1.682E+01 0.000E+00 1.730E+01 0.000E+00 1.779E+01 0.000E+00 1.827E+01 0.000E+00 1.827E+01 0.000E+00 1.923E+01 0.000E+00 1.972E+01 0.000E+00 1.972E+01 0.000E+00 2.020E+01 0.000E+00 2.116E+01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 2.213E+01 0.000E+00 2.259E+01 0.000E+00 2.454E+01 0.000E+00 2.599E+01 0.000E+00 2.599E+01 0.000E+00 2.599E+01 0.000E+00 2.599E+01 0.000E+00 2.599E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.599E+01 0.000E+00 2.599E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.647E+01 0.000E+00 2.647E+01 0.000E+00 2.649E+01 0.000E+00 2.649E+01 0.000E+00 2.649E+01 0.000E+00 2.649E+01 0.000E+00 2.649E+01 0.000E+00 2.743E+01 0.000E+00 2.743E+01 0.000E+00 2.743E+01 0.000E+00 2.743E+01 0.000E+00 2.743E+01 0.000E+00 2.743E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.888E+01 0.000E+00 2.888E+01 0.000E+00			
1.393E+01			
1.441E+01			
1.489E+01			
1.538E+01			
1.586E+01			
1.634E+01		1.538E+01	
1.682E+01		1.586E+01	0.000E+00
1.682E+01		1.634E+01	0.000E+00
1.730E+01			
1.779E+01			
1.827E+01			
1.875E+01			
1.923E+01			
1.972E+01 2.020E+01 2.020E+01 2.068E+01 2.068E+01 2.116E+01 2.116E+01 2.165E+01 2.213E+01 2.213E+01 2.239E+01 2.309E+01 2.357E+01 2.406E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.888E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00			
2.020E+01			
2.068E+01		1.972E+01	0.000E+00
2.068E+01		2.020E+01	0.000E+00
2.116E+01			
2.165E+01 0.000E+00 2.213E+01 0.000E+00 2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00			
2.213E+01			
2.261E+01 0.000E+00 2.309E+01 0.000E+00 2.357E+01 0.000E+00 2.406E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00			
2.309E+01			
2.357E+01 0.000E+00 2.406E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00			
2.406E+01 0.000E+00 2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00			
2.454E+01 0.000E+00 2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00			
2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00		2.406E+01	0.000E+00
2.502E+01 0.000E+00 2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00		2.454E+01	0.000E+00
2.550E+01 0.000E+00 2.599E+01 0.000E+00 2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00			
2.599E+01			
2.647E+01 0.000E+00 2.695E+01 0.000E+00 2.743E+01 0.000E+00 2.791E+01 0.000E+00 2.840E+01 0.000E+00 2.888E+01 0.000E+00			
2.695E+01			
2.743E+01			
2.791E+01			
2.840E+01 0.000E+00 2.888E+01 0.000E+00			
2.888E+01 0.000E+00			
2.888E+01 0.000E+00		2.840E+01	0.000E+00
		2.888E+01	0.000E+00
1 1			
	ı		

	2.984E+01 3.033E+01 3.081E+01 3.129E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00
10	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.640E+00 9.120E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.538E+01 1.586E+01 1.634E+01 1.634E+01 1.632E+01 1.779E+01 1.875E+01 1.875E+01 1.923E+01 1.972E+01 2.020E+01 2.166E+01 2.116E+01 2.165E+01 2.213E+01 2.213E+01 2.261E+01 2.239E+01 2.261E+01 2.309E+01 2.357E+01 2.261E+01 2.309E+01 2.357E+01 2.261E+01 2.309E+01 2.357E+01 2.261E+01 2.309E+01 2.357E+01 2.406E+01 2.454E+01	1.000E+00 4.514E-01 1.279E-01 2.162E-02 2.115E-03 1.176E-04 3.673E-06 6.399E-08 6.196E-10 3.640E-12 9.319E-14 1.802E-14 3.345E-15 5.321E-16 7.205E-17 8.251E-18 7.934E-19 6.355E-20 4.202E-21 2.272E-22 9.939E-24 3.484E-25 9.740E-27 2.264E-28 6.072E-30 4.978E-31 5.304E-32 5.665E-33 5.493E-34 4.776E-35 3.708E-36 2.562E-37 1.568E-38 8.470E-40 4.025E-41 1.682E-42 6.258E-44 2.200E-45 8.783E-47 5.088E-48 4.018E-49 3.411E-50 0.000E+00

	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00 0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
	0.1202 0 1	0.0002 - 00
15	0.000E+00	1.000E+00
	4.800E-01	5.432E-01
	9.600E-01	2.180E-01
	9.000E-01 1.440E+00	6.263E-02
	1.920E+00	1.261E-02
	2.400E+00	1.757E-03
	2.880E+00	1.678E-04
	3.360E+00	1.092E-05
	3.840E+00	4.820E-07
	4.320E+00	1.439E-08
	4.800E+00	2.906E-10
	5.280E+00	4.293E-12
	5.760E+00	1.562E-13
	6.240E+00	3.611E-14
	6.720E+00	9.695E-15
	7.200E+00	2.366E-15
	7.680E+00	5.201E-16
	8.160E+00	1.027E-16
	8.640E+00	1.814E-17
	9.120E+00	2.857E-18
	9.600E+00	3.994E-19
	1.008E+01	4.933E-20
	1.056E+01	5.357E-21
		5.089E-22
	1.104E+01	
	1.152E+01	4.209E-23
	1.200E+01	3.969E-24
	1.248E+01	2.487E-25
	1.296E+01	1.340E-26
	1.345E+01	6.371E-28
	1.393E+01	3.123E-29
	1.441E+01	2.426E-30
	1.489E+01	3.383E-31
	1.538E+01	5.634E-32
	1.586E+01	9.156E-33
	1.634E+01	1.394E-33
	1.682E+01	1.976E-34
	1.730E+01	2.600E-35
	1.779E+01	3.169E-36
	1.827E+01	3.571E-37
	1.875E+01	3.712E-38
	1.923E+01	3.551E-39
		3.551E-39 3.121E-40
	1.972E+01	

	2.020E+01	2.516E-41
	2.020E+01 2.068E+01	1.863E-42
	2.116E+01	1.279E-43
	2.165E+01	8.406E-45
	2.213E+01	5.761E-46
	2.261E+01	4.786E-47
	2.309E+01	5.224E-48
	2.357E+01	6.779E-49
	2.406E+01	9.175E-50
	2.454E+01	1.213E-50
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
	2.599E+01	0.000E+00 0.000E+00
	2.647E+01	0.000E+00
	2.695E+01	0.000E+00
	2.743E+01	0.000E+00
	2.791E+01	0.000E+00
	2.840E+01	0.000E+00
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
20	0.000E+00	1.000E+00
	4.800E-01	6.021E-01
	9.600E-01	2.900E-01
	1.440E+00	1.093E-01
	1.920E+00	3.172E-02
	2.400E+00	7.017E-03
		4 4745 00
	2.880E+00	1.174E-03
	3.360E+00	1.479E-04
	3.360E+00 3.840E+00	1.479E-04 1.397E-05
	3.360E+00 3.840E+00 4.320E+00	1.479E-04 1.397E-05 9.858E-07
	3.360E+00 3.840E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08
	3.360E+00 3.840E+00 4.320E+00	1.479E-04 1.397E-05 9.858E-07
	3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.152E+01	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.788E-20
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.152E+01 1.200E+01	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.788E-20 1.750E-20
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.1056E+01 1.152E+01 1.200E+01 1.248E+01	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.788E-20 1.750E-20 2.460E-21
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.788E-20 1.750E-20 2.460E-21 3.117E-22
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.788E-20 1.750E-20 2.460E-21 3.117E-22 3.548E-23
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.788E-20 1.750E-20 2.460E-21 3.117E-22 3.548E-23 3.615E-24
	3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01	1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.788E-20 1.750E-20 2.460E-21 3.117E-22 3.548E-23

	1.538E+01	1.955E-27
	1.586E+01	1.389E-28
	1.634E+01	1.196E-29
	1.682E+01	1.661E-30
	1.730E+01	3.281E-31
	1.779E+01	7.035E-32
	1.827E+01	1.473E-32
	1.875E+01	2.937E-33
	1.923E+01	5.555E-34
	1.972E+01	9.940E-35
	2.020E+01	1.681E-35
	2.068E+01	2.682E-36
	2.116E+01	4.033E-37
	2.165E+01	5.708E-38
	2.213E+01	7.591E-39
	2.261E+01	9.475E-40
	2.309E+01	1.109E-40
	2.357E+01	1.216E-41
		_
	2.406E+01	1.254E-42
	2.454E+01	1.227E-43
	2.502E+01	1.169E-44
	2.550E+01	1.154E-45
	2.599E+01	1.302E-46
	2.647E+01	1.807E-47
	2.695E+01	2.971E-48
	2.743E+01	5.258E-49
	2.791E+01	9.366E-50
	2.840E+01	1.629E-50
	2.888E+01	0.000E+00
	2.936E+01	0.000E+00
	2.984E+01	0.000E+00
	3.033E+01	0.000E+00
	3.081E+01	0.000E+00
	3.129E+01	0.000E+00
0.5		4 0005 00
25	0.000E+00	1.000E+00
	4.800E-01	6.439E-01
	9.600E-01	3.476E-01
	1.440E+00	1.547E-01
	1.920E+00	5.605E-02
	2.400E+00	1.640E-02
	2.880E+00	3.847E-03
	3.360E+00	7.210E-04
	3.840E+00	1.075E-04
	4.320E+00	1.273E-05
	4.800E+00	1.273E-03 1.194E-06
	5.280E+00	8.861E-08
	5.760E+00	5.197E-09
	6.240E+00	2.415E-10
	6.720E+00	9.257E-12
	7.200E+00	4.612E-13
	7.680E+00	9.118E-14
	8.160E+00	3.312E-14
	8.640E+00	1.202E-14
	9.120E+00	4.118E-15
	9.600E+00	1.326E-15
	1.008E+01	4.007E-16
	1.000-01	7.001 L-10

	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.536E+01 1.634E+01 1.682E+01 1.730E+01 1.779E+01 1.875E+01 1.875E+01 1.923E+01 1.972E+01 2.020E+01 2.068E+01 2.16E+01 2.213E+01 2.261E+01	1.135E-16 3.007E-17 7.542E-18 2.263E-18 4.973E-19 1.014E-19 1.912E-20 3.328E-21 5.333E-22 7.849E-23 1.058E-23 1.302E-24 1.462E-25 1.502E-26 1.436E-27 1.367E-28 1.558E-29 2.620E-30 6.011E-31 1.521E-31 3.830E-32 9.322E-33 2.177E-33 4.868E-34 1.041E-34 2.128E-35
	1.586E+01 1.634E+01 1.682E+01 1.730E+01 1.779E+01 1.827E+01 1.875E+01 1.923E+01 1.972E+01 2.020E+01	1.302E-24 1.462E-25 1.502E-26 1.436E-27 1.367E-28 1.558E-29 2.620E-30 6.011E-31 1.521E-31 3.830E-32
	2.116E+01 2.165E+01 2.213E+01 2.261E+01 2.309E+01 2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.550E+01	2.177E-33 4.868E-34 1.041E-34
	2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	1.125E-41 1.473E-42 1.852E-43 2.277E-44 2.855E-45 3.911E-46 6.265E-47 1.178E-47 2.450E-48 5.278E-49 1.133E-49
30	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.000E+00 6.756E-01 3.946E-01 1.966E-01 8.274E-02 2.920E-02 8.592E-03 2.100E-03 4.250E-04 7.107E-05 9.800E-06 1.113E-06

I	5.760E+00	1.039E-07
	6.240E+00	7.979E-09
	6.720E+00	5.041E-10
	7.200E+00	2.665E-11
	7.680E+00	1.409E-12
	8.160E+00	1.774E-13
	8.640E+00	6.128E-14
	9.120E+00	2.484E-14
	9.600E+00	9.733E-15
	1.008E+01	3.628E-15
	1.056E+01	1.284E-15
	1.104E+01	4.318E-16
	1.152E+01	1.405E-16
	1.132E+01 1.200E+01	5.443E-17
	1.248E+01	1.587E-17
	1.296E+01	4.364E-18
	1.345E+01	1.130E-18
	1.393E+01	2.749E-19
	1.441E+01	6.277E-20
	1.489E+01	1.342E-20
	1.538E+01	2.684E-21
	1.586E+01	5.007E-22
	1.634E+01	8.695E-23
	1.682E+01	1.403E-23
	1.730E+01	2.100E-24
	1.779E+01	2.912E-25
	1.827E+01	3.743E-26
	1.875E+01	4.500E-27
	1.923E+01	5.224E-28
	1.972E+01	6.442E-29
	2.020E+01	1.011E-29
	2.068E+01	2.225E-30
	2.116E+01	6.042E-31
	2.165E+01	1.739E-31
	2.213E+01	4.962E-32
	2.261E+01	1.376E-32
	2.309E+01	3.688E-33
	2.357E+01	9.534E-34
	2.406E+01	2.376E-34
	2.454E+01	5.701E-35
	2.502E+01	1.317E-35
	2.550E+01	2.925E-36
	2.599E+01	6.243E-37
	2.647E+01	1.279E-37
	2.695E+01	2.516E-38
	2.743E+01	4.744E-39
	2.743E+01 2.791E+01	4.744E-39 8.569E-40
	2.791E+01 2.840E+01	
		1.483E-40
	2.888E+01	2.457E-41
	2.936E+01	3.908E-42
	2.984E+01	5.988E-43
	3.033E+01	8.937E-44
	3.081E+01	1.329E-44
	3.129E+01	2.052E-45
35	0.000E+00	1.000E+00
	4.800E-01	7.006E-01

9.600E-01	4.337E-01
1.440E+00	2.346E-01
1.920E+00	1.100E-01
2.400E+00	4.443E-02
2.880E+00	1.538E-02
3.360E+00	4.547E-03
3.840E+00	1.145E-03
4.320E+00 4.800E+00	2.451E-04 4.452E-05
5.280E+00	6.852E-06
5.760E+00	8.927E-07
6.240E+00	9.837E-08
6.720E+00	9.162E-09
7.200E+00	7.219E-10
7.680E+00	4.860E-11
8.160E+00	3.069E-12
8.640E+00	3.171E-13
9.120E+00	9.445E-14
9.600E+00	4.044E-14
1.008E+01	1.740E-14
1.056E+01	7.197E-15
1.104E+01	2.860E-15
1.152E+01	1.118E-15
1.200E+01	5.147E-16
1.248E+01	1.824E-16
1.296E+01	6.163E-17
1.345E+01	1.982E-17
1.393E+01	6.063E-18
1.441E+01	1.761E-18
1.489E+01 1.538E+01	4.855E-19 1.268E-19
1.536E+01 1.586E+01	3.131E-20
1.634E+01	7.305E-21
1.682E+01	1.607E-21
1.730E+01	3.330E-22
1.779E+01	6.486E-23
1.827E+01	1.186E-23
1.875E+01	2.032E-24
1.923E+01	3.259E-25
1.972E+01	4.902E-26
2.020E+01	6.956E-27
2.068E+01	9.526E-28
2.116E+01	1.343E-28
2.165E+01	2.231E-29
2.213E+01	4.940E-30
2.261E+01	1.393E-30
2.309E+01 2.357E+01	4.352E-31 1.382E-31
2.337E+01 2.406E+01	4.316E-32
2.454E+01	1.312E-32
2.502E+01	3.874E-33
2.550E+01	1.109E-33
2.599E+01	3.073E-34
2.647E+01	8.251E-35
2.695E+01	2.144E-35
2.743E+01	5.386E-36
2.791E+01	1.308E-36

	2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	3.069E-37 6.952E-38 1.519E-38 3.201E-39 6.502E-40 1.273E-40 2.401E-41
40	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.160E+00 9.120E+00 9.120E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.538E+01 1.586E+01 1.682E+01 1.682E+01 1.779E+01 1.875E+01 1.875E+01 1.923E+01 1.923E+01 1.972E+01 2.020E+01 2.116E+01 2.116E+01 2.116E+01 2.116E+01	1.000E+00 7.210E-01 4.668E-01 2.689E-01 1.369E-01 6.120E-02 2.395E-02 8.170E-03 2.425E-03 6.249E-04 1.396E-04 2.699E-05 4.514E-06 6.524E-07 8.142E-08 8.772E-09 8.163E-10 6.612E-11 4.961E-12 5.024E-13 1.306E-13 5.687E-14 2.616E-14 1.176E-14 5.269E-15 2.745E-15 1.122E-15 4.406E-16 1.660E-16 5.995E-17 2.074E-17 6.865E-18 2.173E-18 6.566E-19 1.893E-19 5.200E-20 1.359E-20 3.378E-21 7.966E-22 1.781E-22 3.770E-23 7.545E-24 1.426E-24 2.545E-25 4.295E-26 6.900E-27 1.078E-27 1.731E-28

	2.357E+01 2.406E+01 2.454E+01 2.502E+01 2.550E+01 2.599E+01 2.647E+01 2.695E+01 2.743E+01 2.791E+01 2.840E+01 2.888E+01 2.936E+01 2.984E+01 3.033E+01 3.081E+01 3.129E+01	7.545E-30 2.244E-30 7.486E-31 2.572E-31 8.765E-32 2.925E-32 9.520E-33 3.017E-33 9.302E-34 2.790E-34 8.132E-35 2.303E-35 6.335E-36 1.692E-36 4.382E-37 1.101E-37 2.679E-38
45	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.296E+01 1.248E+01 1.296E+01 1.345E+01 1.393E+01 1.441E+01 1.489E+01 1.538E+01 1.538E+01 1.586E+01 1.634E+01 1.682E+01 1.779E+01 1.779E+01 1.827E+01	1.000E+00 7.380E-01 4.953E-01 2.999E-01 1.628E-01 7.884E-02 3.394E-02 1.295E-02 4.369E-03 1.301E-03 3.413E-04 7.884E-05 1.602E-05 2.859E-06 4.481E-07 6.164E-08 7.440E-09 7.886E-10 7.389E-11 6.430E-12 6.905E-13 1.667E-13 7.269E-14 3.536E-14 1.758E-14 1.004E-14 4.578E-15 2.016E-15 8.564E-16 3.509E-16 1.386E-16 5.269E-17 1.928E-17 6.783E-18 2.292E-18 7.437E-19 2.313E-19 6.895E-20 1.966E-20

1	1.875E+01	5.362E-21
	1.923E+01	1.396E-21
	1.972E+01	3.469E-22
	2.020E+01	8.210E-23
	2.068E+01	1.850E-23
	2.116E+01	3.963E-24
	2.165E+01	8.067E-25
	2.213E+01	1.561E-25
	2.261E+01	2.877E-26
	2.309E+01	5.095E-27
	2.357E+01	8.876E-28
	2.406E+01	1.609E-28
	2.454E+01	3.354E-29
	2.502E+01	8.766E-30
	2.550E+01	2.806E-30
	2.599E+01	9.974E-31
	2.647E+01	3.654E-31
	2.695E+01	1.333E-31
	2.743E+01	4.779E-32
	2.791E+01	1.676E-32
	2.840E+01	5.745E-33
	2.888E+01	1.922E-33
	2.936E+01	6.273E-34
	2.984E+01	1.997E-34
	3.033E+01	6.198E-35
	3.081E+01	1.875E-35
	3.129E+01	5.525E-36
	3.129E+01	5.525⊑-30
50	0.000E+00	1.000E+00
	4.800E-01	7.526E-01
	9.600E-01	5.201E-01
	1.440E+00	3.279E-01
	1.920E+00	1.875E-01
	2.400E+00	9.685E-02
	2.880E+00	4.502E-02
	3.360E+00	1.879E-02
	3.840E+00	7.025E-03
	4.320E+00	2.349E-03
	4.800E+00	7.012E-04
	5.280E+00	1.867E-04
	J.ZUUL ' UU	1.007 L-04
I I	E 700E : 00	4 4205 05
	5.760E+00	4.432E-05
	6.240E+00	4.432E-05 9.366E-06
	6.240E+00 6.720E+00	9.366E-06 1.762E-06
	6.240E+00 6.720E+00 7.200E+00	9.366E-06 1.762E-06 2.947E-07
	6.240E+00 6.720E+00 7.200E+00 7.680E+00	9.366E-06 1.762E-06 2.947E-07 4.385E-08
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09
	6.240E+00 6.720E+00 7.200E+00 7.680E+00	9.366E-06 1.762E-06 2.947E-07 4.385E-08
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.328E-13
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.328E-13 1.986E-13
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.328E-13 1.986E-13 8.768E-14
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.328E-13 1.986E-13 8.768E-14 4.623E-14
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.328E-13 1.986E-13 8.768E-14 4.623E-14 2.828E-14
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.328E-13 1.986E-13 8.768E-14 4.623E-14
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.328E-13 1.986E-13 8.768E-14 4.623E-14 2.828E-14
	6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01	9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.328E-13 1.986E-13 8.768E-14 4.623E-14 2.828E-14 1.405E-14

	1.393E+01	1.431E-15
	1.441E+01	6.267E-16
	1.489E+01	2.656E-16
	1.538E+01	1.089E-16
	1.586E+01	4.312E-17
	1.634E+01	1.650E-17
	1.682E+01	6.090E-18
	1.730E+01	2.168E-18
	1.779E+01	7.439E-19
	1.827E+01	2.458E-19
	1.875E+01	7.811E-20
	1.923E+01	2.386E-20
	1.972E+01	7.002E-21
	2.020E+01	1.971E-21
	2.068E+01	5.320E-22
	2.116E+01	1.375E-22
	2.165E+01	3.400E-23
	2.213E+01	8.037E-24
	2.261E+01	1.815E-24
	2.309E+01	3.913E-25
	2.357E+01	
1		8.068E-26
	2.406E+01	1.596E-26
	2.454E+01	3.067E-27
	2.502E+01	5.892E-28
	2.550E+01	1.204E-28
	2.599E+01	2.867E-29
	2.647E+01	8.427E-30
	2.695E+01	2.933E-30
	2.743E+01	1.109E-30
	2.791E+01	4.296E-31
	2.840E+01	1.656E-31
	2.888E+01	6.285E-32
	2.936E+01	2.339E-32
	2.984E+01	8.529E-33
	3.033E+01	3.043E-33
	3.081E+01	1.062E-33
		1.062E-33
	3.081E+01 3.129E+01	
55	3.129E+01	1.062E-33 3.624E-34
55	3.129E+01 0.000E+00	1.062E-33 3.624E-34 1.000E+00
55	3.129E+01 0.000E+00 4.800E-01	1.062E-33 3.624E-34 1.000E+00 7.651E-01
55	3.129E+01 0.000E+00	1.062E-33 3.624E-34 1.000E+00
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06 1.879E-07
55	3.129E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	1.062E-33 3.624E-34 1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06

1	1 0.420E+00	E 440F 40
	9.120E+00	5.449E-10
	9.600E+00	6.332E-11
	1.008E+01	6.968E-12
	1.056E+01	9.031E-13
	1.104E+01	2.247E-13
	1.152E+01	1.052E-13
	1.200E+01	6.623E-14
	1.248E+01	3.513E-14
	1.296E+01	1.820E-14
	1.345E+01	9.176E-15
	1.393E+01	4.497E-15
	1.441E+01	2.141E-15
	1.489E+01	9.904E-16
	1.538E+01	4.447E-16
	1.586E+01	1.937E-16
	1.634E+01	8.182E-17
	1.682E+01	3.350E-17
	1.730E+01	1.328E-17
	1.779E+01	5.099E-18
	1.827E+01	1.893E-18
	1.875E+01	6.797E-19
	1.923E+01	2.357E-19
	1.972E+01	7.892E-20
	2.020E+01	2.549E-20
	2.068E+01	7.935E-21
	2.116E+01	2.379E-21
	2.165E+01	6.864E-22
	2.213E+01	1.904E-22
	2.261E+01	5.075E-23
	2.309E+01	1.298E-23
	2.357E+01	3.187E-24
	2.406E+01	7.502E-25
	2.454E+01	1.694E-25
	2.502E+01	3.680E-26
	2.550E+01	7.735E-27
	2.599E+01	1.601E-27
	2.647E+01	3.388E-28
	2.695E+01	7.856E-29
	2.743E+01	2.157E-29
	2.791E+01	7.154E-30
	2.840E+01	2.703E-30
	2.888E+01	1.083E-30
	2.936E+01	4.399E-31
	2.984E+01	1.775E-31
	3.033E+01	7.059E-32
	3.081E+01	2.758E-32
	3.129E+01	1.057E-32

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB ClayThick

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	13.99 m	25	0.019 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	35	0.019 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	5.596E-01	2.074E-01
	1.119E+00	1.110E-02
	1.679E+00	1.326E-04
	2.238E+00	3.313E-07

2.798E+00	1.687E-10
3.358E+00	1.053E-13
3.917E+00	6.573E-15
4.477E+00	3.228E-16
5.036E+00	1.020E-17
5.596E+00	2.009E-19
6.156E+00	2.381E-21
6.715E+00	1.625E-23
7.275E+00	6.112E-26
7.834E+00	1.312E-28
8.394E+00	5.687E-31
8.954E+00	1.289E-32
9.513E+00	2.746E-34
1.007E+01	4.370E-36
1.063E+01	5.094E-38
1.119E+01	4.272E-40
1.175E+01	2.540E-42
1.231E+01	1.092E-44
1.287E+01	4.584E-47
1.343E+01	4.416E-49
1.343E+01 1.399E+01	0.000E+00
1.454E+01	
	0.000E+00
1.509E+01	0.000E+00
1.564E+01	0.000E+00
1.619E+01	0.000E+00
1.675E+01	0.000E+00
1.730E+01	0.000E+00
1.785E+01	0.000E+00
1.840E+01	0.000E+00
1.895E+01	0.000E+00
1.950E+01	0.000E+00
2.005E+01	0.000E+00
2.060E+01	0.000E+00
2.115E+01	0.000E+00
2.171E+01	0.000E+00
2.226E+01	0.000E+00
2.281E+01	0.000E+00
2.336E+01	0.000E+00
2.330E+01	0.000E+00
2.391E+01 2.446E+01	0.000E+00 0.000E+00
2.501E+01	0.000E+00
2.556E+01	0.000E+00
2.612E+01	0.000E+00
2.667E+01	0.000E+00
2.722E+01	0.000E+00
2.777E+01	0.000E+00
2.832E+01	0.000E+00
2.887E+01	0.000E+00
2.942E+01	0.000E+00
2.997E+01	0.000E+00
3.052E+01	0.000E+00
3.108E+01	0.000E+00
3.163E+01	0.000E+00
3.103E+01 3.218E+01	0.000E+00
3.273E+01	0.000E+00 0.000E+00
3.273E+01 3.328E+01	0.000E+00 0.000E+00

1.119E-00 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.679E-100 1.659E-100 1.659E-100 1.659E-100 1.679E-100 1	10	0.000E+00 5.596E-01	1.000E+00 3.789E-01
2.238E-00 2.798E-00 3.358E-00 3.358E-00 3.358E-00 3.917E-00 2.785E-10 4.477E-00 4.477E-00 4.477E-00 4.477E-00 4.435E-14 5.536E-00 6.156E-10 7.419E-13 5.536E-10 6.156E-10 7.435E-16 6.156E-10 7.435E-16 6.156E-10 7.275E-00 5.796E-18 7.834E-00 8.94E-00 8.94E-00 8.94E-00 8.94E-00 1.732E-20 8.954E-00 1.779E-23 1.007E-01 3.656E-29 1.175E-01 1.175E-01 1.175E-01 1.175E-01 1.231E-01 8.584E-32 1.267E-01 8.584E-32 1.267E-01 1.395E-01 1.596E-01 1.596E-01 1.596E-01 1.675E-01 1.675E-01 1.675E-01 1.675E-01 1.675E-01 1.596E-01 1.596E-01 1.596E-01 1.675E-01 1.845E-01 1.855E-01			
2.798E+00 3.358E+00 3.917E+00 2.785E-10 4.477E+00 7.419E-13 5.036E+00 4.033E-14 5.596E+00 6.148E-15 6.156E+00 7.256E-10 7.256E-10 7.256E-17 7.275E+00 7.356E-17 7.275E+00 7.356E-17 7.275E+00 7.356E-17 7.275E+00 7.356E-17 7.275E+00 7.356E-17 7.275E+00 7.356E-17 7.275E+00 7.356E-17 7.275E-10 7.356E-17 7.275E-10 7.356E-10 7.356E-17 7.275E-10 7.356E-17 7.275E-10 7.356E-17 7.275E-10 7.356E-17 7.356E-17 7.356E-19 8.394E-100 8.394E-22 9.513E-100 1.779E-23 1.007E-101 3.659E-25 1.103E-101 1.119E-101 6.288E-33 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.231E-101 1.241E-36 1.259E-38 1.564E-101 1.259E-38 1.564E-101 1.259E-101 1.25		1.679E+00	7.293E-03
3.358E+00 3.917E+00 4.477E+00 7.419E-13 5.036E+00 4.477E+00 7.419E-13 5.036E+00 6.048E-15 6.156E+00 7.430E-16 6.715E+00 7.275E-19 8.394E+00 1.775E-23 1.007E+01 1.063E+01 1.063E+01 1.063E+01 1.175E+01 1.119E+01 1.119E+01 1.119E+01 1.121E-01 1.231E+01 1.231E		2.238E+00	3.316E-04
3.917E-100 4.477E-100 7.419E-13 5.036E-400 4.038E-14 5.596E-400 6.048E-15 6.156E-00 7.336E-16 6.715E-100 7.356E-17 7.275E-400 5.798E-18 7.834E-400 3.598E-19 8.394E-100 3.598E-19 8.394E-100 8.394E-22 9.513E-400 1.779E-23 1.007E-11 3.669E-25 1.063E-01 3.568E-29 1.1775E-101 1.19E-01 6.856E-29 1.1775E-101 1.231E-101 8.394E-32 1.287E-101 1.231E-101 8.394E-32 1.287E-101 1.399E-101 1.399E-101 1.599E-38 1.564E-101 1.675E-101 1.675E-101 1.675E-101 1.675E-101 1.675E-101 1.675E-101 1.675E-101 1.599E-101 1.599E-101 1.599E-101 1.599E-101 1.599E-101 1.595E-1		2.798E+00	6.919E-06
### ### ### ### ### ### ### ### ### ##		3.358E+00	
\$.036E+00			2.785E-10
\$5.596E+00			
6.156E-00 6.715E+00 7.356E-17 7.275E+00 7.356E-17 7.275E+00 7.356E-17 7.275E+00 3.595E-19 8.394E+00 8.394E+00 8.394E-20 9.513E+00 1.779E-23 1.007E+01 3.669E-25 1.063E+01 5.574E-27 1.119E+01 6.856E-29 1.175E+01 1.231E+01 6.856E-29 1.175E+01 1.343E+01 4.094E-34 1.399E+01 1.399E+01 1.399E+01 1.509E+01 1.509E+01 1.675E+01 1.675E+01 1.675E+01 1.675E+01 1.675E+01 1.675E+01 1.675E+01 1.675E+01 1.895E+01 1.895E+01 1.895E+01 1.900E+00 2.005E+01 2.005E+01 0.000E+00 2.171E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.261E+01 0.000E+00 2.272E+01 0.000E+00 2.272E+01 0.000E+00 2.272E+01 0.000E+00 2.282E+01 0.000E+00 2.777E+01 0.000E+00 2.777E+01 0.000E+00 2.777E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00			
6.715E-00 7.275E-00 5.796E-18 7.834E+00 5.796E-18 7.834E+00 8.394E+00 8.394E+00 8.394E+00 8.394E-22 9.513E-00 1.779E-23 1.007E+01 3.669E-25 1.063E+01 1.119E+01 1.119E+01 1.119E+01 1.128E-01 1.128E-01 1.231E-01 1.231E-01 1.231E-01 1.234E-01 1.234E-01 1.299E-01 1.599E+01 1.599E+01 1.698E-39 1.698E-40 1.896E-40 1.896E-40 1.896E-40 1.896E-40 1.896E-40 1.996E-40 1.996E-40 1.996E-40 1.000E+00 2.171E-01 2.00E-01 2.26E-01 0.000E+00 2.281E-01 0.000E+00 2.238E-01 0.000E+00 2.238E-01 0.000E+00 2.256E-01 0.000E+00 2.256E-01 0.000E+00 2.256E-01 0.000E+00 2.256E-01 0.000E+00 2.256E-01 0.000E+00 2.256E-01 0.000E+00 2.256E-01 0.000E+00 2.256E-01 0.000E+00 2.256E-01 0.000E+00 2.272E-01 0.000E+00 2.272E-01 0.000E+00 2.272E-01 0.000E+00 2.282E-01 0.000E+00			
7.275E-00 7.834E+00 3.595E-19 8.384E+00 3.595E-19 8.394E+00 8.954E+00 8.954E+00 9.513E+00 1.779E-23 1.007E+01 3.699E-25 1.063E+01 5.574E-27 1.119E+01 6.856E-29 1.175E+01 1.231E+01 1.231E+01 1.231E+01 6.288E-33 1.343E+01 4.094E-34 1.399E+01 1.509E+01 1.509E+01 1.698E-01 1.698E-01 1.698E-01 1.698E-01 1.698E-01 1.698E-01 1.698E-01 1.698E-01 1.698E-01 1.698E-01 1.698E-01 1.698E-01 1.598E			
7.834E+00 8.394E+00 1.732E-20 8.954E+00 6.394E-22 9.513E+00 1.07E+01 1.063E+01 1.07E+01 1.063E+01 1.07E+01 1.063E+01 1.07E+01 1.19E+01 1.19E+01 1.231E+01 1.231E+01 1.231E+01 1.231E+01 1.343E+01 1.399E+01 1.399E+01 1.59E+01 1.59E+01 1.69E+01 1.69E+01 1.675E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 0.000E+00 2.05E+01 0.000E+01 0.000E+00 2.115E+01 0.000E+00 2.21E+01 0.000E+00 0.233E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.255E+01 0.000E+00 0.267E+01 0.000E+00 0.277EE+01 0.000E+00 0.283E+01 0.000E+00 0.277E+01 0.000E+00 0.294E+01 0.000E+00 0.294E+01 0.000E+00 0.294E+01 0.000E+00 0.294E+01 0.000E+00 0.000E+00 0.294E+01 0.000E+00 0.000E+00 0.294E+01 0.000E+00			
8.394E+00 8.954E+00 6.394E+22 9.513E+00 1.779E-23 1.007E+01 3.669E-25 1.063E+01 1.179E+01 1.119E+01 6.856E-29 1.175E+01 1.119E+01 6.856E-29 1.175E+01 1.231E+01 6.286E-33 1.234E+01 6.288E-33 1.343E+01 4.094E-34 1.399E+01 2.400E-35 1.454E+01 1.509E+01 1.509E+01 1.675E+01 1.637E-42 1.730E+01 1.785E+01 1.840E+01 1.840E+01 2.050E+40 1.840E+01 2.050E+40 1.850E+01 2.050E+00 2.283E+01 0.000E+00			
8.954E+00 6.394E-22 9.513E+00 1.779E-23 1.007E+01 3.669E-25 1.063E+01 5.574E-27 1.119E+01 6.856E-29 1.175E+01 1.410E-30 1.231E+01 8.584E-32 1.287E+01 6.288E-33 1.343E+01 4.094E-34 1.399E+01 2.400E-35 1.454E+01 1.218E-36 1.509E+01 5.299E-38 1.564E+01 1.637E-42 1.730E+01 1.637E-42 1.730E+01 7.865E-46 1.840E+01 1.950E+01 7.865E-46 1.840E+01 2.059E-47 1.895E+01 5.044E-50 2.05E-01 0.000E+00 2.115E+01 0.000E+00 2.211E+01 0.000E+00 2.231E+01 0.000E+00 2.231E+01 0.000E+00 2.331E+01 0.000E+00 2.331E+01 0.000E+00 2.331E+01 0.000E+00 2.332E+01 0.000E+00 2.556E+01 0.000E+00 2.556E+01 0.000E+00 2.556E+01 0.000E+00 2.556E+01 0.000E+00 2.556E+01 0.000E+00 2.556E+01 0.000E+00 2.556E+01 0.000E+00 2.777E+01 0.000E+00 2.777E+01 0.000E+00 2.832E+01 0.000E+00 2.777E+01 0.000E+00 2.832E+01 0.000E+00 2.777E+01 0.000E+00 2.832E+01 0.000E+00			
9.513E+00			
1.007E+01 3.669E-25 1.063E+01 5.574E-27 1.119E+01 6.856E-29 1.175E+01 1.410E-30 1.231E+01 8.584E-32 1.287E+01 8.584E-32 1.287E+01 4.094E-34 1.399E+01 4.094E-34 1.399E+01 4.094E-34 1.399E+01 5.299E-38 1.564E+01 1.964E-39 1.619E-01 1.637E-42 1.730E+01 7.865E-46 1.840E+01 7.865E-46 1.840E+01 5.299E-38 1.564E+01 1.637E-42 1.730E+01 7.865E-46 1.840E+01 7.865E-46 1.840E+01 7.865E-46 1.895E+01 7.865E-46 1.895E+01 7.865E-46 1.895E+01 7.865E-46 1.895E+01 7.865E-46 1.895E+01 7.865E-47 1.895E+01 7.805E-47 1.895E+01 7.805E-47 1.895E+01 7.805E-47 1.895E+01 7.805E-47 1.895E+01 7.805E-47 1.895E-10 7.805E-47 1.895E-10 7.805E-47 1.895E-10 7.805E-47 1.895E-10 7.805E-47 1.895E-10 7.805E-47 1.895E-10 7.805E-47 1.895E-40 7.805E-47 1.895E-40 7.805E-47 1.895E-40 7.80			
1.063E+01 5.574E-27 1.119E+01 6.856E-29 1.175E+01 1.410E-30 1.231E+01 8.584E-32 1.287E+01 6.288E-33 1.343E+01 4.094E-34 1.399E+01 2.400E-35 1.454E+01 1.218E-36 1.509E+01 5.299E-38 1.564E+01 1.964E-39 1.619E+01 6.169E-41 1.675E+01 1.637E-42 1.730E+01 3.719E-44 1.730E+01 3.719E-44 1.730E+01 3.79E-40 1.895E+01 8.904E-49 1.950E+01 2.059E-47 1.895E+01 8.904E-49 1.950E+01 0.000E+00 2.060E+01 0.000E+00 2.115E+01 0.000E+00 2.226E+01 0.000E+00 2.231E+01 0.000E+00 2.231E+01 0.000E+00 2.256E+01 0.000E+00 2.256E+01 0.000E+00 2.251E+01 0.000E+00 2.251E+01 0.000E+00 2.251E+01 0.000E+00 2.251E+01 0.000E+00 2.251E+01 0.000E+00 2.251E+01 0.000E+00 2.251E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.255E+01 0.000E+00 2.272E+01 0.000E+00 2.287E+01 0.000E+00 2.287E+01 0.000E+00 2.287E+01 0.000E+00 2.287E+01 0.000E+00 2.287E+01 0.000E+00 2.287E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00 2.297E+01 0.000E+00			
1.119E+01 6.856E-29 1.175E+01 1.410E-30 1.231E+01 8.584E-32 1.287E+01 6.288E-33 1.343E+01 4.094E-34 1.399E+01 2.400E-35 1.454E+01 1.218E-36 1.509E+01 5.299E-38 1.564E+01 1.964E-39 1.619E+01 6.169E-41 1.675E+01 1.637E-42 1.730E+01 3.719E-44 1.730E+01 3.719E-44 1.785E+01 7.865E-46 1.840E+01 2.059E-47 1.895E+01 8.904E-49 1.950E+01 0.000E+00 2.005E+01 0.000E+00 2.005E+01 0.000E+00 2.215E+01 0.000E+00 2.226E+01 0.000E+00 2.236E+01 0.000E+00 2.236E+01 0.000E+00 2.236E+01 0.000E+00 2.236E+01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.251E-01 0.000E+00 2.252E-01 0.000E+00 2.252E-01 0.000E+00 2.253E-01 0.000E+00 2.252E-01 0.000E+00 2.277E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.283E-01 0.000E+00 2.297E-01 0.000E+00 2.297E-01 0.000E+00 2.297E-01 0.000E+00 2.297E-01 0.000E+00 2.297E-01 0.000E+00 2.297E-01 0.000E+00 3.305E-01 0.000E+00 3.305E-01 0.000E+00			
1.175E+01			
1.231E+01 8.584E-32 1.287E+01 6.288E-33 1.343E+01 4.094E-34 1.399E+01 2.400E-35 1.454E+01 1.218E-36 1.509E+01 5.299E-38 1.564E+01 1.964E-39 1.619E+01 6.169E-41 1.675E+01 1.637E-42 1.730E+01 3.719E-44 1.785E+01 7.865E-46 1.840E+01 1.964E-50 1.840E+01 1.964E-50 1.840E+01 1.960E-47 1.895E+01 3.719E-44 1.895E+01 3.904E-49 1.950E+01 5.044E-50 2.050E+01 0.000E+00 2.115E+01 0.000E+00 2.115E+01 0.000E+00 2.226E+01 0.000E+00 2.236E+01 0.000E+00 2.236E+01 0.000E+00 2.236E+01 0.000E+00 2.236E+01 0.000E+00 2.256E+01 0.000E+00 2.256E+01 0.000E+00 2.256E+01 0.000E+00 2.256E+01 0.000E+00 2.256E+01 0.000E+00 2.256E+01 0.000E+00 2.256E+01 0.000E+00 2.257E+01 0.000E+00 2.257E+01 0.000E+00 2.267E+01 0.000E+00 2.277FE+01 0.000E+00 2.283E+01 0.000E+00 2.283E+01 0.000E+00 2.283E+01 0.000E+00 2.283E+01 0.000E+00 2.283E+01 0.000E+00 2.283E+01 0.000E+00 2.283E+01 0.000E+00 2.283E+01 0.000E+00 2.283E+01 0.000E+00 2.283E+01 0.000E+00 2.299FE+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 3.055E+01 0.000E+00 3.055E+01 0.000E+00 3.055E+01 0.000E+00 3.055E+01 0.000E+00 3.055E+01 0.000E+00 3.055E+01 0.000E+00 3.055E+01 0.000E+00 3.055E+01 0.000E+00			
1.287E+01 6.288E-33 1.343E+01 4.094E-34 1.399E+01 2.400E-35 1.454E+01 1.218E-36 1.509E+01 5.299E-38 1.664E+01 1.964E-39 1.619E+01 6.169E-41 1.675E+01 1.675E+01 7.865E-46 1.840E+01 2.059E-47 1.895E+01 5.044E-50 1.90E+00 1.20E+00 1.215E-01 0.000E+00 1.215E-01 0.000E+00 1.226E+01 0.000E+00 1.226E+01 0.000E+00 1.236E+01 0.000E+00 1.236E+01 0.000E+00 1.236E+01 0.000E+00 1.236E+01 0.000E+00 1.255E+01 0.000E+00 1.255E+01 0.000E+00 1.255E+01 0.000E+00 1.255E+01 0.000E+00 1.255E+01 0.000E+00 1.255E+01 0.000E+00 1.233E+01 0.000E+00 1.255E+01 0.000E+0			
1.343E+01			
1.399E+01			
1.454E+01			
1.509E+01 5.299E-38 1.564E+01 1.964E-39 1.619E+01 6.169E-41 1.675E+01 1.637E-42 1.730E+01 7.865E-46 1.840E+01 2.059E-47 1.895E+01 8.904E-49 1.950E+01 0.000E+00 2.060E+01 0.000E+00 2.226E+01 0.000E+00 2.336E+01 0.000E+00 2.336E+01 0.000E+00 2.336E+01 0.000E+00 2.336E+01 0.000E+00 2.336E+01 0.000E+00 2.281E+01 0.000E+00 2.250E+01 0.000E+00 2.281E+01 0.000E+00 2.336E+01 0.000E+00 2.336E+01 0.000E+00 2.336E+01 0.000E+00 2.336E+01 0.000E+00 2.336E+01 0.000E+00 2.356E+01 0.000E+00 2.556E+01 0.000E+00 2.556E+01 0.000E+00 2.667E+01 0.000E+00 2.772E+01 0.000E+00 2.772E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.932E+01 0.000E+00 2.932E+01 0.000E+00 2.932E+01 0.000E+00 0.000E+00 0.2932E+01 0.000E+00 0.000E+00 0.2932E+01 0.000E+00 0.000E+00 0.2932E+01 0.000E+00 0.000E+00 0.2932E+01 0.000E+00 0.000E+00 0.2932E+01 0.000E+00 0			
1.564E+01			
1.619E+01			
1.730E+01 3.719E-44 1.785E+01 7.865E-46 1.840E+01 2.059E-47 1.895E+01 8.904E-49 1.950E+01 5.044E-50 2.005E+01 0.000E+00 2.060E+01 0.000E+00 2.115E+01 0.000E+00 2.171E+01 0.000E+00 2.226E+01 0.000E+00 2.281E+01 0.000E+00 2.336E+01 0.000E+00 2.391E+01 0.000E+00 2.391E+01 0.000E+00 2.501E+01 0.000E+00 2.556E+01 0.000E+00 2.667E+01 0.000E+00 2.667E+01 0.000E+00 2.772E+01 0.000E+00 2.777E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.942E+01 0.000E+00 2.942E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 3.052E+01 0.000E+00			
1.785E+01 7.865E-46 1.840E+01 2.059E-47 1.895E+01 8.904E-49 1.950E+01 5.044E-50 2.005E+01 0.000E+00 2.060E+01 0.000E+00 2.115E+01 0.000E+00 2.1171E+01 0.000E+00 2.226E+01 0.000E+00 2.281E+01 0.000E+00 2.336E+01 0.000E+00 2.336E+01 0.000E+00 2.391E+01 0.000E+00 2.446E+01 0.000E+00 2.5501E+01 0.000E+00 2.556E+01 0.000E+00 2.612E+01 0.000E+00 2.672E+01 0.000E+00 2.772E+01 0.000E+00 2.772E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.832E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 2.997E+01 0.000E+00 3.052E+01 0.000E+00		1.675E+01	1.637E-42
1.840E+01 2.059E-47 1.895E+01 8.904E-49 1.950E+01 5.044E-50 2.005E+01 0.000E+00 2.060E+01 0.000E+00 2.115E+01 0.000E+00 2.171E+01 0.000E+00 2.226E+01 0.000E+00 2.281E+01 0.000E+00 2.336E+01 0.000E+00 2.391E+01 0.000E+00 2.446E+01 0.000E+00 2.501E+01 0.000E+00 2.556E+01 0.000E+00 2.612E+01 0.000E+00 2.672E+01 0.000E+00 2.777E+01 0.000E+00 2.832E+01 0.000E+00 2.887E+01 0.000E+00 2.942E+01 0.000E+00 2.997E+01 0.000E+00 3.052E+01 0.000E+00		1.730E+01	3.719E-44
1.895E+01		1.785E+01	7.865E-46
1.950E+01			
2.005E+01			
2.060E+01			
2.115E+01			
2.171E+01			
2.226E+01			
2.281E+01			
2.336E+01			
2.391E+01			
2.446E+01			
2.501E+01			
2.556E+01			
2.612E+01			
2.667E+01			
2.722E+01			
2.777E+01			
2.832E+01			
2.887E+01			
2.997E+01 0.000E+00 3.052E+01 0.000E+00			
3.052E+01 0.000E+00			
		2.997E+01	
3.108E+01 0.000E+00			
·		3.108E+01	0.000E+00

	3.163E+01	0.000E+00
	3.218E+01	0.000E+00
	3.273E+01	0.000E+00
	3.328E+01	0.000E+00
15	0.000E+00	1.000E+00
. •	5.596E-01	4.773E-01
	1.119E+00	1.498E-01
	1.679E+00	2.953E-02
	2.238E+00	3.558E-03
	2.798E+00	2.576E-04
	3.358E+00	1.108E-05
	3.917E+00	2.813E-07
	4.477E+00	4.196E-09
	5.036E+00	3.721E-11
	5.596E+00	3.645E-13
	6.156E+00	4.527E-14
	6.715E+00	9.827E-15
	7.275E+00	1.881E-15
	7.834E+00	3.124E-16
	8.394E+00	4.474E-17
	8.954E+00	5.495E-18
	9.513E+00	5.752E-19
	1.007E+01 1.063E+01	5.095E-20 3.789E-21
	1.119E+01	2.346E-22
	1.175E+01	1.199E-23
	1.231E+01	5.010E-25
	1.287E+01	1.706E-26
	1.343E+01	4.859E-28
	1.399E+01	1.504E-29
	1.454E+01	9.140E-31
	1.509E+01	1.040E-31
	1.564E+01	1.293E-32
	1.619E+01	1.498E-33
	1.675E+01	1.583E-34
	1.730E+01	1.518E-35
	1.785E+01	1.318E-36
	1.840E+01	1.032E-37
	1.895E+01	7.267E-39
	1.950E+01 2.005E+01	4.586E-40 2.588E-41
	2.005E+01 2.060E+01	1.306E-42
	2.000E+01 2.115E+01	5.952E-44
	2.171E+01	2.565E-45
	2.226E+01	1.197E-46
	2.281E+01	7.519E-48
	2.336E+01	6.496E-49
	2.391E+01	6.348E-50
	2.446E+01	0.000E+00
	2.501E+01	0.000E+00
	2.556E+01	0.000E+00
	2.612E+01	0.000E+00
	2.667E+01	0.000E+00
	2.722E+01	0.000E+00
	2.777E+01	0.000E+00
	2.832E+01	0.000E+00

	2.887E+01	0.000E+00
	2.942E+01	0.000E+00
	2.997E+01	0.000E+00
	3.052E+01	0.000E+00
	3.108E+01	0.000E+00
	3.163E+01	0.000E+00
	3.218E+01	0.000E+00
	3.273E+01	0.000E+00
	3.328E+01	0.000E+00
20	0.000E+00	1.000E+00
	5.596E-01	5.421E-01
	1.119E+00	2.158E-01
	1.679E+00	6.106E-02
	2.238E+00	1.203E-02
	2.798E+00	1.626E-03
	3.358E+00	1.495E-04
	3.917E+00	9.299E-06
	4.477E+00	3.892E-07
	5.036E+00	1.093E-08
	5.596E+00	2.064E-10
	6.156E+00	2.927E-12
	6.715E+00	1.337E-13
	7.275E+00	3.293E-14
	7.834E+00	8.683E-15
	8.394E+00	2.071E-15
	8.954E+00	4.441E-16
	9.513E+00	8.528E-17
	1.007E+01	1.461E-17
	1.063E+01	2.225E-18
	1.119E+01	2.999E-19
	1.175E+01	3.558E-20
	1.231E+01	3.700E-21
	1.287E+01	3.352E-22
	1.343E+01	2.631E-23
	1.399E+01	1.853E-24
	1.454E+01	1.127E-25
	1.454E+01 1.509E+01	5.915E-27
	1.564E+01	2.793E-28
	1.619E+01	1.452E-29
	1.675E+01	1.288E-30
	1.730E+01	1.905E-31
	1.785E+01	3.168E-32
	1.840E+01	5.076E-33
	1.895E+01	7.618E-34
	1.950E+01	1.065E-34
	2.005E+01	1.384E-35
	2.060E+01	1.668E-36
	2.115E+01	1.860E-37
	2.171E+01	1.917E-38
	2.226E+01	1.821E-39
	2.281E+01	1.592E-40
	2.336E+01	1.278E-41
	2.391E+01	9.450E-43
	2.446E+01	6.493E-44
	2.501E+01	4.283E-45
	2.556E+01	2.959E-46

I	2.612E+01	2.478E-47
	2.667E+01	2.712E-48
	2.722E+01	3.513E-49
	2.777E+01	4.741E-50
	2.832E+01	0.000E+00
	2.887E+01	0.000E+00
	2.942E+01	0.000E+00
	2.997E+01	0.000E+00
	3.052E+01	0.000E+00
	3.108E+01	0.000E+00 0.000E+00
	3.163E+01	0.000E+00
	3.218E+01	0.000E+00
	3.273E+01	0.000E+00
	3.328E+01	0.000E+00
25	0.000E+00	1.000E+00
	5.596E-01	5.888E-01
	1.119E+00	2.717E-01
	1.679E+00	9.583E-02
	2.238E+00	2.541E-02
	2.798E+00	5.007E-03
	3.358E+00	7.274E-04
	3.917E+00	7.749E-05
	4.477E+00	6.029E-06
	5.036E+00	3.416E-07
	5.596E+00	1.406E-08
	6.156E+00	4.210E-10
	6.715E+00	9.567E-12
	7.275E+00	3.244E-13
	7.834E+00	6.495E-14
	8.394E+00	2.034E-14
	8.954E+00	6.012E-15
	9.513E+00	1.635E-15
	1.007E+01	4.082E-16
	1.063E+01	9.326E-17
	1.119E+01	1.945E-17
	1.175E+01	3.694E-18
	1.231E+01	6.365E-19
	1.287E+01	9.920E-20
	1.343E+01	1.394E-20
	1.399E+01	1.831E-21
	1.454E+01	2.144E-22
	1.509E+01	2.242E-23
	1.564E+01	2.087E-24
	1.619E+01	1.725E-25
	1.675E+01	1.266E-26
	1.730E+01	8.420E-28
	1.735E+01 1.785E+01	5.583E-29
	1.840E+01	4.893E-30
	1.895E+01	7.155E-31
	1.950E+01	1.388E-31
	2.005E+01	2.799E-32
	2.060E+01	5.436E-33
	2.115E+01	1.001E-33
	2.171E+01	1.743E-34
	2.226E+01	2.861E-35
-	2.281E+01	4.425E-36

	l	1 0.400= 0-
	2.336E+01	6.438E-37
	2.391E+01	8.798E-38
	2.446E+01	1.128E-38
	2.501E+01	1.353E-39
	2.556E+01	1.519E-40
	2.612E+01	1.593E-41
	2.667E+01	1.564E-42
	2.722E+01	1.445E-43
	2.777E+01	1.281E-44
	2.832E+01	1.144E-45
	2.887E+01	1.132E-46
	2.942E+01	1.368E-47
	2.942E+01 2.997E+01	2.021E-48
	3.052E+01	3.315E-49
	3.108E+01	5.554E-50
	3.163E+01	0.000E+00
	3.218E+01	0.000E+00
	3.273E+01	0.000E+00
	3.328E+01	0.000E+00
30	0.000E+00	1.000E+00
	5.596E-01	6.244E-01
	1.119E+00	3.189E-01
	1.679E+00	1.306E-01
	2.238E+00	4.230E-02
	2.798E+00	1.073E-02
	3.358E+00	2.116E-03
	3.917E+00	3.229E-04
	4.477E+00	3.800E-05
	5.036E+00	3.439E-06
	5.596E+00	2.388E-07
	6.156E+00	1.271E-08
	6.715E+00	5.187E-10
	7.275E+00	1.668E-11
	7.834E+00	6.215E-13
	8.394E+00	9.993E-14
	8.954E+00	3.402E-14
	9.513E+00	1.157E-14
	1.007E+01	3.683E-15
	1.063E+01	1.093E-15
	1.119E+01	3.016E-16
	1.175E+01	7.728E-17
	1.173E+01 1.231E+01	1.835E-17
	1.287E+01	4.026E-18
	1.343E+01	8.160E-19
	1.399E+01	1.582E-19
	1.454E+01	2.787E-20
	1.509E+01	4.506E-21
	1.564E+01	6.663E-22
	1.619E+01	8.985E-23
	1.675E+01	1.102E-23
	1.730E+01	1.102E-23 1.224E-24
	1.785E+01	1.231E-25
	1.840E+01	1.123E-26
	1.895E+01	9.463E-28

	1	1
	2.060E+01	1.293E-30
	2.115E+01	2.780E-31
	2.171E+01	6.476E-32
	2.226E+01	1.485E-32
	2.281E+01	3.273E-33
	2.336E+01	6.888E-34
	2.391E+01	1.382E-34
	2.446E+01	2.641E-35
	2.501E+01	4.801E-36
	2.556E+01	8.292E-37
	2.612E+01	1.360E-37
	2.667E+01	2.113E-38
	2.722E+01	3.111E-39
	2.777E+01	4.332E-40
	2.832E+01	5.702E-41
	2.887E+01	7.096E-42
	2.942E+01	8.367E-43
	2.997E+01	9.415E-44
	3.052E+01	1.031E-44
	3.108E+01	1.147E-45
	3.163E+01	1.400E-46
	3.218E+01	2.023E-47
	3.273E+01	3.476E-48
	3.328E+01	6.616E-49
	0.0202 · 01	0.0102 40
35	0.000E+00	1.000E+00
	5.596E-01	6.528E-01
	1.119E+00	3.592E-01
	1.1132.00	
	1.679E+00	1.639E-01
	1.679E+00	1.639E-01
	1.679E+00 2.238E+00	1.639E-01 6.132E-02
	1.679E+00 2.238E+00 2.798E+00	1.639E-01 6.132E-02 1.864E-02
	1.679E+00 2.238E+00 2.798E+00 3.358E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 7.275E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16 1.966E-16
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 7.275E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.19E+01 1.175E+01 1.231E+01 1.287E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16 1.966E-16 5.461E-17
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01 1.287E+01 1.343E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16 1.966E-16 5.461E-17 1.423E-17
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01 1.287E+01 1.343E+01 1.399E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16 1.966E-16 5.461E-17 1.423E-17 3.597E-18
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01 1.287E+01 1.343E+01 1.399E+01 1.454E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16 1.966E-16 5.461E-17 1.423E-17 3.597E-18 8.374E-19
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+01 1.063E+01 1.175E+01 1.175E+01 1.231E+01 1.287E+01 1.343E+01 1.399E+01 1.454E+01 1.509E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16 1.966E-16 5.461E-17 1.423E-17 3.597E-18 8.374E-19 1.818E-19
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+01 1.063E+01 1.175E+01 1.231E+01 1.237E+01 1.287E+01 1.343E+01 1.349E+01 1.509E+01 1.509E+01 1.564E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16 1.966E-16 5.461E-17 1.423E-17 3.597E-18 8.374E-19 1.818E-19 3.676E-20
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01 1.287E+01 1.343E+01 1.399E+01 1.509E+01 1.509E+01 1.564E+01 1.619E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16 1.966E-16 5.461E-17 1.423E-17 3.597E-18 8.374E-19 1.818E-19 3.676E-20 6.904E-21
	1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+01 1.063E+01 1.175E+01 1.231E+01 1.237E+01 1.287E+01 1.343E+01 1.349E+01 1.509E+01 1.509E+01 1.564E+01	1.639E-01 6.132E-02 1.864E-02 4.577E-03 9.036E-04 1.430E-04 1.808E-05 1.825E-06 1.467E-07 9.390E-09 4.787E-10 1.990E-11 8.944E-13 1.325E-13 4.698E-14 1.762E-14 6.273E-15 2.103E-15 6.635E-16 1.966E-16 5.461E-17 1.423E-17 3.597E-18 8.374E-19 1.818E-19 3.676E-20

1.786E-01 1.840E-01 1.840E-01 1.840E-01 1.89SE-01 1.950E			
1,840E-01 1,859E-11 1,859E-15 1,159E-01 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16 1,859E-16		1 785F+01	2 872F-23
1 895E-01			
1,950E-01			
2.005E-01			
2 060E+01			
2.115E-01		2.005E+01	6.026E-27
2.115E-01		2 060F+01	6 045F-28
2.171E-01 2.22E-01 2.22E-01 2.23E-01 2.33E-01 2.33E-01 2.33E-01 2.33E-01 2.35E-32 2.446E-01 5.882E-33 2.501E-01 5.882E-33 2.501E-01 3.265E-34 2.612E-01 7.232E-35 2.667E-01 3.123E-36 2.772E-01 3.123E-36 2.772E-01 3.123E-36 2.772E-01 3.123E-36 2.772E-01 3.123E-36 2.772E-01 3.051E-44 3.23E-01			
2.26E+01			
2 281E+01			
2.336E-01 2.336E-32 2.346E-32 2.346E-32 2.446E+01 5.882E-33 2.501E-01 1.44E-33 2.556E-01 3.265E-34 2.612E-01 7.232E-35 2.667E-01 1.536E-35 2.722E-01 3.123E-36 2.777E-01 3.123E-36 2.777E-01 3.123E-36 2.777E-01 3.123E-36 2.777E-01 3.052E-01 1.31E-37 2.887E-01 2.009E-38 2.997E-01 3.406E-39 2.997E-01 3.406E-39 2.997E-01 3.108E-01 3.108E-01 3.168E-01 3.168E-01 3.278E-01 3.052E-41 3.168E-01 3.278E-01 3.051E-44 3.328E-01 3.051E-44 3.328E-01 3.051E-44 3.328E-01 3.952E-45 4 40 40 40 40 40 40 40 40 40 40 40 40 4			
2.336E-01 2.336E-32 2.346E-32 2.346E-32 2.446E+01 5.882E-33 2.501E-01 1.44E-33 2.556E-01 3.265E-34 2.612E-01 7.232E-35 2.667E-01 1.536E-35 2.722E-01 3.123E-36 2.777E-01 3.123E-36 2.777E-01 3.123E-36 2.777E-01 3.123E-36 2.777E-01 3.052E-01 1.31E-37 2.887E-01 2.009E-38 2.997E-01 3.406E-39 2.997E-01 3.406E-39 2.997E-01 3.108E-01 3.108E-01 3.168E-01 3.168E-01 3.278E-01 3.052E-41 3.168E-01 3.278E-01 3.051E-44 3.328E-01 3.051E-44 3.328E-01 3.051E-44 3.328E-01 3.952E-45 4 40 40 40 40 40 40 40 40 40 40 40 40 4		2.281E+01	3.508E-31
2.391E+01		2.336E+01	9.122E-32
2.446E+01			
2.501E+01 3.265E-34 3.265E-34 2.568E+01 3.265E-34 3.265E-34 2.568E+01 7.232E-35 2.667E+01 1.536E-35 2.772E+01 3.132E-36 2.777E+01 6.077E-37 2.832E+01 1.31E-37 2.832E+01 2.942E+01 3.406E-39 2.942E+01 3.052E+01 3.406E-39 2.997E+01 3.052E+01 3.108E+01 3.108E+01 1.246E-41 3.108E+01 3.28E+01 2.344E-43 3.28E+01 2.344E-43 3.273E+01 3.57E-44 3.328E+01 3.52E-45 40 0.000E+00 6.5596E-01 6.760E-01 1.19E-00 1.953E-01 2.388E+00 2.238E+00 3.358E+00 8.217E-03 3.947E+00 4.238E+00 8.217E-03 3.947E+00 4.959E-00 6.327E-05 5.596E+00 6.156E+0			
2.556E-01 7.23E-35 2.667E-01 7.23E-35 2.667E-01 1.536E-35 2.722E+01 3.123E-36 2.777E+01 6.077E-37 2.832E+01 1.131E-37 2.837E+01 2.09E-38 2.942E+01 2.09E-38 2.942E+01 3.406E-39 2.997E+01 8.466E-41 3.108E+01 3.168E-41 3.108E+01 1.745E-42 3.218E+01 3.051E-44 3.273E+01 3.051E-44 3.273E+01 3.051E-44 3.273E+01 3.952E-45 40 0.000E+00 1.000E+00 5.596E-01 6.760E-01 1.119E+00 1.953E-01 2.238E+00 2.838E-02 3.358E+00 3.940E-01 1.679E-00 1.953E-01 2.238E+00 8.217E-03 3.917E+00 1.969E-03 4.477E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 6.166E+00 9.264E-07 6.715E+00 7.834E-00 7.834E+00 3.689E-10 8.394E-00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.021E-12 9.513E+00 1.021E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-16 1.175E+01 3.297E-15 1.287E+01 3.297E-15 1.287E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.3439E+01 3.638E-17			
2.612E+01 7.232E-35 2.667E+01 1.536E-35 2.722E+01 3.123E-36 2.777E+01 6.077E-37 2.832E+01 1.131E-37 2.832E+01 2.095E-38 2.942E+01 3.406E-39 2.997E+01 3.406E-39 2.997E+01 3.052E+01 1.745E-42 3.052E+01 1.745E-42 3.218E+01 2.344E-41 3.163E+01 1.745E-42 3.218E+01 3.051E-44 3.328E+01 3.952E-45 40 40 0.000E+00 1.000E+00 1.000E+00 1.5596E-01 6.760E-01 1.119E+00 1.953E-01 2.238E+00 2.238E+00 2.238E+00 8.144E-02 2.798E+00 3.940E-01 1.679E+00 1.953E-01 2.348E-02 3.358E+00 8.217E-03 3.917E+00 4.959E-03 4.477E+00 1.969E-03 4.477E+00 1.969E-03 4.477E+00 6.327E-05 5.596E+00 6.156E+00 9.264E-07 6.756E-10 8.319E-08 7.275E+00 1.870E-11 8.954E+00 1.870E-11 8.954E+00 1.870E-11 8.954E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.169E-01 1.175E+01 3.297E-15 1.287E+01 3.297E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E-01 1.678E-16 1.343E+01 1.187E-16 1.287E+01 1.187E-16 1.287E+01 1.189E-15 1.287E+01 1.187E-16 1.189E-16 1.343E+01 1.187E-16 1.343E+01 1.389E+01 3.638E-17			1.414E-33
2.667E+01		2.556E+01	3.265E-34
2.667E+01		2.612E+01	7.232E-35
2.722E+01 2.777E+01 2.832E+01 2.832E+01 2.832E+01 2.838E+01 2.842E+01 2.842E+01 3.406E-39 2.997E+01 3.5508E-40 3.052E+01 3.163E+01 3.163E+01 3.163E+01 3.163E+01 3.273E+01 3.273E+01 3.328E+01 3.273E+01 3.328E+01 3.952E-45 40 0.000E+00 5.596E-01 6.760E-01 1.119E+00 1.953E-01 2.238E+00 3.358E+00 3.3917E+00 1.969E-03 3.917E+00 1.969E-03 3.917E+00 5.596E+00 6.327E-05 5.596E+00 6.327E-05 5.596E+00 6.327E-05 5.596E+00 6.327E-05 6.715E+00 6.715E+00 7.275E+00 6.715E+00 7.275E+00 7.275E+00 7.275E+00 7.275E+00 7.238E+00 3.689E-10 8.394E+00 8.394E+00 1.870E-11 8.954E+00 9.513E+00 1.007E+01 1.870E-11 1.99E-15 1.175E+01 3.297E-15 1.175E+01 3.297E-16 1.1343E+01 1.149E-15 1.287E+01 3.792E-16 1.149E-15 1.287E+01 3.792E-16 1.149E-15 1.287E+01 3.792E-16 1.149E-15 1.287E+01 3.792E-16 1.149E-15 1.287E+01 3.792E-16 1.149E-15 1.287E+01 3.792E-16 1.149E-15 1.287E+01 3.792E-16 1.149E-15 1.287E+01 3.792E-16 1.149E-15 1.287E+01 3.792E-16 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16			
2.777E+01 2.832E+01 2.837E+01 2.837E+01 2.837E+01 3.209E-38 2.942E+01 3.406E-39 2.997E+01 3.508E-40 3.052E+01 3.108E+01 1.246E-41 3.108E+01 1.246E-41 3.163E+01 3.273E+01 3.273E+01 3.328E+01 3.328E+01 3.952E-45 40 0.000E+00 5.596E-01 1.196E+00 3.940E-01 1.119E+00 3.940E-01 1.119E+00 2.238E+00 2.238E+00 2.338E+00 3.947E+00 3.947E+00 3.940E-01 5.596E-01 6.760E-01 1.175E-00 3.940E-01 6.760E-01 1.175E-00 3.940E-01 1.969E-03 4.477E+00 3.890E-04 5.596E+00 6.327E-05 5.596E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 6.156E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 6.327E-05 5.596E+00 1.238E+00 1.275E-00 1.175E+00 1.175E+00 7.275E+00 1.175E+00 1.575E-11 1.007E+01 8.954E+00 1.575E-13 1.007E+01 5.753E-14 1.063E+01 1.19E+01 1.231E-16 1.231E-16 1.248E+01 3.792E-16 1.343E+01 1.148E-16 1.349E+01 1.149E-15 1.231E-16 1.349E-10 1.349E-16 1.349E-10 1.359E-16			
2.832E+01 2.09E-38 2.09E-38 2.942E+01 3.406E-39 2.99TE+01 5.508E-40 3.05E+01 3.05E+01 3.406E-39 2.99TE+01 5.508E-40 3.05E+01 3.108E+01 1.246E-41 3.108E+01 1.745E-42 3.218E+01 2.34E-43 3.273E+01 3.051E-44 3.328E+01 3.952E-45 40 0.000E+00 1.000E+00 5.596E-01 6.760E-01 1.119E+00 3.940E-01 1.679E+00 1.953E-01 2.238E+00 2.238E-02 3.358E+00 8.217E-03 3.917E+00 1.969E-03 4.477E+00 3.990E-04 5.036E+00 6.327E-05 5.596E+00 6.156E+00 9.26E-07 6.715E+00 7.834E+00 8.319E-08 7.275E+00 1.870E-11 8.954E+00 1.870E-11 8.954E+00 1.870E-11 8.954E+00 1.870E-11 8.954E+00 1.870E-11 8.954E+00 1.870E-11 1.870E-11 1.895E+00 1.007E-10 1.007E-10 1.007E-10 1.007E-10 1.007E-10 1.007E-10 1.007E-10 1.231E-10 1.175E-10 1.231E+01 1.175E+01 3.297E-15 1.1231E+01 1.187E-16 1.237E-16 1.349E-01 3.792E-16 1.349E-01 1.187E-16 1.399E-01 3.638E-17		-	
2.887E+01 2.009E-38 2.9942E+01 3.406E-39 2.997E+01 5.508E-40 3.052E+01 8.486E-41 3.108E+01 1.745E-42 3.218E+01 2.344E-43 3.273E+01 3.051E-44 3.328E+01 3.952E-45 40 0.000E+00 1.000E+00 5.596E-01 6.760E-01 1.119E+00 3.940E-01 1.679E+00 1.953E-01 2.238E+00 8.144E-02 2.798E+00 2.838E-02 3.358E+00 3.217E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.37E-05 5.596E+00 6.156E-00 6.156E+00 9.264E-07 6.715E+00 7.834E+00 3.899E-10 8.394E+00 1.870E-11 8.954E+00 1.001E-12 9.513E+00 1.567E-13 1.007E+01 1.567E-13 1.007E+01 1.175E-16 1.175E+01 1.187E-16 1.1343E+01 1.187E-16 1.399E-01 3.638E-17			
2.942E+01 3.406E-39 2.997E+01 5.508E-40 3.052E+01 8.486E-41 3.108E+01 1.246E-41 3.163E+01 1.745E-42 3.218E+01 3.051E-44 3.3273E+01 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-40 3.940E-01 1.179E+00 3.940E-01 1.179E+00 1.953E-01 2.238E+00 2.838E-02 3.358E+00 3.277E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 6.327E-05 6.5596E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.021E-12 9.513E+00 1.021E-12 9.513E+00 1.021E-12 9.513E+00 1.021E-12 1.19E+01 8.972E-15 1.1231E+01 1.149E-15 1.231E+01 1.149E-15 1.231E+01 1.149E-15 1.231E+01 1.149E-15 1.239E-10 1.3638E-17		2.832E+01	1.131E-37
2.942E+01 3.406E-39 2.997E+01 5.508E-40 3.052E+01 8.486E-41 3.108E+01 1.246E-41 3.163E+01 1.745E-42 3.218E+01 3.051E-44 3.3273E+01 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-44 3.328E+01 3.952E-45 3.051E-40 3.940E-01 1.179E+00 3.940E-01 1.179E+00 1.953E-01 2.238E+00 2.838E-02 3.358E+00 3.277E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 6.327E-05 6.5596E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.021E-12 9.513E+00 1.021E-12 9.513E+00 1.021E-12 9.513E+00 1.021E-12 1.19E+01 8.972E-15 1.1231E+01 1.149E-15 1.231E+01 1.149E-15 1.231E+01 1.149E-15 1.231E+01 1.149E-15 1.239E-10 1.3638E-17		2.887E+01	2.009E-38
2.997E+01			
3.052E+01 3.108E+01 3.108E+01 1.745E-42 3.218E+01 3.273E+01 3.328E+01 3.328E+01 3.328E+01 3.952E-45 40 0.000E+00 5.596E-01 1.119E+00 1.6760E-01 1.679E+00 2.238E+00 2.798E+00 2.798E+00 3.3917E+00 3.9917E+00 3.990E-03 4.477E+00 3.890E-04 5.036E+00 6.156E+00 6.156E+00 6.156E+00 6.156E+00 7.275E+00 7.834E+00 3.894E+00 3.894E+00 1.870E-11 8.954E+00 1.007E+01 1.007E+01 1.007E+01 1.007E+01 1.007E+01 1.007E+01 3.297E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.231E+01 1.343E+01 3.638E-17			
3.108E+01 3.163E+01 3.163E+01 3.218E+01 3.218E+01 3.273E+01 3.273E+01 3.328E+01 3.328E+01 3.328E+01 3.328E+01 3.352E-45 40 0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.238E+00 2.2798E+00 2.3358E+00 3.917E+00 3.940E-01 5.596E+00 6.327E-03 3.917E+00 5.596E+00 6.156E+00 6.156E+00 6.156E+00 6.156E+00 7.275E+00 7.834E+00 8.319E-08 7.275E+00 1.870E-11 8.954E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.175E+01 1.175E+01 1.175E+01 1.175E+01 3.297E-15 1.175E+01 3.297E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.231E+01 1.149E-15 1.231E+01 1.343E-01			
3.163E+01			
3.218E+01 3.273E+01 3.273E+01 3.051E-44 3.328E+01 3.952E-45 40 0.000E+00 5.596E-01 1.119E+00 3.940E-01 1.679E+00 2.238E+00 2.238E+00 2.798E+00 3.917E+00 3.917E+00 3.917E+00 4.477E+00 5.596E-01 5.596E+00 6.327E-05 5.596E+00 6.156E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 1.021E-12 9.513E+00 1.021E-12 9.513E+00 1.039E-15 1.175E+01 3.297E-15 1.231E+01 1.343E+01 1.343E+01 1.349E-16 1.349E-01 3.638E-17		3.108E+01	1.246E-41
3.218E+01 3.273E+01 3.273E+01 3.051E-44 3.328E+01 3.952E-45 40 0.000E+00 5.596E-01 1.119E+00 3.940E-01 1.679E+00 2.238E+00 2.238E+00 2.798E+00 3.917E+00 3.917E+00 3.917E+00 4.477E+00 5.596E-01 5.596E+00 6.327E-05 5.596E+00 6.156E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 1.021E-12 9.513E+00 1.021E-12 9.513E+00 1.039E-15 1.175E+01 3.297E-15 1.231E+01 1.343E+01 1.343E+01 1.349E-16 1.349E-01 3.638E-17		3.163E+01	1.745E-42
3.273E+01 3.328E+01 3.952E-45 40 0.000E+00 5.596E-01 1.119E+00 1.679E+00 1.953E-01 2.238E+00 2.788E+00 2.838E-02 3.358E+00 3.917E+00 4.477E+00 5.596E+00 6.156E+00 6.156E+00 6.156E+00 6.156E+00 6.175E+00 7.834E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 1.021E-12 9.513E+00 1.063E+01 1.063E+01 3.997E-15 1.175E+01 1.231E+01 1.231E+01 1.231E+01 1.231E+01 1.343E+01 1.343E+01 1.343E+01 1.343E+01 1.387E-16 1.339E+01 1.3638E-17			
3.328E+01 3.952E-45 40 0.000E+00 5.596E-01 6.760E-01 1.119E+00 3.940E-01 1.679E+00 1.953E-01 2.238E+00 2.838E-02 2.798E+00 2.838E-02 3.358E+00 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 6.156E+00 9.264E-07 6.715E+00 7.275E+00 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.007E+01 5.753E-14 1.007E+01 1.197E-15 1.231E+01 1.175E+01 3.297E-15 1.231E+01 1.187E-16 1.339E+01 1.187E-16 1.339E+01 1.187E-16 1.339E+01 1.187E-16 1.339E+01 1.187E-16 1.399E+01 3.638E-17			
40 0.000E+00 5.596E-01 1.119E+00 1.119E+00 1.953E-01 1.679E+00 2.238E+00 2.238E+00 3.940E-01 2.238E+00 2.838E-02 3.358E+00 3.917E+00 1.969E-03 4.477E+00 5.596E+00 6.156E+00 6.156E+00 6.156E+00 7.275E+00 7.834E+00 3.894E+00 8.319E-08 7.275E+00 7.834E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.063E+01 2.319E-01 1.175E+01 3.297E-15 1.231E+01 1.287E+01 3.392E-16 1.343E+01 1.187E-16 1.399E+01 1.187E-16 1.399E+01 3.638E-17			
5.596E-01 6.760E-01 1.119E+00 3.940E-01 1.679E+00 1.953E-01 2.238E+00 8.144E-02 2.798E+00 2.838E-02 3.358E+00 8.217E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.231E+01 1.149E-15 1.231E+01 1.149E-15 1.238E+01 1.187E-16 1.399E+01 3.638E-17		1 3.328E+01	3.952E-45
5.596E-01 6.760E-01 1.119E+00 3.940E-01 1.679E+00 1.953E-01 2.238E+00 8.144E-02 2.798E+00 2.838E-02 3.358E+00 8.217E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.231E+01 1.149E-15 1.231E+01 1.149E-15 1.238E+01 1.187E-16 1.399E+01 3.638E-17		0.0202 0.	
1.119E+00 3.940E-01 1.679E+00 1.953E-01 2.238E+00 8.144E-02 2.798E+00 2.838E-02 3.358E+00 8.217E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.234E+01 1.187E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17			
1.679E+00 1.953E-01 2.238E+00 8.144E-02 2.798E+00 2.838E-02 3.358E+00 8.217E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.231E+01 1.149E-15 1.23E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00	1.000E+00
1.679E+00 1.953E-01 2.238E+00 8.144E-02 2.798E+00 2.838E-02 3.358E+00 8.217E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.231E+01 1.149E-15 1.23E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00	1.000E+00
2.238E+00 8.144E-02 2.798E+00 2.838E-02 3.358E+00 8.217E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.95E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.231E+01 3.297E-15 1.237E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01	1.000E+00 6.760E-01
2.798E+00 3.358E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.394E+00 8.394E+00 8.394E+00 1.667E-13 1.007E+01 1.119E+01 1.119E+01 1.231E+01 1.287E+01 1.287E+01 1.343E+01 1.343E+01 1.343E+01 1.349E+01 3.688E-10 2.838E-02 8.217E-03 8.217E-03 8.296E-04 6.327E-05 6.327	40	0.000E+00 5.596E-01 1.119E+00	1.000E+00 6.760E-01 3.940E-01
3.358E+00 8.217E-03 3.917E+00 1.969E-03 4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01
3.917E+00 4.477E+00 3.890E-03 4.477E+00 5.036E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 9.264E-07 6.715E+00 6.715E+00 7.834E+00 8.399E-10 8.954E+00 1.021E-12 9.513E+00 1.007E+01 1.007E+01 1.119E+01 1.119E+01 1.175E+01 1.231E+01 1.231E+01 1.343E+01 1.399E+01 1.3638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02
4.477E+00 3.890E-04 5.036E+00 6.327E-05 5.596E+00 8.453E-06 6.156E+00 9.264E-07 6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.19E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02
5.036E+00	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03
5.036E+00	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03
5.596E+008.453E-066.156E+009.264E-076.715E+008.319E-087.275E+006.117E-097.834E+003.689E-108.394E+001.870E-118.954E+001.021E-129.513E+001.567E-131.007E+015.753E-141.063E+012.319E-141.119E+018.972E-151.231E+011.149E-151.287E+013.792E-161.343E+011.187E-161.399E+013.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03
6.156E+009.264E-076.715E+008.319E-087.275E+006.117E-097.834E+003.689E-108.394E+001.870E-118.954E+001.021E-129.513E+001.567E-131.007E+015.753E-141.063E+012.319E-141.119E+018.972E-151.175E+013.297E-151.231E+011.149E-151.287E+013.792E-161.343E+011.187E-161.399E+013.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04
6.715E+00 8.319E-08 7.275E+00 6.117E-09 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05
7.275E+00 7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 3.297E-15 1.231E+01 1.287E+01 3.792E-16 1.343E+01 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06
7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07
7.834E+00 3.689E-10 8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07
8.394E+00 1.870E-11 8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08
8.954E+00 1.021E-12 9.513E+00 1.567E-13 1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09
9.513E+00	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10
1.007E+01 5.753E-14 1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11
1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12
1.063E+01 2.319E-14 1.119E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 9.513E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13
1.119E+01 8.972E-15 1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 9.513E+00	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13
1.175E+01 3.297E-15 1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13 5.753E-14
1.231E+01 1.149E-15 1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13 5.753E-14 2.319E-14
1.287E+01 3.792E-16 1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.394E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13 5.753E-14 2.319E-14 8.972E-15
1.343E+01 1.187E-16 1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13 5.753E-14 2.319E-14 8.972E-15 3.297E-15
1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.394E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13 5.753E-14 2.319E-14 8.972E-15 3.297E-15 1.149E-15
1.399E+01 3.638E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.394E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13 5.753E-14 2.319E-14 8.972E-15 3.297E-15 1.149E-15
	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 7.275E+00 7.275E+00 7.834E+00 8.394E+00 8.394E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01 1.287E+01	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13 5.753E-14 2.319E-14 8.972E-15 3.297E-15 1.149E-15 3.792E-16
1.454ETU 1.050E-17	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 7.275E+00 7.834E+00 8.394E+00 8.394E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01 1.287E+01 1.343E+01	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13 5.753E-14 2.319E-14 8.972E-15 3.297E-15 1.149E-15 3.792E-16 1.187E-16
	40	0.000E+00 5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 7.275E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01 1.119E+01 1.175E+01 1.231E+01 1.287E+01 1.343E+01 1.399E+01	1.000E+00 6.760E-01 3.940E-01 1.953E-01 8.144E-02 2.838E-02 8.217E-03 1.969E-03 3.890E-04 6.327E-05 8.453E-06 9.264E-07 8.319E-08 6.117E-09 3.689E-10 1.870E-11 1.021E-12 1.567E-13 5.753E-14 2.319E-14 8.972E-15 3.297E-15 1.149E-15 3.792E-16 1.187E-16 3.638E-17

•		
	1.509E+01	2.784E-18
	1.564E+01	7.049E-19
	1.619E+01	1.679E-19
	1.675E+01	3.757E-20
	1.730E+01	7.879E-21
	1.785E+01	1.546E-21
	1.840E+01	2.835E-22
	1.895E+01	4.844E-23
	1.950E+01	7.698E-24
	2.005E+01	1.136E-24
	2.060E+01	1.556E-25
	2.115E+01	1.979E-26
	2.171E+01	2.362E-27
	2.226E+01	2.740E-28
	2.281E+01	3.416E-29
	2.336E+01	5.474E-30
	2.391E+01	1.220E-30
	2.446E+01	3.302E-31
	2.501E+01	9.410E-32
	2.556E+01	2.656E-32
	2.612E+01	7.285E-33
		1.932E-33
	2.667E+01	
	2.722E+01	4.948E-34
	2.777E+01	1.222E-34
	2.832E+01	2.909E-35
	2.887E+01	6.671E-36
	2.942E+01	1.472E-36
	2.997E+01	3.124E-37
	3.052E+01	6.372E-38
	3.108E+01	1.248E-38
	3.163E+01	2.346E-39
	3.218E+01	4.229E-40
	3.273E+01	7.308E-41
	3.328E+01	1.211E-41
	0.0202 / 0 1	
45		
	0.000E+00	1.000E+00
45	0.000E+00	1.000E+00
45	5.596E-01	6.955E-01
45	5.596E-01 1.119E+00	6.955E-01 4.243E-01
43	5.596E-01 1.119E+00 1.679E+00	6.955E-01 4.243E-01 2.244E-01
43	5.596E-01 1.119E+00 1.679E+00 2.238E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01
43	5.596E-01 1.119E+00 1.679E+00	6.955E-01 4.243E-01 2.244E-01
43	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02
43	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04
43	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05
43	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06
43	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05
43	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06 4.567E-07 4.472E-08
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06 4.567E-07 4.472E-08 3.666E-09
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06 4.567E-07 4.472E-08 3.666E-09 2.522E-10
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06 4.567E-07 4.472E-08 3.666E-09 2.522E-10 1.499E-11
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 9.513E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06 4.567E-07 4.472E-08 3.666E-09 2.522E-10 1.499E-11 9.883E-13
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06 4.567E-07 4.472E-08 3.666E-09 2.522E-10 1.499E-11
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 9.513E+00	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06 4.567E-07 4.472E-08 3.666E-09 2.522E-10 1.499E-11 9.883E-13
40	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01 1.063E+01	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06 4.567E-07 4.472E-08 3.666E-09 2.522E-10 1.499E-11 9.883E-13 1.692E-13 6.491E-14
43	5.596E-01 1.119E+00 1.679E+00 2.238E+00 2.798E+00 3.358E+00 3.917E+00 4.477E+00 5.036E+00 5.596E+00 6.156E+00 6.715E+00 7.275E+00 7.834E+00 8.394E+00 8.954E+00 9.513E+00 1.007E+01	6.955E-01 4.243E-01 2.244E-01 1.020E-01 3.953E-02 1.302E-02 3.626E-03 8.521E-04 1.685E-04 2.801E-05 3.907E-06 4.567E-07 4.472E-08 3.666E-09 2.522E-10 1.499E-11 9.883E-13 1.692E-13

	1.231E+01	4.507E-15
	1.287E+01	1.697E-15
	1.343E+01	6.112E-16
	1.399E+01	2.167E-16
	1.454E+01	7.188E-17
	1.509E+01	
		2.269E-17
	1.564E+01	6.809E-18
	1.619E+01	1.940E-18
	1.675E+01	5.238E-19
	1.730E+01	1.339E-19
	1.785E+01	3.238E-20
	1.840E+01	7.391E-21
	1.895E+01	1.590E-21
	1.950E+01	3.218E-22
	2.005E+01	6.120E-23
	2.060E+01	1.092E-23
	2.115E+01	1.823E-24
	2.171E+01	2.849E-25
	2.226E+01	4.167E-26
	2.281E+01	5.734E-27
	2.336E+01	7.567E-28
	2.391E+01	1.014E-28
	2.446E+01	1.567E-29
	2.501E+01	3.213E-30
	2.556E+01	8.552E-31
	2.612E+01	2.568E-31
	2.667E+01	7.889E-32
	2.722E+01	2.388E-32
	2.777E+01	7.041E-33
	2.832E+01	2.014E-33
	2.887E+01	5.583E-34
	2.942E+01	1.499E-34
	2.997E+01	3.894E-35
	3.052E+01	9.786E-36
	3.108E+01	2.377E-36
	3.163E+01	5.579E-37
	3.218E+01	1.264E-37
	3.273E+01	2.764E-38
	3.328E+01	5.826E-39
50	0.0005+00	4.0005.00
50	0.000E+00	1.000E+00
	5.596E-01	7.122E-01
	1.119E+00	4.510E-01
	1.679E+00	2.514E-01
	2.238E+00	1.224E-01
	2.798E+00	5.171E-02
	3.358E+00	1.888E-02
	3.917E+00	5.935E-03
	4.477E+00	1.602E-03
	5.036E+00	3.707E-04
	5.596E+00	7.339E-05
	6.156E+00	1.241E-05
	6.715E+00	1.792E-06
	7.275E+00	2.207E-07
	7.834E+00	2.317E-08
	8.394E+00	2.073E-09
	8.954E+00	1.587E-10

9.513E-00 1.07E-11 1.063E-11 1.063E-01 1.176E-13 1.106E-13 1.119E-01 1.176E-01 3.086E-14 1.176E-01 3.086E-14 1.231E-01 1.342E-14 1.231E-01 1.342E-15 1.343E-01 1.399E-01 1.349E-16 1.349E-01 1.349E-16 1.599E-01 1.594E-01 1.594E-01 1.594E-01 1.594E-01 1.736E-01 1.736E-17 1.675E-01 1.785E-01 1.895E-16 1.785E-01 1.895E-10 1.895E-			
1,007E-01 1,068E-01 1,068E-01 1,19E-01 1,19E-01 1,19E-01 1,175E-01	1	9 513F+00	1 078F-11
1.063E-01 1.19E-01 1.175E-01 1.175E-01 1.23TE-01 1.23TE-01 1.23TE-01 1.28TE-01 1.34SE-01 1.34SE-01 1.34SE-01 1.34SE-01 1.34SE-01 1.34SE-01 1.39SE-01 1.560E-01 1.59SE-01 1.59SE-01 1.59SE-01 1.675E-01 1.675E-01 1.85SE-			
1.119E-01 1.175E-01 1.175E-01 1.1231E-01 1.231E-01 1.231E-01 1.349E-101 1.349E-101 1.349E-101 1.399E-01 1.399E-101 1.599E-101 1.599E-101 1.599E-101 1.599E-101 1.599E-101 1.599E-101 1.599E-101 1.599E-101 1.599E-101 1.599E-101 1.595E-301 1.775E-30 1.775E-3			
1.175E-01 1.23IE-01 1.23IE-01 1.23IE-01 1.248TE-01 1.343E-01 1.343E-01 1.349E-01 1.349E-01 1.349E-01 1.349E-01 1.349E-01 1.349E-01 1.349E-01 1.349E-01 1.349E-01 1.349E-01 1.349E-16 1.596E-01 1.596E-01 1.675E-01 1.675E-01 1.840			
1.231E-01			
1 287E-01			
1.343E+01			
1.399E-01		1.287E+01	5.604E-15
1.399E-01		1.343E+01	2.254E-15
1.454E+01			
1.509E-01			
1.564E-01			
1.619E+01			
1.675E+01			
1.730E+01			
1.785E+01 3.565E-19 1.840E+01 9.639E-20 1.895E+01 2.477E-20 1.950E+01 6.041E-21 2.005E+01 3.056E-22 2.05E+01 3.056E-22 2.115E+01 6.32E-23 2.171E+01 1.234E-23 2.226E+01 2.271E-24 2.281E+01 3.937E-25 2.336E+01 6.429E-26 2.391E+01 9.922E-27 2.446E+01 1.456E-27 2.501E+01 2.152E-28 2.556E+01 3.431E-29 2.612E+01 6.790E-30 2.667E+01 1.756E-30 2.772E+01 1.756E-31 2.777E+01 1.756E-31 2.777E+01 1.756E-31 2.832E+01 5.726E-32 2.887E+01 1.833E-32 2.942E+01 5.720E-33 2.997E+01 5.720E-33 2.997E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.108E+01 1.469E-34 3.108E+01 1.104E-35 3.273E+01 1.00E+00 5.596E-01 7.266E-01 1.119E+00 1.478E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.778E+00 2.567E-02 3.358E+00 2.567E-02 3.358E+00 7.991E-04 5.790E-00 7.991E-04 5.596E-00 7.991E-04 5.596E-00 7.991E-04 5.596E-00 7.991E-04 5.596E-00 7.991E-04 5.596E-00 7.991E-04 5.596E-00 7.991E-04 5.596E-00 7.991E-04 5.596E-00 7.991E-04		1.675E+01	4.208E-18
1.840E+01		1.730E+01	1.255E-18
1.840E+01		1.785E+01	3.565E-19
1.895E+01			
1.950E+01			
2.005E+01			
2,060E+01			
2.115E+01			
2.1771E+01			
2.226E+01 2.281E+01 3.393F-25 2.336E+01 6.429E-26 2.391E+01 9.922E-27 2.446E+01 1.466E-27 2.501E+01 2.152E-28 2.556E+01 3.431E-29 2.612E+01 6.790E-30 2.667E+01 1.756E-31 2.777E+01 2.832E+01 2.837E+01 2.837E+01 3.108E+01 3.108E+01 3.108E+01 3.108E+01 3.108E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.218E+01 3.238E+01 3.238E+01 3.238E+01 3.238E+01 3.238E+01 3.238E+01 3.238E+01 3.238E+01 3.338E+00 3.328E+00 2.567E-02 3.358E+00 3.91E+00 4.477E+00 2.695E-03 5.036E+00 5.036E+00 5.096E-00 1.620E-04			
2.281E+01		2.171E+01	
2.281E+01		2.226E+01	2.271E-24
2.336E+01 6.429E-26 2.391E+01 9.922E-27 2.446E+01 1.466E-27 2.501E+01 2.152E-28 3.2556E+01 3.431E-29 2.612E+01 6.790E-30 2.667E+01 1.756E-30 2.722E+01 5.392E-31 2.777E+01 5.392E-31 2.777E+01 5.726E-32 2.887E+01 1.833E-32 2.942E+01 5.720E-33 2.997E+01 5.720E-33 3.052E+01 5.125E-34 3.108E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.163E+01 1.104E-35 3.273E+01 2.894E-36 3.3273E+01 2.894E-36 3.328E+01 7.350E-37		2.281E+01	
2.391E+01 9.922E-27 2.446E+01 1.466E-27 2.501E+01 2.152E-28 2.556E+01 3.431E-29 2.612E+01 6.790E-30 2.667E+01 1.756E-30 2.772E+01 5.392E-31 2.777E+01 1.756E-31 2.832E+01 5.726E-32 2.842E+01 5.726E-32 2.842E+01 5.726E-33 2.997E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.163E+01 4.089E-35 3.218E+01 1.104E-35 3.273E+01 2.894E-36 3.3278E+01 7.350E-37 55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 8.910E-03 5.036E+00 7.091E-04 5.596E-00 7.091E-04 5.596E-00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04			
2.446E+01			
2.501E+01 2.152E-28 2.556E+01 3.431E-29 2.612E+01 6.790E-30 2.667E+01 1.756E-30 2.722E+01 5.392E-31 2.777E+01 1.756E-31 2.832E+01 5.726E-32 2.887E+01 1.833E-32 2.942E+01 5.720E-33 2.997E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.108E+01 1.104E-35 3.273E+01 2.894E-36 3.328E+01 7.350E-37 55 0.000E+00 1.000E+00 1.679E+00 2.765E-01 1.679E+00 2.765E-01 2.238E+00 6.459E-02 3.318E+00 4.474E-01 2.798E+00 6.959E-02 3.317E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04			
2.556E+01 3.431E-29 2.612E+01 6.790E-30 2.667E+01 1.756E-30 2.722E+01 5.392E-31 2.777E+01 1.756E-31 2.832E+01 5.726E-32 2.887E+01 1.833E-32 2.942E+01 5.720E-33 2.997E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.163E+01 4.089E-35 3.218E+01 1.104E-35 3.273E+01 2.894E-36 3.328E+01 7.350E-37 55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04			
2.612E+01 6.790E-30 2.667E+01 1.756E-30 2.772E+01 5.392E-31 2.777E+01 1.756E-31 2.832E+01 5.726E-32 2.887E+01 1.833E-32 2.942E+01 5.720E-33 3.052E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.163E+01 4.089E-35 3.273E+01 2.894E-36 3.328E+01 7.350E-37 55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 5.45E-01 2.738E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 5.596E+00 5.036E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 7.091E-04			
2.667E+01			
2.722E+01 5.392E-31 2.777E+01 1.756E-31 2.877FE+01 5.726E-32 2.887E+01 5.726E-32 2.887E+01 5.720E-33 2.942E+01 5.720E-33 2.997E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.163E+01 4.089E-35 3.218E+01 1.104E-35 3.273E+01 2.894E-36 3.328E+01 7.350E-37 55 0.000E+00 1.679E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 4.474E-01 2.798E+00 6.459E-02 3.358E+00 3.917E+00 8.910E-03 4.477E+00 5.596E+00 1.620E-04			
2.777E+01		2.667E+01	1.756E-30
2.832E+01 5.726E-32 2.887E+01 1.833E-32 2.942E+01 5.720E-33 2.997E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.163E+01 1.00E+34 3.273E+01 2.894E-36 3.273E+01 2.894E-36 3.328E+01 7.350E-37 55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.991E-04 5.596E+00 1.620E-04		2.722E+01	5.392E-31
2.832E+01 5.726E-32 2.887E+01 1.833E-32 2.942E+01 5.720E-33 2.997E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.163E+01 1.104E-35 3.218E+01 1.104E-35 3.273E+01 2.894E-36 3.328E+01 7.350E-37 55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.991E-04 5.596E+00 1.620E-04		2.777E+01	1.756E-31
2.887E+01			
2.942E+01 5.720E-33 2.997E+01 1.737E-33 3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.163E+01 1.104E-35 3.218E+01 1.104E-35 3.273E+01 2.894E-36 3.328E+01 7.350E-37 55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 3.917E+00 8.910E-03 4.477E+00 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 1.620E-04			
2.997E+01			
3.052E+01 5.125E-34 3.108E+01 1.469E-34 3.163E+01 4.089E-35 3.218E+01 1.104E-35 3.273E+01 2.894E-36 3.328E+01 7.350E-37 55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 5.596E+00 7.091E-04 5.596E+00 7.091E-04 5.596E+00 1.620E-04			
3.108E+01			
3.163E+01 4.089E-35 3.218E+01 1.104E-35 3.273E+01 2.894E-36 3.328E+01 7.350E-37 55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 5.596E+00 7.091E-04 5.596E+00 1.620E-04			
3.218E+01			
3.273E+01 2.894E-36 7.350E-37 55 0.000E+00 1.000E+00 7.266E-01 7.266E-01 1.119E+00 4.748E-01 2.238E+00 2.765E-01 2.238E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 4.477E+00 5.596E+00 7.091E-04 5.596E+00 1.620E-04		3.163E+01	4.089E-35
3.273E+01 2.894E-36 7.350E-37 55 0.000E+00 1.000E+00 7.266E-01 7.266E-01 1.119E+00 4.748E-01 2.238E+00 2.765E-01 2.238E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 5.596E+00 7.091E-04 5.596E+00 1.620E-04		3.218E+01	1.104E-35
3.328E+01 7.350E-37 55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04			
55 0.000E+00 1.000E+00 5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04			
5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04		3.323E · 0 1	7.5552 51
5.596E-01 7.266E-01 1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04	55	0.000E+00	1 000E+00
1.119E+00 4.748E-01 1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04	33		
1.679E+00 2.765E-01 2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04			
2.238E+00 1.424E-01 2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04			
2.798E+00 6.459E-02 3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04			
3.358E+00 2.567E-02 3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04			
3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04		2.798E+00	6.459E-02
3.917E+00 8.910E-03 4.477E+00 2.695E-03 5.036E+00 7.091E-04 5.596E+00 1.620E-04			
4.477E+002.695E-035.036E+007.091E-045.596E+001.620E-04			
5.036E+00 7.091E-04 5.596E+00 1.620E-04			
5.596E+00 1.620E-04			
[6.156E+00 3.209E-05			
		6.156E+00	3.209 ⊢ -05

1	0.7455 : 00	F 5075 00
	6.715E+00	5.507E-06
	7.275E+00	8.182E-07
	7.834E+00	1.052E-07
	8.394E+00	1.169E-08
	8.954E+00	1.124E-09
	9.513E+00	9.404E-11
	1.007E+01	7.200E-12
	1.063E+01	6.928E-13
	1.119E+01	1.641E-13
	1.175E+01	7.044E-14
	1.231E+01	3.275E-14
	1.287E+01	1.486E-14
	1.343E+01	6.534E-15
	1.399E+01	2.847E-15
	1.454E+01	1.173E-15
	1.509E+01	4.647E-16
	1.564E+01	1.771E-16
	1.619E+01	6.485E-17
	1.675E+01	2.280E-17
	1.073E+01 1.730E+01	7.687E-18
	1.785E+01	2.484E-18
	1.840E+01	7.686E-19
	1.895E+01	2.274E-19
	1.950E+01	6.431E-20
	2.005E+01	1.735E-20
	2.060E+01	4.465E-21
	2.115E+01	1.094E-21
	2.171E+01	2.548E-22
	2.226E+01	5.639E-23
	2.281E+01	1.184E-23
	2.336E+01	2.355E-24
	2.391E+01	4.438E-25
	2.446E+01	7.918E-26
	2.501E+01	1.342E-26
	2.556E+01	2.180E-27
	2.612E+01	3.493E-28
	2.667E+01	5.902E-29
	2.722E+01	1.178E-29
	2.777E+01	3.009E-30
	2.832E+01	9.348E-31
	2.887E+01	3.170E-31
	2.942E+01	1.095E-31
	2.997E+01	3.742E-32
	3.052E+01	1.253E-32
	3.108E+01	4.093E-33
	3.163E+01	1.304E-33
	3.218E+01	4.046E-34
	3.273E+01	1.223E-34
	3.328E+01	3.598E-35
	 -	
	I .	1

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other

licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this computer program. The user accepts full responsibility for assessing the validity and applicability of the results obtained with this program for any specific case.

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB ClayThin

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	11.03 m	25	0.019 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	19.29 m	40	0.019 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.412E-01	3.215E-01
	8.824E-01	4.575E-02
	1.324E+00	2.633E-03
	1.765E+00	5.850E-05

2.206E+00	4.895E-07
2.647E+00	1.521E-09
3.088E+00	2.003E-12
3.530E+00	4.222E-14
3.971E+00	5.016E-15
4.412E+00	4.678E-16
4.853E+00	3.324E-17
5.294E+00	1.773E-18
5.736E+00	6.980E-20
6.177E+00	1.991E-21
6.618E+00	4.028E-23
7.059E+00	5.650E-25
7.500E+00	5.417E-27
7.942E+00	3.994E-29
8.383E+00	6.190E-31
8.824E+00	3.037E-32
9.265E+00	1.564E-33
9.706E+00	6.804E-35
1.015E+01	2.455E-36
1.059E+01	7.290E-38
1.103E+01	1.840E-39
1.151E+01	2.481E-41
1.199E+01	2.590E-43
1.248E+01	2.208E-45
1.296E+01	2.166E-47
1.344E+01	4.307E-49
1.392E+01	1.229E-50
1.441E+01	0.000E+00
1.489E+01	0.000E+00
1.537E+01	0.000E+00
1.585E+01	0.000E+00
1.633E+01	0.000E+00
1.682E+01	0.000E+00
1.730E+01	0.000E+00
1.778E+01	0.000E+00
1.826E+01	0.000E+00
1.875E+01	0.000E+00
1.923E+01	0.000E+00
1.971E+01	0.000E+00
2.019E+01	0.000E+00
2.068E+01	0.000E+00
2.116E+01	0.000E+00
2.164E+01	0.000E+00
2.212E+01	0.000E+00
2.260E+01	0.000E+00
2.309E+01	0.000E+00
2.357E+01	0.000E+00
2.357E+01 2.405E+01	0.000E+00 0.000E+00
2.453E+01	0.000E+00
2.502E+01	0.000E+00
2.550E+01	0.000E+00
2.598E+01	0.000E+00
2.646E+01	0.000E+00
2.694E+01	0.000E+00
2.743E+01	0.000E+00
2.743E+01 2.791E+01	0.000E+00 0.000E+00
2.839E+01	0.000E+00

	2.887E+01 2.936E+01 2.984E+01 3.032E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00
10	0.000E+00 4.412E-01 8.824E-01 1.324E+00 1.765E+00 2.206E+00 2.647E+00 3.088E+00 3.530E+00 3.971E+00 4.412E+00 4.853E+00 5.294E+00 5.736E+00 6.177E+00 6.618E+00 7.059E+00 7.500E+00 7.942E+00 8.383E+00 8.824E+00 9.265E+00 9.706E+01 1.059E+01 1.103E+01 1.151E+01 1.199E+01 1.248E+01 1.296E+01 1.344E+01 1.392E+01 1.489E+01 1.537E+01 1.585E+01 1.633E+01 1.682E+01 1.730E+01 1.778E+01 1.826E+01 1.730E+01 1.875E+01 1.826E+01 1.971E+01 2.019E+01 2.019E+01 2.116E+01 2.309E+01	1.000E+00 4.894E-01 1.623E-01 3.496E-02 4.767E-03 4.050E-04 2.121E-05 6.802E-07 1.329E-08 1.585E-10 1.392E-12 7.583E-14 1.717E-14 3.657E-15 6.840E-16 1.117E-16 1.586E-17 1.946E-18 2.051E-19 1.846E-20 1.407E-21 9.019E-23 4.821E-24 2.134E-25 7.805E-27 2.554E-28 6.681E-30 4.060E-31 4.193E-32 4.353E-33 4.103E-34 3.468E-35 2.618E-36 1.758E-37 1.046E-38 5.493E-40 2.537E-41 1.031E-42 3.727E-44 1.272E-45 4.919E-47 2.757E-48 2.110E-49 1.740E-50 0.000E+00

ļ.	2.405E+01	0.000E+00
	2.453E+01	0.000E+00
l l		
	2.502E+01	0.000E+00
	2.550E+01	0.000E+00
l l	2.598E+01	0.000E+00
l l	2.646E+01	0.000E+00
l l	2.694E+01	0.000E+00
l l	2.743E+01	0.000E+00 0.000E+00
	2.791E+01	0.000E+00
l l	2.839E+01	0.000E+00
l l	2.887E+01	0.000E+00
l l	2.936E+01	0.000E+00
l l	2.984E+01	0.000E+00
l l	3.032E+01	0.000E+00
ļ	J.UJZL • U I	0.0001.00
15	0.000E+00	1.000E+00
	4.412E-01	5.768E-01
l l	8.824E-01	2.583E-01
l l	1.324E+00	8.750E-02
l l	1.765E+00	2.204E-02
l l	2.206E+00	4.077E-03
l l	2.647E+00	5.499E-04
	3.088E+00	5.374E-05
	3.530E+00	3.791E-06
l l	3.971E+00	1.925E-07
l l		
	4.412E+00	7.018E-09
	4.853E+00	1.842E-10
l l	5.294E+00	3.785E-12
	5.736E+00	1.736E-13
l l	6.177E+00	4.277E-14
	6.618E+00	1.291E-14
	7.059E+00	3.616E-15
l l		
	7.500E+00	9.282E-16
	7.942E+00	2.178E-16
	8.383E+00	4.658E-17
	8.824E+00	9.057E-18
	9.265E+00	1.596E-18
	9.706E+00	2.540E-19
	1.015E+01	3.637E-20
	1.059E+01	4.672E-21
	1.103E+01	5.578E-22
	1.151E+01	4.581E-23
l l	1.199E+01	3.249E-24
	1.248E+01	1.980E-25
l l	1.296E+01	1.037E-26
	1.290E+01 1.344E+01	4.794E-28
l l		
	1.392E+01	2.277E-29
l l	1.441E+01	1.706E-30
l l	1.489E+01	2.301E-31
	1.537E+01	3.721E-32
l l	1.585E+01	5.875E-33
	1.333E+01 1.633E+01	8.695E-34
l l		
	1.682E+01	1.198E-34
	1.730E+01	1.531E-35
	1.778E+01	1.813E-36
	1.826E+01	1.985E-37
		2.005E-38
	1.875E+01	/ UUDE-30

20	1.923E+01 1.971E+01 2.019E+01 2.068E+01 2.116E+01 2.164E+01 2.212E+01 2.260E+01 2.309E+01 2.357E+01 2.405E+01 2.453E+01 2.502E+01 2.598E+01 2.646E+01 2.694E+01 2.743E+01 2.791E+01 2.839E+01 2.839E+01 2.887E+01 2.936E+01 2.984E+01 3.032E+01	1.863E-39 1.591E-40 1.246E-41 8.970E-43 5.983E-44 3.817E-45 2.539E-46 2.046E-47 2.165E-48 2.727E-49 3.583E-50 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	4.412E-01 8.824E-01 1.324E+00 1.765E+00 2.206E+00 2.647E+00 3.088E+00 3.530E+00 3.971E+00 4.412E+00 4.853E+00 5.294E+00 5.736E+00 6.177E+00 6.618E+00 7.059E+00 7.500E+00 7.942E+00 8.383E+00 8.824E+00 9.265E+00 9.766E+01 1.059E+01 1.103E+01 1.199E+01 1.199E+01 1.248E+01 1.296E+01 1.392E+01	6.323E-01 3.317E-01 1.418E-01 4.872E-02 1.335E-02 2.895E-03 4.948E-04 6.640E-05 6.981E-06 5.736E-07 3.679E-08 1.840E-09 7.234E-11 2.501E-12 1.884E-13 5.423E-14 1.945E-14 6.652E-15 2.134E-15 6.406E-16 1.797E-16 4.699E-17 1.144E-17 2.592E-18 5.655E-19 9.405E-20 1.420E-20 1.941E-21 2.391E-22 2.646E-23 2.620E-24

	1.441E+01 1.489E+01 1.537E+01 1.585E+01 1.633E+01 1.682E+01 1.730E+01 1.778E+01 1.826E+01 1.875E+01 1.923E+01 1.971E+01 2.019E+01 2.068E+01 2.116E+01 2.164E+01	2.316E-25 1.826E-26 1.302E-27 8.974E-29 7.485E-30 1.005E-30 1.926E-31 4.010E-32 8.154E-33 1.580E-33 2.903E-34 5.046E-35 8.289E-36 1.285E-36 1.877E-37 2.580E-38
	2.212E+01 2.260E+01 2.309E+01 2.357E+01 2.405E+01 2.453E+01	3.334E-39 4.041E-40 4.594E-41 4.895E-42 4.903E-43 4.659E-44
	2.502E+01 2.550E+01 2.598E+01 2.646E+01 2.694E+01	4.312E-45 4.132E-46 4.528E-47 6.103E-48 9.741E-49
	2.743E+01 2.791E+01 2.839E+01 2.887E+01 2.936E+01 2.984E+01	1.674E-49 2.895E-50 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	3.032E+01	0.000E+00
25	0.000E+00 4.412E-01 8.824E-01 1.324E+00 1.765E+00 2.206E+00 2.647E+00 3.088E+00 3.530E+00 4.412E+00 4.412E+00 5.294E+00 5.736E+00 6.177E+00 6.618E+00 7.059E+00 7.500E+00 7.942E+00 8.383E+00 8.824E+00 9.265E+00	1.000E+00 6.715E-01 3.890E-01 1.918E-01 7.964E-02 2.766E-02 7.991E-03 1.912E-03 3.778E-04 6.151E-05 8.236E-06 9.055E-07 8.166E-08 6.037E-09 3.664E-10 1.866E-11 1.001E-12 1.444E-13 5.192E-14 2.082E-14 8.030E-15 2.943E-15

1	0.7005.00	1 10005 45
	9.706E+00	1.023E-15
	1.015E+01	3.369E-16
	1.059E+01	1.053E-16
	1.103E+01	3.222E-17
	1.151E+01	7.951E-18
	1.199E+01	1.827E-18
	1.248E+01	3.904E-19
	1.296E+01	7.734E-20
	1.344E+01	1.418E-20
	1.392E+01	2.399E-21
	1.441E+01	3.737E-22
	1.489E+01	5.345E-23
	1.537E+01	7.001E-24
	1.585E+01	8.376E-25
	1.633E+01	9.142E-26
	1.682E+01	9.126E-27
	1.730E+01	8.477E-28
	1.778E+01	7.835E-29
	1.826E+01	8.657E-30
	1.875E+01	1.411E-30
	1.923E+01	3.141E-31
	1.971E+01	7.718E-32
	2.019E+01	1.888E-32
	2.068E+01	4.463E-33
	2.116E+01	1.012E-33
	2.164E+01	2.199E-34
	2.212E+01	4.568E-35
	2.260E+01	9.068E-36
	2.309E+01	1.719E-36
	2.357E+01	3.106E-37
	2.405E+01	5.348E-38
	2.453E+01	8.765E-39
	2.502E+01	1.366E-39
	2.550E+01	2.022E-40
	2.598E+01	2.842E-41
	2.646E+01	3.795E-42
	2.694E+01	4.827E-43
	2.743E+01	5.892E-44
	2.791E+01	7.037E-45
	2.839E+01	8.573E-46
	2.887E+01	1.142E-46
	2.936E+01	1.777E-47
	2.984E+01	3.248E-48
	3.032E+01	6.561E-49
30	0.0005+00	1,000=,00
30	0.000E+00 4.412E-01	1.000E+00 7.010E-01
	4.412E-01 8.824E-01	4.350E-01
	6.624E-01 1.324E+00	4.350E-01 2.364E-01
	1.765E+00	2.364E-01 1.116E-01
	2.206E+00	4.545E-02
	2.200E+00 2.647E+00	4.545E-02 1.591E-02
	3.088E+00	4.769E-03
	3.530E+00	4.769E-03 1.220E-03
	3.971E+00	1.220E-03 2.661E-04
	3.971E+00 4.412E+00	2.061E-04 4.935E-05
	4.412E+00 4.853E+00	4.933E-03 7.774E-06
I	4.000ET00	7.774E-UU

	1.039E-06
	1.178E-07
	1.131E-08
	9.212E-10
	6.408E-11
	4.090E-12
	3.816E-13
	1.024E-13
	4.337E-14
	1.880E-14
	7.856E-15
	3.146E-15
	1.211E-15
	4.597E-16
	1.460E-16
	4.382E-17
	1.242E-17
	3.320E-18
	8.353E-19
	1.976E-19
	4.384E-20
	9.113E-21
	1.771E-21
	3.209E-22
	5.417E-23
	8.494E-24
	1.235E-24
	1.664E-25
	2.079E-26
	2.428E-27
	2.738E-28
	3.279E-29
	4.993E-30
	1.067E-30
	2.813E-31
	7.863E-32
	2.179E-32
	5.870E-33
	1.528E-33
	3.837E-34
	9.285E-35
	2.164E-35
	4.854E-36
	1.047E-36
	2.170E-37
	4.319E-38
	8.248E-39
	1.510E-39
	2.649E-40
	4.451E-41
	7.163E-42
	1.106E-42
	1.646E-43
3.032E+01	2.387E-44
0.000E+00	1.000E+00
	1.0001
	5.294E+00 5.736E+00 6.177E+00 6.618E+00 7.059E+00 7.500E+00 7.500E+00 8.383E+00 8.383E+00 9.265E+00 9.706E+01 1.059E+01 1.103E+01 1.151E+01 1.199E+01 1.248E+01 1.392E+01 1.344E+01 1.392E+01 1.537E+01 1.537E+01 1.633E+01 1.632E+01 1.730E+01 1.778E+01 1.826E+01 1.875E+01 1.923E+01 2.019E+01 2.019E+01 2.019E+01 2.019E+01 2.212E+01 2.260E+01 2.357E+01 2.309E+01 2.357E+01 2.550E+01 2.550E+01 2.550E+01 2.550E+01 2.598E+01 2.646E+01 2.791E+01 2.694E+01 2.791E+01 2.791E+01 2.839E+01 2.839E+01 2.839E+01 2.839E+01 2.936E+01 2.936E+01 2.936E+01 2.936E+01

	8.824E-01	4.728E-01
	1.324E+00	2.758E-01
	1.765E+00	1.428E-01
	2.206E+00	6.528E-02
	2.647E+00	2.623E-02
	3.088E+00	9.240E-03
	3.530E+00	2.846E-03
	3.971E+00	7.647E-04
	4.412E+00	1.790E-04
	4.853E+00	3.648E-05
	5.294E+00	6.461E-06
	5.736E+00	9.942E-07
	6.177E+00	1.328E-07
	6.618E+00	1.539E-08
	7.059E+00	1.547E-09
	7.500E+00	1.356E-10
	7.942E+00	1.069E-11
	8.383E+00	9.446E-13
	8.824E+00	1.808E-13
	9.265E+00	7.239E-14
	9.706E+00	3.364E-14
	9.706E+00 1.015E+01	3.364E-14 1.542E-14
	1.059E+01	6.860E-15
	1.103E+01	3.027E-15
	1.151E+01	1.145E-15
	1.199E+01	4.135E-16
	1.248E+01	1.425E-16
	1.296E+01	4.679E-17
	1.344E+01	1.463E-17
	1.392E+01	4.349E-18
	1.441E+01	1.228E-18
	1.489E+01	3.289E-19
	1.537E+01	8.346E-20
	1.585E+01	2.003E-20
	1.633E+01	4.541E-21
	1.682E+01	9.710E-22
	1.730E+01	1.955E-22
	1.778E+01	3.699E-23
	1.826E+01	6.570E-24
	1.875E+01	1.094E-24
	1.923E+01	1.705E-25
	1.971E+01	2.491E-26
	2.019E+01	3.434E-27
	2.068E+01	4.568E-28
	2.116E+01	6.260E-29
	2.164E+01	1.010E-29
	2.212E+01	2.174E-30
	2.212E+01 2.260E+01	5.955E-31
	2.200E+01 2.309E+01	1.807E-31
	2.357E+01	5.574E-32
	2.405E+01	1.691E-32
	2.453E+01	4.993E-33
	2.502E+01	1.431E-33
	2.550E+01	3.978E-34
	2.598E+01	1.071E-34
	2.646E+01	2.792E-35
	2.694E+01	7.044E-36
•		

	2.743E+01 2.791E+01 2.839E+01 2.887E+01 2.936E+01 2.984E+01 3.032E+01	1.719E-36 4.053E-37 9.234E-38 2.031E-38 4.309E-39 8.817E-40 1.739E-40
40	0.000E+00 4.412E-01 8.824E-01 1.324E+00 1.765E+00 2.206E+00 2.647E+00 3.088E+00 3.530E+00 3.971E+00 4.412E+00 4.853E+00 5.294E+00 5.736E+00 6.177E+00 6.618E+00 7.059E+00 7.500E+00 7.942E+00 8.383E+00 9.265E+00 9.766E+00 1.015E+01 1.059E+01 1.103E+01 1.199E+01 1.248E+01 1.296E+01 1.344E+01 1.392E+01 1.441E+01 1.489E+01 1.537E+01 1.585E+01 1.682E+01 1.770E+01 1.778E+01 1.826E+01 1.770E+01 1.875E+01 1.826E+01 1.923E+01 1.875E+01 1.923E+01 1.932E+01 1.770E+01 1.770E+01 1.826E+01 1.770E+01 1.826E+01 1.923E+01 1.971E+01 2.019E+01	1.000E+00 7.432E-01 5.047E-01 3.109E-01 1.727E-01 8.609E-02 3.839E-02 1.527E-02 5.405E-03 1.700E-03 4.741E-04 1.172E-04 2.563E-05 4.961E-06 8.486E-07 1.283E-07 1.712E-08 2.019E-09 2.108E-10 1.987E-11 1.909E-12 3.014E-13 1.067E-13 5.108E-14 2.514E-14 1.237E-14 5.322E-15 2.202E-15 8.752E-16 3.341E-16 1.223E-16 4.295E-17 1.444E-17 4.647E-18 1.429E-18 4.197E-19 1.176E-19 3.138E-20 7.971E-21 1.924E-21 4.409E-22 9.578E-23 1.969E-23 3.829E-24 7.031E-25 1.219E-25 1.998E-26 3.118E-27 4.733E-28

	2.260E+01 2.309E+01 2.357E+01 2.405E+01 2.453E+01 2.502E+01 2.550E+01 2.598E+01 2.646E+01 2.694E+01 2.743E+01 2.791E+01 2.839E+01 2.887E+01 2.936E+01 2.984E+01 3.032E+01	7.388E-29 1.325E-29 3.047E-30 8.810E-31 2.856E-31 9.532E-32 3.155E-32 1.023E-32 3.232E-33 9.946E-34 2.978E-34 8.672E-35 2.455E-35 6.751E-36 1.803E-36 4.674E-37 1.176E-37
45	0.000E+00 4.412E-01 8.824E-01 1.324E+00 1.765E+00 2.206E+00 2.647E+00 3.088E+00 3.530E+00 3.971E+00 4.412E+00 4.853E+00 5.294E+00 5.736E+00 6.177E+00 6.618E+00 7.059E+00 7.500E+00 7.942E+00 8.383E+00 8.824E+00 9.265E+00 9.706E+01 1.059E+01 1.103E+01 1.199E+01 1.199E+01 1.248E+01 1.296E+01 1.344E+01 1.392E+01 1.441E+01 1.489E+01 1.537E+01 1.585E+01 1.633E+01 1.682E+01 1.730E+01	1.000E+00 7.590E-01 5.319E-01 3.420E-01 2.008E-01 1.072E-01 5.185E-02 2.268E-02 8.947E-03 3.180E-03 1.017E-03 2.920E-04 7.530E-05 1.742E-05 3.613E-06 6.716E-07 1.118E-07 1.667E-08 2.225E-09 2.665E-10 2.905E-11 3.119E-12 4.640E-13 1.457E-13 7.010E-14 3.699E-14 1.753E-14 8.045E-15 3.567E-15 6.308E-16 2.513E-16 9.644E-17 1.268E-17 4.334E-18 1.423E-18 4.487E-19 1.356E-19

1.778E+01 1.826E+01 1.875E+01	3.927E-20 1.088E-20 2.883E-21
1.826E+01 1.875E+01	1.088E-20
1.875E+01	
	Z.003E-Z I
4 000 - 04	
1.923E+01	7.292E-22
1.971E+01	1.760E-22
2.019E+01	4.046E-23
2.068E+01	8.855E-24
	1.843E-24
	3.644E-25
	6.847E-26
	1.226E-26
	2.110E-27
2.357E+01	3.571E-28
2.405E+01	6.297E-29
2.453E+01	1.278E-29
	3.252E-30
	1.013E-30
	3.498E-31
	1.245E-31
2.694E+01	4.411E-32
2.743E+01	1.536E-32
	5.232E-33
	1.741E-33
	5.655E-34
	1.792E-34
	5.540E-35
3.032E+01	1.670E-35
0.000E+00	1.000E+00
	7.724E-01
	5.555E-01
	3.699E-01
	2.271E-01
	1.281E-01
	6.616E-02
	3.122E-02
3.530E+00	1.344E-02
	5.270E-03
	1.879E-03
	6.089E-04
	1.791E-04
	4.781E-05
6.177E+00	1.157E-05
6.618E+00	2.537E-06
	5.041E-07
	9.069E-08
	1.477E-08
	2.179E-09
	2.915E-10
9.265E+00	3.578E-11
9.706E+00	4.280E-12
	6.459E-13
	1.882E-13
	9.133E-14
	4.559E-14
1 100 - 01	0.0645.44
1.199E+01 1.248E+01	2.264E-14 1.094E-14
	2.068E+01 2.116E+01 2.164E+01 2.212E+01 2.260E+01 2.309E+01 2.357E+01 2.405E+01 2.453E+01 2.502E+01 2.550E+01 2.550E+01 2.646E+01 2.694E+01 2.743E+01 2.839E+01 2.839E+01 2.839E+01 2.936E+01 2.936E+01 2.984E+01 3.032E+01 0.000E+00 4.412E-01 8.824E-01 1.324E+00 1.765E+00 2.206E+00 2.206E+00 2.647E+00 3.530E+00 3.971E+00 4.412E+00 4.853E+00 5.294E+00 5.736E+00 6.177E+00 6.618E+00 7.059E+00 7.500E+00 7.942E+00 8.383E+00 8.824E+00 9.265E+00

1	1.296E+01	5.126E-15
	1.344E+01	2.328E-15
	1.392E+01	1.024E-15
	1.441E+01	4.361E-16
	1.489E+01	1.797E-16
	1.537E+01	7.157E-17
	1.585E+01	2.755E-17
	1.633E+01	1.024E-17
	1.682E+01	3.674E-18
	1.730E+01	1.271E-18
	1.778E+01	4.238E-19
	1.826E+01	1.360E-19
	1.875E+01	4.200E-20
	1.923E+01	1.247E-20
	1.971E+01	3.553E-21
	2.019E+01	9.717E-22
	2.068E+01	2.547E-22
	2.116E+01	6.395E-23
	2.164E+01 2.212E+01	1.536E-23
		3.526E-24
	2.260E+01	7.734E-25 1.620E-25
	2.309E+01 2.357E+01	3.244E-26
	2.337E+01 2.405E+01	6.235E-27
	2.453E+01	1.164E-27
	2.433E+01 2.502E+01	2.174E-28
	2.550E+01	4.323E-29
	2.598E+01	1.003E-29
	2.646E+01	2.874E-30
	2.694E+01	9.731E-31
	2.743E+01	3.578E-31
	2.791E+01	1.346E-31
	2.839E+01	5.039E-32
	2.887E+01	1.857E-32
	2.936E+01	6.714E-33
	2.984E+01	2.377E-33
	3.032E+01	8.233E-34
55	0.000E+00	1.000E+00
	4.412E-01	7.840E-01
	8.824E-01	5.762E-01
	1.324E+00	3.951E-01
	1.765E+00	2.517E-01
	2.206E+00	1.485E-01
	2.647E+00	8.097E-02
	3.088E+00 3.530E+00	4.069E-02 1.881E-02
	3.530E+00 3.971E+00	1.881E-02 7.994E-03
	3.971E+00 4.412E+00	7.994E-03 3.118E-03
	4.412E+00 4.853E+00	3.118E-03 1.115E-03
	4.653E+00 5.294E+00	3.653E-04
	5.294E+00 5.736E+00	1.096E-04
	6.177E+00	3.009E-05
	6.618E+00	7.557E-06
	7.059E+00	1.735E-06
	7.500E+00	3.641E-07
	7.942E+00	6.982E-08
I	= 00	0.00== 00

I	8.383E+00	1.223E-08
	8.824E+00	1.958E-09
	9.265E+00	2.869E-10
	9.706E+00	3.888E-11
	1.015E+01	5.127E-12
	1.059E+01	8.143E-13
	1.103E+01	2.354E-13
	1.151E+01	1.030E-13
	1.199E+01	5.299E-14
	1.248E+01	2.734E-14
	1.296E+01	1.378E-14
	1.344E+01	6.753E-15
	1.392E+01	3.218E-15
	1.441E+01	1.490E-15
	1.489E+01	6.699E-16
	1.537E+01	2.924E-16
	1.585E+01	1.238E-16
	1.633E+01	5.082E-17
	1.682E+01	2.022E-17
	1.730E+01	7.791E-18
	1.778E+01	2.906E-18
	1.826E+01	1.048E-18
	1.875E+01	3.657E-19
	1.923E+01	1.232E-19
	1.971E+01	4.007E-20
	2.019E+01	1.257E-20
	2.068E+01	3.802E-21
	2.116E+01	1.107E-21
	2.164E+01	3.103E-22
	2.212E+01	8.361E-23
	2.260E+01	2.164E-23
	2.309E+01	5.378E-24
	2.357E+01	1.282E-24
	2.405E+01	2.931E-25
	2.453E+01	6.429E-26
	2.502E+01	1.356E-26
	2.550E+01	2.770E-27
	2.598E+01	5.572E-28
	2.646E+01	1.147E-28
	2.694E+01	2.593E-29
	2.743E+01	6.944E-30
	2.791E+01	2.245E-30
	2.839E+01	8.253E-31
	2.887E+01	3.214E-31
	2.936E+01	1.268E-31
	2.984E+01	4.970E-32
	3.032E+01	1.919E-32

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB SandThick

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.019 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	23.62 m	40	0.019 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.800E-01	2.803E-01
	9.600E-01	2.962E-02
	1.440E+00	1.059E-03
	1.920E+00	1.217E-05

2.400E+00	4.368E-08
2.880E+00	4.885E-11
3.360E+00	1.037E-13
3.840E+00	9.638E-15
4.320E+00	7.843E-16
4.800E+00	4.641E-17
5.280E+00	1.960E-18
5.760E+00	5.783E-20
6.240E+00	1.164E-21
6.720E+00	1.553E-23
7.200E+00	1.336E-25
7.680E+00	7.408E-28
8.160E+00	4.152E-30
8.640E+00	1.022E-31
9.120E+00	4.221E-33
9.600E+00	1.474E-34
1.008E+01	4.135E-36
1.056E+01	9.227E-38
1.104E+01	1.619E-39
1.152E+01	2.210E-41
1.200E+01	2.440E-43
1.259E+01	7.107E-46
1.318E+01	3.241E-48
1.377E+01	3.736E-50
1.436E+01	0.000E+00
1.495E+01	0.000E+00
1.554E+01	0.000E+00
1.613E+01	0.000E+00
1.672E+01	0.000E+00
1.731E+01	0.000E+00
1.791E+01	0.000E+00
1.850E+01	0.000E+00
1.630E+01 1.909E+01	0.000E+00 0.000E+00
1.968E+01	0.000E+00
2.027E+01	0.000E+00
2.086E+01	0.000E+00
2.145E+01	0.000E+00
2.204E+01	0.000E+00
2.263E+01	0.000E+00
2.322E+01	0.000E+00
2.381E+01	0.000E+00
2.440E+01	0.000E+00
2.499E+01	0.000E+00
2.558E+01	0.000E+00
2.617E+01	0.000E+00
2.676E+01	0.000E+00
2.070E+01 2.735E+01	0.000E+00
2.735E+01 2.794E+01	0.000E+00 0.000E+00
2.853E+01	0.000E+00
2.912E+01	0.000E+00
2.971E+01	0.000E+00
3.031E+01	0.000E+00
3.090E+01	0.000E+00
3.149E+01	0.000E+00
3.208E+01	0.000E+00
3.267E+01	0.000E+00
3.326E+01	0.000E+00
·	•

	3.385E+01 3.444E+01 3.503E+01 3.562E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00
10	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.120E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.259E+01 1.318E+01 1.377E+01 1.436E+01 1.436E+01 1.672E+01 1.672E+01 1.731E+01 1.731E+01 1.791E+01 1.850E+01 1.999E+01 1.999E+01 2.027E+01 2.04E+01 2.145E+01 2.204E+01 2.204E+01 2.322E+01 2.331E+01 2.322E+01 2.331E+01 2.440E+01 2.499E+01 2.558E+01 2.617E+01	1.000E+00 4.514E-01 1.279E-01 2.162E-02 2.115E-03 1.176E-04 3.673E-06 6.399E-08 6.196E-10 3.640E-12 9.319E-14 1.802E-14 3.345E-15 5.321E-16 7.205E-17 8.251E-18 7.934E-19 6.355E-20 4.202E-21 2.272E-22 9.939E-24 3.484E-25 9.740E-27 2.264E-28 6.062E-30 3.927E-31 2.459E-32 1.478E-33 7.600E-35 3.305E-36 1.206E-37 3.670E-39 9.243E-41 1.919E-42 3.330E-44 5.372E-46 1.161E-47 4.401E-49 2.063E-50 0.000E+00
	2.676E+01 2.735E+01	0.000E+00 0.000E+00

	2.794E+01	0.000E+00
	2.853E+01	0.000E+00
	2.912E+01	0.000E+00
	2.971E+01	0.000E+00
	3.031E+01	0.000E+00
	3.090E+01	0.000E+00
	3.149E+01	0.000E+00
	3.208E+01	0.000E+00
	3.267E+01	0.000E+00
	3.326E+01	0.000E+00
	3.385E+01	0.000E+00
	3.444E+01	0.000E+00
	3.503E+01	0.000E+00
	3.562E+01	0.000E+00
	J.302L · J I	0.0002.00
15	0.000E+00	1.000E+00
	4.800E-01	5.432E-01
	9.600E-01	2.180E-01
	1.440E+00	6.263E-02
	1.920E+00	1.261E-02
	2.400E+00	1.757E-03
	2.880E+00	1.678E-04
	3.360E+00	1.092E-05
	3.840E+00	4.820E-07
	4.320E+00	1.439E-08
	4.800E+00	2.906E-10
	5.280E+00	4.293E-12
	5.760E+00	1.562E-13
	6.240E+00	3.611E-14
	6.720E+00	9.695E-15
	7.200E+00	2.366E-15
	7.680E+00	5.201E-16
	8.160E+00	1.027E-16
	8.640E+00	1.814E-17
	9.120E+00	2.857E-18
	9.600E+00	3.994E-19
	1.008E+01	4.933E-20
	1.056E+01	5.357E-21
	1.104E+01	5.089E-22
	1.152E+01	4.205E-23
	1.200E+01	3.130E-24
	1.259E+01	9.949E-26
	1.318E+01	2.533E-27
	1.377E+01	5.772E-29
	1.436E+01	2.084E-30
	1.495E+01	1.787E-31
	1.554E+01	1.921E-32
	1.613E+01	1.935E-33
	1.672E+01	1.755E-34
	1.731E+01	1.424E-35
	1.791E+01	1.031E-36
	1.850E+01	6.623E-38
	1.909E+01	3.765E-39
	1.968E+01	1.886E-40
	2.027E+01	8.306E-42
	2.086E+01	3.225E-43
	2.145E+01	1.133E-44

	2.204E+01	3.993E-46
	2.263E+01	1.798E-47
	2.322E+01	1.201E-48
	2.381E+01	9.812E-50
	2.440E+01	0.000E+00
	2.440E+01 2.499E+01	
		0.000E+00
	2.558E+01	0.000E+00
	2.617E+01	0.000E+00
	2.676E+01	0.000E+00
	2.735E+01	0.000E+00
	2.794E+01	0.000E+00
	2.853E+01	0.000E+00
	2.912E+01	0.000E+00
	2.971E+01	0.000E+00
	3.031E+01	0.000E+00
	3.090E+01	0.000E+00
	3.149E+01	0.000E+00
	3.208E+01	0.000E+00
	3.267E+01	0.000E+00
	3.326E+01	0.000E+00
	3.385E+01	0.000E+00
	3.444E+01	0.000E+00
	3.503E+01	0.000E+00
	3.562E+01	0.000E+00
20	0.000E+00	1.000E+00
	4.800E-01	6.021E-01
	9.600E-01	2.900E-01
	1.440E+00	1.093E-01
	1.920E+00	3.172E-02
	2.400E+00	7.017E-03
	2.880E+00	1.174E-03
	3.360E+00	1.479E-04
	3.840E+00	1.397E-05
	4.000=.00	0.0505.07
	4.320E+00	9.858E-07
	4.800E+00	5.191E-08
	4.800E+00 5.280E+00	5.191E-08 2.037E-09
	4.800E+00	5.191E-08
	4.800E+00 5.280E+00	5.191E-08 2.037E-09
	4.800E+00 5.280E+00 5.760E+00	5.191E-08 2.037E-09 6.011E-11
	4.800E+00 5.280E+00 5.760E+00 6.240E+00	5.191E-08 2.037E-09 6.011E-11 1.582E-12
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.104E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.104E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.104E+01 1.152E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20
	4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.259E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.188E-21
	4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.160E+00 9.120E+00 9.120E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.259E+01 1.318E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.188E-21 8.744E-23
	4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.259E+01 1.318E+01 1.377E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.188E-21 8.744E-23 5.464E-24
	4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.056E+01 1.152E+01 1.259E+01 1.318E+01 1.377E+01 1.436E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.188E-21 8.744E-23 5.464E-24 2.882E-25
	4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.259E+01 1.318E+01 1.377E+01	5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 1.188E-21 8.744E-23 5.464E-24

1.613E+01 2.004E-29 1.672E+01 1.417E-30 1.731E+01 1.821E-31 1.791E+01 2.661E-32 1.850E+01 3.707E-33 1.909E+01 4.783E-34	
1.672E+01 1.417E-30 1.731E+01 1.821E-31 1.791E+01 2.661E-32 1.850E+01 3.707E-33	
1.731E+01 1.821E-31 1.791E+01 2.661E-32 1.850E+01 3.707E-33	
1.791E+01 2.661E-32 1.850E+01 3.707E-33	
1.850E+01 3.707E-33	
1 QQQF+Q1	
1.303E-01 4.703E-34	
1.968E+01 5.685E-35	
2.027E+01 6.207E-36	
2.086E+01 6.211E-37	
2.145E+01 5.681E-38	
2.204E+01 4.738E-39	
2.263E+01 3.594E-40	
2.322E+01 2.475E-41	
2.381E+01 1.548E-42	
2.440E+01 8.878E-44	
2.499E+01 4.830E-45	
2.558E+01 2.759E-46	
2.617E+01 1.974E-47	
2.676E+01 1.907E-48	
2.735E+01 2.173E-49	
2.794E+01 2.534E-50	
2.853E+01 0.000E+00	
2.912E+01 0.000E+00	
2.971E+01 0.000E+00	
3.031E+01 0.000E+00	
3.090E+01 0.000E+00	
3.149E+01 0.000E+00	
3.208E+01 0.000E+00	
3.267E+01 0.000E+00	
3.326E+01 0.000E+00	
3.385E+01 0.000E+00	
3.444E+01 0.000E+00	
3.503E+01 0.000E+00	
3.562E+01 0.000E+00	
25 0.000E+00 1.000E+00	
4.800E-01 6.439E-01	
9.600E-01 3.476E-01	
1.440E+00 1.547E-01	
1.920E+00 5.605E-02	
2.400E+00 3.660E-02	
3.360E+00 7.210E-04	
3.840E+00 1.075E-04	
4.320E+00 1.273E-05	
4.800E+00 1.194E-06	
5.280E+00 8.861E-08	
5.760E+00 5.197E-09	
6.240E+00 2.415E-10	
6.720E+00 9.257E-12	
7.200E+00 4.612E-13	
7.680E+00 9.118E-14	
8.160E+00 3.312E-14	
8.640E+00 1.202E-14	
9.120E+00 4.118E-15	
9.600E+00 4.116E-13 9.600E+00 1.326E-15	
1.008E+01 4.007E-16	

	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.259E+01 1.318E+01 1.377E+01 1.436E+01 1.495E+01 1.554E+01 1.613E+01 1.672E+01 1.731E+01 1.791E+01 1.850E+01 1.909E+01 1.908E+01 2.027E+01 2.086E+01 2.145E+01 2.204E+01 2.322E+01 2.322E+01 2.381E+01 2.440E+01 2.499E+01 2.676E+01 2.735E+01 2.794E+01 2.853E+01	1.135E-16 3.005E-17 7.447E-18 1.785E-18 2.667E-19 3.555E-20 4.211E-21 4.412E-22 4.069E-23 3.287E-24 2.316E-25 1.424E-26 7.810E-28 4.310E-29 3.416E-30 4.775E-31 8.465E-32 1.507E-32 2.543E-33 4.029E-34 5.975E-35 8.278E-36 1.070E-36 1.287E-37 1.439E-38 1.492E-39 1.433E-40 1.274E-41 1.049E-42 8.085E-44 6.002E-45 4.627E-46
	3.090E+01 3.149E+01 3.208E+01 3.267E+01 3.326E+01 3.385E+01 3.444E+01 3.503E+01 3.562E+01	1.007E-49 1.466E-50 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
30	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.000E+00 6.756E-01 3.946E-01 1.966E-01 8.274E-02 2.920E-02 8.592E-03 2.100E-03 4.250E-04 7.107E-05 9.800E-06 1.113E-06

	5.760E+00	1.039E-07
	6.240E+00	7.979E-09
	6.720E+00	5.041E-10
	7.200E+00	2.665E-11
	7.680E+00	1.409E-12
	8.160E+00	1.774E-13
	8.640E+00	6.128E-14
	9.120E+00	2.484E-14
	9.600E+00	9.733E-15
	1.008E+01	3.628E-15
	1.056E+01	1.284E-15
	1.030E+01 1.104E+01	4.311E-16
	1.104E+01 1.152E+01	1.375E-16
	1.200E+01	4.295E-17
	1.259E+01	9.092E-18
	1.318E+01	1.762E-18
	1.377E+01	3.114E-19
	1.436E+01	5.009E-20
	1.495E+01	7.304E-21
	1.554E+01	9.623E-22
	1.613E+01	1.141E-22
	1.672E+01	1.214E-23
	1.731E+01	1.154E-24
	1.791E+01	9.778E-26
	1.850E+01	7.416E-27
	1.909E+01	5.180E-28
	1.968E+01	3.764E-29
	2.027E+01	3.832E-30
	2.027E+01 2.086E+01	6.311E-31
	2.145E+01	1.295E-31
	2.204E+01	2.708E-32
	2.263E+01	5.446E-33
	2.322E+01	1.040E-33
	2.381E+01	1.883E-34
	2.440E+01	3.221E-35
	2.499E+01	5.206E-36
	2.558E+01	7.934E-37
	2.617E+01	1.139E-37
	2.676E+01	1.538E-38
	2.735E+01	1.950E-39
	2.794E+01	2.319E-40
	2.853E+01	2.585E-41
	2.033E+01 2.912E+01	2.704E-42
	2.971E+01	2.666E-43
	3.031E+01	2.514E-44
	3.090E+01	2.359E-45
	3.149E+01	2.386E-46
	3.208E+01	2.876E-47
	3.267E+01	4.253E-48
	3.326E+01	7.150E-49
	3.385E+01	1.250E-49
	3.444E+01	2.164E-50
	3.503E+01	0.000E+00
	3.562E+01	0.000E+00
	3.3022.01	5.550L · 55
35	0.000E+00	1.000E+00
	U.UUUL UU	1.0001
33	4.800E-01	7.006E-01

9.600E-01	4.337E-01
1.440E+00	2.346E-01
1.920E+00	1.100E-01
2.400E+00	4.443E-02
2.880E+00	1.538E-02
3.360E+00	4.547E-03
3.840E+00	1.145E-03
4.320E+00	2.451E-04
4.800E+00	4.452E-05
5.280E+00	6.852E-06
5.760E+00	8.927E-07
6.240E+00	9.837E-08
6.720E+00	9.162E-09
7.200E+00	7.219E-10
7.680E+00	4.860E-11
8.160E+00	3.069E-12
8.640E+00	3.171E-13
9.120E+00	9.445E-14
9.600E+00	4.044E-14
1.008E+01	1.740E-14
1.056E+01	7.194E-15
1.104E+01	2.849E-15
1.152E+01	1.083E-15
1.200E+01	4.061E-16
1.259E+01	1.094E-16
1.318E+01	2.740E-17
1.377E+01	6.371E-18
1.436E+01	1.372E-18
1.495E+01	2.730E-19
1.554E+01	5.008E-20
1.613E+01	8.445E-21
1.672E+01	1.306E-21
1.731E+01	1.845E-22
1.791E+01	2.376E-23
1.850E+01	2.781E-24
1.909E+01	2.952E-25
1.968E+01	2.841E-26
2.027E+01	2.505E-27
2.086E+01	2.121E-28
2.145E+01	2.010E-29
2.204E+01	2.759E-30
2.263E+01	5.556E-31
2.322E+01	1.299E-31
2.381E+01	3.058E-32
2.440E+01	6.959E-33
2.499E+01	1.516E-33
2.558E+01	3.153E-34
2.617E+01	6.253E-35
2.676E+01	1.181E-35
2.735E+01	2.123E-36
2.794E+01	3.626E-37
2.853E+01	5.880E-38
2.912E+01	9.042E-39
2.971E+01	1.317E-39
3.031E+01	1.816E-40
3.090E+01	2.368E-41
3.149E+01	2.925E-42

	3.326E+01 3.385E+01 3.444E+01 3.503E+01 3.562E+01	4.339E-45 5.095E-46 6.822E-47 1.094E-47 2.023E-48
40	3.562E+01 0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+00 1.038E+01 1.056E+01 1.104E+01 1.152E+01 1.259E+01 1.318E+01 1.377E+01 1.436E+01 1.436E+01 1.495E+01 1.554E+01 1.672E+01 1.731E+01 1.731E+01 1.731E+01 1.731E+01 1.731E+01 1.731E+01 1.731E+01 1.731E+01 1.909E+01 1.908E+01 2.027E+01 2.086E+01 2.145E+01 2.204E+01 2.204E+01 2.204E+01 2.332E+01 2.332E+01 2.332E+01 2.332E+01 2.332E+01 2.332E+01	2.023E-48 1.000E+00 7.210E-01 4.668E-01 2.689E-01 1.369E-01 6.120E-02 2.395E-02 8.170E-03 2.425E-03 6.249E-04 1.396E-04 2.699E-05 4.514E-06 6.524E-07 8.142E-08 8.772E-09 8.163E-10 6.612E-11 4.961E-12 5.024E-13 1.306E-13 5.687E-14 2.613E-14 1.168E-14 5.054E-15 2.166E-15 6.958E-16 2.102E-16 5.966E-17 1.588E-17 3.955E-18 9.208E-19 1.999E-19 4.040E-20 7.581E-21 1.318E-21 2.118E-22 3.139E-23 4.279E-24 5.356E-25 6.150E-26 6.515E-28 6.686E-29 8.541E-30 1.592E-30 3.848E-31

	2.617E+01 2.676E+01 2.735E+01 2.794E+01 2.853E+01 2.912E+01 2.971E+01 3.031E+01 3.090E+01 3.149E+01 3.208E+01 3.267E+01 3.326E+01 3.385E+01 3.503E+01 3.503E+01	6.442E-33 1.546E-33 3.564E-34 7.878E-35 1.669E-35 3.386E-36 6.570E-37 1.219E-37 2.158E-38 3.647E-39 5.875E-40 9.015E-41 1.318E-41 1.839E-42 2.459E-43 3.192E-44 4.133E-45
45	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.318E+01 1.377E+01 1.436E+01 1.436E+01 1.554E+01 1.613E+01 1.672E+01 1.731E+01 1.791E+01 1.850E+01 1.968E+01	1.000E+00 7.380E-01 4.953E-01 2.999E-01 1.628E-01 7.884E-02 3.394E-02 1.295E-02 4.369E-03 1.301E-03 3.413E-04 7.884E-05 1.602E-05 2.859E-06 4.481E-07 6.164E-08 7.440E-09 7.886E-10 7.389E-11 6.430E-12 6.905E-13 1.666E-13 7.256E-14 3.501E-14 1.670E-14 7.925E-15 2.912E-15 1.015E-15 3.351E-16 1.047E-16 3.092E-17 8.617E-18 2.263E-18 5.590E-19 1.297E-19 2.822E-20 5.745E-21 1.092E-21 1.937E-22

	2.027E+01	3.193E-23
	2.086E+01	4.888E-24
	2.145E+01	6.935E-25
	2.204E+01	9.115E-26
	2.263E+01	1.113E-26
	2.322E+01	1.284E-27
	2.381E+01	1.473E-28
	2.440E+01	1.929E-29
	2.499E+01	3.444E-30
	2.558E+01	8.324E-31
	2.617E+01	2.301E-31
	2.676E+01	6.494E-32
	2.735E+01	1.795E-32
	2.794E+01	4.808E-33
	2.853E+01	1.243E-33
	2.912E+01	3.099E-34
	2.971E+01	7.443E-35
	3.031E+01	1.721E-35
	3.090E+01	3.830E-36
	3.149E+01	8.192E-37
	3.208E+01	1.683E-37
	3.267E+01	3.320E-38
	3.326E+01	6.281E-39
	3.385E+01	1.139E-39
	3.444E+01	1.978E-40
	3.503E+01	3.292E-41
	3.562E+01	5.249E-42
	,	1
50	0.000E+00	1.000E+00
Ü	4.800E-01	7.526E-01
	9.600E-01	5.201E-01
	1.440E+00	3.279E-01
	1.920E+00	1.875E-01
	2.400E+00	9.685E-02
	2.880E+00	4.502E-02
	3.360E+00	1.879E-02
	3.840E+00	7.025E-03
	4.320E+00	2.349E-03
	4.800E+00	7.012E-04
	5.280E+00	1.867E-04
	5.760E+00	4.432E-05
	6.240E+00	9.366E-06
	6.720E+00	1.762E-06
	7.200E+00	2.947E-07
	7.680E+00	4.385E-08
	8.160E+00	5.798E-09
	8.640E+00	6.822E-10
	9.120E+00	7.192E-11
	9.600E+00	7.099E-12
	1.008E+01	8.326E-13
	1.056E+01	1.981E-13
		1 0 GE 1 F 1 A
	1.104E+01	8.651E-14
	1.104E+01	
	1.104E+01 1.152E+01	4.354E-14
	1.104E+01 1.152E+01 1.200E+01	4.354E-14 2.233E-14
	1.104E+01 1.152E+01 1.200E+01 1.259E+01	4.354E-14 2.233E-14 9.120E-15
	1.104E+01 1.152E+01 1.200E+01	4.354E-14 2.233E-14
	1.104E+01 1.152E+01 1.200E+01 1.259E+01	4.354E-14 2.233E-14 9.120E-15

	1.436E+01 1.495E+01 1.554E+01 1.613E+01 1.672E+01 1.731E+01 1.791E+01 1.850E+01	4.690E-16 1.582E-16 5.074E-17 1.545E-17 4.463E-18 1.221E-18 3.160E-19 7.724E-20
	1.909E+01 1.968E+01 2.027E+01 2.086E+01 2.145E+01 2.204E+01 2.263E+01 2.322E+01 2.381E+01 2.440E+01	1.780E-20 3.864E-21 7.881E-22 1.508E-22 2.704E-23 4.533E-24 7.097E-25 1.037E-25 1.418E-26 1.838E-27
	2.499E+01 2.558E+01 2.617E+01 2.676E+01 2.735E+01 2.794E+01 2.853E+01 2.912E+01 2.971E+01 3.031E+01	2.349E-28 3.286E-29 5.910E-30 1.434E-30 4.132E-31 1.247E-31 3.733E-32 1.089E-32 3.084E-33 8.451E-34
	3.090E+01 3.149E+01 3.208E+01 3.267E+01 3.326E+01 3.385E+01 3.444E+01 3.503E+01 3.562E+01	2.241E-34 5.746E-35 1.424E-35 3.406E-36 7.864E-37 1.751E-37 3.758E-38 7.769E-39 1.546E-39
55	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03
	4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06 1.879E-07 2.981E-08 4.249E-09

I	9.120E+00	5.440F 40
		5.449E-10
	9.600E+00	6.332E-11
	1.008E+01	6.967E-12
	1.056E+01	9.016E-13
	1.104E+01	2.215E-13
	1.152E+01	9.850E-14
	1.200E+01	5.229E-14
	1.259E+01	2.318E-14
	1.318E+01	9.898E-15
	1.377E+01	4.054E-15
	1.436E+01	1.590E-15
	1.495E+01	5.971E-16
	1.554E+01	2.144E-16
	1.613E+01	7.352E-17
	1.672E+01	2.407E-17
	1.731E+01	7.511E-18
	1.791E+01	2.232E-18
	1.850E+01	6.309E-19
	1.909E+01	1.694E-19
	1.968E+01	4.317E-20
	2.027E+01	1.042E-20
	2.086E+01	2.380E-21
	2.145E+01	5.135E-22
	2.204E+01	1.045E-22
	2.263E+01	2.003E-23
	2.322E+01	3.612E-24
	2.381E+01	6.118E-25
	2.440E+01	9.734E-26
	2.499E+01	1.459E-26
	2.558E+01	2.083E-27
	2.617E+01	2.932E-28
	2.676E+01	4.441E-29
	2.735E+01	8.330E-30
	2.794E+01	2.069E-30
	2.853E+01	6.181E-31
	2.912E+01	1.968E-31
	2.971E+01	6.278E-32
	3.031E+01	1.964E-32
	3.090E+01	5.980E-33
	3.149E+01	1.770E-33
	3.208E+01	5.083E-34
	3.267E+01	1.416E-34
	3.326E+01	3.827E-35
	3.385E+01	1.002E-35
	3.444E+01	2.542E-36
	3.503E+01	6.240E-37
	3.562E+01	1.482E-37

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results

POLLUTEV7

Version 7.13

Copyright (c) 2007. GAEA Technologies Ltd., R.K. Rowe and J.R. Booker

BAB SandThin

THE DARCY VELOCITY (Flux) THROUGH THE LAYERS Va = 0.00102 m/year

Layer Properties

Layer	Thickness	Number of Sublayers	Coefficient of Hydrodynamic Dispersion	Matrix Porosity	Distributon Coefficient	Dry Density
Clay	12 m	25	0.019 m2/a	0.37	0 m3/kg	1510 kg/m3
Clay with Sand	15.17 m	40	0.019 m2/a	0.34	0 m3/kg	1510 kg/m3

Boundary Conditions

Contant Concentration

Source Concentration = 1 mg/L

Infinite Thickness Bottom Boundary

Laplace Transform Parameters

TAU = 7 N = 20 SIG = 0 RNU = 2

Calculated Concentrations at Selected Times and Depths

Time	Depth	Concentration
year	m	mg/L
5	0.000E+00	1.000E+00
	4.800E-01	2.803E-01
	9.600E-01	2.962E-02
	1.440E+00	1.059E-03
	1.920E+00	1.217E-05

2.400E+00	4.368E-08
2.880E+00	4.885E-11
3.360E+00	1.037E-13
3.840E+00	9.638E-15
4.320E+00	7.843E-16
4.800E+00	4.641E-17
5.280E+00	1.960E-18
5.760E+00	5.783E-20
6.240E+00	1.164E-21
6.720E+00	1.553E-23
7.200E+00	1.336E-25
7.680E+00	7.408E-28
8.160E+00	4.152E-30
8.640E+00	1.022E-31
9.120E+00	4.221E-33
9.600E+00	1.474E-34
1.008E+01	4.135E-36
1.056E+01	9.227E-38
1.104E+01	1.619E-39
1.152E+01	2.210E-41
1.200E+01	2.440E-43
1.238E+01	5.794E-45
1.276E+01	1.384E-46
1.314E+01	4.621E-48
1.352E+01	2.432E-49
1.390E+01	1.493E-50
1.428E+01	0.000E+00
1.425E+01	0.000E+00
1.503E+01	0.000E+00
1.541E+01	0.000E+00
1.579E+01	0.000E+00
1.617E+01	0.000E+00
1.655E+01	0.000E+00
1.693E+01	0.000E+00
1.731E+01	0.000E+00
1.769E+01	0.000E+00
1.807E+01	0.000E+00
	0.000E+00 0.000E+00
1.845E+01	
1.883E+01	0.000E+00
1.921E+01	0.000E+00
1.959E+01	0.000E+00
1.996E+01	0.000E+00
2.034E+01	0.000E+00
2.072E+01	0.000E+00
2.110E+01	0.000E+00
2.148E+01	0.000E+00
2.186E+01	0.000E+00
2.224E+01	0.000E+00
2.262E+01	0.000E+00
2.300E+01	0.000E+00
2.338E+01	0.000E+00
2.376E+01	0.000E+00
2.414E+01	0.000E+00
2.452E+01	0.000E+00
2.489E+01	0.000E+00
2.469E+01 2.527E+01	0.000E+00 0.000E+00
2.565E+01	0.000E+00

	2.603E+01 2.641E+01 2.679E+01 2.717E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00
10	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00 9.600E+00 1.056E+01 1.104E+01 1.152E+01 1.276E+01 1.238E+01 1.352E+01 1.390E+01 1.428E+01 1.455E+01 1.503E+01 1.579E+01 1.675E+01 1.679E+01 1.693E+01 1.731E+01 1.769E+01 1.887E+01 1.897E+01 1.897E+01 1.897E+01 1.897E+01 1.996E+01 1.996E+01	1.000E+00 4.514E-01 1.279E-01 2.162E-02 2.115E-03 1.176E-04 3.673E-06 6.399E-08 6.196E-10 3.640E-12 9.319E-14 1.802E-14 3.345E-15 5.321E-16 7.205E-17 8.251E-18 7.934E-19 6.355E-20 4.202E-21 2.272E-22 9.939E-24 3.484E-25 9.740E-27 2.264E-28 6.062E-30 3.927E-31 6.542E-32 1.121E-32 1.825E-33 2.787E-34 3.975E-35 5.288E-36 6.547E-37 7.532E-38 8.034E-39 7.931E-40 7.234E-41 6.090E-42 4.742E-43 3.448E-44 2.417E-45 1.771E-46 1.553E-47 1.758E-48 2.357E-49 3.315E-50 0.000E+00
	2.034E+01 2.072E+01 2.110E+01 2.148E+01 2.186E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

	2.224E+01 2.262E+01	0.000E+00 0.000E+00
	2.300E+01	0.000E+00 0.000E+00
	2.338E+01	0.000E+00
	2.376E+01	0.000E+00
	2.414E+01	0.000E+00
	2.452E+01	0.000E+00
	2.489E+01	0.000E+00
	2.527E+01	0.000E+00
	2.565E+01	0.000E+00
	2.603E+01	0.000E+00
	2.641E+01	0.000E+00
	2.679E+01	0.000E+00
	2.717E+01	0.000E+00
	Z./ / L · U	0.0002.00
15	0.000E+00	1.000E+00
	4.800E-01	5.432E-01
	9.600E-01	2.180E-01
	1.440E+00	6.263E-02
	1.920E+00	1.261E-02
	2.400E+00	1.757E-03
	2.880E+00	1.678E-04
	3.360E+00	1.092E-05
	3.840E+00	4.820E-07
	4.320E+00	1.439E-08
	4.800E+00	2.906E-10
	5.280E+00	4.293E-12
	5.760E+00	1.562E-13
	6.240E+00	3.611E-14
	6.720E+00	9.695E-15
	7.200E+00	2.366E-15
	7.680E+00	5.201E-16
	8.160E+00	1.027E-16
	8.640E+00	1.814E-17
	9.120E+00	2.857E-18
	9.600E+00	3.994E-19
	1.008E+01	4.933E-20
	1.056E+01	5.357E-21
	1.104E+01	5.089E-22
	1.152E+01	4.205E-23
	1.200E+01	3.130E-24
	1.238E+01	3.508E-25
	1.276E+01	3.577E-26
	1.314E+01	3.336E-27
	1.352E+01	2.925E-28
	1.390E+01	2.669E-29
	1.428E+01	3.187E-30
	1.465E+01	5.746E-31
	1.503E+01	1.312E-31
	1.541E+01	3.144E-32
	1.579E+01	7.371E-33
	1.617E+01	1.662E-33
	1.655E+01	3.585E-34
	1.693E+01	7.392E-35
	1.731E+01	1.455E-35
	1.769E+01	2.733E-36
i		4.889E-37
	1.807E+01	4 00ME=37

	1.845E+01	8.326E-38
	1.883E+01	1.348E-38
	1.921E+01	2.073E-39
	1.959E+01	3.025E-40
	1.996E+01	4.186E-41
	2.034E+01	5.491E-42
	2.072E+01	6.840E-43
	2.110E+01	8.135E-44
	2.148E+01	9.371E-45
	2.146E+01 2.186E+01	9.37 1E-45 1.081E-45
	2.224E+01	1.331E-46
	2.262E+01	1.889E-47
	2.300E+01	3.186E-48
	2.338E+01	6.089E-49
	2.376E+01	1.227E-49
	2.414E+01	2.484E-50
	2.452E+01	0.000E+00
	2.489E+01	0.000E+00
	2.527E+01	0.000E+00
	2.565E+01	0.000E+00
	2.603E+01	0.000E+00
	2.641E+01	0.000E+00 0.000E+00
	2.679E+01	0.000E+00
	2.717E+01	0.000E+00
20	0.000E+00	1.000E+00
	4.800E-01	6.021E-01
	9.600E-01	2.900E-01
	1.440E+00	1.093E-01
	1 920F+00	3 1/2⊢-02
	1.920E+00 2.400E+00	3.172E-02 7.017E-03
	2.400E+00	7.017E-03
	2.400E+00 2.880E+00	7.017E-03 1.174E-03
	2.400E+00 2.880E+00 3.360E+00	7.017E-03 1.174E-03 1.479E-04
	2.400E+00 2.880E+00 3.360E+00 3.840E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00 8.160E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.008E+01 1.056E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.200E+00 8.160E+00 8.160E+00 9.120E+00 9.600E+00 1.008E+01 1.104E+01 1.152E+01 1.200E+01 1.238E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 2.908E-21
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 1.008E+01 1.104E+01 1.152E+01 1.238E+01 1.276E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 2.908E-21 5.748E-22
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.08E+01 1.152E+01 1.200E+01 1.238E+01 1.276E+01 1.314E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 2.908E-21 5.748E-22 1.064E-22
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.238E+01 1.276E+01 1.314E+01 1.352E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 2.908E-21 5.748E-22 1.064E-22 1.843E-23
	2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00 1.08E+01 1.152E+01 1.200E+01 1.238E+01 1.276E+01 1.314E+01	7.017E-03 1.174E-03 1.479E-04 1.397E-05 9.858E-07 5.191E-08 2.037E-09 6.011E-11 1.582E-12 1.317E-13 3.914E-14 1.266E-14 3.820E-15 1.067E-15 2.751E-16 6.535E-17 1.427E-17 2.858E-18 5.233E-19 8.741E-20 1.381E-20 2.908E-21 5.748E-22 1.064E-22

•		
	1.465E+01	6.287E-26
	1.503E+01	8.233E-27
	1.541E+01	1.019E-27
	1.579E+01	1.239E-28
	1.617E+01	1.650E-29
	1.655E+01	2.838E-30
	1.693E+01	6.647E-31
	1.731E+01	1.851E-31
	1.769E+01	5.392E-32
	1.807E+01	1.555E-32
	1.845E+01	4.367E-33
	1.883E+01	1.188E-33
	1.921E+01	3.127E-34
	1.959E+01	7.951E-35
	1.996E+01	1.953E-35
	2.034E+01	4.629E-36
	2.072E+01	1.058E-36
	2.110E+01	2.333E-37
	2.148E+01	4.952E-38
	2.186E+01	1.012E-38
	2.224E+01	1.989E-39
	2.262E+01	3.758E-40
	2.300E+01	6.822E-41
	2.338E+01	1.190E-41
	2.376E+01	1.996E-42
	2.414E+01	3.225E-43
	2.452E+01	5.053E-44
	2.489E+01	7.777E-45
	2.527E+01	1.207E-45
	2.565E+01	1.974E-46
	2.603E+01	3.581E-47
	2.641E+01	7.412E-48
	2.679E+01	1.715E-48
	2.717E+01	4.228E-49
25	0.000E+00	1.0005.00
		1.000E+00
		1.000E+00 6.439E-01
	4.800E-01	6.439E-01
	4.800E-01 9.600E-01	6.439E-01 3.476E-01
	4.800E-01 9.600E-01 1.440E+00	6.439E-01 3.476E-01 1.547E-01
	4.800E-01 9.600E-01	6.439E-01 3.476E-01
	4.800E-01 9.600E-01 1.440E+00 1.920E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 6.240E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.680E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14 4.118E-15
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.720E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14 4.118E-15 1.326E-15
	4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 9.120E+00	6.439E-01 3.476E-01 1.547E-01 5.605E-02 1.640E-02 3.847E-03 7.210E-04 1.075E-04 1.273E-05 1.194E-06 8.861E-08 5.197E-09 2.415E-10 9.257E-12 4.612E-13 9.118E-14 3.312E-14 1.202E-14 4.118E-15

	1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.238E+01 1.276E+01 1.314E+01 1.352E+01 1.390E+01 1.428E+01 1.53E+01 1.53E+01 1.579E+01 1.617E+01 1.655E+01 1.693E+01 1.731E+01 1.769E+01 1.807E+01 1.887E+01 1.883E+01 1.921E+01 1.959E+01 2.034E+01 2.072E+01 2.110E+01 2.148E+01 2.186E+01 2.24E+01 2.238E+01 2.338E+01 2.376E+01 2.444E+01 2.452E+01	1.135E-16 3.005E-17 7.447E-18 1.785E-18 5.333E-19 1.521E-19 4.137E-20 1.072E-20 2.642E-21 6.189E-22 1.376E-22 2.898E-23 5.780E-24 1.090E-24 1.941E-25 3.267E-26 5.218E-27 8.006E-28 1.223E-28 2.025E-29 4.106E-30 1.075E-30 3.337E-31 1.103E-31 3.669E-32 1.200E-32 3.837E-33 1.195E-33 3.625E-34 1.070E-34 3.070E-35 8.565E-36 2.322E-36 6.114E-37 1.563E-37 3.875E-38 9.319E-39
	2.300E+01 2.338E+01 2.376E+01	2.322E-36 6.114E-37 1.563E-37
30	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00	1.000E+00 6.756E-01 3.946E-01 1.966E-01 8.274E-02 2.920E-02 8.592E-03 2.100E-03 4.250E-04 7.107E-05 9.800E-06 1.113E-06

	5.760E+00	1.039E-07
	6.240E+00	7.979E-09
	6.720E+00	5.041E-10
	7.200E+00	2.665E-11
	7.680E+00	1.409E-12
	8.160E+00	1.774E-13
	8.640E+00	6.128E-14
	9.120E+00	2.484E-14
	9.600E+00	9.733E-15
	1.008E+01	3.628E-15
	1.056E+01	1.284E-15
	1.104E+01	4.311E-16
	1.152E+01	1.375E-16
	1.200E+01	4.295E-17
	1.238E+01	1.600E-17
	1.276E+01	5.753E-18
	1.314E+01	1.993E-18
	1.352E+01	6.648E-19
	1.390E+01	2.134E-19
	1.428E+01	6.586E-20
	1.465E+01	1.953E-20
	1.503E+01	5.555E-21
	1.541E+01	1.516E-21
	1.579E+01	3.960E-22
	1.617E+01	9.903E-23
	1.655E+01	2.367E-23
	1.693E+01	5.405E-24
	1.731E+01	1.177E-24
	1.769E+01	2.446E-25
	1.807E+01	4.849E-26
	1.845E+01	9.190E-27
	1.883E+01	1.678E-27
	1.921E+01	3.012E-28
	1.959E+01	5.577E-29
	1.996E+01	1.161E-29
	2.034E+01	2.962E-30
	2.072E+01	9.236E-31
	2.110E+01	3.241E-31
	2.148E+01	1.186E-31
	2.186E+01	4.353E-32
	2.224E+01	1.576E-32
	2.262E+01	5.599E-33
	2.300E+01	1.947E-33
	2.338E+01	6.621E-34
	2.376E+01	2.201E-34
	2.414E+01	7.153E-35
	2.452E+01	2.271E-35
	2.489E+01	7.040E-36
	2.527E+01	2.131E-36
	2.565E+01	6.292E-37
	2.603E+01	1.813E-37
	2.641E+01	5.093E-38
	2.679E+01	1.395E-38
	2.717E+01	3.723E-39
35	0.000E+00	1.000E+00
	4.800E-01	7.006E-01
	4.000E-01	7.000⊏-01

9.600E-01	4.337E-01
1.440E+00	2.346E-01
1.920E+00	1.100E-01
2.400E+00	4.443E-02
2.880E+00	1.538E-02
3.360E+00	4.547E-03
3.840E+00	1.145E-03
4.320E+00	2.451E-04
4.800E+00	4.452E-05
5.280E+00	6.852E-06
5.760E+00 6.240E+00	8.927E-07
6.240E+00 6.720E+00	9.837E-08 9.162E-09
7.200E+00	7.219E-10
7.200E+00 7.680E+00	4.860E-11
8.160E+00	3.069E-12
8.640E+00	3.171E-13
9.120E+00	9.445E-14
9.600E+00	4.044E-14
1.008E+01	1.740E-14
1.056E+01	7.194E-15
1.104E+01	2.849E-15
1.152E+01	1.083E-15
1.200E+01	4.061E-16
1.238E+01	1.763E-16
1.276E+01	7.433E-17
1.314E+01	3.040E-17
1.352E+01	1.206E-17
1.390E+01	4.636E-18
1.428E+01	1.726E-18
1.465E+01	6.224E-19
1.503E+01	2.171E-19
1.541E+01	7.321E-20 2.385E-20
1.579E+01 1.617E+01	7.503E-20
1.655E+01	2.277E-21
1.693E+01	6.660E-22
1.731E+01	1.877E-22
1.769E+01	5.089E-23
1.807E+01	1.327E-23
1.845E+01	3.326E-24
1.883E+01	8.007E-25
1.921E+01	1.850E-25
1.959E+01	4.108E-26
1.996E+01	8.783E-27
2.034E+01	1.820E-27
2.072E+01	3.719E-28
2.110E+01	7.773E-29
2.148E+01	1.776E-29
2.186E+01	4.783E-30
2.224E+01	1.548E-30
2.262E+01 2.300E+01	5.698E-31 2.227E-31
2.300E+01 2.338E+01	8.837E-32
2.336E+01 2.376E+01	3.488E-32
2.376E+01 2.414E+01	1.357E-32
2.452E+01	5.194E-33
1	,

	2.489E+01 2.527E+01 2.565E+01 2.603E+01 2.641E+01 2.679E+01 2.717E+01	1.951E-33 7.190E-34 2.599E-34 9.211E-35 3.200E-35 1.089E-35 3.633E-36
40	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.280E+00 6.240E+00 6.720E+00 7.200E+00 7.680E+00 8.160E+00 8.160E+00 9.120E+00 9.120E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.238E+01 1.276E+01 1.314E+01 1.352E+01 1.390E+01 1.428E+01 1.465E+01 1.503E+01 1.579E+01 1.617E+01 1.675E+01 1.693E+01 1.731E+01 1.769E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.807E+01 1.8096E+01 1.996E+01 1.996E+01 1.996E+01 1.996E+01	1.000E+00 7.210E-01 4.668E-01 2.689E-01 1.369E-01 6.120E-02 2.395E-02 8.170E-03 2.425E-03 6.249E-04 1.396E-04 2.699E-05 4.514E-06 6.524E-07 8.142E-08 8.772E-09 8.163E-10 6.612E-11 4.961E-12 5.024E-13 1.306E-13 5.687E-14 2.613E-14 1.168E-14 5.054E-15 2.166E-15 1.052E-15 4.981E-16 2.300E-16 1.035E-16 4.535E-17 1.935E-17 1.935E-17 8.038E-18 3.248E-18 1.276E-18 4.871E-19 1.806E-19 6.503E-20 2.271E-20 7.691E-21 2.524E-21 8.021E-22 2.467E-22 7.339E-23 2.110E-23 5.860E-24 1.571E-24 4.066E-25

	2.110E+01 2.148E+01 2.186E+01 2.224E+01 2.262E+01 2.300E+01 2.338E+01 2.376E+01 2.414E+01 2.452E+01 2.489E+01 2.527E+01 2.565E+01 2.603E+01 2.641E+01 2.679E+01 2.717E+01	2.450E-26 5.728E-27 1.308E-27 2.969E-28 6.941E-29 1.773E-29 5.250E-30 1.827E-30 7.140E-31 2.957E-31 1.247E-31 5.249E-32 2.186E-32 8.978E-33 3.629E-33 1.443E-33 5.641E-34
45	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 6.720E+00 7.200E+00 7.200E+00 9.120E+00 9.120E+00 9.600E+01 1.056E+01 1.104E+01 1.152E+01 1.200E+01 1.238E+01 1.276E+01 1.314E+01 1.352E+01 1.390E+01 1.428E+01 1.503E+01 1.503E+01 1.579E+01 1.617E+01 1.655E+01 1.655E+01 1.655E+01 1.655E+01	1.000E+00 7.380E-01 4.953E-01 2.999E-01 1.628E-01 7.884E-02 3.394E-02 1.295E-02 4.369E-03 1.301E-03 3.413E-04 7.884E-05 1.602E-05 2.859E-06 4.481E-07 6.164E-08 7.440E-09 7.886E-10 7.389E-11 6.430E-12 6.905E-13 1.666E-13 7.256E-14 3.501E-14 1.670E-14 7.925E-15 4.191E-15 2.169E-15 1.098E-15 5.439E-16 2.633E-16 1.246E-16 5.761E-17 2.601E-17 1.147E-17 4.934E-18 2.071E-18 8.474E-19 3.380E-19

	1.731E+01 1.769E+01 1.807E+01 1.845E+01 1.883E+01 1.921E+01 1.959E+01 1.996E+01 2.034E+01 2.072E+01 2.110E+01 2.148E+01 2.186E+01 2.224E+01 2.300E+01 2.338E+01 2.376E+01 2.414E+01 2.452E+01 2.452E+01 2.527E+01 2.603E+01 2.679E+01 2.679E+01	1.314E-19 4.971E-20 1.831E-20 6.559E-21 2.285E-21 7.736E-22 2.544E-22 8.120E-23 2.515E-23 7.551E-24 2.198E-24 6.199E-25 1.694E-25 4.487E-26 1.154E-26 2.897E-27 7.168E-28 1.786E-28 4.658E-29 1.342E-29 4.454E-30 1.697E-30 7.096E-31 3.106E-31 1.379E-31 6.110E-32 2.682E-32
50	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00 9.120E+00 9.600E+01 1.056E+01 1.152E+01 1.238E+01 1.276E+01 1.314E+01	1.000E+00 7.526E-01 5.201E-01 3.279E-01 1.875E-01 9.685E-02 4.502E-02 1.879E-02 7.025E-03 2.349E-03 7.012E-04 1.867E-04 4.432E-05 9.366E-06 1.762E-06 2.947E-07 4.385E-08 5.798E-09 6.822E-10 7.192E-11 7.099E-12 8.326E-13 1.981E-13 8.651E-14 4.354E-14 2.233E-14 1.263E-14 7.010E-15 3.817E-15

	1.352E+01 1.390E+01 1.428E+01 1.465E+01 1.503E+01 1.579E+01 1.617E+01 1.655E+01 1.693E+01 1.731E+01 1.769E+01 1.807E+01 1.845E+01	2.038E-15 1.067E-15 5.476E-16 2.754E-16 1.356E-16 6.543E-17 3.090E-17 1.428E-17 6.458E-18 2.856E-18 1.235E-18 5.218E-19 2.154E-19 8.685E-20 3.418E-20
	1.959E+01 1.996E+01 2.034E+01 2.072E+01 2.110E+01 2.148E+01 2.186E+01 2.224E+01 2.300E+01 2.338E+01 2.376E+01 2.414E+01 2.452E+01 2.527E+01 2.565E+01 2.603E+01 2.679E+01 2.717E+01	4.915E-21 1.795E-21 6.385E-22 2.212E-22 7.463E-23 2.450E-23 7.822E-24 2.428E-24 7.327E-25 2.149E-25 6.128E-26 1.701E-26 4.614E-27 1.231E-27 3.280E-28 8.970E-29 2.627E-29 8.616E-30 3.226E-30 1.348E-30 6.021E-31
55	0.000E+00 4.800E-01 9.600E-01 1.440E+00 1.920E+00 2.400E+00 2.880E+00 3.360E+00 3.840E+00 4.320E+00 4.800E+00 5.280E+00 5.760E+00 6.240E+00 7.200E+00 7.680E+00 8.160E+00 8.640E+00	1.000E+00 7.651E-01 5.420E-01 3.533E-01 2.110E-01 1.149E-01 5.689E-02 2.556E-02 1.039E-02 3.821E-03 1.268E-03 3.794E-04 1.023E-04 2.483E-05 5.421E-06 1.065E-06 1.879E-07 2.981E-08 4.249E-09

1	0.4005.00	E 440E 40
	9.120E+00	5.449E-10
	9.600E+00	6.332E-11
	1.008E+01	6.967E-12
	1.056E+01	9.016E-13
	1.104E+01	2.215E-13
	1.152E+01	9.850E-14
	1.200E+01	5.229E-14
	1.238E+01	3.112E-14
	1.276E+01	1.827E-14
	1.314E+01	1.055E-14
	1.352E+01	5.987E-15
	1.390E+01	3.338E-15
	1.428E+01	1.829E-15
	1.465E+01	9.839E-16
	1.503E+01	5.197E-16
	1.541E+01	2.695E-16
	1.579E+01	1.372E-16
	1.617E+01	6.849E-17
	1.655E+01	3.355E-17
	1.693E+01	1.611E-17
	1.731E+01	7.587E-18
	1.769E+01	3.501E-18
	1.807E+01	1.583E-18
	1.845E+01	7.009E-19
	1.883E+01	3.039E-19
	1.921E+01	1.290E-19
	1.959E+01	5.354E-20
	1.996E+01	2.174E-20
	2.034E+01	8.633E-21
	2.072E+01	3.350E-21
	2.110E+01	1.270E-21
	2.148E+01	4.702E-22
	2.186E+01	1.699E-22
	2.224E+01	5.993E-23
	2.262E+01	2.061E-23
	2.300E+01	6.913E-24
	2.338E+01	2.260E-24
	2.376E+01	7.199E-25
	2.414E+01	2.235E-25
	2.452E+01	6.762E-26
	2.489E+01	1.997E-26
	2.527E+01	5.772E-27
	2.565E+01	1.642E-27
	2.603E+01	4.653E-28
	2.641E+01	1.342E-28
	2.679E+01	4.075E-29
	2.717E+01	1.357E-29
1		1

NOTICE

Although this program has been tested and experience would indicate that it is accurate within the limits given by the assumptions of the theory used, we make no warranty as to workability of this software or any other licensed material. No warranties either expressed or implied (including warranties of fitness) shall apply. No responsibility is assumed for any errors, mistakes or misrepresentations that may occur from the use of this

computer program. The user accepts full responsibility obtained with this program for any specific case.	/ for assessing the validity and applicability of the results