

2021 Annual Groundwater Monitoring Report

Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill Coal Combustion Residual Units

January 2022

Vincent E. Buening, C.P.G. Senior Project Manager

Sarah B. Holmstrom P.G. Senior Hydrogeologist

Prepared For:

DTE Electric Company 7955 East Dunbar Road Monroe, Michigan

Prepared By:

TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

David B. McKenzie, P.E. Senior Project Engineer

TABLE OF CONTENTS

Exec	cutive	Summaryi	ii
1.0	Intro	oduction	1
	1.1	Program Summary	1
	1.2	Site Overview	
	1.3	Geology/Hydrogeology	2
2.0	Gro	undwater Monitoring	3
	2.1	Monitoring Well Network	3
	2.2	Semiannual Groundwater Monitoring	3
		2.2.1 Data Summary	3
		2.2.2 Data Quality Review	3
		2.2.3 Groundwater Flow Rate and Direction	4
3.0	Stat	istical Evaluation	5
	3.1	Establishing Background Limits	5
	3.2	Data Comparison to Background Limits – First 2021 Semiannual Event (April 2021)	
	3.3	Verification Resampling for the First 2021 Semiannual Event	
	3.4	Data Comparison to Background Limits – Second 2021 Semiannual Event (October	
	2.5	2021)	
	3.5	Verification Resampling for the Second 2021 Semiannual Event	О
4.0	Con	clusions and Recommendations	7
5.0	Gro	undwater Monitoring Report Certification	8
6.0	Refe	erences	9
TAE	BLES		
Tabl	e 1	Summary of Groundwater Elevation Data – April and October 2021	
Table		Summary of Field Parameters – April and October 2021	
Table Table		Comparison of Appendix III Parameter Results to Background Limits – April 202 Comparison of Appendix III Parameter Results to Background Limits – October 2021	1

FIGURES

Figure 1 Site Location Map

Figure 2 Monitoring Network and Site Plan

Figure 3 Potentiometric Surface Map – April 2021 Figure 4 Potentiometric Surface Map – October 2021

APPENDICES

Appendix A Laboratory Reports
Appendix B Data Quality Reviews
Appendix C Prediction Limit Update

Executive Summary

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. The CCR Rule, which became effective on October 19, 2015 (with amendments in 2018 and 2020), applies to the DTE Electric Company (DTE Electric) Monroe Power Plant (MONPP) Coal Combustion Residual Fly Ash Basin and Vertical Extension Landfill (FAB & VEL) CCR units. Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e). On behalf of DTE Electric, TRC Engineers Michigan, Inc., the engineering entity of TRC Environmental Corporation (TRC), has prepared this Annual Groundwater Monitoring Report for calendar year 2021 activities at the MONPP FAB & VEL CCR units.

DTE Electric remained in detection monitoring at the MONPP FAB & VEL CCR Units in 2021. The semiannual detection monitoring events for 2021 were completed in April and October 2021 and included sampling and analyzing groundwater within the groundwater monitoring system for the indicator parameters listed in Appendix III to the CCR Rule. As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify statistically significant increases (SSIs) in detection monitoring parameters to determine if concentrations in detection monitoring well samples exceed background levels. Detection monitoring data that has been collected and evaluated in 2021 are presented in this report.

Potential SSIs over prediction limits were noted for several Appendix III constituents in one or more downgradient wells during the April and October 2021 monitoring events. However, these potential SSIs were not confirmed in verification sampling. Therefore, no SSIs were recorded for the 2021 monitoring period and detection monitoring will be continued at the MONPP FAB & VEL CCR units in accordance with §257.94. In addition, based on the artesian conditions, the low permeability of the underlying natural soils, and the calculated time of travel for groundwater to flow vertically from the MONPP FAB & VEL to the uppermost aquifer, there is no reasonable probability for the uppermost aquifer to have been affected by CCR from FAB & VEL operations that began in 1975.

1.0 Introduction

1.1 Program Summary

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. The CCR Rule, which became effective on October 19, 2015 (with amendments in 2018 and 2020), applies to the DTE Electric Company (DTE Electric) Monroe Power Plant (MONPP) Coal Combustion Residual Fly Ash Basin and Vertical Extension Landfill (FAB & VEL) CCR units. Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e). On behalf of DTE Electric, TRC Engineers Michigan, Inc., the engineering entity of TRC, has prepared this 2021 Annual Groundwater Monitoring Report for calendar year 2021 activities at the MONPP FAB & VEL CCR units (2021 Annual Report).

This 2021 Annual Report presents the monitoring results and the statistical evaluation of the detection monitoring parameters (Appendix III to Part 257 of the CCR Rule) for the April and October 2021 semiannual groundwater monitoring events for the MONPP FAB & VEL CCR units. Detection monitoring for these events continued to be performed in accordance with the CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company Monroe Power Plant Coal Combustion Residual Fly Ash Basin (QAPP) (TRC, August 2016; revised March 2017) and statistically evaluated per the Groundwater Statistical Evaluation Plan –Monroe Power Plant Coal Combustion Residual Fly Ash Basin (Stats Plan) (TRC, October 2017). As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify SSIs of detection monitoring parameters compared to background levels.

Additional site characterization was completed in late 2020 and 2021, including additional soil borings, Cone Penetrometer Testing (CPT), soil sample collection for additional clay-rich soil laboratory hydraulic conductivity testing and additional slug testing (to measure the hydraulic conductivity of the uppermost aquifer in wells not previously tested) in support of the Preliminary Alternative Liner Demonstration (PALD) that was submitted to EPA on November 30, 2021 (Geosyntec 2021). The PALD concludes that there is no reasonable probability that water from FAB will cause releases to groundwater throughout the active life of the CCR unit at concentrations that will exceed the groundwater protection standard at the waste boundary.

1.2 Site Overview

The MONPP FAB & VEL is located about one mile southwest of the MONPP in Section 16, Township 7 South, Range 9 East at 7955 East Dunbar Road, Monroe, Monroe County, Michigan (Figure 1). The MONPP FAB & VEL is bounded by Dunbar Road and Plum Creek to the north and northeast, Interstate 75 to the northwest, a 200-acre peninsula into Lake Erie to the east and southeast, Lake Erie to the south, and a large open field to the southwest (Figure 2).

The property has been used continuously for the operation of the MONPP FAB & VEL since approximately 1975 and is constructed over a natural clay-rich soil base. The MONPP FAB & VEL are owned by DTE Electric, and currently receive coal ash from DTE Electric's MONPP. The MONPP FAB & VEL are operated in accordance with Michigan Part 115 of the Natural Resources and Environmental Protection Act (NREPA), PA 451 of 1994, as amended, and are licensed as a Coal Ash Surface Impoundment and a Coal Ash Landfill under the current operating license number 9579.

1.3 Geology/Hydrogeology

The MONPP FAB & VEL CCR units are located within 200 feet southwest of Plum Creek and immediately north of Lake Erie. The MONPP FAB & VEL CCR units uppermost aquifer consists of saturated limestone and a 5 to 10 foot thick layer of weathered limestone mixed with clay, sand, and/or gravel, both present beneath at least 14 to 34 feet of thick contiguous silty clay-rich soil that serves as a natural confining hydraulic barrier that isolates the underlying uppermost aquifer (TRC, 2017 and Geosyntec, 2021). The limestone bedrock aquifer is artesian in every location except MW-16-01, where the static water level was approximately 1 to 2 feet below ground surface (ft bgs).

Potentiometric groundwater elevation data from 2016 through 2021 suggest that there is horizontal groundwater flow potential within the upper aquifer unit generally to the northeast towards Plum Creek. The average hydraulic gradient to the northeast is on the order of 0.002 foot/foot along the eastern part of the MONPP FAB & VEL to 0.004 to 0.005 foot/foot in the center and northwestern part of the FAB & VEL, with an overall mean of 0.004 foot/foot.

2.0 Groundwater Monitoring

2.1 Monitoring Well Network

A groundwater monitoring system has been established for the MONPP FAB & VEL CCR units as detailed in the Groundwater Monitoring System Summary Report – Monroe Power Plant Coal Combustion Residual Fly Ash Basin (GWMS Report) (TRC, October 2017). The detection monitoring well network for the MONPP FAB & VEL CCR units currently consists of seven monitoring wells that are screened in the uppermost aquifer. Monitoring wells MW-16-01 through MW-16-07 are located around the perimeter of the MONPP FAB & VEL and provide data on both background and downgradient groundwater quality that has not been affected by the CCR units (total of seven background/downgradient monitoring wells). The monitoring well locations are shown on Figure 2.

2.2 Semiannual Groundwater Monitoring

The semiannual monitoring parameters for the detection groundwater monitoring program were selected per the CCR Rule's Appendix III to Part 257 – Constituents for Detection Monitoring. The Appendix III indicator parameters consist of boron, calcium, chloride, fluoride, pH (field reading), sulfate, and total dissolved solids (TDS) and were analyzed in accordance with the sampling and analysis plan included within the QAPP. In addition to pH, the collected field parameters included dissolved oxygen, oxidation reduction potential, specific conductivity, temperature, and turbidity.

2.2.1 Data Summary

The first semiannual groundwater detection monitoring event for 2021 was performed April 5 and 6, 2021 by TRC personnel and samples were analyzed by Eurofins TestAmerica (Eurofins) in accordance with the QAPP. Static water elevation data were collected at all seven monitoring well locations. Groundwater samples were collected from the seven detection monitoring wells for the Appendix III indicator parameters and field parameters. A summary of the groundwater data collected during the April 2021 event is provided on Table 1 (static groundwater elevation data), Table 2 (field data), and Table 3 (analytical results).

The second semiannual groundwater detection monitoring event for 2021 was performed on October 6 and 7, 2021 by TRC personnel and samples were analyzed by Eurofins in accordance with the QAPP. Static water elevation data were collected at all seven monitoring well locations. Groundwater samples were collected from the seven detection monitoring wells for the Appendix III indicator parameters and field parameters. A summary of the groundwater data collected during the October 2021 event is provided on Table 1 (static groundwater elevation data), Table 2 (field data), and Table 4 (analytical results). The laboratory analytical reports are included in Appendix A.

2.2.2 Data Quality Review

Data from each round were evaluated for completeness, overall quality and usability, methodspecified sample holding times, precision and accuracy, and potential sample contamination.

The data were found to be complete and usable for the purposes of the CCR monitoring program. Data quality reviews are summarized in Appendix B.

2.2.3 Groundwater Flow Rate and Direction

Groundwater elevation data collected during the April and October 2021 sampling events continue to show that groundwater within the uppermost aquifer generally flows to the northeast across the Site. Groundwater potentiometric surface elevations measured across the Site during the April and October 2021 sampling events are provided on Table 1 and were used to construct the groundwater potentiometric surface maps shown on Figure 3 and Figure 4, respectively.

The groundwater flow rate and direction is consistent with previous monitoring events. The average hydraulic gradients throughout the MONPP FAB/VEL CCR units during the April and October 2021 events was approximately 0.004 ft/ft. Using the average hydraulic conductivity of 14 feet/day (TRC, 2017 and Geosyntec, 2021) and an assumed effective porosity of 0.1, the estimated seepage velocity for the April and October 2021 events is 0.56 feet/day (approximately 205 feet/year).

The general flow rate and direction from both events are similar to that identified in previous monitoring rounds and continues to demonstrate that the downgradient wells are appropriately positioned to detect the presence of Appendix III parameters that could potentially migrate from the MONPP FAB & VEL CCR units.

3.0 Statistical Evaluation

3.1 Establishing Background Limits

As discussed in the Stats Plan, intrawell statistical methods for MONPP FAB & VEL were selected based on the geology and hydrogeology at the Site (primarily the presence of clay/hydraulic barrier and the hydraulic separation between the CCR units and underlying uppermost aquifer), in addition to other supporting lines of evidence that the aquifer is unaffected by the CCR units (such as the consistency in concentrations of water quality data). An intrawell statistical approach requires that each downgradient well doubles as a background and compliance well, where data from each individual well during a detection monitoring event is compared to a statistical limit developed using the background dataset from that same well.

Per the Stats Plan, background limits were established for the Appendix III indicator parameters following the collection of at least eight background monitoring events using data collected from each of the seven established detection monitoring wells (MW-16-01 through MW-16-07). The initial statistical evaluation of the background data is presented in the 2017 Annual Report (TRC, January 2018). The Appendix III background limits for each monitoring well will be used throughout the detection monitoring period to determine whether groundwater has been impacted from the MONPP FAB & VEL CCR units by comparing concentrations in the detection monitoring wells to their respective background limits for each Appendix III indicator parameter. Prediction limits are periodically updated to reflect the additional data and additional temporal variability observed over time. The Appendix III prediction limits at MONPP FAB & VEL were updated in December 2021 to incorporate additional data since 2017 as presented in the December 15, 2021 Technical Memorandum, *Prediction Limit Update – DTE Electric Company, Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill* included as Appendix C. The updated prediction limits were used to statistically evaluate the Appendix III indicator parameter data for the second semiannual 2021 detection monitoring event.

3.2 Data Comparison to Background Limits – First 2021 Semiannual Event (April 2021)

The concentrations of the indicator parameters in each of the detection monitoring wells (MW-16-01 through MW-16-07) were compared to their respective statistical background limits calculated from the background data collected from each individual well (i.e., monitoring data from MW-16-01 is compared to the background limit developed using the background dataset from MW-16-01, and so forth). The comparisons for the April detection monitoring event are presented on Table 3. The statistical evaluation of the April 2021 Appendix III indicator parameters showed a potential SSI over background for:

Total dissolved solids (TDS) at MW-16-03.

3.3 Verification Resampling for the First 2021 Semiannual Event

Verification resampling is performed per the Stats Plan and the *USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* (Unified Guidance, USEPA, 2009) to achieve performance standards as specified by §257.93(g) in the CCR rules. Per the

Stats Plan, if there is an exceedance of a prediction limit for one or more of the parameters, the well(s) of concern will be resampled within 30 days of the completion of the initial statistical analysis. Constituents that have been addressed through an alternative source demonstration (ASD) will not be analyzed for verification purposes.

Verification resampling was conducted on June 9, 2021, by TRC personnel. A groundwater sample was collected for TDS at monitoring well MW-16-03 in accordance with the QAPP. A summary of the groundwater data collected during the verification event is provided on Table 3. The associated data quality review is included in Appendix B.

The verification result for TDS at MW-16-03 is within the prediction limits, consequently the initial potential SSI for the April 2021 detection monitoring event is not confirmed. Therefore, in accordance with the Stats Plan and the Unified Guidance, the initial exceedances are not statistically significant, and there are no SSIs for the April 2021 detection monitoring event.

3.4 Data Comparison to Background Limits – Second 2021 Semiannual Event (October 2021)

The concentrations of the indicator parameters in each of the detection monitoring wells (MW 16-01 through MW-16-07) were compared to their respective statistical background limits calculated from the background data collected from each individual well (i.e., monitoring data from MW-16-01 is compared to the background limit developed using the background dataset from MW-16-01, and so forth). The data comparisons for the October 2021 groundwater monitoring event are presented on Table 4. The statistical evaluation of the October 2021 Appendix III indicator parameters showed potential initial SSIs over background for:

Calcium at MW-16-02, MW-16-04, and MW-16-07.

3.5 Verification Resampling for the Second 2021 Semiannual Event

Verification resampling was conducted on December 8, 2021, by TRC personnel. Groundwater samples were collected for calcium at monitoring wells MW-16-02, MW-16-04, and MW-16-07 in accordance with the QAPP. A summary of the groundwater data collected during the verification resampling event is provided on Table 4. The associated data quality review is included in Appendix B.

The verification results for calcium at MW-16-02, MW-16-04, and MW-16-07 are below the prediction limits, consequently the initial potential SSIs for the October 2021 detection monitoring event are not confirmed. Therefore, in accordance with the Stats Plan and the Unified Guidance, the initial exceedances are not statistically significant, and there are no SSIs for the October 2021 detection monitoring event. Detection monitoring will be continued at the MONPP FAB & VEL CCR units in accordance with §257.94 of the CCR Rule.

4.0 Conclusions and Recommendations

Potential SSIs over background limits were noted for TDS (in one well during the April 2021 sampling event) and calcium (in three wells during the October 2021 sampling event) in one or more groundwater monitoring wells during the 2021 semiannual groundwater monitoring events. However, these potential SSIs were not confirmed in verification sampling. Therefore, there are no SSIs for the 2021 monitoring period and detection monitoring will be continued at the MONPP FAB & VEL in accordance with §257.94.

In addition, as discussed above, and in the GWMS Report, based on the artesian conditions, the low permeability of the underlying natural soils, and the calculated time of travel for groundwater to flow vertically from the MONPP FAB & VEL to the uppermost aquifer, there is no reasonable probability for the uppermost aquifer to have been affected by CCR from FAB & VEL operations that began in 1975.

No corrective actions were performed in 2021. The next semiannual monitoring event at the MONPP FAB & VEL CCR units is scheduled for the second calendar quarter of 2022.

5.0 Groundwater Monitoring Report Certification

The U.S. EPA's Disposal of Coal Combustion Residuals from Electric Utilities Final Rule Title 40 CFR Part 257 §257.90(e) requires that the owner or operator of an existing CCR unit prepare an annual groundwater monitoring and corrective action report.

Annual Groundwater Monitoring Report Certification Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill Monroe, Michigan

CERTIFICATION

I hereby certify that the annual groundwater and corrective action report presented within this document for the MONPP FAB & VEL CCR units has been prepared to meet the requirements of Title 40 CFR §257.90(e) of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.90(e).

Expiration Date:	OF MICHIGA
December 17, 2023	DAVID B MCKENZIE MCKENZIE ENGINEER
Date:	ENGINE NO. 6201042332
January 31, 2022	PROFESSIONADO
	December 17, 2023 Date:

6.0 References

- Geosyntec Consultants (Geosyntec). November 2021. Preliminary Alternative Liner Demonstration Fly Ash Basin Monroe Power Plant, DTE Electric Company Monroe Power Plant Fly Ash Basin and vertical Extension Landfill Coal Combustion Residuals Unit, 7955 East Dunbar Road, Monroe, Michigan.
- TRC. August 2016; Revised March 2017. CCR Groundwater Monitoring and Quality Assurance Project Plan DTE Electric Company Monroe Power Plant Coal Combustion Residual Fly Ash Basin, 7955 East Dunbar Road, Monroe, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017. Groundwater Monitoring System Summary Report Monroe Power Plant Coal Combustion Residual Fly Ash Basin, 7955 East Dunbar Road, Monroe, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017. Groundwater Statistical Evaluation Plan –Monroe Power Plant Coal Combustion Residual Fly Ash Basin, 7955 East Dunbar Road, Monroe, Michigan. Prepared for DTE Electric Company.
- TRC. January 2018. Annual Groundwater Monitoring Report DTE Electric Company Monroe Power Plant Fly Ash Basin Coal Combustion Residual Unit, 7955 East Dunbar Road, Monroe, Michigan. Prepared for DTE Electric Company.
- TRC. January 2020. 2019 Annual Groundwater Monitoring Report DTE Electric Company, Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill, Coal Combustion Residual Unit. Prepared for DTE Electric Company
- TRC. December 15, 2021. Prediction Limit Update DTE Electric Company, Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill. Prepared for DTE Electric Company
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.
- USEPA. April 2015. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. 80 Federal Register 74 (April 17, 2015), pp. 21301-21501 (80 FR 21301).
- USEPA. July 2018. 40 CFR Part 257. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One); Final Rule. 83 Federal Register 146 (July 30, 2018), pp. 36435-36456 (83 FR 36435).
- USEPA. April 2018. Barnes Johnson (Office of Resource Conservation and Recovery) to James Roewer (c/o Edison Electric Institute) and Douglas Green, Margaret Fawal (Venable LLP). Re: Coal Combustion Residuals Rule Groundwater Monitoring Requirements. April 30, 2018. United States Environmental Protection Agency, Washington, D.C. 20460. Office of Solid Waste and Emergency Response, now the Office of Land and Emergency Management.

Tables

Table 1

Groundwater Elevation Summary – April and October 2021 Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill – RCRA CCR Monitoring Program Monroe, Michigan

Well ID	MW-	16-01	MW-	16-02	MW-	16-03	MW-	16-04	MW-	16-05	MW-	16-06	MW-	16-07
Date Installed	2/17/	/2016	2/18/	2016	2/16/2016		2/15/2016		4/13/2016		4/13/	4/13/2016		/2016
TOC Elevation	581	1.74	581	581.81		579.95		585.54		580.42		1.94	578	3.40
Geologic Unit of Screened Interval	Silit/Limesto	ne Interface	Silt/Limesto			Sand & Silty Clay Limestone Interface		Silty Sand and Gravel		stone	Gravel and Cobbles		Cobbles Silt/Limestone Interfa	
Screened Interval Elevation	530.9 t	o 525.9	526.4 to	521.4	540.3 to 535.3		541.6 to 536.6		540.5 to 535.5		534.2 to 529.2		540.4 to 535.4	
Unit	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft	ft BTOC	ft
Measurement Date	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation	Depth to Water	GW Elevation
04/05/2021	4.73	577.01	-2.10	583.91	-9.79	589.74	-13.44	598.98	-14.04	594.46	0.32	581.62	-5.66	584.06
10/06/2021	4.45	577.29	-2.77	584.58	-10.51	590.46	-14.46	600.00	-15.29	595.71	-0.15	582.09	-7.30	585.70

Notes:

Negative depth to water measurement indicates artesian conditions, actual measured water level is above the top of casing.

Elevations are reported in feet relative to the North American Vertical Datum of 1988.

ft BTOC - feet below top of casing

Table 2
Summary of Field Parameters – April and October 2021
Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill – RCRA CCR Monitoring Program Monroe, Michigan

Sample Location	Sample Date	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)	pH (SU)	Specific Conductivity (umhos/cm)	Temperature (deg C)	Turbidity (NTU)
MW-16-01	4/6/2021	1.87	82.2	6.9	1,839	10.9	2.87
10100-10-01	10/7/2021	0.55	-3.7	7.1	2,230	13.5	1.06
	4/6/2021	1.46	56.7	6.9 1,875		10.4	11.70
MW-16-02	10/6/2021	0.20	-66.7	7.0	1,288	11.8	13.50
	12/8/2021 ⁽²⁾	0.88	-22.5	7.2	1,700	10.7	2.38
	4/5/2021	1.49	21.1	6.9	1,925	11.5	19.40
MW-16-03	6/9/2021 ⁽¹⁾	1.59	-2.1	6.9	2,454	12.6	11.40
	10/6/2021	0.30	-53.5	7.0	2,452	12.5	9.91
	4/5/2021	1.68	28.3	7.1	1,827	11.0	2.15
MW-16-04	10/6/2021	0.25	-249.6	7.0	2,327	11.1	1.99
	12/8/2021 ⁽²⁾	0.95	-110.0	7.3	1,673	10.8	1.16
MW-16-05	4/5/2021	1.55	21.6	6.9	1,825	11.7	7.14
10100-16-05	10/6/2021	0.30	-134.6	7.0	2,298	11.8	4.55
MW-16-06	4/6/2021	1.81	3.0	7.1	2,476	12.3	0.11
10100-10-00	10/7/2021	0.47	-15.0	7.0	2,360	15.2	44.60
	4/5/2021	1.57	24.1	6.9	1,821	11.8	3.14
MW-16-07	10/6/2021	0.29	-117.2	7.0	2,252	12.4	4.29
	12/8/2021 ⁽²⁾	2.24	-13.3	7.0	1,819	11.6	17.75

Notes:

mg/L - milligrams per liter.

mV - milliVolt.

SU - standard unit.

umhos/cm - micro-mhos per centimeter.

deg C - degrees celcius.

NTU - nephelometric turbidity units.

- (1) Results shown for verification sampling performed on 6/9/2021.
- (2) Results shown for verification sampling performed on 12/8/2021.

Table 3

Comparison of Appendix III Parameter Results to Background Limits – April 2021 Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill – RCRA CCR Monitoring Program Monroe, Michigan

S	ample Location:	MW-	16-01	MW-	16-02		MW-16-03		MW-	16-04	MW-	16-05	MW-	16-06	MW-	16-07
	Sample Date:	4/6/2021	PL	4/6/2021 PL		4/5/2021	6/9/2021	PI	4/5/2021	DI	4/5/2021	PL	4/6/2021	PL	4/5/2021	PL
Constituent	Unit	Data	PL	Data	PL	Da	ıta	PL	Data	PL	Data		Data		Data	PL
Appendix III																
Boron	ug/L	230	310	360	470	400		510	140	210	190	280	320	400	160	280
Calcium	ug/L	390,000	450,000	390,000	430,000	420,000		490,000	540,000	610,000	380,000	440,000	380,000	420,000	380,000	440,000
Chloride	mg/L	10	14	13	15	18		20	34	39	11	12	12	12	7.7	13
Fluoride	mg/L	1.7	2.1	1.5	1.8	1.5		1.8	0.98	1.1	1.4	1.7	1.5	1.8	1.4	1.8
pH, Field	SU	6.9	6.3 - 9.0	6.9	6.9 - 7.3	6.9	6.9	6.7 - 7.3	7.1	7.0 - 7.5	6.9	6.6 - 7.7	7.1	7.0 - 7.3	6.9	6.9 - 7.4
Sulfate	mg/L	1,400	1,500	1,400	1,700	1,500		1,700	1,300	1,500	1,300	1,600	1,400	1,600	1,400	1,600
Total Dissolved Solids	mg/L	2,100	2,200	2,100	2,300	2,400	2,300	2,300	2,000	2,200	2,200	2,200	2,200	2,300	2,000	2,200

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

Table 4

Comparison of Appendix III Parameter Results to Background Limits – October 2021

Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill – RCRA CCR Monitoring Program

Monroe, Michigan

S	Sample Location:	MW-	16-01		MW-16-02		MW-	16-03		MW-16-04		MW-	16-05	MW-	16-06		MW-16-07	
	Sample Date:	10/7/2021	PL ⁽¹⁾	10/6/2021	12/8/2021 ⁽²⁾	PL ⁽¹⁾	10/6/2021	PI ⁽¹⁾	10/6/2021	12/8/2021 ⁽²⁾	DI ⁽¹⁾	10/6/2021	PL ⁽¹⁾	10/7/2021	DI ⁽¹⁾	10/6/2021	12/8/2021 ⁽²⁾	PL ⁽¹⁾
Constituent	Unit	Data	PL\'	Da	ata	PL''' Da		Data		Data		Data		Data		Data		PL\'/
Appendix III																		
Boron	ug/L	230	300	360		450	370	500	140		210	190	270	280	390	150		250
Calcium	ug/L	430,000	440,000	450,000	390,000	430,000	450,000	470,000	620,000	530,000	600,000	440,000	440,000	420,000	420,000	450,000	390,000	440,000
Chloride	mg/L	11	12	14		15	19	20	36		36	12	12	8.2	12	12		12
Fluoride	mg/L	1.8	1.8	1.6		1.7	1.6	1.7	1.0		1.1	1.5	1.6	1.5	1.7	1.6		1.7
pH, Field	SU	7.1	6.9 - 8.6	7.0		6.9 - 7.3	7.0	6.7 - 7.3	7.0		7.0 - 7.5	7.0	6.9 - 7.7	7.0	7.0 - 7.3	7.0		6.9 - 7.4
Sulfate	mg/L	1,600	1,600	1,600		1,700	1,700	1,700	1,400		1,500	1,600	1,600	1,600	1,600	1,600		1,600
Total Dissolved Solid	s mg/L	2,200	2,200	2,200		2,300	2,300	2,400	2,100		2,300	2,000	2,200	2,100	2,300	2,200		2,200

Notes:

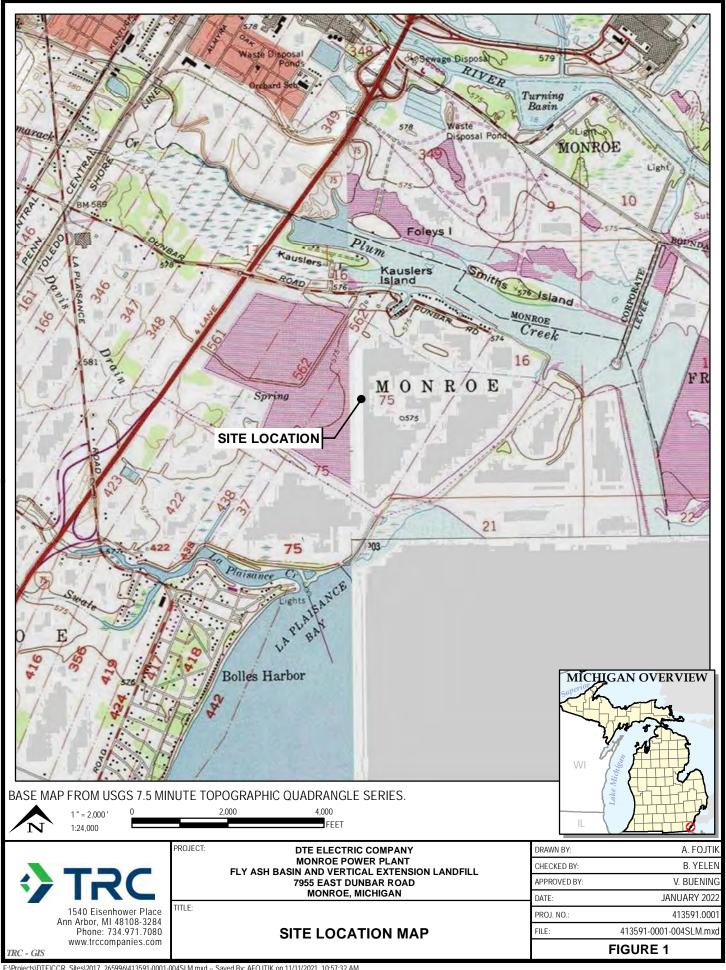
ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

-- = not analyzed

All metals were analyzed as total unless otherwise specified.


Bold font indicates an exceedance of the Prediction Limit (PL).

- (1) Prediction limits updated December 15, 2021.
- (2) Results shown for verification sampling performed on December 8, 2021.

Page 1 of 1

Figures

Appendix A Laboratory Reports

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-147159-1

Client Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

For:

TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Mr. Vincent Buening

Authorized for release by: 4/16/2021 7:38:02 PM

Kris Brooks, Project Manager II (330)966-9790

Kris.Brooks@Eurofinset.com

·····LINKS ······

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	10
QC Sample Results	19
QC Association Summary	23
Lab Chronicle	25
Certification Summary	28
Chain of Custody	29

Definitions/Glossary

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Qualifiers

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

7

0

10

15

13

Case Narrative

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Job ID: 240-147159-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-147159-1

Comments

No additional comments.

Receipt

The samples were received on 4/8/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.8° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 240-147159-1

2

_

_

0

9

1 0

4 4

12

13

Method Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL CAN
6020	Metals (ICP/MS)	SW846	TAL CAN
9056A	Anions, Ion Chromatography	SW846	TAL CAN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CAN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL CAN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Job ID: 240-147159-1

Sample Summary

Client: TRC Environmental Corporation.
Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset II
240-147159-1	MW-16-01	Water	04/06/21 09:08	04/08/21 08:00	
240-147159-2	MW-16-02	Water	04/06/21 09:59	04/08/21 08:00	
240-147159-3	MW-16-03	Water	04/05/21 16:12	04/08/21 08:00	
240-147159-4	MW-16-04	Water	04/05/21 15:00	04/08/21 08:00	
240-147159-5	MW-16-05	Water	04/05/21 15:23	04/08/21 08:00	
240-147159-6	MW-16-06	Water	04/06/21 13:44	04/08/21 08:00	
240-147159-7	MW-16-07	Water	04/05/21 14:07	04/08/21 08:00	
240-147159-8	DUP-01	Water	04/05/21 00:00	04/08/21 08:00	
240-147159-9	MP-001F	Water	04/06/21 09:39	04/08/21 08:00	

Job ID: 240-147159-1

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MW-16-01 Lab Sample ID: 240-147159-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	230		100	100	ug/L	1	_	6010B	Total
									Recoverable
Calcium	390000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	150		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	10		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.7		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1400		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2100		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-02

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	360		100	100	ug/L	1	_	6010B	Total
									Recoverable
Calcium	390000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	490		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	13		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.5		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1400		10	10	ma/L	10		9056A	Total/NA

20

20 mg/L

2100

Client Sample ID: MW-16-03

Total Dissolved Solids

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	400		100	100	ug/L	1	_	6010B	Total
									Recoverable
Calcium	420000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	1100		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	18		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.5		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1500		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2400		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-04

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Boron	140		100	100	ug/L	1	6010B	Total
								Recoverable
Calcium	540000		1000	1000	ug/L	1	6020	Total
								Recoverable
Chloride	34		1.0	1.0	mg/L	1	9056A	Total/NA
Fluoride	0.98		0.050	0.050	mg/L	1	9056A	Total/NA
Sulfate	1300		10	10	mg/L	10	9056A	Total/NA
Total Dissolved Solids	2000		20	20	mg/L	1	SM 25400	C Total/NA

Client Sample ID: MW-16-05

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	190	100	100	ug/L	1	_	6010B	Total Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Canton

Page 7 of 30

2

Job ID: 240-147159-1

Lab Sample ID: 240-147159-2

SM 2540C

Lab Sample ID: 240-147159-3

Lab Sample ID: 240-147159-4

3

7

0

10

12

1

Total/NA

Lab Sample ID: 240-147159-5

ecoverable

4/16/2021

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Job ID: 240-147159-1

Client Sample ID: MW-16-05 (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	380000	1000	1000	ug/L	1	_	6020	Total
								Recoverable
Iron	1100	100	100	ug/L	1		6020	Total
								Recoverable
Chloride	11	1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.4	0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1300	10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2200	20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-06

Lab Sample ID: 240-147159-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	320		100	100	ug/L	1	_	6010B	Total
									Recoverable
Calcium	380000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	530		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	12		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.5		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1400		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2200		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-07

Lab Sample ID: 240-147159-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	160		100	100	ug/L	1	_	6010B	Total
									Recoverable
Calcium	380000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	770		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	7.7		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.4		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1400		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2000		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: DUP-01

Lab Sample ID: 240-147159-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	160		100	100	ug/L	1	_	6010B	Total
									Recoverable
Calcium	390000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	800		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	7.7		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.4		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1400		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2200		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MP-001F

Lab Sample ID: 240-147159-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Boron	1100	100	100 ug/L		6010B	Total
						Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Canton

4/16/2021

Detection Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Job ID: 240-147159-1

Client Sample ID: MP-001F (Continued)

Lab Sample ID: 240-147159-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	150000		1000	1000	ug/L	1	_	6020	Total
									Recoverable
Iron	390		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	34		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	0.68		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	360		5.0	5.0	mg/L	5		9056A	Total/NA
Total Dissolved Solids	700		10	10	mg/L	1		SM 2540C	Total/NA

6

7

8

46

11

12

11

Client Sample Results

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MW-16-01 Lab Sample ID: 240-147159-1

Date Collected: 04/06/21 09:08 **Matrix: Water**

Date Received: 04/08/21 08:00

Method: 6010B - Metals (IC	•		DI	MDI	I Imit	_	Dramarad	A malumad	Dil Fac
Analyte	Result	Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
Boron	230		100	100	ug/L		04/09/21 14:00	04/13/21 13:29	1
Method: 6020 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	390000		1000	1000	ug/L		04/09/21 14:00	04/12/21 21:39	1
Iron	150		100	100	ug/L		04/09/21 14:00	04/12/21 21:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride			1.0	1.0	mg/L			04/14/21 04:13	1
Fluoride	1.7		0.050	0.050	mg/L			04/14/21 04:13	1
Sulfate	1400		10	10	mg/L			04/14/21 04:33	10
Total Dissolved Solids	2100		20	20	mg/L			04/13/21 08:49	1

Client Sample Results

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MW-16-02 Lab Sample ID: 240-147159-2 Date Collected: 04/06/21 09:59

Matrix: Water

Date Received: 04/08/21 08:00

Method: 6010B - Metals (IC	P) - Total Reco	verable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	360		100	100	ug/L		04/09/21 14:00	04/13/21 13:33	1
- Method: 6020 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	390000		1000	1000	ug/L		04/09/21 14:00	04/12/21 21:41	1
Iron	490		100	100	ug/L		04/09/21 14:00	04/12/21 21:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13		1.0	1.0	mg/L			04/14/21 04:53	1
Fluoride	1.5		0.050	0.050	mg/L			04/14/21 04:53	1
Sulfate	1400		10	10	mg/L			04/14/21 05:13	10
Total Dissolved Solids	2100		20	20	mg/L			04/13/21 08:49	1

Client Sample Results

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MW-16-03

Lab Sample ID: 240-147159-3 Date Collected: 04/05/21 16:12 **Matrix: Water**

Date Received: 04/08/21 08:00

Method: 6010B - Metals (IC	P) - Total Reco	verable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	400		100	100	ug/L		04/09/21 14:00	04/13/21 13:46	1
- Method: 6020 - Metals (ICP	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	420000		1000	1000	ug/L		04/09/21 14:00	04/12/21 21:44	1
_Iron	1100		100	100	ug/L		04/09/21 14:00	04/12/21 21:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	18		1.0	1.0	mg/L			04/14/21 06:14	1
Fluoride	1.5		0.050	0.050	mg/L			04/14/21 06:14	1
Sulfate	1500		10	10	mg/L			04/14/21 06:34	10
Total Dissolved Solids	2400		20	20	mg/L			04/09/21 13:17	1

Client: TRC Environmental Corporation.

Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MW-16-04 Lab Sample ID: 240-147159-4

1300

2000

Date Collected: 04/05/21 15:00 Lab Gample 15. 240-147 133-4

Date Received: 04/08/21 08:00

Sulfate

Total Dissolved Solids

Method: 6010B - Meta	• •					_			
Analyte	Result	Qualifier	RL _	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Boron	140		100	100	ug/L		04/09/21 14:00	04/13/21 13:51	1
- Method: 6020 - Metals	(ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	540000		1000	1000	ug/L		04/09/21 14:00	04/12/21 21:46	1
Iron	100	U	100	100	ug/L		04/09/21 14:00	04/12/21 21:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	34		1.0	1.0	mg/L			04/14/21 06:54	1
Fluoride	0.98		0.050	0.050	mg/L			04/14/21 06:54	1

10

20

10 mg/L

20 mg/L

2

5

6

8

9

10

11

10

04/14/21 07:14

04/09/21 13:17

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MW-16-05 Lab Sample ID: 240-147159-5

Date Collected: 04/05/21 15:23 Matrix: Water

Date Received: 04/08/21 08:00

Method: 6010B - Metals (IC Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	190		100	100	ug/L		04/09/21 14:00	04/13/21 13:55	1
Method: 6020 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	380000		1000	1000	ug/L		04/09/21 14:00	04/12/21 21:49	1
Iron	1100		100	100	ug/L		04/09/21 14:00	04/12/21 21:49	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride			1.0	1.0	mg/L			04/14/21 07:34	1
Fluoride	1.4		0.050	0.050	mg/L			04/14/21 07:34	1
Sulfate	1300		10	10	mg/L			04/14/21 07:54	10
Total Dissolved Solids	2200		20	20	mg/L			04/12/21 11:32	1

3

Ē

6

8

9

10

10

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MW-16-06 Lab Sample ID: 240-147159-6

Date Collected: 04/06/21 13:44

Date Received: 04/08/21 08:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	320		100	100	ug/L		04/09/21 14:00	04/13/21 12:10	1
Method: 6020 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	380000		1000	1000	ug/L		04/09/21 14:00	04/12/21 20:06	1
Iron	530		100	100	ug/L		04/09/21 14:00	04/12/21 20:06	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<u> 12</u>		1.0	1.0	mg/L			04/14/21 08:14	1
Fluoride	1.5		0.050	0.050	mg/L			04/14/21 08:14	1
Sulfate	1400		10	10	mg/L			04/14/21 08:34	10
Total Dissolved Solids	2200		20	20	mg/L			04/13/21 08:49	1

3

O

0

10

11

12

T,

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MW-16-07 Lab Sample ID: 240-147159-7

Date Collected: 04/05/21 14:07

Date Received: 04/08/21 08:00

Matrix: Water

Method: 6010B - Metals (ICP) - Total RecoverableAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacBoron160100100ug/L04/09/21 14:0004/13/21 14:001

Method: 6020 - Metals (ICP/MS) - Total Recoverable Result Qualifier RL **MDL** Unit Analyte D Prepared Analyzed Dil Fac 1000 1000 ug/L 04/09/21 14:00 04/12/21 21:51 Calcium 380000 04/09/21 14:00 04/12/21 21:51 770 100 100 ug/L Iron

General Chemistry Analyte Result Qualifier RL **MDL** Unit D **Prepared** Analyzed Dil Fac Chloride 1.0 1.0 mg/L 04/14/21 08:55 7.7 0.050 **Fluoride** 0.050 mg/L 04/14/21 08:55 1.4 1 **Sulfate** 1400 10 10 mg/L 04/14/21 09:15 10 20 20 mg/L 04/12/21 11:32 **Total Dissolved Solids** 2000

3

5

_

8

9

10

11

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: DUP-01 Lab Sample ID: 240-147159-8

Date Collected: 04/05/21 00:00 Matrix: Water Date Received: 04/08/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	160		100	100	ug/L		04/09/21 14:00	04/13/21 14:04	1
Method: 6020 - Metals (ICI	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	390000		1000	1000	ug/L		04/09/21 14:00	04/12/21 21:54	1
Iron	800		100	100	ug/L		04/09/21 14:00	04/12/21 21:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.7		1.0	1.0	mg/L			04/14/21 10:55	1
Fluoride	1.4		0.050	0.050	mg/L			04/14/21 10:55	1
Sulfate	1400		10	10	mg/L			04/14/21 11:56	10
Total Dissolved Solids	2200		20	20	mg/L			04/12/21 11:32	1

3

5

7

8

9

4 4

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MP-001F Lab Sample ID: 240-147159-9

Date Collected: 04/06/21 09:39 Matrix: Water

Date Received: 04/08/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100		100	100	ug/L		04/09/21 14:00	04/13/21 14:09	1
Method: 6020 - Metals (ICP	/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	150000		1000	1000	ug/L		04/09/21 14:00	04/12/21 21:56	1
Iron	390		100	100	ug/L		04/09/21 14:00	04/12/21 21:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	34		1.0	1.0	mg/L			04/14/21 12:56	1
Fluoride	0.68		0.050	0.050	mg/L			04/14/21 12:56	1
Sulfate	360		5.0	5.0	mg/L			04/14/21 13:16	5
Total Dissolved Solids	700		10	10	mg/L			04/13/21 08:49	1

3

5

0

8

9

10

10

Job ID: 240-147159-1

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 240-480507/1-A

Lab Sample ID: LCS 240-480507/2-A

Matrix: Water

Matrix: Water

Boron

Analysis Batch: 481083

Analysis Batch: 481083

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 480507

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 100 04/09/21 14:00 04/13/21 12:02 Boron 100 U 100 ug/L

> **Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 480507**

%Rec.

Spike LCS LCS Added Result Qualifier Unit D %Rec Limits Analyte

1000 1040 80 - 120 ug/L 104

Lab Sample ID: 240-147159-6 MS Client Sample ID: MW-16-06 **Matrix: Water Prep Type: Total Recoverable Prep Batch: 480507**

Analysis Batch: 481083 Sample Sample Spike MS MS %Rec.

Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Boron 320 1000 1290 75 - 125 ug/L

Lab Sample ID: 240-147159-6 MSD

Matrix: Water

Analysis Batch: 481083

Client Sample ID: MW-16-06 **Prep Type: Total Recoverable Prep Batch: 480507**

Spike MSD MSD %Rec. **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit 320 1000 1260 Boron ug/L 75 - 125 20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 240-480507/1-A

Matrix: Water

Analysis Batch: 480887

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 480507

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Calcium 1000 U 1000 1000 ug/L 04/09/21 14:00 04/12/21 20:01 100 U 04/09/21 14:00 04/12/21 20:01 100 100 ug/L Iron

Lab Sample ID: LCS 240-480507/3-A

Matrix: Water

Analysis Batch: 480887

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

LCS LCS %Rec. Spike Added Result Qualifier Limits Analyte Unit %Rec Calcium 25000 25800 ug/L 103 80 - 120Iron 5000 4720 ug/L 94 80 _ 120

MB MB

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-480833/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 480833

·	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.0	U	1.0	1.0	mg/L			04/13/21 14:07	1
Fluoride	0.050	U	0.050	0.050	mg/L			04/13/21 14:07	1

Eurofins TestAmerica, Canton

Page 19 of 30

Prep Batch: 480507

Prep Type: Total/NA

4/16/2021

Client: TRC Environmental Corporation. Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 240-480833/3 **Matrix: Water**

Analysis Batch: 480833

MB MB

Result Qualifier **MDL** Unit **Prepared** Analyzed Sulfate 10 U 10 1.0 mg/L 04/13/21 14:07

Lab Sample ID: MB 240-480833/63

Matrix: Water

Analysis Batch: 480833

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.0	U	1.0	1.0	mg/L			04/14/21 10:15	1
Fluoride	0.050	U	0.050	0.050	mg/L			04/14/21 10:15	1
Sulfate	1.0	U	1.0	1.0	mg/L			04/14/21 10:15	1

Lab Sample ID: LCS 240-480833/4

Matrix: Water

Analysis Batch: 480833

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	 50.0	49.6		mg/L		99	90 - 110
Fluoride	2.50	2.54		mg/L		102	90 - 110
Sulfate	50.0	49.8		mg/L		100	90 - 110

Lab Sample ID: LCS 240-480833/64

Matrix: Water

Analysis Batch: 480833

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 50.0	49.2		mg/L		98	90 - 110	
Fluoride	2.50	2.53		mg/L		101	90 - 110	
Sulfate	50.0	49.5		mg/L		99	90 - 110	

Lab Sample ID: 240-147159-8 MS

Matrix: Water

Analysis Batch: 480833

7 maryolo Batom 40000	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	7.7		50.0	59.4		mg/L		103	80 - 120		
Fluoride	1.4		2.50	3.82		mg/L		95	80 - 120		

Lab Sample ID: 240-147159-8 MS

Matrix: Water

Analysis Batch: 480833

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	1400		500	1860		mg/L		95	80 - 120	

Lab Sample ID: 240-147159-8 MSD

Matrix: Water

Analysis Batch: 480833											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	7.7		50.0	59.6		mg/L		104	80 - 120	0	15

Page 20 of 30

Eurofins TestAmerica, Canton

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: DUP-01

Client Sample ID: DUP-01

Client Sample ID: DUP-01

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client: TRC Environmental Corporation.

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: 240-147159-8 MSD **Client Sample ID: DUP-01 Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 480833

MSD MSD **RPD** Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Fluoride 14 2 50 3 80 mg/L 95 80 - 120

Lab Sample ID: 240-147159-8 MSD **Client Sample ID: DUP-01** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 480833

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 1940 Sulfate 1400 500 mg/L 111 80 - 120 4 15

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 240-480550/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 480550

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 10 04/09/21 13:17 Total Dissolved Solids 10 U 10 mg/L

Lab Sample ID: LCS 240-480550/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 480550

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 245 251 mg/L 102 80 - 120

Lab Sample ID: MB 240-480761/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 480761

MB MB MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Total Dissolved Solids 10 Ū 10 10 mg/L 04/12/21 11:32

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 240-480761/2 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 480761

%Rec. Spike LCS LCS Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 245 257 mg/L 105 80 - 120

Lab Sample ID: MB 240-480900/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 480900

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac **Total Dissolved Solids** 10 U 10 mg/L 04/13/21 08:49 10

Eurofins TestAmerica, Canton

4/16/2021

QC Sample Results

Client: TRC Environmental Corporation.

Job ID: 240-147159-1

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 240-480900/2

Matrix: Water Analysis Batch: 480900 Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

 _

А

6

0

9

10

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Metals

Prep Batch: 480507

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-147159-1	MW-16-01	Total Recoverable	Water	3005A	_
240-147159-2	MW-16-02	Total Recoverable	Water	3005A	
240-147159-3	MW-16-03	Total Recoverable	Water	3005A	
240-147159-4	MW-16-04	Total Recoverable	Water	3005A	
240-147159-5	MW-16-05	Total Recoverable	Water	3005A	
240-147159-6	MW-16-06	Total Recoverable	Water	3005A	
240-147159-7	MW-16-07	Total Recoverable	Water	3005A	
240-147159-8	DUP-01	Total Recoverable	Water	3005A	
240-147159-9	MP-001F	Total Recoverable	Water	3005A	
MB 240-480507/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-480507/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCS 240-480507/3-A	Lab Control Sample	Total Recoverable	Water	3005A	
240-147159-6 MS	MW-16-06	Total Recoverable	Water	3005A	
240-147159-6 MSD	MW-16-06	Total Recoverable	Water	3005A	

Analysis Batch: 480887

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-147159-1	MW-16-01	Total Recoverable	Water	6020	480507
240-147159-2	MW-16-02	Total Recoverable	Water	6020	480507
240-147159-3	MW-16-03	Total Recoverable	Water	6020	480507
240-147159-4	MW-16-04	Total Recoverable	Water	6020	480507
240-147159-5	MW-16-05	Total Recoverable	Water	6020	480507
240-147159-6	MW-16-06	Total Recoverable	Water	6020	480507
240-147159-7	MW-16-07	Total Recoverable	Water	6020	480507
240-147159-8	DUP-01	Total Recoverable	Water	6020	480507
240-147159-9	MP-001F	Total Recoverable	Water	6020	480507
MB 240-480507/1-A	Method Blank	Total Recoverable	Water	6020	480507
LCS 240-480507/3-A	Lab Control Sample	Total Recoverable	Water	6020	480507

Analysis Batch: 481083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-147159-1	MW-16-01	Total Recoverable	Water	6010B	480507
240-147159-2	MW-16-02	Total Recoverable	Water	6010B	480507
240-147159-3	MW-16-03	Total Recoverable	Water	6010B	480507
240-147159-4	MW-16-04	Total Recoverable	Water	6010B	480507
240-147159-5	MW-16-05	Total Recoverable	Water	6010B	480507
240-147159-6	MW-16-06	Total Recoverable	Water	6010B	480507
240-147159-7	MW-16-07	Total Recoverable	Water	6010B	480507
240-147159-8	DUP-01	Total Recoverable	Water	6010B	480507
240-147159-9	MP-001F	Total Recoverable	Water	6010B	480507
MB 240-480507/1-A	Method Blank	Total Recoverable	Water	6010B	480507
LCS 240-480507/2-A	Lab Control Sample	Total Recoverable	Water	6010B	480507
240-147159-6 MS	MW-16-06	Total Recoverable	Water	6010B	480507
240-147159-6 MSD	MW-16-06	Total Recoverable	Water	6010B	480507

General Chemistry

Analysis Batch: 480550

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-147159-3	MW-16-03	Total/NA	Water	SM 2540C	
240-147159-4	MW-16-04	Total/NA	Water	SM 2540C	

Eurofins TestAmerica, Canton

Job ID: 240-147159-1

2

3

4

6

8

10

1

QC Association Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

General Chemistry (Continued)

Analysis Batch: 480550 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 240-480550/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-480550/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 480761

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-147159-5	MW-16-05	Total/NA	Water	SM 2540C	
240-147159-7	MW-16-07	Total/NA	Water	SM 2540C	
240-147159-8	DUP-01	Total/NA	Water	SM 2540C	
MB 240-480761/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-480761/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 480833

	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-147159-1	MW-16-01	Total/NA	Water	9056A	<u> </u>
240-147159-1	MW-16-01	Total/NA	Water	9056A	
240-147159-2	MW-16-02	Total/NA	Water	9056A	
240-147159-2	MW-16-02	Total/NA	Water	9056A	
240-147159-3	MW-16-03	Total/NA	Water	9056A	
240-147159-3	MW-16-03	Total/NA	Water	9056A	
240-147159-4	MW-16-04	Total/NA	Water	9056A	
240-147159-4	MW-16-04	Total/NA	Water	9056A	
240-147159-5	MW-16-05	Total/NA	Water	9056A	
240-147159-5	MW-16-05	Total/NA	Water	9056A	
240-147159-6	MW-16-06	Total/NA	Water	9056A	
240-147159-6	MW-16-06	Total/NA	Water	9056A	
240-147159-7	MW-16-07	Total/NA	Water	9056A	
240-147159-7	MW-16-07	Total/NA	Water	9056A	
240-147159-8	DUP-01	Total/NA	Water	9056A	
240-147159-8	DUP-01	Total/NA	Water	9056A	
240-147159-9	MP-001F	Total/NA	Water	9056A	
240-147159-9	MP-001F	Total/NA	Water	9056A	
MB 240-480833/3	Method Blank	Total/NA	Water	9056A	
MB 240-480833/63	Method Blank	Total/NA	Water	9056A	
LCS 240-480833/4	Lab Control Sample	Total/NA	Water	9056A	
LCS 240-480833/64	Lab Control Sample	Total/NA	Water	9056A	
240-147159-8 MS	DUP-01	Total/NA	Water	9056A	
240-147159-8 MS	DUP-01	Total/NA	Water	9056A	
240-147159-8 MSD	DUP-01	Total/NA	Water	9056A	
240-147159-8 MSD	DUP-01	Total/NA	Water	9056A	

Analysis Batch: 480900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-147159-1	MW-16-01	Total/NA	Water	SM 2540C	
240-147159-2	MW-16-02	Total/NA	Water	SM 2540C	
240-147159-6	MW-16-06	Total/NA	Water	SM 2540C	
240-147159-9	MP-001F	Total/NA	Water	SM 2540C	
MB 240-480900/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-480900/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Job ID: 240-147159-1

Client Sample ID: MW-16-01

Date Collected: 04/06/21 09:08 Date Received: 04/08/21 08:00 Lab Sample ID: 240-147159-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	481083	04/13/21 13:29	DSH	TAL CAN
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	480887	04/12/21 21:39	DTN	TAL CAN
Total/NA	Analysis	9056A		1	480833	04/14/21 04:13	JWW	TAL CAN
Total/NA	Analysis	9056A		10	480833	04/14/21 04:33	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	480900	04/13/21 08:49	AJ	TAL CAN

Lab Sample ID: 240-147159-2 Client Sample ID: MW-16-02

Date Collected: 04/06/21 09:59 **Matrix: Water**

Date Received: 04/08/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	481083	04/13/21 13:33	DSH	TAL CAN
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	480887	04/12/21 21:41	DTN	TAL CAN
Total/NA	Analysis	9056A		1	480833	04/14/21 04:53	JWW	TAL CAN
Total/NA	Analysis	9056A		10	480833	04/14/21 05:13	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	480900	04/13/21 08:49	AJ	TAL CAN

Client Sample ID: MW-16-03 Lab Sample ID: 240-147159-3 Date Collected: 04/05/21 16:12

Date Received: 04/08/21 08:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	481083	04/13/21 13:46	DSH	TAL CAN
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	480887	04/12/21 21:44	DTN	TAL CAN
Total/NA	Analysis	9056A		1	480833	04/14/21 06:14	JWW	TAL CAN
Total/NA	Analysis	9056A		10	480833	04/14/21 06:34	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	480550	04/09/21 13:17	AJ	TAL CAN

Lab Sample ID: 240-147159-4 Client Sample ID: MW-16-04

Date Collected: 04/05/21 15:00 Date Received: 04/08/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	481083	04/13/21 13:51	DSH	TAL CAN
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	480887	04/12/21 21:46	DTN	TAL CAN
Total/NA	Analysis	9056A		1	480833	04/14/21 06:54	JWW	TAL CAN

Eurofins TestAmerica, Canton

Page 25 of 30

Matrix: Water

Matrix: Water

Lab Chronicle

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: MW-16-04

Date Collected: 04/05/21 15:00 Date Received: 04/08/21 08:00 Lab Sample ID: 240-147159-4

Matrix: Water

Job ID: 240-147159-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A	_	10	480833	04/14/21 07:14	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	480550	04/09/21 13:17	AJ	TAL CAN

Lab Sample ID: 240-147159-5 Client Sample ID: MW-16-05

Date Collected: 04/05/21 15:23 **Matrix: Water**

Date Received: 04/08/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	481083	04/13/21 13:55	DSH	TAL CAN
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	480887	04/12/21 21:49	DTN	TAL CAN
Total/NA	Analysis	9056A		1	480833	04/14/21 07:34	JWW	TAL CAN
Total/NA	Analysis	9056A		10	480833	04/14/21 07:54	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	480761	04/12/21 11:32	AJ	TAL CAN

Client Sample ID: MW-16-06 Lab Sample ID: 240-147159-6

Date Collected: 04/06/21 13:44 **Matrix: Water**

Date Received: 04/08/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	481083	04/13/21 12:10	DSH	TAL CAN
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	480887	04/12/21 20:06	DTN	TAL CAN
Total/NA	Analysis	9056A		1	480833	04/14/21 08:14	JWW	TAL CAN
Total/NA	Analysis	9056A		10	480833	04/14/21 08:34	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	480900	04/13/21 08:49	AJ	TAL CAN

Client Sample ID: MW-16-07 Lab Sample ID: 240-147159-7 Date Collected: 04/05/21 14:07

Date Received: 04/08/21 08:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	481083	04/13/21 14:00	DSH	TAL CAN
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	480887	04/12/21 21:51	DTN	TAL CAN
Total/NA	Analysis	9056A		1	480833	04/14/21 08:55	JWW	TAL CAN
Total/NA	Analysis	9056A		10	480833	04/14/21 09:15	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	480761	04/12/21 11:32	AJ	TAL CAN

Eurofins TestAmerica, Canton

Page 26 of 30

Matrix: Water

4/16/2021

Lab Chronicle

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Client Sample ID: DUP-01

Date Collected: 04/05/21 00:00

Lab Sample ID: 240-147159-8

Matrix: Water

Date Collected: 04/05/21 00:00
Date Received: 04/08/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	481083	04/13/21 14:04	DSH	TAL CAN
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	480887	04/12/21 21:54	DTN	TAL CAN
Total/NA	Analysis	9056A		1	480833	04/14/21 10:55	JWW	TAL CAN
Total/NA	Analysis	9056A		10	480833	04/14/21 11:56	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	480761	04/12/21 11:32	AJ	TAL CAN

Client Sample ID: MP-001F

Date Collected: 04/06/21 09:39

Lab Sample ID: 240-147159-9

Matrix: Water

Date Received: 04/08/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	481083	04/13/21 14:09	DSH	TAL CAN
Total Recoverable	Prep	3005A			480507	04/09/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	480887	04/12/21 21:56	DTN	TAL CAN
Total/NA	Analysis	9056A		1	480833	04/14/21 12:56	JWW	TAL CAN
Total/NA	Analysis	9056A		5	480833	04/14/21 13:16	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	480900	04/13/21 08:49	AJ	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

5

Job ID: 240-147159-1

3

4

O

8

10

11

12

Eurofins TestAmerica, Canton

Accreditation/Certification Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant - FAB-VEL

Job ID: 240-147159-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-21 *
Illinois	NELAP	004498	07-31-21
lowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21 *
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-21
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

_ _

Q

9

10

12

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins TestAmerica, Canton

eurofins Environment Testing America	COC No: 240-81500-31715.1	Page: Page 1 of 1	% qop #	odes	A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2		F - MeOH R - Na2S203 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecabudrate	,	K - EDTA W - pH 4-5 L - EDA Z - other (specify)	Other:		Special Instructions/Note:		240)-1A7	159 C	hain	of Cu	stod			(t)		d longer than 1 month) e For Months			SSE Company		Company	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CHIGAN		State of Origin:									al Number	101	× c	1 1		cs	4	न्त	CR	ત	8	de l		assessed if samples are retained lon Disposal By Lab Archive For		Method of Shipment:	Date/Time	Date/Time:		
MIG	Lab PM: Brooks, Kris M		alysis Rec								08* 6020		×	1	1	× ×	>	X	×	8	*	*		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mont	Special Instructions/QC Requirements:	,	Received by: 160	MJS ETA CANTON	ure(s) °C	
Chain of Custody Record	Lab PM: Brooks, Kris N	E-Mail: Kris.Brooks@					(0	2.4	10 50	A) OSI	Sample Matrix Add Sample (Wewater Calcut Cascut Casc	BT=Thsue, A=Air)	(5 Water N 1) X	water N N	Water NN	Water N N	Water N V X	Water N N	Water N N X	Water NNX	y Water № X	Water # 10 9			Specie	Time:	7		Company	
	Sampler.	Phone: 74- 745- 980-1	DWSID	Due Date Requested:	TAT Requested (days):	Compliance Project: A Yes A No	683	#: 222.0001	Project #: 24016830	W#.	Sample (C=c	. 0	1-6-21 mgo8	9290	1612	00	9 EESI 15-3-4	4-6-21 1344 6	9 1041 16-5-4	4-5-21 - 6	4-6-21 0939 6			Unknown Radiological		Date:	Date/Time: 4-1-21 / 0955	Time: 4-7-21 954	Time:	
Eurofins TestAmerica, Canton (2) 10.98 A101 Shuffel Street NW North Canton. OH 44720 Phone: 330-497-9396 Fax: 330-497-0772		Client Contact: Briwn Yelen	oration.			State, Zip: MI, 48108-7080 Comp		Leconfinités, con		ower Plent FAB-VEL		Sample Identification Sam	MW-16-01	MW-16-02	MW-16-03	MW-16-04	MW-16-05 4-S	MW-16-06	MW-16-07 4-5	DUP-01	MP-001F		2 22 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ant Poison B	i, III, IV, Other (specify)	Empty Kit Relinquished by:	had by C	Reinquished by: L. Has	Reinquished by: Custody Seals Intact: Custody Seal No.:	A Yes A No

i	

Eurofins TestAmerica Canton Facility	Canton Sample Receip	t Form/Narrati	ve		Login#:_	240-147159
-TVIC		0'- 37			Cooler un	packed by:
Client	ADD 0.0 2024	Site Name	400 00		MJS	•
Cooler Received on	UPS FAS Clipper C	Opened on	APR 08		1,110	ETA CANTON
FedEx: 1st Grd Exp Receipt After-hours: Dre		lient Drop Off	TestAmeri	e Location	Other	
		Client Cooler				
2. Were tamper/custody -Were the seals on to -Were tamper/custody -Were tamper/custody 3. Shippers' packing slip 4. Did custody papers ac 5. Were the custody paper 6. Was/were the person(s) 7. Did all bottles arrive in 8. Could all bottle labels 9. For each sample, does 10. Were correct bottle(s) 11. Sufficient quantity rec 12. Are these work share s	Wet Ice Blue Ice Wet Ice Blue Ice For receipt Hol'C) Observed Co seals on the outside of the coler(s) dy seals on the bottle(s) o dy seals intact and uncom attached to the cooler(s)? company the sample(s)? ers relinquished & signed s) who collected the sampl n good condition (Unbrok (ID/Date/Time) be recond the COC specify preserva used for the test(s) indicate eived to perform indicate samples and all listed on the 7 have been checked at the nple(s) at the correct pH u OC? nm in any VOA vials?	e cooler(s)? If You signed & dated? If you signed & dated? If you signed? If you signed & you signed	r None See Mult °C Correct °C Correct es Quantity Ig/MeHg)? place? ied on the Correct containers (Other	Temp. O - S Temp. Temp. No	Tests that are not checked for pH by Receiving: VOAs Oil and Grease TOC
17. Was a LL Hg or Me F					N	
Contacted PM	Date	by	v	ia Verbal V	oice Mail Oth	er
Concerning						
18. CHAIN OF CUSTO	DY & SAMPLE DISCRI	EPANCIES [additional r	next page	Samples pro	cessed by:
9. SAMPLE CONDITI						
Sample(s)						
Sample(s)			W		in a broken co	
Sample(s)		were receiv	ed with bubb	ble >6 mm ii	n diameter. (N	otify PM)
0. SAMPLE PRESERV	ATION					
Sample(s)				were fur	ther preserved	in the laboratory.
Sample(s)	Preservative(s) adde	d/Lot number(s):			preserveu	
OA Sample Preservation						

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-151083-1

Client Project/Site: CCR DTE Monroe Power Plant FAB/VEL

TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Mr. Vincent Buening

Authorized for release by: 6/17/2021 2:02:28 PM

Kris Brooks, Project Manager II (330)966-9790

Kris.Brooks@Eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
QC Sample Results	10
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Chain of Custody	14

Definitions/Glossary

Client: TRC Environmental Corporation. Job ID: 240-151083-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Qualifiers

General Chemistry

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) **RER**

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Page 3 of 15

Case Narrative

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Job ID: 240-151083-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-151083-1

Comments

No additional comments.

Receipt

The samples were received on 6/11/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.4° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

•

Job ID: 240-151083-1

3

4

7

5

6

7

ŏ

9

44

12

Method Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Job ID: 240-151083-1

Method	Method Description	Protocol	Laboratory
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CAN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: TRC Environmental Corporation.
Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
240-151083-1	MW-16-03-20210609	Water	06/09/21 14:48	06/11/21 08:00	
240-151083-2	DUP-01	Water	06/09/21 00:00	06/11/21 08:00	

Job ID: 240-151083-1

Detection Summary

Client: TRC Environmental Corporation.
Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Lab Sample ID: 240-151083-1

Job ID: 240-151083-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	2300	20	20 mg/L	1 SM 2540C	Total/NA

Client Sample ID: DUP-01 Lab Sample ID: 240-15108

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	2200	20	20 mg/L	1 SM 2540C	Total/NA

Client: TRC Environmental Corporation. Job ID: 240-151083-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Client Sample ID: MW-16-03-20210609 Lab Sample ID: 240-151083-1

Date Collected: 06/09/21 14:48 Matrix: Water

Date Received: 06/11/21 08:00

General Chemistry								
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2300	20	20	mg/L			06/15/21 08:01	1

3

4

8

10

46

Client: TRC Environmental Corporation. Job ID: 240-151083-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Lab Sample ID: 240-151083-2 **Client Sample ID: DUP-01** Date Collected: 06/09/21 00:00

Matrix: Water

Date Received: 06/11/21 08:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2200		20	20	mg/L			06/15/21 08:01	1

QC Sample Results

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Job ID: 240-151083-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: MW-16-03-20210609

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 240-490657/1

Matrix: Water

Analysis Batch: 490657

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** Total Dissolved Solids 10 U 10 06/15/21 08:01 10 mg/L

Spike

Added

347

Lab Sample ID: LCS 240-490657/2

Matrix: Water

Analysis Batch: 490657

Analyte

Total Dissolved Solids

Lab Sample ID: 240-151083-1 DU

Matrix: Water

Analysis Batch: 490657

Analyte Total Dissolved Solids 2300

Sample Sample Result Qualifier

DU DU 2450

Result Qualifier

LCS LCS

325

Result Qualifier

Unit mg/L

Unit

mg/L

RPD

D %Rec

94

RPD

Limit

QC Association Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Job ID: 240-151083-1

General Chemistry

Analysis Batch: 490657

Lab Sample ID 240-151083-1	Client Sample ID MW-16-03-20210609	Prep Type Total/NA	Matrix Water	Method SM 2540C	Prep Batch
240-151083-2	DUP-01	Total/NA	Water	SM 2540C	
MB 240-490657/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-490657/2	Lab Control Sample	Total/NA	Water	SM 2540C	
240-151083-1 DU	MW-16-03-20210609	Total/NA	Water	SM 2540C	

-

4

4

6

8

9

4 4

12

Lab Chronicle

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Client Sample ID: MW-16-03-20210609 Lab Sample ID: 240-151083-1

Date Collected: 06/09/21 14:48 Matrix: Water

Date Received: 06/11/21 08:00

Batch Batch Dilution Batch **Prepared** Method Run **Factor** Number or Analyzed **Prep Type** Type Analyst Lab Total/NA Analysis SM 2540C 490657 06/15/21 08:01 AJ TAL CAN

Client Sample ID: DUP-01 Lab Sample ID: 240-151083-2

Date Collected: 06/09/21 00:00 Matrix: Water

Date Received: 06/11/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540C			490657	06/15/21 08:01	AJ	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Job ID: 240-151083-1

3

4

5

8

9

11

12

1:

Accreditation/Certification Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Job ID: 240-151083-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-21
Georgia	State	4062	02-23-22
Illinois	NELAP	200004	07-31-21
lowa	State	421	06-01-21 *
Kansas	NELAP	E-10336	04-30-22
Kentucky (UST)	State	112225	02-23-22
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-21
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

4

4

5

9

10

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Canton

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

☐ 14 Days

☐ 7 Days

1. Relinguished By VELEN

2. Relinquished By

Skin Irritant

| Non-Hazard | Flammable | Tum Around Time Required

Possible Hazard Identification

13

Sample I.D. No. and Description (Containers for each sample may be combined on one line)

Mw-16-03-20210609

DUP-01

Project Name and Location (State)

Mon ROE Power Contract Purchase Order Outle No.

EISEN HOWER

1540

Custody Record

FAL-4124 (1007)

Chain of

1

ARBOR

22 X

	1		
_			
- 1			
- 1			
- 1			

		9
	1	3

Eurofins TestAmerica Canton Sample Receipt Form/Narrative	Login # :		
Client TRC Site Name	Cooler unpacked by:		
	erica Courier Other		
	rage Location		
TestAmerica Cooler # 1 A Foam Box Client Cooler Box	Other		
Packing material used: Bubble Wrap Foam Plastic Bag None	Other		
IR GUN# IR-11 (CF +0.1 °C) Observed Cooler Temp. © °C Col IR GUN #IR-12 (CF +0.2 °C) Observed Cooler Temp. °C Col IR GUN #IR-12 (CF +0.2 °C) Observed Cooler Temp. °C Col ? Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the ?Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels (ID/Date/Time) be reconciled with the COC? 9. For each sample, does the COC specify preservative (V/N), # of container 10. Were correct bottle(s) used for the test(s) indicated? 11. Sufficient quantity received to perform indicated analyses? 12. Are these work share samples and all listed on the COC? 13. Were all preserved sample(s) at the correct pH upon receipt? 14. Were VOAs on the COC? 15. Were air bubbles >6 mm in any VOA vials?	Multiple Cooler Form rrected Cooler Temp °C rrected Cooler Temp °C Yes No Yes No NA Yes No Yes N		
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	Yes No		
Contacted PM Date by	via Verbal Voice Mail Other		
Concerning			
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES addition	al next page Samples processed by:		
19. SAMPLE CONDITION			
Sample(s) were received after the recor	mmended holding time had expired.		
Sample(s) were received in a broken container.			
Sample(s) were received with bubble >6 mm in diameter. (Notify PM)			
20. SAMPLE PRESERVATION			
Sample(s) Time preserved:Preservative(s) added/Lot number(s):	were further preserved in the laboratory.		
VOA Sample Preservation - Date/Time VOAs Frozen:			

WI-NC-099

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-157751-1

Client Project/Site: CCR DTE Monroe Power Plant

TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Mr. Vincent Buening

Authorized for release by: 10/26/2021 10:59:16 AM

Patrick O'Meara, Manager of Project Management

(330)966-5725

patrick.o'meara@eurofinset.com

Designee for

Kris Brooks, Project Manager II (330)966-9790

Kris.Brooks@Eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	10
QC Sample Results	19
QC Association Summary	21
Lab Chronicle	23
Certification Summary	26
Chain of Custody	27

9

4

8

9

11

12

Definitions/Glossary

Client: TRC Environmental Corporation.

Job ID: 240-157751-1

Project/Site: CCR DTE Monroe Power Plant

Qualifiers

 CLU	•

Qualifier Qualifier Description

^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These cor	nmonly used abbrevi	iations may or may not	be present in this report.
------------------------	---------------------	------------------------	----------------------------

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

__ _

3

4

5

7

10

. .

Case Narrative

Client: TRC Environmental Corporation.
Project/Site: CCR DTE Monroe Power Plant

Job ID: 240-157751-1

Job ID: 240-157751-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-157751-1

Comments

No additional comments.

Receipt

The samples were received on 10/9/2021 @ 10:10 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 1.9° C, 2.5° C and 3.1° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

107701 1

2

7

5

6

9

10

11

11:

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Monroe Power Plant Job ID: 240-157751-1

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL CAN
6020	Metals (ICP/MS)	SW846	TAL CAN
9056A	Anions, Ion Chromatography	SW846	TAL CAN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CAN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL CAN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Water

Water

Water

10/06/21 15:10 10/09/21 10:10

10/06/21 00:00 10/09/21 10:10

10/07/21 08:50 10/09/21 10:10

Client: TRC Environmental Corporation.
Project/Site: CCR DTE Monroe Power Plant

MW-16-07_20211006

DUP-01_20211006

MP-001F_20211007

240-157751-7

240-157751-8

240-157751-9

Client Sample ID Lab Sample ID Matrix Collected Received 240-157751-1 MW-16-01_20211007 Water 10/07/21 11:10 10/09/21 10:10 MW-16-02_20211006 Water 10/06/21 13:50 10/09/21 10:10 240-157751-2 240-157751-3 MW-16-03_20211006 Water 10/06/21 12:10 10/09/21 10:10 10/06/21 10:45 10/09/21 10:10 MW-16-04_20211006 240-157751-4 Water MW-16-05 20211006 240-157751-5 Water 10/06/21 11:30 10/09/21 10:10 240-157751-6 MW-16-06_20211007 Water 10/07/21 10:35 10/09/21 10:10 1

Job ID: 240-157751-1

3

4

5

6

0

9

10

11

1:

Client Sample ID: MW-16-01_20211007

Job ID: 240-157751-1

Lab Sample ID: 240-157751-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	230		100	100	ug/L		_	6010B	Total
									Recoverable
Calcium	430000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	120		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	11		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.8		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1600		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2200		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-02_20211006	Lab Sample ID: 240-157751-2
-	

Analyte	Result	Qualifier F	L MDI	. Unit	Dil Fac	D	Method	Prep Type
Boron	360		00 100	ug/L	1	_	6010B	Total
								Recoverable
Calcium	450000	10	00 1000) ug/L	1		6020	Total
								Recoverable
Iron	510	1	00 100) ug/L	1		6020	Total
								Recoverable
Chloride	14	1	.0 1.0) mg/L	1		9056A	Total/NA
Fluoride	1.6	0.0	0.050) mg/L	1		9056A	Total/NA
Sulfate	1600		0 10) mg/L	10		9056A	Total/NA
Total Dissolved Solids	2200		20 20) mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-03_20211006

Lab Sample ID: 240-157751-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	370		100	100	ug/L	1	_	6010B	Total
									Recoverable
Calcium	450000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	980		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	19		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.6		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1700		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2300		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-04_20211006

Lab Sample ID: 240-157751-4

Lab Sample ID: 240-157751-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	140		100	100	ug/L	1	_	6010B	Total
									Recoverable
Calcium	620000		2000	2000	ug/L	2		6020	Total
									Recoverable
Chloride	36		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.0		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1400		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2100		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-05_20211006

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	190		100	100	ug/L	1	_	6010B	Total
									Pocovorable

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Canton

10/26/2021

Job ID: 240-157751-1

Lab Sample ID: 240-157751-5

Lab Sample ID: 240-157751-6

Lab Sample ID: 240-157751-7

Analyte	Result Q	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	440000		1000	1000	ug/L	1	_	6020	Total
									Recoverable
Iron	1000		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	12		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.5		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1600		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2000		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-06_20211007

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	280		100	100	ug/L	1	_	6010B	Total
									Recoverable
Calcium	420000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	850		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	8.2		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.5		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1600		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2100		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-16-07_20211006

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	150		100	100	ug/L		_	6010B	Total
									Recoverable
Calcium	450000		1000	1000	ug/L	1		6020	Total
									Recoverable
Iron	900		100	100	ug/L	1		6020	Total
									Recoverable
Chloride	12		1.0	1.0	mg/L	1		9056A	Total/NA
Fluoride	1.6		0.050	0.050	mg/L	1		9056A	Total/NA
Sulfate	1600		10	10	mg/L	10		9056A	Total/NA
Total Dissolved Solids	2200		20	20	mg/L	1		SM 2540C	Total/NA

Client Sample ID: DUP-01_20211006

Analyte	Result Quali	ifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
Boron	120	100	100	ug/L	1	6010B	Total
							Recoverable
Calcium	570000	2000	2000	ug/L	2	6020	Total
							Recoverable
Chloride	36	1.0	1.0	mg/L	1	9056A	Total/NA
Fluoride	1.0	0.050	0.050	mg/L	1	9056A	Total/NA
Sulfate	1500	10	10	mg/L	10	9056A	Total/NA
Total Dissolved Solids	2100	20	20	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MP-001F_20211007

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1300	100	100	ug/L	1	_	6010B	Total
								Recoverable
Calcium	170000	1000	1000	ug/L	1		6020	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Canton

10/26/2021

Lab Sample ID: 240-157751-9

Page 8 of 30

2

3

E

7

8

10

4 6

46

Lab Sample ID: 240-157751-8

Detection Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Monroe Power Plant

Job ID: 240-157751-1

Client Sample ID: MP-001F_20211007 (Continued) Lab Sample ID: 240-157751-9

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D I	Method	Prep Type
Iron	200	100	100	ug/L	1	_ (6020	Total
				-				Recoverable
Chloride	27	1.0	1.0	mg/L	1	(9056A	Total/NA
Fluoride	0.58	0.050	0.050	mg/L	1	,	9056A	Total/NA
Sulfate	400	5.0	5.0	mg/L	5	,	9056A	Total/NA
Total Dissolved Solids	680	10	10	mg/L	1	;	SM 2540C	Total/NA

3

4

5

7

8

46

11

12

1:

Client: TRC Environmental Corporation. Job ID: 240-157751-1

Project/Site: CCR DTE Monroe Power Plant

Date Collected: 10/07/21 11:10 Matrix: Water

Date Received: 10/09/21 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	230		100	100	ug/L		10/11/21 14:00	10/13/21 04:38	1
- Method: 6020 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	430000		1000	1000	ug/L		10/11/21 14:00	10/13/21 03:55	1
Iron	120		100	100	ug/L		10/11/21 14:00	10/13/21 03:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride			1.0	1.0	mg/L			10/22/21 11:13	1
Fluoride	1.8		0.050	0.050	mg/L			10/22/21 11:13	1
Sulfate	1600		10	10	mg/L			10/22/21 11:34	10
Total Dissolved Solids	2200		20	20	mg/L			10/14/21 08:37	1

Eurofins TestAmerica, Canton

2

Л

5

7

8

3

11

12

1.

Client: TRC Environmental Corporation.

Job ID: 240-157751-1

Project/Site: CCR DTE Monroe Power Plant

Date Collected: 10/06/21 13:50 Matrix: Water

Date Received: 10/09/21 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	360		100	100	ug/L		10/11/21 14:00	10/13/21 04:47	1
Method: 6020 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	450000		1000	1000	ug/L		10/11/21 14:00	10/13/21 04:00	1
Iron	510		100	100	ug/L		10/11/21 14:00	10/13/21 04:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14		1.0	1.0	mg/L			10/22/21 11:56	1
Fluoride	1.6		0.050	0.050	mg/L			10/22/21 11:56	1
Sulfate	1600		10	10	mg/L			10/22/21 12:18	10
Total Dissolved Solids	2200		20	20	mg/L			10/13/21 08:20	1

Eurofins TestAmerica, Canton

_

3

5

7

8

9

4 4

11

Client: TRC Environmental Corporation. Job ID: 240-157751-1

Project/Site: CCR DTE Monroe Power Plant

Date Collected: 10/06/21 12:10 Matrix: Water

Date Received: 10/09/21 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	370		100	100	ug/L		10/11/21 14:00	10/13/21 04:51	1
Method: 6020 - Metals (ICP	/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	450000		1000	1000	ug/L		10/11/21 14:00	10/13/21 04:04	1
Iron	980		100	100	ug/L		10/11/21 14:00	10/13/21 04:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	19		1.0	1.0	mg/L			10/22/21 12:40	1
Fluoride	1.6		0.050	0.050	mg/L			10/22/21 12:40	1
Sulfate	1700		10	10	mg/L			10/22/21 13:01	10
Total Dissolved Solids	2300		20	20	mg/L			10/13/21 08:20	1

3

5

0

8

9

10

11

Job ID: 240-157751-1 Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant

Client Sample ID: MW-16-04_20211006

Lab Sample ID: 240-157751-4 Date Collected: 10/06/21 10:45 **Matrix: Water**

Date Received: 10/09/21 10:10

Method: 6010B - Metals (IC	P) - Total Reco	verable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	140		100	100	ug/L		10/11/21 14:00	10/13/21 05:04	1
- Method: 6020 - Metals (ICP	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	620000		2000	2000	ug/L		10/11/21 14:00	10/13/21 20:54	2
Iron	100	U	100	100	ug/L		10/11/21 14:00	10/13/21 04:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	36		1.0	1.0	mg/L			10/22/21 13:23	1
Fluoride	1.0		0.050	0.050	mg/L			10/22/21 13:23	1
Sulfate	1400		10	10	mg/L			10/22/21 15:12	10
Total Dissolved Solids	2100		20	20	mg/L			10/13/21 08:20	1

Client: TRC Environmental Corporation. Job ID: 240-157751-1

Project/Site: CCR DTE Monroe Power Plant

Date Collected: 10/06/21 11:30

Matrix: Water

Date Received: 10/09/21 10:10

Method: 6010B - Metals (IC Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	190		100	100	ug/L		10/11/21 14:00	10/13/21 05:09	1
Method: 6020 - Metals (ICP	/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	440000		1000	1000	ug/L		10/11/21 14:00	10/13/21 04:13	1
Iron	1000		100	100	ug/L		10/11/21 14:00	10/13/21 04:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12		1.0	1.0	mg/L			10/22/21 15:33	1
Fluoride	1.5		0.050	0.050	mg/L			10/22/21 15:33	1
Sulfate	1600		10	10	mg/L			10/22/21 15:55	10
Total Dissolved Solids	2000		20	20	mg/L			10/13/21 08:20	1

Eurofins TestAmerica, Canton

2

5

7

Ŏ

3

11

12

Client: TRC Environmental Corporation.

Job ID: 240-157751-1

Project/Site: CCR DTE Monroe Power Plant

Date Collected: 10/07/21 10:35 Matrix: Water

Date Received: 10/09/21 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	280		100	100	ug/L		10/11/21 14:00	10/13/21 05:13	1
Method: 6020 - Metals (ICP	/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	420000		1000	1000	ug/L		10/11/21 14:00	10/13/21 04:17	1
Iron	850		100	100	ug/L		10/11/21 14:00	10/13/21 04:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.2		1.0	1.0	mg/L			10/22/21 16:17	1
Fluoride	1.5		0.050	0.050	mg/L			10/22/21 16:17	1
Sulfate	1600		10	10	mg/L			10/22/21 16:39	10
Total Dissolved Solids	2100		20	20	mg/L			10/14/21 08:37	1

Eurofins TestAmerica, Canton

2

4

6

8

9

10

11

Client: TRC Environmental Corporation. Job ID: 240-157751-1

Project/Site: CCR DTE Monroe Power Plant

Client Sample ID: MW-16-07_20211006 Lab Sample ID: 240-157751-7

Da

Pate Collected: 10/06/21 15:10	Matrix: Water
Pate Received: 10/09/21 10:10	

Method: 6010B - Metals (IC	•	Qualifier	RL	MDL	l lmi4	D	Duamanad	Analysed	Dil Fac
Analyte	Result	Qualifier					Prepared	Analyzed	DII Fac
Boron	150		100	100	ug/L		10/11/21 14:00	10/13/21 05:18	1
Method: 6020 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	450000		1000	1000	ug/L		10/11/21 14:00	10/13/21 04:22	1
Iron	900		100	100	ug/L		10/11/21 14:00	10/13/21 04:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<u> 12</u>		1.0	1.0	mg/L			10/22/21 17:00	1
Fluoride	1.6		0.050	0.050	mg/L			10/22/21 17:00	1
Sulfate	1600		10	10	mg/L			10/22/21 17:22	10
Total Dissolved Solids	2200		20	20	mg/L			10/13/21 08:20	1

Client: TRC Environmental Corporation. Job ID: 240-157751-1

Project/Site: CCR DTE Monroe Power Plant

Date Collected: 10/06/21 00:00 Matrix: Water

Date Received: 10/09/21 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	120		100	100	ug/L		10/11/21 14:00	10/13/21 05:22	1
Method: 6020 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	570000		2000	2000	ug/L		10/11/21 14:00	10/13/21 20:58	2
Iron	100	U	100	100	ug/L		10/11/21 14:00	10/13/21 04:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	36		1.0	1.0	mg/L			10/22/21 17:44	1
Fluoride	1.0		0.050	0.050	mg/L			10/22/21 17:44	1
Sulfate	1500		10	10	mg/L			10/22/21 18:05	10
Total Dissolved Solids	2100		20	20	mg/L			10/13/21 08:20	1

10/26/2021

2

5

7

8

9

44

Client: TRC Environmental Corporation. Job ID: 240-157751-1

Project/Site: CCR DTE Monroe Power Plant

Client Sample ID: MP-001F_20211007 Lab Sample ID: 240-157751-9

Da

Date Collected: 10/07/21 08:50	Matrix: Water
Date Received: 10/09/21 10:10	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1300		100	100	ug/L		10/11/21 14:00	10/13/21 05:27	1
Method: 6020 - Metals (ICP	/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	170000		1000	1000	ug/L		10/11/21 14:00	10/13/21 04:39	1
Iron	200		100	100	ug/L		10/11/21 14:00	10/13/21 04:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	27		1.0	1.0	mg/L			10/22/21 19:11	1
Fluoride	0.58		0.050	0.050	mg/L			10/22/21 19:11	1
Sulfate	400		5.0	5.0	mg/L			10/22/21 19:32	5
Total Dissolved Solids	680		10	10	mg/L			10/14/21 08:37	1

Job ID: 240-157751-1

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 240-507649/1-A

Matrix: Water

Analysis Batch: 507978

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 507649

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 100 <u>10/11/21 14:00</u> <u>10/13/21 03:29</u> Boron 100 U 100 ug/L

Lab Sample ID: LCS 240-507649/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 507978**

MB MB

Prep Batch: 507649

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1000 962 80 - 120 Boron ug/L 96

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 240-507649/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 507999

Prep Batch: 507649 MB MB

Analyte Result Qualifier RL**MDL** Unit D Analyzed Dil Fac Prepared 1000 1000 ug/L 10/11/21 14:00 10/13/21 02:32 Calcium 1000 U 10/11/21 14:00 10/13/21 02:32 Iron 100 U ^+ 100 100 ug/L

Lab Sample ID: LCS 240-507649/3-A

Matrix: Water

Analysis Batch: 507999

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 507649

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 25000 Calcium 25500 80 - 120 ug/L 102 5000 5550 ^+ ug/L 111 80 - 120

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-509342/3 **Client Sample ID: Method Blank**

Matrix: Water Prep Type: Total/NA Analysis Batch: 509342 MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.0	U	1.0	1.0	mg/L			10/22/21 06:08	1
Fluoride	0.050	U	0.050	0.050	mg/L			10/22/21 06:08	1
Sulfate	1.0	U	1.0	1.0	mg/L			10/22/21 06:08	1

Lab Sample ID: LCS 240-509342/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 509342

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 50.0	51.9		mg/L		104	90 - 110	
Fluoride	2.50	2.71		mg/L		108	90 - 110	
Sulfate	50.0	53.2		mg/L		106	90 - 110	

Eurofins TestAmerica, Canton

Job ID: 240-157751-1

Prep Type: Total/NA

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: 240-157751-4 MS Client Sample ID: MW-16-04_20211006

Matrix: Water

Analysis Batch: 509342

	Sample Sample	Spike	MS	MS			%Rec.	
Analyte	Result Qualifie	r Added	Result	Qualifier	Unit	D %Rec	Limits	
Chloride	36	50.0	89.7		mg/L	107	80 - 120	
Fluoride	1.0	2.50	3.66		mg/L	105	80 - 120	

Lab Sample ID: 240-157751-4 MSD Client Sample ID: MW-16-04_20211006 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 509342

7 man, 6 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	36		50.0	89.2		mg/L		106	80 - 120	1	15
Fluoride	1.0		2.50	3.67		mg/L		106	80 - 120	1	15

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 240-507992/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 507992

MB MB Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed Total Dissolved Solids 10 U 10 10 mg/L 10/13/21 08:20

Lab Sample ID: LCS 240-507992/2 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 507992

_		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids		347	336		ma/L		97	80 - 120	

Lab Sample ID: MB 240-508215/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

MD MD

Matrix: Water

Analysis Batch: 508215

		AID.								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	10 L	J	10	10	mg/L			10/14/21 08:37	1	

Lab Sample ID: LCS 240-508215/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 508215

7 many one Date m CCC 1 C							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Dissolved Solids	500	518		ma/l		104	80 - 120

Eurofins TestAmerica, Canton

10/26/2021

Job ID: 240-157751-1

Metals

Prep Batch: 507649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-157751-1	MW-16-01_20211007	Total Recoverable	Water	3005A	
240-157751-2	MW-16-02_20211006	Total Recoverable	Water	3005A	
240-157751-3	MW-16-03_20211006	Total Recoverable	Water	3005A	
240-157751-4	MW-16-04_20211006	Total Recoverable	Water	3005A	
240-157751-5	MW-16-05_20211006	Total Recoverable	Water	3005A	
240-157751-6	MW-16-06_20211007	Total Recoverable	Water	3005A	
240-157751-7	MW-16-07_20211006	Total Recoverable	Water	3005A	
240-157751-8	DUP-01_20211006	Total Recoverable	Water	3005A	
240-157751-9	MP-001F_20211007	Total Recoverable	Water	3005A	
MB 240-507649/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-507649/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCS 240-507649/3-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 507978

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-157751-1	MW-16-01_20211007	Total Recoverable	Water	6010B	507649
240-157751-2	MW-16-02_20211006	Total Recoverable	Water	6010B	507649
240-157751-3	MW-16-03_20211006	Total Recoverable	Water	6010B	507649
240-157751-4	MW-16-04_20211006	Total Recoverable	Water	6010B	507649
240-157751-5	MW-16-05_20211006	Total Recoverable	Water	6010B	507649
240-157751-6	MW-16-06_20211007	Total Recoverable	Water	6010B	507649
240-157751-7	MW-16-07_20211006	Total Recoverable	Water	6010B	507649
240-157751-8	DUP-01_20211006	Total Recoverable	Water	6010B	507649
240-157751-9	MP-001F_20211007	Total Recoverable	Water	6010B	507649
MB 240-507649/1-A	Method Blank	Total Recoverable	Water	6010B	507649
LCS 240-507649/2-A	Lab Control Sample	Total Recoverable	Water	6010B	507649

Analysis Batch: 507999

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-157751-1	MW-16-01_20211007	Total Recoverable	Water	6020	507649
240-157751-2	MW-16-02_20211006	Total Recoverable	Water	6020	507649
240-157751-3	MW-16-03_20211006	Total Recoverable	Water	6020	507649
240-157751-4	MW-16-04_20211006	Total Recoverable	Water	6020	507649
240-157751-5	MW-16-05_20211006	Total Recoverable	Water	6020	507649
240-157751-6	MW-16-06_20211007	Total Recoverable	Water	6020	507649
240-157751-7	MW-16-07_20211006	Total Recoverable	Water	6020	507649
240-157751-8	DUP-01_20211006	Total Recoverable	Water	6020	507649
240-157751-9	MP-001F_20211007	Total Recoverable	Water	6020	507649
MB 240-507649/1-A	Method Blank	Total Recoverable	Water	6020	507649
LCS 240-507649/3-A	Lab Control Sample	Total Recoverable	Water	6020	507649

Analysis Batch: 508189

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-157751-4	MW-16-04_20211006	Total Recoverable	Water	6020	507649
240-157751-8	DUP-01_20211006	Total Recoverable	Water	6020	507649

General Chemistry

Analysis Batch: 507992

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-157751-2	MW-16-02_20211006	Total/NA	Water	SM 2540C	

Eurofins TestAmerica, Canton

Page 21 of 30

10/26/2021

QC Association Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant

Job ID: 240-157751-1

General Chemistry (Continued)

Analysis Batch: 507992 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-157751-3	MW-16-03_20211006	Total/NA	Water	SM 2540C	
240-157751-4	MW-16-04_20211006	Total/NA	Water	SM 2540C	
240-157751-5	MW-16-05_20211006	Total/NA	Water	SM 2540C	
240-157751-7	MW-16-07_20211006	Total/NA	Water	SM 2540C	
240-157751-8	DUP-01_20211006	Total/NA	Water	SM 2540C	
MB 240-507992/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-507992/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 508215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-157751-1	MW-16-01_20211007	Total/NA	Water	SM 2540C	
240-157751-6	MW-16-06_20211007	Total/NA	Water	SM 2540C	
240-157751-9	MP-001F_20211007	Total/NA	Water	SM 2540C	
MB 240-508215/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-508215/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 509342

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-157751-1	MW-16-01_20211007	Total/NA	Water	9056A	_
240-157751-1	MW-16-01_20211007	Total/NA	Water	9056A	
240-157751-2	MW-16-02_20211006	Total/NA	Water	9056A	
240-157751-2	MW-16-02_20211006	Total/NA	Water	9056A	
240-157751-3	MW-16-03_20211006	Total/NA	Water	9056A	
240-157751-3	MW-16-03_20211006	Total/NA	Water	9056A	
240-157751-4	MW-16-04_20211006	Total/NA	Water	9056A	
240-157751-4	MW-16-04_20211006	Total/NA	Water	9056A	
240-157751-5	MW-16-05_20211006	Total/NA	Water	9056A	
240-157751-5	MW-16-05_20211006	Total/NA	Water	9056A	
240-157751-6	MW-16-06_20211007	Total/NA	Water	9056A	
240-157751-6	MW-16-06_20211007	Total/NA	Water	9056A	
240-157751-7	MW-16-07_20211006	Total/NA	Water	9056A	
240-157751-7	MW-16-07_20211006	Total/NA	Water	9056A	
240-157751-8	DUP-01_20211006	Total/NA	Water	9056A	
240-157751-8	DUP-01_20211006	Total/NA	Water	9056A	
240-157751-9	MP-001F_20211007	Total/NA	Water	9056A	
240-157751-9	MP-001F_20211007	Total/NA	Water	9056A	
MB 240-509342/3	Method Blank	Total/NA	Water	9056A	
LCS 240-509342/4	Lab Control Sample	Total/NA	Water	9056A	
240-157751-4 MS	MW-16-04_20211006	Total/NA	Water	9056A	
240-157751-4 MSD	MW-16-04_20211006	Total/NA	Water	9056A	

Eurofins TestAmerica, Canton

3

6

8

9

10

12

Job ID: 240-157751-1

Client: TRC Environmental Corporation.
Project/Site: CCR DTE Monroe Power Plant

Client Sample ID: MW-16-01 20211007

Date Collected: 10/07/21 11:10 Date Received: 10/09/21 10:10 Lab Sample ID: 240-157751-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	507978	10/13/21 04:38	KLC	TAL CAN
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	507999	10/13/21 03:55	AJC	TAL CAN
Total/NA	Analysis	9056A		1	509342	10/22/21 11:13	JWW	TAL CAN
Total/NA	Analysis	9056A		10	509342	10/22/21 11:34	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	508215	10/14/21 08:37	AJ	TAL CAN

Client Sample ID: MW-16-02_20211006

Date Collected: 10/06/21 13:50 Date Received: 10/09/21 10:10 Lab Sample ID: 240-157751-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	507978	10/13/21 04:47	KLC	TAL CAN
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	507999	10/13/21 04:00	AJC	TAL CAN
Total/NA	Analysis	9056A		1	509342	10/22/21 11:56	JWW	TAL CAN
Total/NA	Analysis	9056A		10	509342	10/22/21 12:18	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	507992	10/13/21 08:20	AJ	TAL CAN

Client Sample ID: MW-16-03 20211006

Date Collected: 10/06/21 12:10

Date Received: 10/09/21 10:10

Lab Sample ID: 240-157751-3

Matrix: Water

Batch Dilution Ratch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Prep 3005A 507649 10/11/21 14:00 SHB TAL CAN Total Recoverable 6010B Total Recoverable Analysis 1 507978 10/13/21 04:51 KLC TAL CAN Prep Total Recoverable 3005A 507649 10/11/21 14:00 SHB TAL CAN Total Recoverable Analysis 6020 1 507999 10/13/21 04:04 AJC TAL CAN Total/NA 9056A TAL CAN Analysis 1 509342 10/22/21 12:40 JWW Total/NA Analysis 9056A 10 509342 10/22/21 13:01 JWW TAL CAN Total/NA Analysis SM 2540C 507992 10/13/21 08:20 AJ TAL CAN 1

Client Sample ID: MW-16-04_20211006

Date Collected: 10/06/21 10:45

Date Received: 10/09/21 10:10

Lab Sample ID: 240-1577	51-4
Matrix: \	Nater

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	507978	10/13/21 05:04	KLC	TAL CAN
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	507999	10/13/21 04:09	AJC	TAL CAN

Eurofins TestAmerica, Canton

Page 23 of 30

2

3

4

6

8

10

11

Job ID: 240-157751-1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Monroe Power Plant

Client Sample ID: MW-16-04_20211006

Lab Sample ID: 240-157751-4 Date Collected: 10/06/21 10:45

Matrix: Water

Date Received: 10/09/21 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		2	508189	10/13/21 20:54	AJC	TAL CAN
Total/NA	Analysis	9056A		1	509342	10/22/21 13:23	JWW	TAL CAN
Total/NA	Analysis	9056A		10	509342	10/22/21 15:12	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	507992	10/13/21 08:20	AJ	TAL CAN

Lab Sample ID: 240-157751-5 Client Sample ID: MW-16-05_20211006

Date Collected: 10/06/21 11:30 **Matrix: Water**

Date Received: 10/09/21 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	507978	10/13/21 05:09	KLC	TAL CAN
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	507999	10/13/21 04:13	AJC	TAL CAN
Total/NA	Analysis	9056A		1	509342	10/22/21 15:33	JWW	TAL CAN
Total/NA	Analysis	9056A		10	509342	10/22/21 15:55	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	507992	10/13/21 08:20	AJ	TAL CAN

Client Sample ID: MW-16-06_20211007 Lab Sample ID: 240-157751-6 **Matrix: Water**

Date Collected: 10/07/21 10:35 Date Received: 10/09/21 10:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	507978	10/13/21 05:13	KLC	TAL CAN
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	507999	10/13/21 04:17	AJC	TAL CAN
Total/NA	Analysis	9056A		1	509342	10/22/21 16:17	JWW	TAL CAN
Total/NA	Analysis	9056A		10	509342	10/22/21 16:39	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	508215	10/14/21 08:37	AJ	TAL CAN

Client Sample ID: MW-16-07_20211006 Lab Sample ID: 240-157751-7 Date Collected: 10/06/21 15:10 **Matrix: Water**

Date Received: 10/09/21 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	507978	10/13/21 05:18	KLC	TAL CAN
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	507999	10/13/21 04:22	AJC	TAL CAN
Total/NA	Analysis	9056A		1	509342	10/22/21 17:00	JWW	TAL CAN
Total/NA	Analysis	9056A		10	509342	10/22/21 17:22	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	507992	10/13/21 08:20	AJ	TAL CAN

Eurofins TestAmerica, Canton

Page 24 of 30

10/26/2021

Lab Chronicle

Client: TRC Environmental Corporation.
Project/Site: CCR DTE Monroe Power Plant

Client Sample ID: DUP-01_20211006

Lab Sample ID: 240-157751-8

Matrix: Water

Job ID: 240-157751-1

Date Collected: 10/06/21 00:00 Date Received: 10/09/21 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	507978	10/13/21 05:22	KLC	TAL CAN
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	507999	10/13/21 04:26	AJC	TAL CAN
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		2	508189	10/13/21 20:58	AJC	TAL CAN
Total/NA	Analysis	9056A		1	509342	10/22/21 17:44	JWW	TAL CAN
Total/NA	Analysis	9056A		10	509342	10/22/21 18:05	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	507992	10/13/21 08:20	AJ	TAL CAN

Date Collected: 10/07/21 08:50 Date Received: 10/09/21 10:10 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	507978	10/13/21 05:27	KLC	TAL CAN
Total Recoverable	Prep	3005A			507649	10/11/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	507999	10/13/21 04:39	AJC	TAL CAN
Total/NA	Analysis	9056A		1	509342	10/22/21 19:11	JWW	TAL CAN
Total/NA	Analysis	9056A		5	509342	10/22/21 19:32	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	508215	10/14/21 08:37	AJ	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Eurofins TestAmerica, Canton

9

5

5

7

9

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Monroe Power Plant

Job ID: 240-157751-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-22
Georgia	State	4062	02-23-22
Illinois	NELAP	200004	07-31-22
Iowa	State	421	06-01-23
Kansas	NELAP	E-10336	04-30-22
Kentucky (UST)	State	112225	02-23-22
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-22
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-22
Texas	NELAP	T104704517-18-10	08-31-22
Virginia	NELAP	11570	09-14-22
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

-

4

5

7

8

4.0

10

12

COLOR COLO	ور نافو سته ماه ا	Sampler:	7		Veice	Carrier Tracking No(s):	COC No:	
Vic Guestian Vic	ormation				. Kris M	State of Origin	Z40-8/Z/0-31/15.1	
Pige	Ha. V. BUENIN			Kris.Br	ooks@Eurofinset.com	State of Origin.	Page 1 of 1	
131-301-3022 Fau) 151-301-301-301-301-301-301-301-301-301-30	vironmental Corpo		PWSID:		Analysis F	Requested	Job#:	
313-971-0022(Fab) Compliance Project: N. Yes 1. No No No No No No No No	Address. 1540 Eisenhower Place	Due Date Requested:					des:	
13.997-0022[Fay) Fig. 25 10.00 Fig. 25 10.00 Fig. 25	City. Ann Arbor	TAT Requested (days):					2 Z O	
Company Comp	State, Zip: MI, 48108-7080	- 1						
1- 1- 1- 1- 1- 1- 1- 1-	Phone: 313-971-7080(Tel) 313-971-9022(Fax)	PO#: 164683		(0				73 decahvdrate
Control Cont	Email: CScioBerke@trocompenies:tOm V buch its often			N 10			1 - Ice J - DI Water	
Sample Marint Sample Marint Sample Marint Sample Marint Sample Cocoon Sample Cocon Sample Cocoon Sample Cocon Sample Cocoon Sample Cocoon Sample Coc	Project Name CCR DTE Monroe Plant FAB/VEL	24016830		50 <u>X</u>) 9	10 88		K-EDTA W	secify)
Sample Date Contract Sample Sa	Site.	SSOW#:		dwes	A) as			
10 - 6 1240 Water M. K.				Matrix (www.ater. Smootid. Owwastacioil.	erform MS/M 540C_Calcd, 90			
10 - 6 1360 Water M X X Mater M X X M X	Sample Identification		+	র :	z d		1	/Note:
10 - 6 1210 Water	1 1	1	-		× ×			
10 - 6 1210 Water X X		+	+		×			
10 - 6 1045 Water X X	1	-	00 5	Water	-			
16 - 6 1136 Water X X	1	-	2 3					
16 - 6 1136 Water 1	N	7	\$	Water	VV			
16 - 16 15 \	4		3	Water				
10 . 6 1510 Water 14 15751 Chain of Custody			25	Water				
10 . T 0850 Water Y X			10	Water	XX			
10.7	1	1		Water	×			
ation meable Skin trritant Poison B Unknown Radiological III. IV. Other (specify) 3 - YELE: V Date: Date: Date: Received by: Receiv	- 1	7	- 60	Water		Chairl of Custody		
Sample Disposal (A fee may be assessed if samples are retained longer than 1 and the special possible Disposal By Lab Archive For Special Instructions/QC Requirements: Special Instructions/QC Requirements: Method of Shipment Archive For Special Instructions/QC Requirements: Archive For Special Instructions/QC Requirements Archive For Special Instruct				Water	<u> </u>			
Special Instructions/Oct Requirements: Special Instructions/OC Requirements:					Sample Disposal (A fee may t	e assessed if samples are reta	ained longer than 1 month)	
3. VELEN Date: Time: Method of Shipment Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Disp/Time: Disp/Time	ant		Kadiologica		Special Instructions/QC Require	osal By Lab		
B / ELEN Date/Time: Date/T	Empty Kit Relinquished by:				me:	Method of Shipment:		
Company Received by	B . YE	Date/Time 8 .2(Company	25	Date	0400	7
Date/Time:	J	Date/Time:	1152	Company	The state of the s	Date/Time:	W WS2	
≸ Inidact: Custody Seal No∴ No	(M)M	Date/Time:	1341	Company	Received by:		1 /0/0	A
	Intact: No				Cooler Temperature(s) °C and Oth	er Remarks.		

Seurofins Environment Testing America

Chain of Custody Record

Eurofins TestAmerica, Canton

4101 Shuffel Street NW

	ton Sample Receipt Form/Narrativ	ve	Login #:	137+51
Canton Facility			Cooler un	packed by:
Client TRC	Site Name	101-		
Cooler Received on 10/9	7/21 Opened on 101		Treit	J
FedEx: 1st Grd UPS	FAS Clipper Client Drop Off	TestAmerica Courier	Other	
Receipt After-hours: Drop-of		Storage Location		
TestAmerica Cooler #				
Packing material used:	-T-b			
COOLANT: West 1. Cooler temperature upon a		None See Multiple Cooler Fo		
	.1 °C) Observed Cooler Temp.	-		°C
	.2°C) Observed Cooler Temp.			_°C
	s on the outside of the cooler(s)? If Ye		s No	
	utside of the cooler(s) signed & dated?		No NA	Tests that are not checked for pH by
-Were tamper/custody s	eals on the bottle(s) or bottle kits (LLH	Ig/MeHg)? Yes	s (No	Receiving:
-Were tamper/custody se	eals intact and uncompromised?	Yes	s No NA	
3. Shippers' packing slip attack	ched to the cooler(s)?		sO	VOAs
4. Did custody papers accom-			s No	Oil and Grease TOC
	elinquished & signed in the appropriate		s No	100
	no collected the samples clearly identified	ied on the COC? Yes	No	
7. Did all bottles arrive in go	· · · · · · · · · · · · · · · · · · ·	Ye		
	Date/Time) be reconciled with the CO			
	COC specify preservatives (X/N), # of			grab/comp(y/N)?
10. Were correct bottle(s) used	d to perform indicated analyses?	(e	No No	
12. Are these work share samp		Yes	~	
	ive been checked at the originating laboration		s (U)	
	(s) at the correct pH upon receipt?		s No NA n	H Strip Lot# <u>HC157842</u>
14. Were VOAs on the COC?	· · · · · · · · · · · · · · · · · · ·		s No,	our pow <u>11010/011</u>
15. Were air bubbles >6 mm i			s No NA	
	esent in the cooler(s)? Trip Blank Lot #		s No	
17. Was a LL Hg or Me Hg tr			s No	
Contacted PM	Date by	via Verbal V	oice Mail Oth	ner
Concerning				
		1	T	
18. CHAIN OF CUSTODY	& SAMPLE DISCREPANCIES L	additional next page	Samples pro	cessed by:
19. SAMPLE CONDITION				
Sample(s)	were received after	r the recommended hold	ling time had ex	kpired.
			d in a broken co	
Sample(s)	were receiv	ved with bubble >6 mm i	in diameter. (N	otify PM)
20. SAMPLE PRESERVAT	ION			
Sample(s)		were fur	rther preserved	in the laboratory.
Time preserved:	Preservative(s) added/Lot number(s)	:		
	Date/Time VOAs Frozen:			

Login # : _____

	Eu	rofins TestAmerica C	anton Sample Rece	ipt Multiple Cooler Fo	orm
Cooler	Description	IR Gun#	Observed	Corrected	Coolant
	Circle)	(Circle)	Temp °C	Temp °C	(Circle)
Clier	at Box Other	(R-14) IR-15	3.0	31	Welton Blue Ice Dry Ice Water None
SA Clier	Box Other	IP-14 IR-15	2.4	2,5	Weblice Blue Ice Dry Ice Water None
Clier	t Box Other	(R-7) IR-15	1-8	49	Welice Blue Ice Dry Ice Water None
TA Clier	t Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Clier	f Box Other	IR-14 IR-15			Wel ice Blue ice Dry ice Water None
TA Clier	if Box Other	IR-14 IR-15			Wet ice Blue ice Dry ice Water None
TA Clier	if Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Clier	if Box Other	IR-14 IR-15			Wet Ice Sive Ice Dry Ice Water None
TA Clier	if Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Clier	at Box Other	IR-14 IR-15			Wet ice Blue ice Dry ice Water None
TA Clier	nt Box Other	IR-14 IR-15			Wet ice Blue ice Dry ice Water None
TA Clier	nt Box Other	IR-14 IR-15			Wet ice Blue ice Dry ice Water None
TA Clier	nt Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Cie	nt Box Other	IR-14 IR-15	· · · · · · · · · · · · · · · · · · ·		Wet Ice Blue Ice Dry Ice Water None
TA Clier	nt Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry Ice
TA Clie		IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ice Water None
TA Clier	nt Box Other	IR-14 IR-15			Wel Ice Blue Ice Dry Ice
TA Clie		IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ice
TA Clie	nt Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Clie	ni Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Clie	nt Box Other	IR-14 IR-15			Wet ice Blue ice Dry ice Water None
TA Clie	nt Box Other	IR-14 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Clie	nt Box Other	1R-14 IR-15			Wet ice Blue ice Dry ice Water None
TA Clie	nt Box Other	IR-14 IR-15			Wet ice Blue ice Dry ice
TA Clie		IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ice
TA Clie		IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ice
TA Clie		IR-14 IR-15			Wet ice Blue ice Dry ice
TA Clie		IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ice
TA Clie		IR-14 IR-15			Wet ice Blue ice Dry ice
TA Clie		IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ice
1A Cle	and the second second	IR-14 IR-15			Wet Ice Blue Ice Dry Ice
TA Clie	The second second	IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ice
TA Clie	-	IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ice
TA Clie		IR-14 IR-15			Water None Wet Ice Blue Ice Dry Ice
in cite	BOX OTHER	1		☐ See Tei	mperature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

Temperature readings:

Client Sample ID	Lab ID	Container Type	Container Preservative pH Temp Added (mls) Lot #
MW-16-01_20211007	240-157751-B-1	Plastic 250ml - with Nitric Acid	<2
MW-16-02_20211006	240-157751-B-2	Plastic 250ml - with Nitric Acid	<2
MW-16-03_20211006	240-157751-B-3	Plastic 250ml - with Nitric Acid	<2
MW-16-04_20211006	240-157751-B-4	Plastic 250ml - with Nitric Acid	<2
MW-16-05_20211006	240-157751-B-5	Plastic 250ml - with Nitric Acid	<2
MW-16-06_20211007	240-157751-B-6	Plastic 250ml - with Nitric Acid	<2
MW-16-07_20211006	240-157751-B-7	Plastic 250ml - with Nitric Acid	<2
DUP-01_20211006	240-157751-B-8	Plastic 250ml - with Nitric Acid	<2
MP-001F 20211007	240-157751-B-9	Plastic 250ml - with Nitric Acid	<2

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-161247-1

Client Project/Site: CCR DTE Monroe Power Plant FAB/VEL

TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Mr. Vincent Buening

Authorized for release by: 12/15/2021 3:47:07 PM

Kris Brooks, Project Manager II (330)966-9790

Kris.Brooks@Eurofinset.com

....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
QC Sample Results	14
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

4

4

7

9

10

15

Definitions/Glossary

Client: TRC Environmental Corporation. Job ID: 240-161247-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Qualifiers

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

D

6

9

10

12

Case Narrative

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Job ID: 240-161247-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-161247-1

Comments

No additional comments.

Receipt

The samples were received on 12/10/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.7° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 240-161247-1

2

9

4

6

7

8

9

Method Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Method	Method Description	Protocol	Laboratory
6020	Metals (ICP/MS)	SW846	TAL CAN
9056A	Anions, Ion Chromatography	SW846	TAL CAN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Job ID: 240-161247-1

16

4

J

0

10

11

12

1:

Sample Summary

Client: TRC Environmental Corporation.
Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-161247-1	MW-16-01_2021128	Water	12/08/21 12:50	12/10/21 08:00
240-161247-2	MW-16-02_2021128	Water	12/08/21 14:05	12/10/21 08:00
240-161247-3	MW-16-04_2021128	Water	12/08/21 12:20	12/10/21 08:00
240-161247-4	MW-16-07_2021128	Water	12/08/21 14:10	12/10/21 08:00
240-161247-5	DUP-01_2021128	Water	12/08/21 00:00	12/10/21 08:00
240-161247-6	DUP-02 2021128	Water	12/08/21 00:00	12/10/21 08:00

Job ID: 240-161247-1

Detection Summary

Client: TRC Environmental Corporation.

Calcium

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Client Sample ID: MW-16-01 2021128 Lab Sample ID: 240-161247-1 Result Qualifier RL Dil Fac D Method Analyte **MDL** Unit **Prep Type** Sulfate 1400 10 10 mg/L 9056A 10 Total/NA Client Sample ID: MW-16-02 2021128 Lab Sample ID: 240-161247-2 **Analyte** Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** 1000 6020 Calcium 390000 1000 ug/L Total Recoverable Client Sample ID: MW-16-04 2021128 Lab Sample ID: 240-161247-3 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** Calcium 530000 1000 1000 ug/L 6020 Total Recoverable Lab Sample ID: 240-161247-4 Client Sample ID: MW-16-07_2021128 **Analyte** Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** 1000 1000 ug/L Calcium 390000 6020 Total Recoverable Client Sample ID: DUP-01_2021128 Lab Sample ID: 240-161247-5 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** Sulfate 1400 10 9056A 10 mg/L 10 Total/NA Client Sample ID: DUP-02 2021128 Lab Sample ID: 240-161247-6 **Analyte** Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type**

1000

1000 ug/L

This Detection Summary does not include radiochemical test results.

500000

12/15/2021

6020

Total Recoverable

Job ID: 240-161247-1

Client: TRC Environmental Corporation.

Job ID: 240-161247-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Date Collected: 12/08/21 12:50

Matrix: Water

Date Received: 12/10/21 08:00

General Chemistry								
Analyte	Result Q	ualifier F	L MDI	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	1400		0 10	mg/L			12/11/21 04:11	10

4

5

Q

9

11

12

Client: TRC Environmental Corporation.

Job ID: 240-161247-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Date Collected: 12/08/21 14:05 Matrix: Water

Date Received: 12/10/21 08:00

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Calcium
 390000
 1000
 1000
 ug/L
 12/13/21 14:00
 12/14/21 16:34
 1

J

5

6

10

Client: TRC Environmental Corporation.

Job ID: 240-161247-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Date Collected: 12/08/21 12:20 Matrix: Water

Date Received: 12/10/21 08:00

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Calcium
 530000
 1000
 1000
 ug/L
 12/13/21 14:00
 12/14/21 16:37
 1

2

3

4

5

6

8

9

11

12

13

Client: TRC Environmental Corporation.

Job ID: 240-161247-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Date Received: 12/10/21 08:00

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Calcium
 390000
 1000
 1000
 ug/L
 12/13/21 14:00
 12/14/21 16:39
 1

2

4

6

8

9

11

12

13

Client: TRC Environmental Corporation. Job ID: 240-161247-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

1400

Sulfate

Date Collected: 12/08/21 00:00 Matrix: Water Date Received: 12/10/21 08:00

General Chemistry
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa

10

10 mg/L

Analyzed Dil Fac 12/11/21 04:31 10

7

0

10

15

1:

Client: TRC Environmental Corporation.

Job ID: 240-161247-1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Date Collected: 12/08/21 00:00 Matrix: Water

Date Received: 12/10/21 08:00

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Calcium
 500000
 1000
 1000
 ug/L
 12/13/21 14:00
 12/14/21 16:42
 1

3

Ω

0

10

46

13

QC Sample Results

Client: TRC Environmental Corporation. Job ID: 240-161247-1

Spike

Added

25000

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 240-516526/1-A

Analysis Batch: 516825

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 516526

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1000 1000 ug/L <u>12/13/21 14:00</u> <u>12/14/21 16:08</u> 1000 U

LCS LCS

24900

RL

1.0

Result Qualifier

MDL Unit

LCS LCS

50.0

Result Qualifier

1.0 mg/L

Lab Sample ID: LCS 240-516526/2-A

Matrix: Water

Matrix: Water

Analyte

Calcium

Analyte

Calcium

Analysis Batch: 516825

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 516526

%Rec.

Limits

D %Rec 100 80 - 120

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-516440/3

Matrix: Water

Analysis Batch: 516440

Client Sample ID: Method Blank Prep Type: Total/NA

Unit

mg/L

Unit

ug/L

MB MB

Analyte Result Qualifier

Sulfate 1.0 U

Lab Sample ID: LCS 240-516440/4

Matrix: Water

Analysis Batch: 516440

Spike

Added Analyte Sulfate 50.0

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyzed 12/10/21 17:47

%Rec.

Prepared

D %Rec 100

Limits 90 - 110

Eurofins TestAmerica, Canton

Dil Fac

12/15/2021

QC Association Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Metals

Prep Batch: 516526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-161247-2	MW-16-02_2021128	Total Recoverable	Water	3005A	
240-161247-3	MW-16-04_2021128	Total Recoverable	Water	3005A	
240-161247-4	MW-16-07_2021128	Total Recoverable	Water	3005A	
240-161247-6	DUP-02_2021128	Total Recoverable	Water	3005A	
MB 240-516526/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-516526/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 516825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-161247-2	MW-16-02_2021128	Total Recoverable	Water	6020	516526
240-161247-3	MW-16-04_2021128	Total Recoverable	Water	6020	516526
240-161247-4	MW-16-07_2021128	Total Recoverable	Water	6020	516526
240-161247-6	DUP-02_2021128	Total Recoverable	Water	6020	516526
MB 240-516526/1-A	Method Blank	Total Recoverable	Water	6020	516526
LCS 240-516526/2-A	Lab Control Sample	Total Recoverable	Water	6020	516526

General Chemistry

Analysis Batch: 516440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-161247-1	MW-16-01_2021128	Total/NA	Water	9056A	
240-161247-5	DUP-01_2021128	Total/NA	Water	9056A	
MB 240-516440/3	Method Blank	Total/NA	Water	9056A	
LCS 240-516440/4	Lab Control Sample	Total/NA	Water	9056A	

Job ID: 240-161247-1

3

5

1

0

10

1

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Client Sample ID: MW-16-01_2021128

Lab Sample ID: 240-161247-1 Date Collected: 12/08/21 12:50 **Matrix: Water**

Date Received: 12/10/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		10	516440	12/11/21 04:11	AGC	TAL CAN

Lab Sample ID: 240-161247-2 Client Sample ID: MW-16-02 2021128

Date Collected: 12/08/21 14:05 Date Received: 12/10/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			516526	12/13/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	516825	12/14/21 16:34	DSH	TAL CAN

Lab Sample ID: 240-161247-3 Client Sample ID: MW-16-04 2021128

Date Collected: 12/08/21 12:20 Date Received: 12/10/21 08:00

Batch Batch Dilution Batch **Prepared**

Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab 3005A 12/13/21 14:00 SHB TAL CAN Total Recoverable Prep 516526 Total Recoverable Analysis 6020 1 516825 12/14/21 16:37 DSH TAL CAN

Client Sample ID: MW-16-07 2021128 Lab Sample ID: 240-161247-4

Date Collected: 12/08/21 14:10 Date Received: 12/10/21 08:00

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total Recoverable Prep 3005A 516526 12/13/21 14:00 SHB TAL CAN

Client Sample ID: DUP-01 2021128 Lab Sample ID: 240-161247-5

516825 12/14/21 16:39 DSH

12/11/21 04:31

AGC

1

Date Collected: 12/08/21 00:00 Date Received: 12/10/21 08:00

Analysis

Analysis

6020

9056A

Total Recoverable

Total/NA

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed **Analyst** Lab

10 Client Sample ID: DUP-02 2021128 Lab Sample ID: 240-161247-6

516440

Date Collected: 12/08/21 00:00 **Matrix: Water** Date Received: 12/10/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			516526	12/13/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	516825	12/14/21 16:42	DSH	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Eurofins TestAmerica, Canton

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

TAL CAN

TAL CAN

12/15/2021

Accreditation/Certification Summary

Client: TRC Environmental Corporation.

Project/Site: CCR DTE Monroe Power Plant FAB/VEL

Job ID: 240-161247-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-22
Georgia	State	4062	02-23-22
Illinois	NELAP	200004	07-31-22
Iowa	State	421	06-01-23
Kansas	NELAP	E-10336	04-30-22
Kentucky (UST)	State	112225	02-23-22
Kentucky (WW)	State	KY98016	12-31-21
Minnesota	NELAP	OH00048	12-31-21
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-22
New York	NELAP	10975	03-31-22
Ohio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-22
Texas	NELAP	T104704517-18-10	08-31-22
Virginia	NELAP	11570	09-14-22
Washington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

13

M - Hexane
N - None
O - AsNaO2
P - Na2O4S
O - Na2SO3
R - Na2SO3
S - H2SO4
T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) colcion 240-87276-31715.1 Preservation Codes: Callion Sulfate sal Com Soffate とっていると H - Ascorbic Acid D - Nitric Acid E - NaHSO4 F - MeOH Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA G - Amchlor 1600 Archive For Total Number of containers Method of Shipment: arrier Tracking No(s) Disposal By Lab State of Origin **Analysis Requested** 3 Return To Client Disp Special Instructions/QC Requirements: Storage >cooler Temperature(s) Kris.Brooks@Eurofinset.com Lab PM: Brooks, Kris M 340C_Calcd, 9056A_28D Z (Yes or No) 2 2 3 me 2 Field Filtered Sample (Yes or No) 2 2 Company Company ET/L Matrix 9=solid. O=waste/oli. Preservation Code: Water 716 718 Andrew whaley / Drizan Y. Radiological (C=comb, G=grab) Sample Type 7 PWSID 64 > Dev 000 105 1350 1250 0/61 1405 Sample Time Unknown TAT Requested (days): **Due Date Requested:** Compliance Project: Date/Mine / 12.8.71 Sample Date wo #: 254222.0001 12.8.21 12.8.71 Project #: 24016830 SSOW#: 17.8.7 PO #: 164683 Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. 821/202 201128 Phone: 313-971-7080(Tel) 313-971-9022(Fax) 9211206 Possible Hazard Identification
Non-Hazard — Flammable 170 CCR DTE Monroe Plant FAB/VEL TRC Environmental Corporation. ndraw CScieszka@trccompanies.com 2511202 Empty Kit Relinquished by: Custody Seals Intact: △ Yes △ No Client Information 1540 Eisenhower Place Sample Identification State, Zip: MI, 48108-7080 Chris Scieszka 20-0°C Relinquished by linquished by quished by W-16-03 AM 16.05 AM 16.06 MW-16-07 Ann Arbor MW-16-01 MW-16-02 MW-16-04 AP-00-TF DUP-01

Environment Testing

💸 eurofins

Chain of Custody Record

Eurofins TestAmerica, Canton

4101 Shuffel Street NW

North Canton, OH 44720 Phone: 330-497-9396 Fax: 330-497-0772

Eurofins TestAmerica Canton Facility	ton Sample Receipt Fe	orm/Narrative			Login #:	
				4	Cooler unpa	acked by:
Client	0 0 1	e Name	10.11	_	Cooler miles	acked by
Cooler Received on		ened on d	-10-21		Van	- 100h
		nt Drop Off 7	estAmerica Co		Other	
Receipt After-hours: Drop-of			Storage Loc		····	
TestAmerica Cooler #		Client Cooler		ner		_
Packing material used.		-		ner		_
COOLANT: Wet		/ Ice Water	None		,	
1. Cooler temperature upon r IR GUN# IR-14 (CF +0.	eceipt	T 0.60	See Multiple C	Cooler For	$\bigcap_{n} \bigcap_{n} \gamma_{n}$	0
IR GUN #IR-15 (CF +0.	2°C) Observed Coole	er Temp.	°C Corrected	Cooler T	empo	C
2. Were tamper/custody seals			Quantity(_ Yes	i i	Tests that are not
-Were the seals on the or		_		Yes	No NA	checked for pH by
-Were tamper/custody se			MeHg)?		(MO)	Receiving:
-Were tamper/custody se		omised?				VOA
3. Shippers' packing slip attac				Yes	(No)	VOAs Oil and Grease
4. Did custody papers accomp					No	TOC
5. Were the custody papers re					No	
6. Was/were the person(s) wh	•	•	on the COC?	Y	No	
7. Did all bottles arrive in good					No CY	_
8. Could all bottle labels (ID/					(NO)	1. / (Var)0
9. For each sample, does the			ntainers (Y/N)	, and car		ab/comp(Y/N)?
10. Were correct bottle(s) used					No	
11. Sufficient quantity received				Yes	No	
12. Are these work share samp				Yes(No	
If yes, Questions 13-17 has			tory.	(V)	NE NIA	C I # 11C1#3043
13. Were all preserved sample(s) at the correct pH upor	n receipt?				Strip Lot# <u>HC157842</u>
14. Were VOAs on the COC?	VOA - 1-1-0	4 Tananata	. Als to		No NA	
15. Were air bubbles >6 mm in		Larger tha				
16. Was a VOA trip blank pres		-		Yes ((No.)	
17. Was a LL Hg or Me Hg tri	p brank present?			1 cs	(140)	
Contacted PM	_ Date	by	via Ve	erbal Vo	oice Mail Othe	r
Concerning						
18. CHAIN OF CUSTODY &	& SAMPLE DISCREP	ANCIES Da	dditional next j	page	Samples proce	essed by:
19. SAMPLE CONDITION						
Sample(s)	were	e received after the	ne recommende	d holdir	ng time had exp	pired.
Sample(s)			were re	eceived	in a broken con	tainer.
Sample(s)		were received	l with bubble >	6 mm in	diameter. (No	tify PM)
20. SAMPLE PRESERVATI	ON					
Sample(s)			v	vere furt	her preserved is	n the laboratory.
Sample(s) Time preserved:	Preservative(s) added/	Lot number(s):_				
VOA Sample Preservation - D	ate/Time VOAs Frozen:					

Appendix B Data Quality Reviews

Laboratory Data Quality Review Groundwater Monitoring Event April 2021 DTE Electric Company Monroe Power Plant Fly Ash Basin and Vertical Extent Landfill (MONPP FAB &VEL)

Groundwater samples were collected by TRC for the April 2021 sampling event. Samples were analyzed for anions, total recoverable metals, and total dissolved solids by Eurofins-Test America Laboratories, Inc. (Test America), located in North Canton, Ohio. The laboratory analytical results are reported in laboratory report 240-147159-1.

During the April 2021 sampling event, a groundwater sample was collected from each of the following wells:

	MW-16-01	MW-16-02	MW-16-03	■ MW-16-04
--	----------	----------	----------	------------

■ MW-16-05 ■ MW-16-06 ■ MW-16-07 ■ MP-001F

Each sample was analyzed for the following constituents:

Analyte Group	Method		
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A		
Total Recoverable Boron	SW846 3005A/6010B		
Total Recoverable Calcium and Iron	SW846 3005A/6020		
Total Dissolved Solids	SM 2540C		

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2017). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), when performed on project samples. The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;

- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III constituents and iron will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- An equipment blank was not collected with this dataset.
- Target analytes were not detected in the method blanks.
- LCS recoveries for all target analytes were within laboratory control limits.
- MS/MSD analyses were performed on samples MW-16-06 for boron and DUP-01 for chloride, fluoride, and sulfate; recoveries and the relative percent differences (RPDs) were within the acceptance limits.
- DUP-01 corresponds with MW-16-07; RPDs between the parent and duplicate sample were within the QC limits.

Laboratory Data Quality Review Groundwater Monitoring Event June 2021 DTE Electric Company Monroe Power Plant Fly Ash Basin and Vertical Extent Landfill (MONPP FAB &VEL) Verification Testing

Groundwater samples were collected by TRC for the June 2021 sampling event. Samples were analyzed for total dissolved solids by Eurofins-Test America Laboratories, Inc. (Test America), located in North Canton, Ohio. The laboratory analytical results are reported in laboratory report 240-151083-1.

During the June 2021 sampling event, a groundwater sample was collected from the following well:

■ MW-16-03

The sample was analyzed for the following constituent:

Analyte Group	Method
Total Dissolved Solids	SM 2540C

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses:
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), when performed on project samples. The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset:
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and

Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III constituents will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- An equipment blank and field blank were not submitted with this sample set.
- Target analytes were not detected in the method blank.
- The LCS recovery for TDS was within laboratory control limits.
- DUP-01 corresponds with MW-16-03 for TDS; the relative percent difference (RPD) between the parent and duplicate sample was within the QC limits.
- Laboratory duplicate analysis was performed on sample MW-16-03 for TDS; the RPD was within the QC limits.

Laboratory Data Quality Review Groundwater Monitoring Event October 2021 DTE Electric Company Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill (MONPP FAB & VEL)

Groundwater samples were collected by TRC for the October 2021 sampling event. Samples were analyzed for anions, total recoverable metals, and total dissolved solids by Eurofins-Test America Laboratories, Inc. (Test America), located in North Canton, Ohio. The laboratory analytical results are reported in laboratory report 240-157751-1.

During the October 2021 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-16-01 ■ MW-16-02 ■ MW-16-03 ■ MW-16-04

■ MW-16-05 ■ MW-16-06 ■ MW-16-07

Each sample was analyzed for the following constituents:

Analyte Group	Method		
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A		
Total Recoverable Boron	SW846 3005A/6010B		
Total Recoverable Calcium and Iron	SW846 3005A/6020		
Total Dissolved Solids	SM 2540C		

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), when performed on project samples. The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;

- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III constituents and iron will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- An equipment blank was not collected with this dataset.
- Target analytes were not detected in the method blanks.
- LCS recoveries for all target analytes were within laboratory control limits.
- MS/MSD analyses were performed on sample MW-16-04 for chloride and fluoride; the percent recoveries and relative percent differences (RPDs) were within criteria.
- The field duplicate pair samples were MW-16-04 and DUP-01; RPDs between the parent and duplicate samples were within the QC limits.
- The RL for boron was below the RL specified in the quality assurance project plan (QAPP) of 200 ug/L. The following samples had detected boron detections below the QAPP RL:
 - DUP-01 120 ug/L
 - MW-16-04 140 ug/L
 - MW-16-05 190 ug/L
 - MW-16-07 150 ug/L

Laboratory Data Quality Review Groundwater Monitoring Event December 2021 DTE Electric Company Monroe Power Plant Fly Ash Basin (FAB-VEL)

Groundwater samples were collected by TRC for the December 2021 sampling event. Samples were analyzed for calcium and sulfate by Eurofins-Test America Laboratories, Inc. (Test America), located in North Canton, Ohio. The laboratory analytical results are reported in laboratory report 240-161247-1.

During the December 2021 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-16-02

MW-16-04

■ MW-16-07

Each sample was analyzed for the following constituents:

Analyte Group	Method				
Anions (Sulfate)	SW846 9056A				
Total Recoverable Calcium	SW846 3005A/6020				

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Equipment blanks are used to assess potential contamination arising from field procedures:
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), when performed on project samples. The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset:
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and

Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III constituents and iron will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- An equipment blank was not collected with this dataset.
- Target analytes were not detected in the method blanks.
- LCS recoveries for all target analytes were within laboratory control limits.
- No MS/MSD analyses were performed.
- The field duplicate pair samples MW-16-04 with DUP-02; RPDs between the parent and duplicate samples were within the QC limits.

Appendix C Prediction Limit Update

Date: December 15, 2021

To: Chris Scieszka, DTE Electric Company

From: Vince Buening, TRC

Sarah Holmstrom, TRC

Kristin Lowery, TRC

Project No.: 413591.0001.0000 Phase 1 Task 1

Subject: Prediction Limit Update – DTE Electric Company, Monroe Power Plant Fly Ash Basin

and Vertical Extension Landfill

Statistical background limits for the DTE Electric Company (DTE Electric) Monroe Power Plant (MONPP) Fly Ash Basin (FAB) coal combustion residual (CCR) unit were initially established in the January 15, 2018 Technical Memorandum titled "Background Statistical Evaluation" pursuant to the United States Environmental Protection Agency's (U.S. EPA's) Resource Conservation and Recovery Act (RCRA) Federal Final Rule for Hazardous and Solid Waste Management System Disposal of Coal Combustion Residuals from Electric Utilities (herein after "the CCR Rule") promulgated on April 17, 2015, as amended. As described in the initial statistical limit calculation, background was established under a constrained schedule that captured limited natural temporal trends in groundwater quality. In addition, DTE Electric has since established the Hydrogeological Monitoring Plan for the DTE Electric Company Monroe Power Plant Fly Ash Basin and Vertical Extension Landfill (HMP) (TRC, November 4, 2019, Revised November 27, 2019), to provide a means to comply with applicable monitoring requirements described in the Part 115 of the Natural Resources and Environmental Protection Act, PA 451 of 1994, as amended (Part 115) and the CCR Rule. The HMP was approved by the Michigan Department of Environment, Great Lakes, and Energy (EGLE) on December 4, 2020.

As such, DTE Electric is updating the background statistical limits for the MONPP FAB and Vertical Extension Landfill (VEL) to include the additional rounds of semiannual monitoring data collected subsequent to the initial statistical limit calculation in 2017. This memorandum presents the updated background statistical limits derived for the MONPP FAB and VEL in accordance with HMP.

Per the HMP, the groundwater monitoring system for the MONPP FAB and VEL consists of the following locations for detection monitoring:

■ MW-16-01

■ MW-16-02

MW-16-03

■ MW-16-04

■ MW-16-05

MW-16-06

■ MW-16-07

And, per the HMP, statistical analysis is performed for the following detection monitoring parameters:

■ Boron ■ Calcium ■ Chloride

■ Fluoride ■ Iron ■ pH

Sulfate
 Total Dissolved Solids (TDS)

Due to the limited implementation timeline of the CCR Rule, background data was collected during sampling events spaced one to two months apart to allow the minimum of eight sampling events to be completed before October 17, 2017. The short duration of the background sampling events limits the ability of the statistical analysis to capture the natural temporal variations in the groundwater quality at the MONPP FAB and VEL. This limited temporal variability can only be corrected with the collection of additional groundwater data, and the inclusion of the additional data in the background data set updated in the future, as long as data continue to show no impacts from the CCR unit. As a result of site-specific geologic conditions presented in the 2017, 2018, 2019, and 2020 Annual Reports (TRC, January 2018, January 2019, January 2020, and January 2021), downward migration of CCR leachate is not expected due to the presence of the underlying clay, and groundwater data continue to show no impacts from the CCR unit. Therefore, the seven additional rounds of detection monitoring data and the verification sample results¹ have been incorporated into the background dataset and the prediction limit calculations have been updated using data collected from August 2016 through October 2020 as detailed below, with the exception of iron. Iron was recently added to the monitoring program to align with Part 115. Background limits for iron will be calculated once a minimum of eight background data points have been collected.

The background data for the MOPP FAB and VEL were evaluated in accordance with the *Groundwater Statistical Evaluation Plan* (Stats Plan) (TRC, October 2017, Revised October and November 2019). Background data were evaluated in ChemStat[™] statistical software. ChemStat[™] is a software tool that is commercially available for performing statistical evaluation consistent with procedures outlined in U.S. EPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities (Unified Guidance; UG). Within the ChemStat[™] statistical program (and the UG), prediction limits (PLs) were selected to perform the statistical calculation for background limits. Use of PLs is recommended by the UG to provide high statistical power and is an acceptable approach for intrawell detection monitoring under the CCR Rule. PLs were calculated for each of the constituents included in Appendix III of the CCR Rule (total boron, total calcium, chloride, fluoride, pH, sulfate, and total dissolved solids). The following narrative describes the methods employed and the results obtained and the ChemStat[™] output files are included as an attachment.

The set of background wells utilized for MONPP FAB and VEL includes MW-16-01 through MW-16-07. The background evaluation included the following steps:

- Review of data quality checklists for the baseline/background data sets for CCR Appendix III constituents;
- Graphical representation of the baseline data as time versus concentration (T v. C) by well/constituent pair;

¹ Verification sampling results used to confirm or deny potential statistically significant increases (SSIs) have been averaged with the compliance sample results for statistical limit calculation.

- Outlier testing of individual data points that appear from the graphical representations as potential outliers;
- Evaluation of percentage of nondetects for each baseline/background well-constituent (w/c) pair;
- Distribution of the data; and
- Calculation of the upper PLs for each cumulative baseline/background data set (upper and lower PLs were calculated for field pH).

The results of these evaluations are presented and discussed below.

Data Quality

Data from each sampling round were evaluated for completeness, overall quality and usability, method-specified sample holding times, precision and accuracy, and potential sample contamination. The review was completed using the following quality control (QC) information which at a minimum included chain-of-custody forms, investigative sample results including blind field duplicates, and, as provided by the laboratory, method blanks, laboratory control spikes, laboratory duplicates. The data were found to be complete and usable for the purposes of the CCR monitoring program.

Time versus Concentration Graphs

The time versus concentration (T v. C) graphs (Attachment A) show potential or suspect outliers for calcium at MW-16-03 and MW-16-04 in April 2018.

While variations in results are present, the graphs show consistent baseline data and do not suggest that data sets, as a whole, likely have overall trending or seasonality. However, due to limitations on CCR Rule implementation timelines, the data sets are of relatively short duration for making such observations regarding overall trending or seasonality.

Outlier Testing

Outlier removal from the background data set is summarized in Table 1. Probability plots (Attachment A) were used to further evaluate the potential outliers in the calcium data for MW-16-03 and MW-16-04 that were identified in the T v. C graphs (Attachment A). In general, probability plots of the data residuals show that data collected in April 2018 were from a different distribution than the remaining data. The potential calcium outliers were also tested using the Dixon's Test for outliers at a 1% level of significance. The calcium results for MW-16-03 and MW-16-04 in April 2018 were found to be outliers and were removed from the data set for further evaluation.

Distribution of the Data Sets

ChemStat™ was utilized to evaluate each data set for normality. If the skewness coefficient was calculated to be between negative one and one, then the data were assumed to be approximately normally distributed. If the skewness coefficient was calculated as greater than one (or less than negative one) then the calculation was performed on the natural log (Ln) of the data. If the Ln of the data still determined that the data appeared to be skewed, then the Shapiro-Wilk test of normality (Shapiro-Wilk) was performed. The Shapiro-Wilk statistic was calculated on both non-transformed data, and the Ln-transformed data. If the Shapiro-Wilk statistic indicated that normal distributional assumptions were not valid, then the parameter was considered a candidate for non-parametric statistical evaluation. The data distributions are summarized in Table 2.

Prediction Limits

Table 2 presents the calculated PLs for the background/baseline data sets. For normal and lognormal distributions, PLs are calculated for 95 percent confidence using parametric methods. For nonnormal background datasets, a nonparametric PL is utilized, resulting in the highest value from the background dataset as the PL. The achieved confidence levels for nonparametric prediction limits depend entirely on the number of background data points, which are shown in the ChemStat™ outputs. Verification resampling (1 of 2) is recommended per the Stats Plan and UG to achieve performance standards specified in the CCR Rule.

Attachments

Table 1 – Summary of Outlier Evaluation

Table 2 – Summary of Descriptive Statistics and Prediction Limit Calculations

Attachment A – ChemStat™ Prediction Limit Outputs

Tables

Table 1

Summary of Outlier Evaluation

DTE Electric Company - Monroe Fly Ash Basin

Parameter	Units	Monitoring Well	Sample Date	Data Outlier	Basis for Removal of Outlier	
Calcium	μg/L	MW-16-03	4/3/2018	280,000	Anomalously low value, failed Dixon's Test for outliers at 1% significance	
Calcium	μg/L	MW-16-04	4/3/2018	300,000	Anomalously low value, failed Dixon's Test for outliers at 1% significance	

Table 2

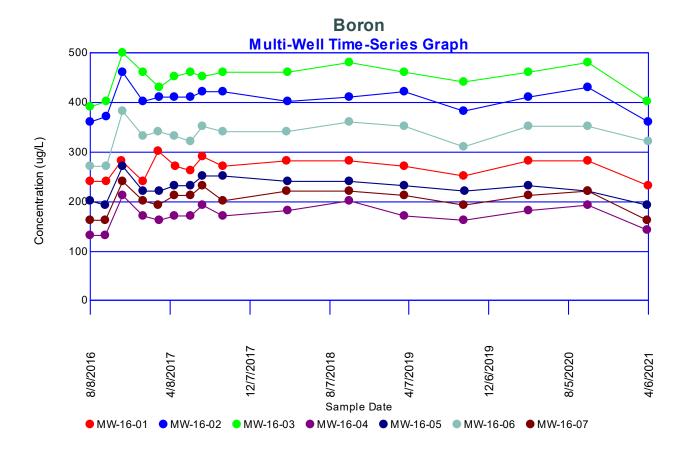
Summary of Descriptive Statistics and Prediction Limit Calculations DTE Electric Company – Monroe Fly Ash Basin

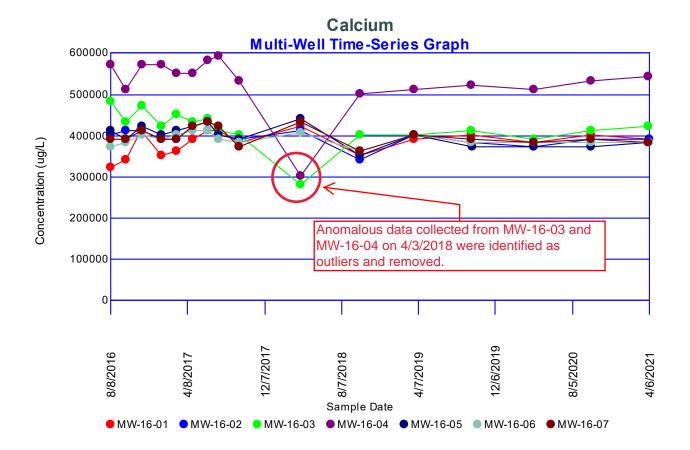
Monitoring	Skewne	ess Test	Shapiro-V (5% Critic	Outliers	Prediction Limit Test	Prediction Limit	
Well	Un-Transformed Data	-Transformed Data Natural Log Transformed Data		Natural Log Transformed Data			Removed
Appendix III							
Boron (µg/L	-)						
MW-16-01	-1 < -0.325637 < 1				N	Parametric	300
MW-16-02	-1 < -0.108557 < 1				N	Parametric	450
MW-16-03	-1 < -0.575188 < 1				N	Parametric	500
MW-16-04	-1 < -0.278714 < 1				N	Parametric	210
MW-16-05	-1 < -0.0789058 < 1				N	Parametric	270
MW-16-06	-1 < -0.881984 < 1				N	Parametric	390
MW-16-07	-1 < -0.585905 < 1				N	Parametric	250
Calcium (µg	3/L)				•		
MW-16-01	-1 < -0.625903 < 1				N	Parametric	440,000
MW-16-02	-1 < -0.872831 < 1				N	Parametric	430,000
MW-16-03	-1 < 0.827122 < 1				Υ	Parametric	470,000
MW-16-04	-1 < 0.137804 < 1				Y	Parametric	600,000
MW-16-05	-1 < -0.0951061 < 1				N	Parametric	440,000
MW-16-06	-1 < -0.0807415 < 1				N	Parametric	420,000
MW-16-07	-1 < 0.240175 < 1				N	Parametric	440,000
Chloride (m	ıg/L)						
MW-16-01	-2.23206 <-1	-2.80942 < -1	0.887 > 0.705129	0.887 > 0.599528	N	Non-Parametric	12
MW-16-02	-1 < -0.999982 < 1				N	Parametric	15
MW-16-03	-1.7551 < -1	-2.01284 < -1	0.887 > 0.741175	0.887 > 0.709955	N	Non-Parametric	20
MW-16-04	-1.41382 < -1	-1.52159 < -1	0.887 > 0.803841	0.887 > 0.782784	N	Non-Parametric	36
MW-16-05	-2.7242 < -1	-3.08672 < -1	0.887 > 0.551002	0.887 > 0.48	N	Non-Parametric	12
MW-16-06	-1.2456 < -1	-1.35791 < -1	0.887 > 0.689037	0.887 > 0.683527	N	Non-Parametric	12
MW-16-07	-1 < 0.44099 < 1				N	Parametric	12
Fluoride (m	g/L)						
MW-16-01	-1.33558 < -1	-1.48068 < -1	0.887 > 0.735104	0.887 > 0.711476	N	Non-Parametric	1.8
MW-16-02	-1 < 0.391042 < 1				N	Parametric	1.7
MW-16-03	-1 < 0.566607 < 1				N	Parametric	1.7
MW-16-04	-1 < -0.0834467 < 1				N	Parametric	1.1
MW-16-05	-1 < 0.229081 < 1				N	Parametric	1.6
MW-16-06	-1 < 0.57735 < 1				N	Parametric	1.7
MW-16-07	-1 < 0.38123 < 1				N	Parametric	1.7

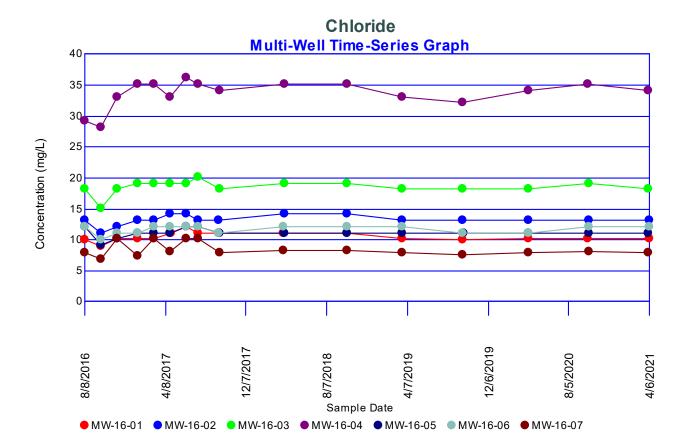
Notes:

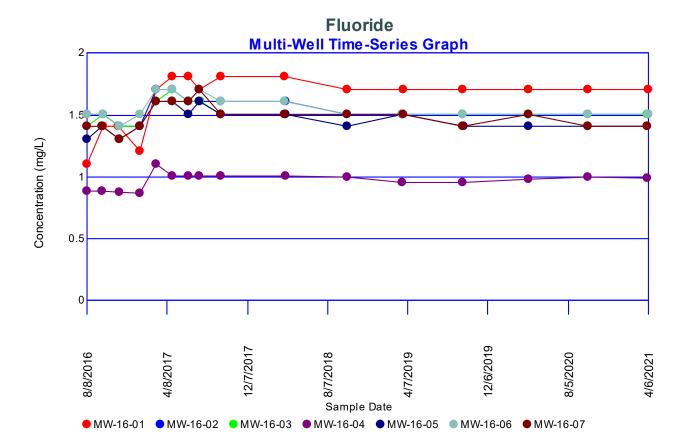
 μ g/L = micrograms per liter mg/L = milligrams per liter SU = standard units

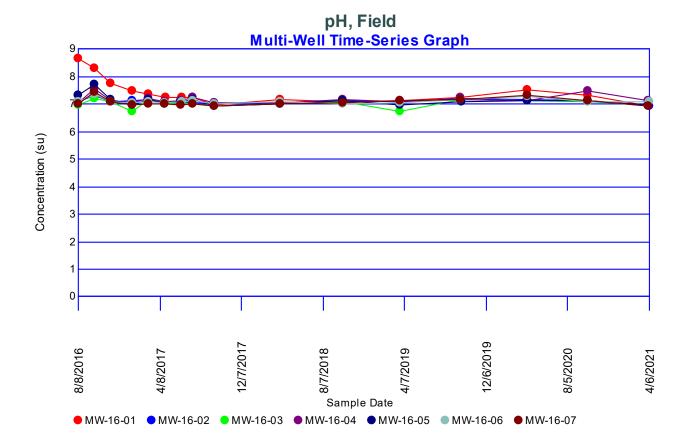
Table 2 Summary of Descriptive Statistics and Prediction Limit Calculations DTE Electric Company – Monroe Fly Ash Basin

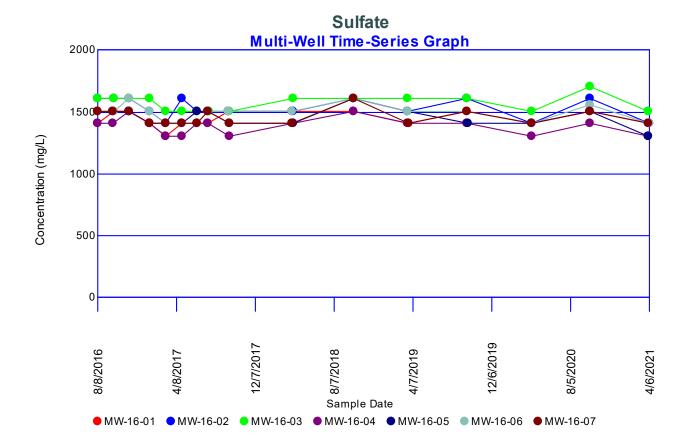

Monitoring	Skewne	ess Test	Shapiro-V (5% Critic	Outliers Removed	Prediction Limit Test	Prediction Limit			
Well	Un-Transformed Data Natural Log Transformed Data		Un-Transformed Data				Natural Log Transformed Data		
pH (SU)									
MW-16-01	1 < 1.54212	1 < 1.43643	0.887 > 0.808104	0.887 > 0.829449	N	Non-Parametric	6.9 - 8.6		
MW-16-02	-1 < 0.746227 < 1				N	Parametric	6.9 - 7.3		
MW-16-03	-1 < -0.851435 < 1				N	Parametric	6.7 - 7.3		
MW-16-04	1 < 1.59266	1 < 1.56084	0.887 > 0.782456	0.887 > 0.789255	N	Non-Parametric	7.0 - 7.5		
MW-16-05	1 < 1.99058	1 < 1.91004	0.887 > 0.783261	0.887 > 0.797103	N	Non-Parametric	6.9 - 7.7		
MW-16-06	1 < 1.48781	1 < 1.4624	0.887 > 0.815817	0.887 > 0.820775	N	Non-Parametric	7.0 - 7.3		
MW-16-07	1 < 1.29855	1 < 1.26582	0.887 > 0.841699	0.887 > 0.847378	N	Non-Parametric	6.9 - 7.4		
Sulfate (mg/L)									
MW-16-01	-1 < -0.380765 < 1				N	Parametric	1,600		
MW-16-02	-1 < -0.4444444 < 1				N	Parametric	1,700		
MW-16-03	-1 < 0.380765 < 1				N	Parametric	1,700		
MW-16-04	-1 < 0.177933 < 1				N	Parametric	1,500		
MW-16-05	-1 < 0 < 1				N	Parametric	1,600		
MW-16-06	-1 < 0.0893666 < 1				N	Parametric	1,600		
MW-16-07	-1 < 0.816497 < 1				N	Parametric	1,600		
Total Disso	Ived Solids (mg/L)								
MW-16-01	-2.06437 < -1	-2.26803 < -1	0.887 > 0.707629	0.887 > 0.678147	N	Non-Parametric	2,200		
MW-16-02	-1 < 0 < 1				N	Parametric	2,300		
MW-16-03	-1 < -0.207363 < 1				N	Parametric	2,400		
MW-16-04	-1 < -0.957395 < 1				N	Parametric	2,300		
MW-16-05	-1 < 0.101753 < 1				N	Parametric	2,200		
MW-16-06	-1 < 0.229678 < 1				N	Parametric	2,300		
MW-16-07	-1 < -0.812958 < 1				N	Parametric	2,200		

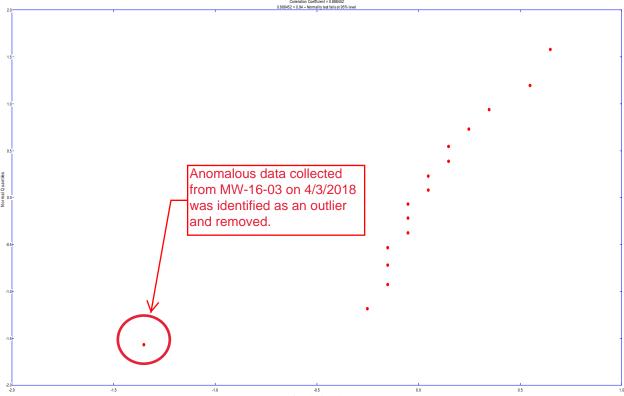

Notes:

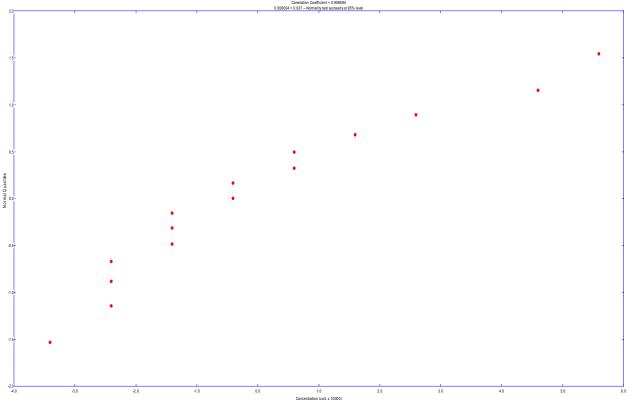


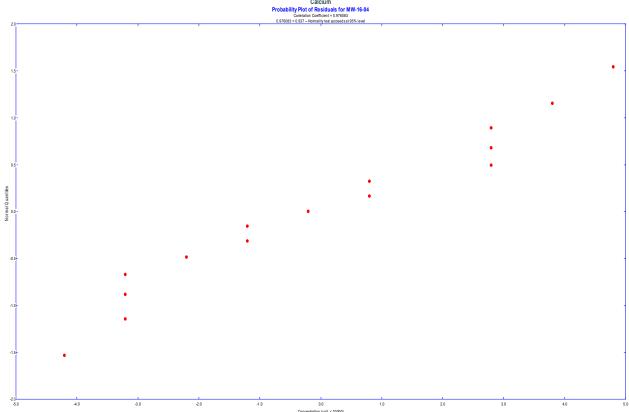

 μ g/L = micrograms per liter mg/L = milligrams per liter SU = standard units


Attachment A ChemStat™ Prediction Limit Outputs









With outliers removed

Dixon's Test for Outliers

Parameter: Calcium Location: MW-16-03

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

For 16 Measurements... 1% Level of Significance

Iteration 1 2	Highest 0.375 0.375	Lowest 0.705882 0.166667	Critical 0.595 0.616	Outlier 280000 None
Loc.	Date	Conc.	Outlier	
MW-16-03	8/8/2016 9/27/2016 11/15/2016 1/17/2017 3/7/2017 4/25/2017 6/12/2017 7/18/2017 9/19/2017 4/3/2018 10/8/2018 3/25/2019 9/23/2019 4/8/2020 10/6/2020 4/5/2021	480000 430000 470000 420000 450000 430000 440000 410000 280000 400000 400000 410000 390000 410000 420000	FALSE	

Dixon's Test for Outliers

Parameter: Calcium Location: MW-16-04

Original Data (Not Transformed)

Non-Detects Replaced with Detection Limit

For 16 Measurements... 1% Level of Significance

Iteration 1 2	Highest 0.25 0.25	Lowest 0.777778 0.142857	Critical 0.595 0.616	Outlier 300000 None
Loc.	Date	Conc.	Outlier	
MW-16-04	8/9/2016 9/26/2016 11/15/2016 1/17/2017 3/7/2017 4/25/2017 6/12/2017 7/17/2017 9/19/2017 4/3/2018 10/8/2018 3/25/2019 9/23/2019 4/8/2020 10/5/2020 4/5/2021	570000 510000 570000 570000 550000 550000 580000 590000 530000 510000 510000 510000 530000 540000	FALSE	

Parameter: Boron

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	240
	9/27/2016	240
	11/14/2016	280
	1/17/2017	240
	3/6/2017	300
	4/26/2017	270 B
	6/13/2017	260
	7/17/2017	290
	9/18/2017	270
	4/2/2018	280
	10/8/2018	280
	3/26/2019	270
	9/23/2019	250
	4/8/2020	280
	10/5/2020	280

From 15 baseline samples Baseline mean = 268.667 Baseline std Dev = 18.8478

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	230	[0. 302.952]	FALSE

Parameter: Boron

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	360
	9/27/2016	370
	11/15/2016	460
	1/17/2017	400
	3/7/2017	410
	4/25/2017	410 B
	6/12/2017	410
	7/18/2017	420
	9/18/2017	420
	4/3/2018	400
	10/8/2018	410
	3/25/2019	420
	9/23/2019	380
	4/8/2020	410
	10/6/2020	430

From 15 baseline samples Baseline mean = 407.333 Baseline std Dev = 24.3389

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

 Date
 Samples
 Mean
 Interval
 Significant

 4/6/2021
 1
 360
 [0, 451.608]
 FALSE

Parameter: Boron

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Bassline Comples	Data	Decult
Baseline Samples	Date	Result
	8/8/2016	390
	9/27/2016	400
	11/15/2016	500
	1/17/2017	460
	3/7/2017	430
	4/25/2017	450 B
	6/12/2017	460
	7/18/2017	450
	9/19/2017	460
	4/3/2018	460
	10/8/2018	480
	3/25/2019	460
	9/23/2019	440
	4/8/2020	460
	10/6/2020	480

From 15 baseline samples Baseline mean = 452 Baseline std Dev = 28.5857

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	400	[0, 503.999]	FALSE

Parameter: Boron

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	130
	9/26/2016	130
	11/15/2016	210
	1/17/2017	170 J
	3/7/2017	160 J
	4/25/2017	170 JB
	6/12/2017	170 J
	7/17/2017	190 J
	9/19/2017	170 J
	4/3/2018	180
	10/8/2018	200
	3/25/2019	170
	9/23/2019	160
	4/8/2020	180
	10/5/2020	190

From 15 baseline samples Baseline mean = 172 Baseline std Dev = 22.1037

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	140	[0, 212.208]	FALSE

Parameter: Boron

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
Dacomic Gampico	8/8/2016	200
	9/26/2016	190
	11/15/2016	270
	1/17/2017	220
	3/7/2017	220
	4/25/2017	230 B
	6/12/2017	230
	7/17/2017	250
	9/19/2017	250
	4/3/2018	240
	10/8/2018	240
	3/25/2019	230
	9/25/2019	220
	4/8/2020	230
	10/6/2020	220

From 15 baseline samples Baseline mean = 229.333 Baseline std Dev = 19.8086

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	190	[0, 265, 367]	FALSE

Parameter: Boron

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	270
	9/27/2016	270
	11/15/2016	380
	1/17/2017	330
	3/6/2017	340
	4/25/2017	330 B
	6/13/2017	320
	7/17/2017	350
	9/18/2017	340
	4/2/2018	340
	10/8/2018	360
	3/25/2019	350
	9/23/2019	310
	4/8/2020	350
	10/6/2020	350

From 15 baseline samples Baseline mean = 332.667 Baseline std Dev = 30.3472

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	320	[0. 387.87]	FALSE

Parametric Prediction Interval Analysis

Intra-Well Comparison for MW-16-07

Parameter: Boron

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	160
	9/26/2016	160
	11/15/2016	240
	1/17/2017	200
	3/6/2017	190 J
	4/25/2017	210 B
	6/12/2017	210
	7/17/2017	230
	9/19/2017	200
	4/2/2018	220
	10/8/2018	220
	3/26/2019	210
	9/23/2019	190
	4/8/2020	210
	10/6/2020	220

From 15 baseline samples Baseline mean = 204.667 Baseline std Dev = 22.6358

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	160	[0, 245.843]	FALSE

Parameter: Calcium
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations	Compliance Locations					
Location Obs. Mean Std. Dev. Sk	Skewness					
MW-16-01 16 381250 29183.3 -0.6	0.625903					
MW-16-02 16 395000 20976.2 -0.8	0.872831					
MW-16-03 15 424000 26403.5 0.8	.827122					
MW-16-04 15 542000 29081.2 0.1	.137804					
MW-16-05 16 396875 24689.7 -0.0	0.0951061					
MW-16-06 16 388438 14573.8 -0.0	0.0807415					
MW-16-07 16 396250 20615.5 0.2	.240175					

Obs.	Mean	Std. Dev.	Skewness
110	416500	56615.4	1.51401

Parameter: Calcium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	320000
	9/27/2016	340000
	11/14/2016	410000
	1/17/2017	350000
	3/6/2017	360000
	4/26/2017	390000
	6/13/2017	410000
	7/17/2017	410000
	9/18/2017	380000
	4/2/2018	420000
	10/8/2018	350000
	3/26/2019	390000
	9/23/2019	400000
	4/8/2020	380000
	10/5/2020	400000

From 15 baseline samples Baseline mean = 380667 Baseline std Dev = 30110.9

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 %t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1 .	390000	[0, 435441]	FALSE

Parameter: Calcium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	400000
	9/27/2016	410000
	11/15/2016	410000
	1/17/2017	390000
	3/7/2017	390000
	4/25/2017	420000
	6/12/2017	430000
	7/18/2017	400000
	9/18/2017	390000
	4/3/2018	410000
	10/8/2018	340000
	3/25/2019	400000
	9/23/2019	380000
	4/8/2020	370000
	10/6/2020	390000

From 15 baseline samples Baseline mean = 395333 Baseline std Dev = 21668.5

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	390000	[0, 434750]	FALSE

Parameter: Calcium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	480000
	9/27/2016	430000
	11/15/2016	470000
	1/17/2017	420000
	3/7/2017	450000
	4/25/2017	430000
	6/12/2017	440000
	7/18/2017	410000
	9/19/2017	400000
	10/8/2018	400000
	3/25/2019	400000
	9/23/2019	410000
	4/8/2020	390000
	10/6/2020	410000

From 14 baseline samples Baseline mean = 424286 Baseline std Dev = 27376.1

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 14 (background observations) - 1 t(0.95, 14) = 1.77093

Date	Samples	Mean	Interval	Significant	
4/5/2021	1	420000	[0, 474469]	FALSE	

Parameter: Calcium

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	570000
	9/26/2016	510000
	11/15/2016	570000
	1/17/2017	570000
	3/7/2017	550000
	4/25/2017	550000
	6/12/2017	580000
	7/17/2017	590000
	9/19/2017	530000
	10/8/2018	500000
	3/25/2019	510000
	9/23/2019	520000
	4/8/2020	510000
	10/5/2020	530000

From 14 baseline samples Baseline mean = 542143 Baseline std Dev = 30173.5

For 1 recent sampling event(s)
Actual confidence level is 1.0 - (0.05/1) = 95 %
t is Percentile of Student's T-Test (0.95/1) = 0.95
Degrees of Freedom = 14 (background observations) - 1
t(0.95, 14) = 1.77093

Date	Samples	Mean	Interval	Significant	
4/5/2021	1	540000	[0, 597454]	FALSE	

Parameter: Calcium

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
· · · · · · · · · · · · · · · · · · ·	8/8/2016	410000
	9/26/2016	390000
	11/15/2016	420000
	1/17/2017	400000
	3/7/2017	410000
	4/25/2017	420000
	6/12/2017	430000
	7/17/2017	400000
	9/19/2017	390000

 10/8/2018
 350000

 3/25/2019
 400000

 9/25/2019
 370000

 4/8/2020
 370000

 10/6/2020
 370000

440000

4/3/2018

From 15 baseline samples Baseline mean = 398000 Baseline std Dev = 25128.2

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	380000	[0, 443710]	FALSE

Parameter: Calcium

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	370000
	9/27/2016	380000
	11/15/2016	400000
	1/17/2017	390000
	3/6/2017	400000
	4/25/2017	410000
	6/13/2017	410000
	7/17/2017	390000
	9/18/2017	380000
	4/2/2018 ~	405000 V
	10/8/2018	360000
	3/25/2019	400000

9/23/2019

4/8/2020

10/6/2020

From 15 baseline samples Baseline mean = 389000 Baseline std Dev = 14904.5

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	380000	[0, 416112]	FALSE

380000

380000

380000

Parametric Prediction Interval Analysis

Intra-Well Comparison for MW-16-07

Parameter: Calcium

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	390000
	9/26/2016	390000
	11/15/2016	410000
	1/17/2017	390000
	3/6/2017	390000
	4/25/2017	420000
	6/12/2017	430000
	7/17/2017	420000
	9/19/2017	370000
	4/2/2018 ~	430000
	10/8/2018	360000
	3/26/2019	400000
	9/23/2019	390000
	4/8/2020	380000

From 15 baseline samples Baseline mean = 397333 Baseline std Dev = 20862.4

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	380000	[0, 435283]	FALSE

390000

10/6/2020

Parameter: Chloride
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	•		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	10.0375	1.53704	-2.23206
MW-16-02	16	13.0625	0.771902	-0.999982
MW-16-03	16	18.375	1.08781	-1.7551
MW-16-04	16	33.5	2.22111	-1.41382
MW-16-05	16	10.6875	1.66208	-2.7242
MW-16-06	16	11.55	0.663325	-1.2456
MW-16-07	16	7.3375	1.3301	-0.523641

Obs.	Mean	Std. Dev.	Skewness
112	14.9357	8.35582	1.45982

Parameter: Chloride
Original Data (Not Transformed)
Aitchison's Adjustment

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	•		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	9.725	2.69877	0.075322
MW-16-02	16	13.0625	0.771902	-0.999982
MW-16-03	16	18.375	1.08781	-1.7551
MW-16-04	16	33.5	2.22111	-1.41382
MW-16-05	16	10.375	2.84898	0.0384288
MW-16-06	16	11.55	0.663325	-1.2456
MW-16-07	16	6.4	3.2414	0.44099

Obs.	Mean	Std. Dev.	Skewness
112	14.7125	8.68166	1.42945

Parameter: Chloride

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	2.2912	0.195548	-2.80942
MW-16-02	16	2.56803	0.0611718	-1.22318
MW-16-03	16	2.90922	0.0627817	-2.01284
MW-16-04	16	3.50934	0.0697715	-1.52159
MW-16-05	16	2.35239	0.208409	-3.08672
MW-16-06	16	2.44506	0.0597015	-1.35791
MW-16-07	16	1.97578	0.197599	-0.945448

Obs.	Mean	Std. Dev.	Skewness
112	2 57872	0 483079	0.543062

Parameter: Chloride Location: MW-16-01

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	5	12	7	0.5056	3.5392
2	8.8	11	2.2	0.329	0.7238
3	9.9	11	1.1	0.2521	0.27731
4	9.9	11	1.1	0.1939	0.21329
5	10	11	1	0.1447	0.1447
6	10	11	1	0.1005	0.1005
7	10	10	0	0.0593	0
8	10	10	0	0.0196	0
9	10	10	0		
10	10	10	0		
11	11	10	-1		
12	11	10	-1		
13	11	9.9	-1.1		
14	11	9.9	-1.1		
15	11	8.8	-2.2		
16	12	5	-7		

Sum of b values = 4.9988 Sample Standard Deviation = 1.53704 W Statistic = 0.705129

5% Critical value of 0.887 exceeds 0.705129 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.705129 Evidence of non-normality at 99% level of significance

Parameter: Chloride Location: MW-16-01

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	1.60944	2.48491	0.875469	0.5056	0.442637
2	2.17475	2.3979	0.223144	0.329	0.0734142
3	2.29253	2.3979	0.105361	0.2521	0.0265614
4	2.29253	2.3979	0.105361	0.1939	0.0204294
5	2.30259	2.3979	0.0953102	0.1447	0.0137914
6	2.30259	2.3979	0.0953102	0.1005	0.00957867
7	2.30259	2.30259	0	0.0593	0
8	2.30259	2.30259	0	0.0196	0
9	2.30259	2.30259	0		
10	2.30259	2.30259	0		
11	2.3979	2.30259	-0.0953102		
12	2.3979	2.30259	-0.0953102		
13	2.3979	2.29253	-0.105361		
14	2.3979	2.29253	-0.105361		
15	2.3979	2.17475	-0.223144		
16	2.48491	1.60944	-0.875469		

Sum of b values = 0.586412 Sample Standard Deviation = 0.195548 W Statistic = 0.599528

5% Critical value of 0.887 exceeds 0.599528 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.599528 Evidence of non-normality at 99% level of significance

Parameter: Chloride Location: MW-16-03

Normality Test of Parameter ConcentrationsOriginal Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	15	20	5	0.5056	2.528
2	18	19	1	0.329	0.329
3	18	19	1	0.2521	0.2521
4	18	19	1	0.1939	0.1939
5	18	19	1	0.1447	0.1447
6	18	19	1	0.1005	0.1005
7	18	19	1	0.0593	0.0593
8	18	19	1	0.0196	0.0196
9	19	18	-1		
10	19	18	-1		
11	19	18	-1		
12	19	18	-1		
13	19	18	-1		
14	19	18	-1		
15	19	18	-1		
16	20	15	-5		

Sum of b values = 3.6271 Sample Standard Deviation = 1.08781 W Statistic = 0.741175

5% Critical value of 0.887 exceeds 0.741175 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.741175 Evidence of non-normality at 99% level of significance

Parameter: Chloride Location: MW-16-03

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	2.70805	2.99573	0.287682	0.5056	0.145452
2	2.89037	2.94444	0.0540672	0.329	0.0177881
3	2.89037	2.94444	0.0540672	0.2521	0.0136303
4	2.89037	2.94444	0.0540672	0.1939	0.0104836
5	2.89037	2.94444	0.0540672	0.1447	0.00782353
6	2.89037	2.94444	0.0540672	0.1005	0.00543376
7	2.89037	2.94444	0.0540672	0.0593	0.00320619
8	2.89037	2.94444	0.0540672	0.0196	0.00105972
9	2.94444	2.89037	-0.0540672		
10	2.94444	2.89037	-0.0540672		
11	2.94444	2.89037	-0.0540672		
12	2.94444	2.89037	-0.0540672		
13	2.94444	2.89037	-0.0540672		
14	2.94444	2.89037	-0.0540672		
15	2.94444	2.89037	-0.0540672		
16	2.99573	2.70805	-0.287682		

Sum of b values = 0.204877 Sample Standard Deviation = 0.0627817 W Statistic = 0.709955

5% Critical value of 0.887 exceeds 0.709955 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.709955 Evidence of non-normality at 99% level of significance

Parameter: Chloride Location: MW-16-04

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

		x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
•	1	28	36	8	0.5056	4.0448
2	2	29	35	6	0.329	1.974
(3	32	35	3	0.2521	0.7563
4	4	33	35	2	0.1939	0.3878
į	5	33	35	2	0.1447	0.2894
6	6	33	35	2	0.1005	0.201
7	7	34	35	1	0.0593	0.0593
8	3	34	34	0	0.0196	0
Ç	9	34	34	0		
•	10	35	34	-1		
•	11	35	33	-2		
•	12	35	33	-2		
•	13	35	33	-2		
•	14	35	32	-3		
•	15	35	29	-6		
•	16	36	28	-8		

Sum of b values = 7.7126Sample Standard Deviation = 2.22111 W Statistic = 0.803841

5% Critical value of 0.887 exceeds 0.803841 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.803841 Evidence of non-normality at 99% level of significance

Parameter: Chloride Location: MW-16-04

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	3.3322	3.58352	0.251314	0.5056	0.127065
2	3.3673	3.55535	0.188052	0.329	0.0618692
3	3.46574	3.55535	0.0896122	0.2521	0.0225912
4	3.49651	3.55535	0.0588405	0.1939	0.0114092
5	3.49651	3.55535	0.0588405	0.1447	0.00851422
6	3.49651	3.55535	0.0588405	0.1005	0.00591347
7	3.52636	3.55535	0.0289875	0.0593	0.00171896
8	3.52636	3.52636	0	0.0196	0
9	3.52636	3.52636	0		
10	3.55535	3.52636	-0.0289875		
11	3.55535	3.49651	-0.0588405		
12	3.55535	3.49651	-0.0588405		
13	3.55535	3.49651	-0.0588405		
14	3.55535	3.46574	-0.0896122		
15	3.55535	3.3673	-0.188052		
16	3.58352	3.3322	-0.251314		

Sum of b values = 0.239081 Sample Standard Deviation = 0.0697715 W Statistic = 0.782784

5% Critical value of 0.887 exceeds 0.782784 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.782784 Evidence of non-normality at 99% level of significance

Parameter: Chloride Location: MW-16-05

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K=	8	for	16	measi	irem	ents
$\Gamma \sim$	()	IUI	10	HIGASI	11 (21)	כוווסו

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	5	12	7	0.5056	3.5392
2	9	12	3	0.329	0.987
3	11	12	1	0.2521	0.2521
4	11	11	0	0.1939	0
5	11	11	0	0.1447	0
6	11	11	0	0.1005	0
7	11	11	0	0.0593	0
8	11	11	0	0.0196	0
9	11	11	0		
10	11	11	0		
11	11	11	0		
12	11	11	0		
13	11	11	0		
14	12	11	-1		
15	12	9	-3		
16	12	5	-7		

Sum of b values = 4.7783Sample Standard Deviation = 1.66208 W Statistic = 0.551002

5% Critical value of 0.887 exceeds 0.551002 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.551002 Evidence of non-normality at 99% level of significance

Parameter: Chloride **Location: MW-16-05**

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	x(i) 1.60944 2.19722 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.48491 2.48491	x(n-i+1) 2.48491 2.48491 2.48491 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979 2.3979	x(n-1+1)-x(i) 0.875469 0.287682 0.0870114 0 0 0 0 0 0 0 0 0 0 0 0 0	a(n-i+1) 0.5056 0.329 0.2521 0.1939 0.1447 0.1005 0.0593 0.0196	b(i) 0.442637 0.0946474 0.0219356 0 0 0
15 16	2.48491 2.48491	2.19722 1.60944	-0.287682 -0.875469		

Sum of b values = 0.55922 Sample Standard Deviation = 0.208409 W Statistic = 0.48

5% Critical value of 0.887 exceeds 0.48 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.48 Evidence of non-normality at 99% level of significance

Parameter: Chloride Location: MW-16-06

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	9.8	12	2.2	0.5056	1.11232
2	11	12	1	0.329	0.329
3	11	12	1	0.2521	0.2521
4	11	12	1	0.1939	0.1939
5	11	12	1	0.1447	0.1447
6	11	12	1	0.1005	0.1005
7	12	12	0	0.0593	0
8	12	12	0	0.0196	0
9	12	12	0		
10	12	12	0		
11	12	11	-1		
12	12	11	-1		
13	12	11	-1		
14	12	11	-1		
15	12	11	-1		
16	12	9.8	-2.2		

Sum of b values = 2.13252 Sample Standard Deviation = 0.663325 W Statistic = 0.689037

5% Critical value of 0.887 exceeds 0.689037 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.689037 Evidence of non-normality at 99% level of significance

Parameter: Chloride Location: MW-16-06

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K=	8	for	16	measi	irem	ents
$\Gamma \sim$	()	IUI	10	HIGASI	11 (21)	כוווסו

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	2.28238	2.48491	0.202524	0.5056	0.102396
2	2.3979	2.48491	0.0870114	0.329	0.0286267
3	2.3979	2.48491	0.0870114	0.2521	0.0219356
4	2.3979	2.48491	0.0870114	0.1939	0.0168715
5	2.3979	2.48491	0.0870114	0.1447	0.0125905
6	2.3979	2.48491	0.0870114	0.1005	0.00874464
7	2.48491	2.48491	0	0.0593	0
8	2.48491	2.48491	0	0.0196	0
9	2.48491	2.48491	0		
10	2.48491	2.48491	0		
11	2.48491	2.3979	-0.0870114		
12	2.48491	2.3979	-0.0870114		
13	2.48491	2.3979	-0.0870114		
14	2.48491	2.3979	-0.0870114		
15	2.48491	2.3979	-0.0870114		
16	2.48491	2.28238	-0.202524		

Sum of b values = 0.191165 Sample Standard Deviation = 0.0597015 W Statistic = 0.683527

5% Critical value of 0.887 exceeds 0.683527 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.683527 Evidence of non-normality at 99% level of significance

Parameter: Chloride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 6.66667% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 12

Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline Measurements	Date 8/8/2016 9/27/2016 11/14/2016 1/17/2017 3/6/2017 4/26/2017 6/13/2017 7/17/2017 9/18/2017 4/2/2018 10/8/2018 3/26/2019 9/23/2019 4/8/2020 10/5/2020	Value 9.9 8.8 ND<5 U 10 10 11 11 11 11 11 11 11 10 9.9
	10/5/2020	10

DateCountMeanSignificant4/6/2021110FALSE

Parametric Prediction Interval Analysis

Intra-Well Comparison for MW-16-02

Parameter: Chloride

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	13
	9/27/2016	11
	11/15/2016	12
	1/17/2017	13
	3/7/2017	13
	4/25/2017	14
	6/12/2017	14
	7/18/2017	13
	9/18/2017	13
	4/3/2018	14
	10/8/2018	14
	3/25/2019	13
	9/23/2019	13
	4/8/2020	13
	10/6/2020	13

From 15 baseline samples Baseline mean = 13.0667 Baseline std Dev = 0.798809

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	13	[0. 14.5198]	FALSE

Parameter: Chloride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 15
Maximum Baseline Concentration = 20
Confidence Level = 93.8%

Confidence Level = 93.8% False Positive Rate = 6.2%

|--|

Date 4/5/2021

Count

Mean 18 Significant FALSE

Parameter: Chloride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 36 Confidence Level = 93.8%

Commodition Edvor	00.070
False Positive Rate	= 6.2%

10/5/2020 35

Date 4/5/2021

Count

Mean 34 Significant FALSE

Parameter: Chloride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 6.66667% Future Samples (k) = 1

Recent Dates = 1

Baseline Measurements (n) = 15

Maximum Baseline Concentration = 12

Confidence Level = 93.8% False Positive Rate = 6.2%

|--|

Date 4/5/2021

Count

Mean 11 Significant FALSE

Parameter: Chloride

False Positive Rate = 6.2%

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 15
Maximum Baseline Concentration = 12
Confidence Level = 93.8%

Baseline Measurements	Date	Value	
	8/9/2016	12	
	9/27/2016	9.8	
	11/15/2016	11	
	1/17/2017	11	
	3/6/2017	12	
	4/25/2017	12	
	6/13/2017	12	
	7/17/2017	12	
	9/18/2017	11	
	4/2/2018	12	

10/8/2018

3/25/2019 9/23/2019

4/8/2020

10/6/2020

12

12

11

11

12

Date	Count	Mean	Significant
4/6/2021	1	12	FALSE

Intra-Well Comparison for MW-16-07

Parameter: Chloride

Original Data (Not Transformed)

Aitchison's Adjustment

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
Dascinic Gampies	8/8/2016	7.7
	9/26/2016	6.8
	11/15/2016	ND<10 U
	1/17/2017	7.3
	3/6/2017	ND<10 U
	4/25/2017	8
	6/12/2017	ND<10 U
	7/17/2017	10
	9/19/2017	7.8
	4/2/2018	8.1
	10/8/2018	8.1
	3/26/2019	7.8
	9/23/2019	7.5
	4/8/2020	7.7
	10/6/2020	7.9

From 15 baseline samples Baseline mean = 6.31333 Baseline std Dev = 3.33592

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	7.7	[0, 12.3816]	FALSE

Skewness Coefficient

Parameter: Fluoride
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations						
Location	Obs.	Mean	Std. Dev.	Skewness		
MW-16-01	16	1.61875	0.219754	-1.33558		
MW-16-02	16	1.5375	0.0885061	0.391042		
MW-16-03	16	1.5125	0.0806226	0.566607		
MW-16-04	16	0.96375	0.0636527	-0.0834467		
MW-16-05	16	1.45	0.0966092	0.229081		
MW-16-06	16	1.55	0.0894427	0.57735		
MW-16-07	16	1.48125	0.104682	0.38123		

All Locations

Obs.	Mean	Std. Dev.	Skewness
112	1.44482	0 232898	-1 03292

Skewness Coefficient

Parameter: Fluoride

Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	0.471672	0.151364	-1.48068
MW-16-02	16	0.428621	0.0571159	0.274218
MW-16-03	16	0.412453	0.0527006	0.424897
MW-16-04	16	-0.0389869	0.0665274	-0.243025
MW-16-05	16	0.369494	0.0663671	0.122761
MW-16-06	16	0.436722	0.0569334	0.489702
MW-16-07	16	0.390573	0.0700718	0.2421

All Locations

Obs.	Mean	Std. Dev.	Skewness
112	0.352935	0.181583	-1.36029

Parameter: Fluoride Location: MW-16-01

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	1.1	1.8	0.7	0.5056	0.35392
2	1.2	1.8	0.6	0.329	0.1974
3	1.4	1.8	0.4	0.2521	0.10084
4	1.4	1.8	0.4	0.1939	0.07756
5	1.7	1.7	0	0.1447	0
6	1.7	1.7	0	0.1005	0
7	1.7	1.7	0	0.0593	0
8	1.7	1.7	0	0.0196	0
9	1.7	1.7	0		
10	1.7	1.7	0		
11	1.7	1.7	0		
12	1.7	1.7	0		
13	1.8	1.4	-0.4		
14	1.8	1.4	-0.4		
15	1.8	1.2	-0.6		
16	1.8	1.1	-0.7		

Sum of b values = 0.72972 Sample Standard Deviation = 0.219754 W Statistic = 0.735104

5% Critical value of 0.887 exceeds 0.735104 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.735104 Evidence of non-normality at 99% level of significance

Parameter: Fluoride Location: MW-16-01

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	0.0953102	0.587787	0.492476	0.5056	0.248996
2	0.182322	0.587787	0.405465	0.329	0.133398
3	0.336472	0.587787	0.251314	0.2521	0.0633564
4	0.336472	0.587787	0.251314	0.1939	0.0487299
5	0.530628	0.530628	0	0.1447	0
6	0.530628	0.530628	0	0.1005	0
7	0.530628	0.530628	0	0.0593	0
8	0.530628	0.530628	0	0.0196	0
9	0.530628	0.530628	0		
10	0.530628	0.530628	0		
11	0.530628	0.530628	0		
12	0.530628	0.530628	0		
13	0.587787	0.336472	-0.251314		
14	0.587787	0.336472	-0.251314		
15	0.587787	0.182322	-0.405465		
16	0.587787	0.0953102	-0.492476		

Sum of b values = 0.49448 Sample Standard Deviation = 0.151364 W Statistic = 0.711476

5% Critical value of 0.887 exceeds 0.711476 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.711476 Evidence of non-normality at 99% level of significance

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 15
Maximum Baseline Concentration = 1.8
Confidence Level = 93.8%

Confidence Level = 93.8% False Positive Rate = 6.2%

10/5/2020 1.7	7/17/2017 9/18/2017 4/2/2018 10/8/2018 3/26/2019 9/23/2019 4/8/2020 10/5/2020	1.8 1.8 1.7 1.7 1.7
---------------	--	---------------------------------

DateCountMeanSignificant4/6/202111.7FALSE

Intra-Well Comparison for MW-16-02

Parameter: Fluoride

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	1.5
	9/27/2016	1.5
	11/15/2016	1.4
	1/17/2017	1.4
	3/7/2017	1.7
	4/25/2017	1.7
	6/12/2017	1.6
	7/18/2017	1.6
	9/18/2017	1.6
	4/3/2018	1.6
	10/8/2018	1.5
	3/25/2019	1.5
	9/23/2019	1.5
	4/8/2020	1.5
	10/6/2020	1.5

From 15 baseline samples
Baseline mean = 1.54
Baseline std Dev = 0.0910259

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	1.5	[0, 1.70558]	FALSE

Intra-Well Comparison for MW-16-03

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	1.4
	9/27/2016	1.5
	11/15/2016	1.4
	1/17/2017	1.4
	3/7/2017	1.6
	4/25/2017	1.7
	6/12/2017	1.6
	7/18/2017	1.6
	9/19/2017	1.5
	4/3/2018	1.5
	10/8/2018	1.5
	3/25/2019	1.5
	9/23/2019	1.5
	4/8/2020	1.5
	10/6/2020	1.5

From 15 baseline samples
Baseline mean = 1.51333
Baseline std Dev = 0.0833809

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1 .	1.5	[0, 1.66501]	FALSE

Intra-Well Comparison for MW-16-04

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	0.88
	9/26/2016	0.88
	11/15/2016	0.87
	1/17/2017	0.86
	3/7/2017	1.1
	4/25/2017	1
	6/12/2017	1
	7/17/2017	1
	9/19/2017	1
	4/3/2018	1
	10/8/2018	0.99
	3/25/2019	0.95
	9/23/2019	0.95
	4/8/2020	0.97

10/5/2020

From 15 baseline samples Baseline mean = 0.962667 Baseline std Dev = 0.065734

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	0.98	[0. 1.08224]	FALSE

0.99

Intra-Well Comparison for MW-16-05

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	1.3
	9/26/2016	1.4
	11/15/2016	1.3
	1/17/2017	1.4
	3/7/2017	1.6
	4/25/2017	1.6
	6/12/2017	1.5
	7/17/2017	1.6
	9/19/2017	1.5
	4/3/2018	1.5
	10/8/2018	1.4
	3/25/2019	1.5
	9/25/2019	1.4
	4/8/2020	1.4
	10/6/2020	1.4

From 15 baseline samples Baseline mean = 1.45333 Baseline std Dev = 0.099043

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	1.4	[0. 1.6335]	FALSE

Intra-Well Comparison for MW-16-06

Parameter: Fluoride

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	1.5
	9/27/2016	1.5
	11/15/2016	1.4
	1/17/2017	1.5
	3/6/2017	1.7
	4/25/2017	1.7
	6/13/2017	1.6
	7/17/2017	1.7
	9/18/2017	1.6
	4/2/2018	1.6
	10/8/2018	1.5
	3/25/2019	1.5
	9/23/2019	1.5
	4/8/2020	1.5
	10/6/2020	1.5

From 15 baseline samples
Baseline mean = 1.55333
Baseline std Dev = 0.0915475

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	1.5	[0, 1.71986]	FALSE

Intra-Well Comparison for MW-16-07

Parameter: Fluoride

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	1.4
	9/26/2016	1.4
	11/15/2016	1.3
	1/17/2017	1.4
	3/6/2017	1.6
	4/25/2017	1.6
	6/12/2017	1.6
	7/17/2017	1.7
	9/19/2017	1.5
	4/2/2018	1.5
	10/8/2018	1.5
	3/26/2019	1.5
	9/23/2019	1.4
	4/8/2020	1.5
	10/6/2020	1.4

From 15 baseline samples Baseline mean = 1.48667 Baseline std Dev = 0.10601

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

	_			
Date	Samples	Mean	Interval	Significant
4/5/2021	1	1.4	[0, 1.67951]	FALSE

Skewness Coefficient

Parameter: pH, Field
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations						
Location	Obs.	Mean	Std. Dev.	Skewness		
MW-16-01	16	7.38813	0.472923	1.54212		
MW-16-02	16	7.07187	0.0888608	0.746227		
MW-16-03	16	6.985	0.133267	-0.851435		
MW-16-04	16	7.1375	0.150754	1.59266		
MW-16-05	16	7.08687	0.186609	1.99058		
MW-16-06	16	7.07844	0.0973947	1.48781		
MW-16-07	16	7.04	0.145052	1.29855		

All Locations

Obs.	Mean	Std. Dev.	Skewness
112	7.11254	0.245427	3.39442

Skewness Coefficient

Parameter: pH, Field Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	3		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	1.99806	0.0613197	1.43643
MW-16-02	16	1.95605	0.0125115	0.699353
MW-16-03	16	1.94359	0.019237	-0.889664
MW-16-04	16	1.96516	0.0207915	1.56084
MW-16-05	16	1.95793	0.025706	1.91004
MW-16-06	16	1.95697	0.0136269	1.4624
MW-16-07	16	1.95141	0.0203482	1.26582

All Locations

Obs.	Mean	Std. Dev.	Skewness
112	1.96131	0.0327503	3.07801

Parameter: pH, Field Location: MW-16-01

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	x(i) 6.89 6.92 7.07 7.08 7.14 7.2 7.2 7.23 7.23 7.29 7.34 7.46 7.5 7.74 8.29	x(n-i+1) 8.63 8.29 7.74 7.5 7.46 7.34 7.29 7.23 7.2 7.2 7.14 7.08 7.07 6.92	x(n-1+1)-x(i) 1.74 1.37 0.67 0.42 0.32 0.14 0.09 0 -0.09 -0.14 -0.32 -0.42 -0.67 -1.37	a(n-i+1) 0.5056 0.329 0.2521 0.1939 0.1447 0.1005 0.0593 0.0196	b(i) 0.879744 0.45073 0.168907 0.081438 0.046304 0.01407 0.005337 0
15 16	8.29 8.63	6.92 6.89	-1.37 -1.74		

Sum of b values = 1.64653 Sample Standard Deviation = 0.472923 W Statistic = 0.808104

5% Critical value of 0.887 exceeds 0.808104 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.808104 Evidence of non-normality at 99% level of significance

Parameter: pH, Field Location: MW-16-01

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	1.93007	2.15524	0.225173	0.5056	0.113848
2	1.93442	2.11505	0.180634	0.329	0.0594287
3	1.95586	2.0464	0.0905412	0.2521	0.0228254
4	1.95727	2.0149	0.0576291	0.1939	0.0111743
5	1.96571	2.00956	0.0438426	0.1447	0.00634403
6	1.97408	1.99334	0.0192578	0.1005	0.00193541
7	1.97408	1.9865	0.0124225	0.0593	0.000736655
8	1.97824	1.97824	0	0.0196	0
9	1.97824	1.97824	0		
10	1.9865	1.97408	-0.0124225		
11	1.99334	1.97408	-0.0192578		
12	2.00956	1.96571	-0.0438426		
13	2.0149	1.95727	-0.0576291		
14	2.0464	1.95586	-0.0905412		
15	2.11505	1.93442	-0.180634		
16	2.15524	1.93007	-0.225173		

Sum of b values = 0.216292 Sample Standard Deviation = 0.0613197 W Statistic = 0.829449

5% Critical value of 0.887 exceeds 0.829449 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.829449 Evidence of non-normality at 99% level of significance

Parameter: pH, Field Location: MW-16-04

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	7	7.53	0.53	0.5056	0.267968
2	7.02	7.44	0.42	0.329	0.13818
3	7.02	7.22	0.2	0.2521	0.05042
4	7.02	7.19	0.17	0.1939	0.032963
5	7.04	7.15	0.11	0.1447	0.015917
6	7.04	7.13	0.09	0.1005	0.009045
7	7.08	7.11	0.03	0.0593	0.001779
8	7.1	7.11	0.01	0.0196	0.000196
9	7.11	7.1	-0.01		
10	7.11	7.08	-0.03		
11	7.13	7.04	-0.09		
12	7.15	7.04	-0.11		
13	7.19	7.02	-0.17		
14	7.22	7.02	-0.2		
15	7.44	7.02	-0.42		
16	7.53	7	-0.53		

Sum of b values = 0.516468 Sample Standard Deviation = 0.150754 W Statistic = 0.782456

5% Critical value of 0.887 exceeds 0.782456 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.782456 Evidence of non-normality at 99% level of significance

Parameter: pH, Field Location: MW-16-04

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	1.94591	2.0189	0.0729849	0.5056	0.0369012
2	1.94876	2.00687	0.0581076	0.329	0.0191174
3	1.94876	1.97685	0.0280917	0.2521	0.00708193
4	1.94876	1.97269	0.023928	0.1939	0.00463963
5	1.95161	1.96711	0.0155042	0.1447	0.00224346
6	1.95161	1.96431	0.0127031	0.1005	0.00127666
7	1.95727	1.9615	0.00422834	0.0593	0.00025074
8	1.96009	1.9615	0.00140746	0.0196	2.75862e-005
9	1.9615	1.96009	-0.00140746		
10	1.9615	1.95727	-0.00422834		
11	1.96431	1.95161	-0.0127031		
12	1.96711	1.95161	-0.0155042		
13	1.97269	1.94876	-0.023928		
14	1.97685	1.94876	-0.0280917		
15	2.00687	1.94876	-0.0581076		
16	2.0189	1.94591	-0.0729849		

Sum of b values = 0.0715386 Sample Standard Deviation = 0.0207915 W Statistic = 0.789255

5% Critical value of 0.887 exceeds 0.789255 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.789255 Evidence of non-normality at 99% level of significance

Parameter: pH, Field Location: MW-16-05

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	6.89	7.67	0.78	0.5056	0.394368
2	6.92	7.3	0.38	0.329	0.12502
3	6.93	7.15	0.22	0.2521	0.055462
4	6.95	7.12	0.17	0.1939	0.032963
5	6.99	7.12	0.13	0.1447	0.018811
6	7	7.1	0.1	0.1005	0.01005
7	7.04	7.08	0.04	0.0593	0.002372
8	7.05	7.08	0.03	0.0196	0.000588
9	7.08	7.05	-0.03		
10	7.08	7.04	-0.04		
11	7.1	7	-0.1		
12	7.12	6.99	-0.13		
13	7.12	6.95	-0.17		
14	7.15	6.93	-0.22		
15	7.3	6.92	-0.38		
16	7.67	6.89	-0.78		

Sum of b values = 0.639634 Sample Standard Deviation = 0.186609 W Statistic = 0.783261

5% Critical value of 0.887 exceeds 0.783261 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.783261 Evidence of non-normality at 99% level of significance

Parameter: pH, Field Location: MW-16-05

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	1.93007	2.03732	0.107246	0.5056	0.0542233
2	1.93442	1.98787	0.0534586	0.329	0.0175879
3	1.93586	1.96711	0.0312525	0.2521	0.00787877
4	1.93874	1.96291	0.0241661	0.1939	0.0046858
5	1.94448	1.96291	0.0184272	0.1447	0.00266641
6	1.94591	1.96009	0.0141846	0.1005	0.00142556
7	1.95161	1.95727	0.00566574	0.0593	0.000335978
8	1.95303	1.95727	0.00424629	0.0196	8.32273e-005
9	1.95727	1.95303	-0.00424629		
10	1.95727	1.95161	-0.00566574		
11	1.96009	1.94591	-0.0141846		
12	1.96291	1.94448	-0.0184272		
13	1.96291	1.93874	-0.0241661		
14	1.96711	1.93586	-0.0312525		
15	1.98787	1.93442	-0.0534586		
16	2.03732	1.93007	-0.107246		

Sum of b values = 0.088887 Sample Standard Deviation = 0.025706 W Statistic = 0.797103

5% Critical value of 0.887 exceeds 0.797103 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.797103 Evidence of non-normality at 99% level of significance

Parameter: pH, Field Location: MW-16-06

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	6.965	7.33	0.365	0.5056	0.184544
2	6.98	7.27	0.29	0.329	0.09541
3	7.01	7.14	0.13	0.2521	0.032773
4	7.01	7.11	0.1	0.1939	0.01939
5	7.03	7.07	0.04	0.1447	0.005788
6	7.05	7.07	0.02	0.1005	0.00201
7	7.05	7.06	0.01	0.0593	0.000593
8	7.05	7.06	0.01	0.0196	0.000196
9	7.06	7.05	-0.01		
10	7.06	7.05	-0.01		
11	7.07	7.05	-0.02		
12	7.07	7.03	-0.04		
13	7.11	7.01	-0.1		
14	7.14	7.01	-0.13		
15	7.27	6.98	-0.29		
16	7.33	6.965	-0.365		

Sum of b values = 0.340704 Sample Standard Deviation = 0.0973947 W Statistic = 0.815817

5% Critical value of 0.887 exceeds 0.815817 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.815817 Evidence of non-normality at 99% level of significance

Parameter: pH, Field **Location: MW-16-06**

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	1.9409	1.99198	0.0510779	0.5056	0.025825
2	1.94305	1.98376	0.0407074	0.329	0.0133927
3	1.94734	1.96571	0.0183751	0.2521	0.00463236
4	1.94734	1.9615	0.0141645	0.1939	0.0027465
5	1.95019	1.95586	0.00567377	0.1447	0.000820995
6	1.95303	1.95586	0.00283286	0.1005	0.000284703
7	1.95303	1.95445	0.00141743	0.0593	8.40539e-005
8	1.95303	1.95445	0.00141743	0.0196	2.77817e-005
9	1.95445	1.95303	-0.00141743		
10	1.95445	1.95303	-0.00141743		
11	1.95586	1.95303	-0.00283286		
12	1.95586	1.95019	-0.00567377		
13	1.9615	1.94734	-0.0141645		
14	1.96571	1.94734	-0.0183751		
15	1.98376	1.94305	-0.0407074		
16	1.99198	1.9409	-0.0510779		

Sum of b values = 0.0478141 Sample Standard Deviation = 0.0136269 W Statistic = 0.820775

5% Critical value of 0.887 exceeds 0.820775 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.820775 Evidence of non-normality at 99% level of significance

Parameter: pH, Field Location: MW-16-07

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	6.89	7.4	0.51	0.5056	0.257856
2	6.9	7.31	0.41	0.329	0.13489
3	6.92	7.15	0.23	0.2521	0.057983
4	6.95	7.11	0.16	0.1939	0.031024
5	6.96	7.1	0.14	0.1447	0.020258
6	6.96	7.05	0.09	0.1005	0.009045
7	6.96	7.03	0.07	0.0593	0.004151
8	6.97	6.98	0.01	0.0196	0.000196
9	6.98	6.97	-0.01		
10	7.03	6.96	-0.07		
11	7.05	6.96	-0.09		
12	7.1	6.96	-0.14		
13	7.11	6.95	-0.16		
14	7.15	6.92	-0.23		
15	7.31	6.9	-0.41		
16	7.4	6.89	-0.51		

Sum of b values = 0.515403 Sample Standard Deviation = 0.145052 W Statistic = 0.841699

5% Critical value of 0.887 exceeds 0.841699 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.841699 Evidence of non-normality at 99% level of significance

Parameter: pH, Field Location: MW-16-07

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	1.93007	2.00148	0.0714089	0.5056	0.0361043
2	1.93152	1.98924	0.0577219	0.329	0.0189905
3	1.93442	1.96711	0.0326966	0.2521	0.00824281
4	1.93874	1.9615	0.0227606	0.1939	0.00441328
5	1.94018	1.96009	0.0199153	0.1447	0.00288175
6	1.94018	1.95303	0.0128481	0.1005	0.00129124
7	1.94018	1.95019	0.0100072	0.0593	0.000593429
8	1.94162	1.94305	0.00143369	0.0196	2.81004e-005
9	1.94305	1.94162	-0.00143369		
10	1.95019	1.94018	-0.0100072		
11	1.95303	1.94018	-0.0128481		
12	1.96009	1.94018	-0.0199153		
13	1.9615	1.93874	-0.0227606		
14	1.96711	1.93442	-0.0326966		
15	1.98924	1.93152	-0.0577219		
16	2.00148	1.93007	-0.0714089		

Sum of b values = 0.0725454 Sample Standard Deviation = 0.0203482 W Statistic = 0.847378

5% Critical value of 0.887 exceeds 0.847378 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 is less than 0.847378 Data is normally distributed at 99% level of significance

Parameter: pH, Field
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 15
Maximum Baseline Concentration = 8.63
Confidence Level = 93.8%

Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline Measurements	Date 8/8/2016 9/27/2016 11/14/2016 1/17/2017 3/6/2017 4/26/2017 6/13/2017 7/17/2017 9/18/2017 4/2/2018 10/8/2018 3/26/2019 9/23/2019 4/8/2020 10/5/2020	Value 8.63 8.29 7.74 7.46 7.34 7.23 7.2 7.23 6.92 7.14 7.07 7.08 7.2 7.5 7.29
	10/3/2020	1.27

Date 4/6/2021

Count

Mean 6.89 Significant FALSE

Parameter: pH, Field

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% Two-Sided Comparison

Baseline Samples	Date	Result
	8/9/2016	7.07
	9/27/2016	7.3
	11/15/2016	7.06
	1/17/2017	7.09
	3/7/2017	7.15
	4/25/2017	6.99
	6/12/2017	7.04
	7/18/2017	7.02
	9/18/2017	7.01
	4/3/2018	6.99
	10/8/2018	7.08
	3/25/2019	7.06
	9/23/2019	7.16
	4/8/2020	7.14
	10/6/2020	7.08

From 15 baseline samples
Baseline mean = 7.08267
Baseline std Dev = 0.0803978

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1)/2 = 97.5 % t is Percentile of Student's T-Test (0.95/1/2) = 0.975 Degrees of Freedom = 15 (background observations) - 1 t(0.975, 15) = 2.14479

Date	Samples	Mean	Interval	Significant	
4/6/2021	1	6.91	[6.9, 7.26]	FALSE	

Parameter: pH, Field

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% Two-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	6.93
	9/27/2016	7.17
	11/15/2016	7.04
	1/17/2017	6.72
	3/7/2017	7.13
	4/25/2017	6.98
	6/12/2017	7.02
	7/18/2017	6.97
	9/19/2017	6.89
	4/3/2018	6.97
	10/8/2018	7.05
	3/25/2019	6.7
	9/23/2019	7.12
	4/8/2020	7.08
	10/6/2020	7.07

From 15 baseline samples Baseline mean = 6.98933 Baseline std Dev = 0.136772

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1)/2 = 97.5 % t is Percentile of Student's T-Test (0.95/1/2) = 0.975 Degrees of Freedom = 15 (background observations) - 1 t(0.975, 15) = 2.14479

Date	Samples	Mean	Interval	Significant
4/5/2021	1	6.92	[6.69, 7.29]	FALSE

Parameter: pH, Field
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

False Positive Rate = 6.2%

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 15
Maximum Baseline Concentration = 7.53
Confidence Level = 93.8%

Baseline Measurements	Date 8/9/2016 9/26/2016 11/15/2016 1/17/2017 3/7/2017 4/25/2017 6/12/2017 7/17/2017 9/19/2017 4/3/2018 10/8/2018	Value 7.02 7.53 7.11 7.02 7.19 7.04 7.1 7.22 7.02 7
		7.13 7.04 7.15

7.08

7.44

Date
4/5/2021Count
1Mean
7.11Significant
FALSE

4/8/2020

10/5/2020

Parameter: pH, Field
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 15
Maximum Baseline Concentration = 7.67
Confidence Level = 93.8%

Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline Measurements	Date 8/8/2016 9/26/2016 11/15/2016 1/17/2017 3/7/2017 4/25/2017 6/12/2017 7/17/2017 9/19/2017 4/3/2018 10/8/2018 3/25/2019 9/25/2019 4/8/2020 10/6/2020	Value 7.3 7.67 7.12 6.95 7.15 7 7.05 7.12 6.89 6.99 7.08 6.93 7.04 7.08 7.1
	10/0/2020	1.1

Date Count 4/5/2021 1

Mean 6.92 **Significant** FALSE

Parameter: pH, Field
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 15
Maximum Baseline Concentration = 7.33
Confidence Level = 93.8%

Confidence Level = 93.8% False Positive Rate = 6.2%

6/13/2017 7.05 7/17/2017 7.11 9/18/2017 6.965 4/2/2018 7.06 10/8/2018 6.98 3/25/2019 7.03 9/23/2019 7.14 4/8/2020 7.27 10/6/2020 7.05	Baseline Measurements	7/17/2017 9/18/2017 ~ 4/2/2018 10/8/2018 3/25/2019 9/23/2019 4/8/2020 ~	7.11 6.965 7.06 6.98 7.03 7.14
---	-----------------------	---	---

Date 4/6/2021

Count

Mean 7.07 Significant FALSE

Parameter: pH, Field
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 15
Maximum Baseline Concentration = 7.4
Confidence Level = 93.8%
False Positive Rate = 6.2%

Baseline Measurements	Date	Value
	8/8/2016	6.96
	9/26/2016	7.4
	11/15/2016	7.05
	1/17/2017	6.92
	3/6/2017	6.96
	4/25/2017	6.97
	6/12/2017	6.95
	7/17/2017	6.96
	9/19/2017 ~	6.89
	4/2/2018	6.98
	10/8/2018	7.03
	3/26/2019	7.11
	9/23/2019	7.15
	4/8/2020	7.31
	10/6/2020	7.1

DateCountMeanSignificant4/5/202116.9FALSE

Skewness Coefficient

Parameter: Sulfate
Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance Locations							
Location	Obs.	Mean	Std. Dev.	Skewness			
MW-16-01	16	1437.5	61.9139	-0.380765			
MW-16-02	16	1525	77.4597	-0.444444			
MW-16-03	16	1562.5	61.9139	0.380765			
MW-16-04	16	1381.25	65.5108	0.177933			
MW-16-05	16	1450	73.0297	0			
MW-16-06	16	1484.38	67.6233	0.0893666			
MW-16-07	16	1450	63.2456	0.816497			

All Locations

Obs.	Mean	Std. Dev.	Skewness
112	1470.09	86.0703	0.0980535

Intra-Well Comparison for MW-16-01

Parameter: Sulfate

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	1400
	9/27/2016	1500
	11/14/2016	1500
	1/17/2017	1400
	3/6/2017	1300
	4/26/2017	1400
	6/13/2017	1400
	7/17/2017	1400
	9/18/2017	1500
	4/2/2018	1500
	10/8/2018	1500
	3/26/2019	1400
	9/23/2019	1500

4/8/2020 10/5/2020 ~

From 15 baseline samples Baseline mean = 1440 Baseline std Dev = 63.2456

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	1400	[0, 1555.05]	FALSE

1400

Intra-Well Comparison for MW-16-02

Parameter: Sulfate

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	1600
	9/27/2016	1600
	11/15/2016	1600
	1/17/2017	1500
	3/7/2017	1400
	4/25/2017	1600
	6/12/2017	1500
	7/18/2017	1500
	9/18/2017	1500
	4/3/2018	1500
	10/8/2018	1600
	3/25/2019	1500
	9/23/2019	1600

4/8/2020 10/6/2020

From 15 baseline samples Baseline mean = 1533.33 Baseline std Dev = 72.3747

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	1400	[0, 1664.99]	FALSE

1400

Intra-Well Comparison for MW-16-03

Parameter: Sulfate

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	1600
	9/27/2016	1600
	11/15/2016	1600
	1/17/2017	1600
	3/7/2017	1500
	4/25/2017	1500
	6/12/2017	1500

7/18/2017 1500 9/19/2017 1500 4/3/2018 1600 10/8/2018 1600 3/25/2019 1600

9/23/2019 1600 4/8/2020 1500 10/6/2020 1700

From 15 baseline samples Baseline mean = 1566.67 Baseline std Dev = 61.7213

For 1 recent sampling event(s)
Actual confidence level is 1.0 - (0.05/1) = 95 %
t is Percentile of Student's T-Test (0.95/1) = 0.95
Degrees of Freedom = 15 (background observations) - 1

t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	1500	[0, 1678.94]	FALSE

Intra-Well Comparison for MW-16-04

Parameter: Sulfate

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline San	nples
---------------------	-------

Date	Result
8/9/2016	1400
9/26/2016	1400
11/15/2016	1500
1/17/2017	1400
3/7/2017	1300
4/25/2017	1300
6/12/2017	1400
7/17/2017	1400
9/19/2017	1300
4/3/2018	1400
10/8/2018	1500
3/25/2019	1400
9/23/2019	1400
4/8/2020	1300
10/5/2020	1400

From 15 baseline samples Baseline mean = 1386.67 Baseline std Dev = 63.994

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	1300	[0, 1503.08]	FALSE

Intra-Well Comparison for MW-16-05

Parameter: Sulfate

Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	1500
	9/26/2016	1500
	11/15/2016	1500
	1/17/2017	1400
	3/7/2017	1400
	4/25/2017	1400
	6/12/2017	1500
	7/17/2017	1500
	9/19/2017	1400
	4/3/2018	1400
	10/8/2018	1600
	3/25/2019	1500
	9/25/2019	1400
	4/8/2020	1400

10/6/2020

From 15 baseline samples Baseline mean = 1460 Baseline std Dev = 63.2456

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	1300	[0, 1575.05]	FALSE

Intra-Well Comparison for MW-16-06

Parameter: Sulfate

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	1500
	9/27/2016	1500
	11/15/2016	1600
	1/17/2017	1500
	3/6/2017	1400
	4/25/2017	1400
	6/13/2017	1400
	7/17/2017	1500
	9/18/2017	1500
	4/2/2018	1500
	10/8/2018	1600
	3/25/2019	1500
	9/23/2019	1500
	4/8/2020	1400

From 15 baseline samples Baseline mean = 1490 Baseline std Dev = 66.0087

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

 Date
 Samples
 Mean
 Interval
 Significant

 4/6/2021
 1
 1400
 [0, 1610.07]
 FALSE

10/6/2020 ~

Intra-Well Comparison for MW-16-07

Parameter: Sulfate

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
· · · · · · · · · · · · · · · · · · ·	8/8/2016	1500
	9/26/2016	1500
	11/15/2016	1500
	1/17/2017	1400
	3/6/2017	1400
	4/25/2017	1400
	6/12/2017	1400
	7/17/2017	1500

7/17/2017 1500 9/19/2017 1400 4/2/2018 1400 10/8/2018 1600 3/26/2019 1400 9/23/2019 1500

4/8/2020 1400 10/6/2020 1500

[0, 1569.74]

FALSE

From 15 baseline samples Baseline mean = 1453.33 Baseline std Dev = 63.994

4/5/2021

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date Samples Mean Interval Significant

Skewness Coefficient

Parameter: Total Dissolved Solids Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	e Locations	5		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	2093.75	123.659	-2.06437
MW-16-02	16	2200	63.2456	0
MW-16-03	16	2259.38	75.76	-0.207363
MW-16-04	16	2056.25	131.498	-0.957395
MW-16-05	16	2093.75	77.1902	0.101753
MW-16-06	16	2171.88	93.039	0.229678
MW-16-07	16	2062.5	80.6226	-0.812958

All Locations

Obs.	Mean	Std. Dev.	Skewness
112	2133.93	117 254	-0 737954

Skewness Coefficient

Parameter: Total Dissolved Solids Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc				
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	7.64492	0.0631766	-2.26803
MW-16-02	16	7.69582	0.0287724	-0.069581
MW-16-03	16	7.72231	0.0336821	-0.283093
MW-16-04	16	7.62663	0.0663914	-1.24163
MW-16-05	16	7.64608	0.0368325	0.0599995
MW-16-06	16	7.68249	0.0427067	0.141807
MW-16-07	16	7.63094	0.0397604	-0.890922

All Locations

Obs.	Mean	Std. Dev.	Skewness
112	7.66417	0.0564504	-1.05579

Shapiro-Wilks Test of Normality Parameter: Total Dissolved Solids

Location: MW-16-01

Normality Test of Parameter Concentrations Original Data (Not Transformed)

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i		x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	1	1700	2200	500	0.5056	252.8
2	2	2000	2200	200	0.329	65.8
3	3	2000	2200	200	0.2521	50.42
4	1	2100	2200	100	0.1939	19.39
Ę	5	2100	2200	100	0.1447	14.47
6	3	2100	2100	0	0.1005	0
7	7	2100	2100	0	0.0593	0
8	3	2100	2100	0	0.0196	0
ζ)	2100	2100	0		
1	10	2100	2100	0		
1	11	2100	2100	0		
1	12	2200	2100	-100		
1	13	2200	2100	-100		
1	14	2200	2000	-200		
1	15	2200	2000	-200		
1	16	2200	1700	-500		

Sum of b values = 402.88 Sample Standard Deviation = 123.659 W Statistic = 0.707629

5% Critical value of 0.887 exceeds 0.707629 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.707629 Evidence of non-normality at 99% level of significance

Shapiro-Wilks Test of Normality Parameter: Total Dissolved Solids

Location: MW-16-01

Normality Test of Parameter Concentrations Natural Logarithm Transformation

Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	7.43838	7.69621	0.257829	0.5056	0.130358
2	7.6009	7.69621	0.0953102	0.329	0.031357
3	7.6009	7.69621	0.0953102	0.2521	0.0240277
4	7.64969	7.69621	0.04652	0.1939	0.00902023
5	7.64969	7.69621	0.04652	0.1447	0.00673145
6	7.64969	7.64969	0	0.1005	0
7	7.64969	7.64969	0	0.0593	0
8	7.64969	7.64969	0	0.0196	0
9	7.64969	7.64969	0		
10	7.64969	7.64969	0		
11	7.64969	7.64969	0		
12	7.69621	7.64969	-0.04652		
13	7.69621	7.64969	-0.04652		
14	7.69621	7.6009	-0.0953102		
15	7.69621	7.6009	-0.0953102		
16	7.69621	7.43838	-0.257829		

Sum of b values = 0.201495 Sample Standard Deviation = 0.0631766 W Statistic = 0.678147

5% Critical value of 0.887 exceeds 0.678147 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.678147 Evidence of non-normality at 99% level of significance

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-01 Parameter: Total Dissolved Solids

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

False Positive Rate = 6.2%

Date

4/6/2021

Total Percent Non-Detects = 0%
Future Samples (k) = 1
Recent Dates = 1
Baseline Measurements (n) = 15

Maximum Baseline Concentration = 2200
Confidence Level = 93.8%

Count

Mean

2100

Baseline Measurements	Date 8/8/2016 9/27/2016 11/14/2016 1/17/2017 3/6/2017 4/26/2017 6/13/2017 7/17/2017 9/18/2018	Value 2100 2000 2000 2000 2100 2100 2100 210
	4/2/2018	2200
	10/8/2018	2100
	3/26/2019	2200
	9/23/2019	2200
	4/8/2020	1700
	10/5/2020	2100

Significant FALSE

Intra-Well Comparison for MW-16-02

Parameter: Total Dissolved Solids

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/9/2016	2200
	9/27/2016	2200
	11/15/2016	2200
	1/17/2017	2300
	3/7/2017	2200
	4/25/2017	2200
	6/12/2017	2200
	7/18/2017	2300
	9/18/2017	2300
	4/3/2018	2100
	10/8/2018	2200
	3/25/2019	2200
	9/23/2019	2200
	4/8/2020	2200
	10/6/2020	2100

From 15 baseline samples Baseline mean = 2206.67 Baseline std Dev = 59.3617

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1 .	2100	[0, 2314,65]	FALSE

Intra-Well Comparison for MW-16-03

Parameter: Total Dissolved Solids

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	2300
	9/27/2016	2200
	11/15/2016	2300

2300 11/15/2016 1/17/2017 2300 3/7/2017 2200 4/25/2017 2300 6/12/2017 2300 7/18/2017 2300 2300 9/19/2017 2200 4/3/2018 10/8/2018 2200 3/25/2019 2200 9/23/2019 ~ 2400 2200 4/8/2020 10/6/2020 2100

From 15 baseline samples Baseline mean = 2253.33 Baseline std Dev = 74.3223

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	2350	[0, 2388.53]	FALSE

Intra-Well Comparison for MW-16-04

Parameter: Total Dissolved Solids

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline	Samp	les	Date
----------	------	-----	------

Date	Result
8/9/2016	2100
9/26/2016	2100
11/15/2016	1700
1/17/2017	2100
3/7/2017	2200
4/25/2017	2100
6/12/2017	2100
7/17/2017	2100
9/19/2017	2100
4/3/2018	2000
10/8/2018	2000
3/25/2019	2100
9/23/2019 ~	2300
4/8/2020	2000
10/5/2020	1900

From 15 baseline samples Baseline mean = 2060 Baseline std Dev = 135.225

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	2000	[0, 2305.98]	FALSE

Intra-Well Comparison for MW-16-05 Parameter: Total Dissolved Solids

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

	Baseline Sam	ples	Date	Result
--	---------------------	------	------	--------

8/8/2016	2100
0/0/2010	2100
9/26/2016	2000
11/15/2016	2100
1/17/2017	2100
3/7/2017	2200
4/25/2017	2100
6/12/2017	2200
7/17/2017	2100
9/19/2017	2100
4/3/2018	2000
10/8/2018	2000
3/25/2019	2200
9/25/2019	2100
4/8/2020	2000
10/6/2020	2000

From 15 baseline samples Baseline mean = 2086.67 Baseline std Dev = 74.3223

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95 % t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant	
4/5/2021	1	2200	[0 2221 86]	FALSE	

Intra-Well Comparison for MW-16-06 Parameter: Total Dissolved Solids

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline	Samp	les	Dat
-----------------	------	-----	-----

Date	Result
8/9/2016	2200
9/27/2016	2100
11/15/2016	2200
1/17/2017	2200
3/6/2017	2100
4/25/2017	2100
6/13/2017	2200
7/17/2017	2200
9/18/2017	2300
4/2/2018 ~	2350
10/8/2018	2100
3/25/2019	2100
9/23/2019	2300
4/8/2020	2100
10/6/2020	2000

From 15 baseline samples Baseline mean = 2170 Baseline std Dev = 95.9911

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/6/2021	1	2200	[0, 2344.61]	FALSE

Intra-Well Comparison for MW-16-07

Parameter: Total Dissolved Solids

Original Data (Not Transformed)
Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
•	8/8/2016	2100
	9/26/2016	2000
	11/15/2016	2100
	1/17/2017	2100
	3/6/2017	2100
	4/25/2017	2100
	6/12/2017	2200
	7/17/2017	2100
	9/19/2017	2100
	4/2/2018	2000
	10/8/2018	2100
	3/26/2019	2100
	9/23/2019	2100
	4/8/2020	1900

10/6/2020

From 15 baseline samples Baseline mean = 2066.67 Baseline std Dev = 81.6497

For 1 recent sampling event(s) Actual confidence level is 1.0 - (0.05/1) = 95% t is Percentile of Student's T-Test (0.95/1) = 0.95 Degrees of Freedom = 15 (background observations) - 1 t(0.95, 15) = 1.76131

Date	Samples	Mean	Interval	Significant
4/5/2021	1	2000	[0, 2215.19]	FALSE