

Groundwater Monitoring System Summary Report

DTE Electric Company
Sibley Quarry Coal Combustion Residual Landfill

801 Fort Street Trenton, Michigan

October 2017

Groundwater Monitoring System Summary Report

DTE Electric Company Sibley Quarry Coal Combustion Residual Landfill

> 801 Fort Street Trenton, Michigan

> > October 2017

Prepared For DTE Electric Company

Graham Crockford, C.P.G. Senior Project Geologist

David B. McKenzie, P.E. Senior Project Engineer

TRC Engineers Michigan, Inc. | DTE Electric Company Final

X:\WPAAM\PJT2\265996\GWMS CERTS\02 SQLF\R2659960002-SQLF.DOCX

Table of Contents

1.	Intro	duction	1	1
1.	1.1		round and Objective	
	1.1	_	ocation	
	1.3		iption of CCR Unit	
	1.5	Descri	phon of CCR offit	1
2.	Hydr	ogeolo	gy	3
	2.1	Region	nal Hydrogeologic Setting	3
	2.2	SQLF	Hydrogeology	3
		2.2.1	Uppermost Aquifer	4
		2.2.2	Groundwater Flow	5
3.	Grou	ndwat	er Monitoring System	7
	3.1	Grour	ndwater Monitoring System Installation	7
		3.1.1	Boring/Bedrock Well Advancement	
		3.1.2	Monitoring Well Installation	
		3.1.3	Monitoring Well Development and Surveying	8
		3.1.4	Detection Monitoring	
4.	Grou	ndwat	er Monitoring System Certification	9
Listo	of Table	PS		
Table		00	Monitoring Well Information Summary	
List o	f Figu	res		
Figur	e 1		Site Location Map	
Figur			Monitoring Network and Site Plan	
Figur			Cross Section Locator Map	
Figur	e 4		Generalized Geologic Cross-Section A-A'	
Figur	e 5		Generalized Geologic Cross-Section B-B'	
Figur	re 6		Groundwater Potentiometric Surface Map – April 2017	
List o	of Appe	endices		
	endix A		Soil Boring and Monitoring Well Installation Logs	

1.1 Background and Objective

The United States Environmental Protection Agency (U.S. EPA) established a comprehensive set of requirements for management and disposal of Coal Combustion Residuals (CCR) in landfills and surface impoundments in the Final Rule: Disposal of CCR from Electric Utilities (CCR Rule) on April 17, 2015. The DTE Electric Company (DTE Electric) Sibley Quarry Landfill (SQLF) CCR unit is subject to the CCR Rule.

The objective of this report is to document and certify that the CCR Groundwater Monitoring System for the SQLF has been designed and constructed to meet the requirements of Title 40 Code of Federal Regulations (CFR) §257.91 (a)(1) and (2) of the CCR Rule. TRC Engineers Michigan, Inc. (TRC) was retained by DTE Electric to provide this report documenting the construction of the CCR groundwater monitoring system for the SQLF.

1.2 Site Location

The SQLF is located in Section 7, Township 4 South, Range 11 East, at 801 Fort Street (a.k.a. 502 Quarry Road) in Trenton, Wayne County, Michigan (**Figure 1**). The SQLF is located about two miles north of the DTE Electric Trenton Power Plant. The SQLF is bounded mostly by Fort Street to the west, Sibley Road to the north, the former Detroit and Toledo Shore Line Railroad and West Jefferson to the east, and the former Vulcan Mold & Iron Company (now owned by Danou Enterprises) and the DTE Electric Jefferson Substation to the south.

1.3 Description of CCR Unit

The Sibley quarry was originally developed to mine limestone beginning in the mid-1800s and was mined to over 300 feet below ground surface (feet-bgs) in some areas before becoming inactive. In 1951, Detroit Edison (now DTE Electric) acquired Sibley Quarry and began to manage CCR in the SQLF¹. The property has been used continuously for the operation of the SQLF since approximately 1951. The SQLF is a licensed Type III solid waste disposal facility owned and operated by DTE Electric in compliance with the current operating license number 9394 in accordance with Michigan Part 115 rules. The disposal facility currently receives the majority of CCRs from the Trenton Channel and River Rouge Power Plants. In addition, a small amount of CCR is also received from the Monroe Power Plant.

¹ AECOM, 2016, Run-On/Run-Off Control System Plan For Coal Combustions Residuals Disposal Facility – Sibley Quarry Landfill, Existing Landfill

The SQLF is approximately 207 acres with 92.1 acres authorized to receive waste (**Figure 2**). Of those 92.1 acres, 64.2 acres are active landfilling areas occupied by CCR material. Approximately 90 acres along the exterior perimeters of the SQLF to the north, west, and south are at final grade and had received final cover prior to September 2, 1999, and are considered to be closed¹.

As part of normal operations, the SQLF quarry is dewatered to approximately 300 feet-bgs maintaining a water level in the bottom of the quarry at approximately 304 feet relative to the North American Vertical Datum of 1988 (NAVD 88). Groundwater and storm water are pumped from the quarry sump to an upper treatment pond located at the top of the quarry (referred to as "upper ponds"). Water from the upper ponds discharges into a conveyance channel which conveys the water approximately one-half mile to the lower ponds. The discharge, which is authorized via a National Pollution Discharge Elimination System (NPDES) permit, is pumped from a station at the southern end of the lower ponds and discharges the water to the Detroit River. The discharge rate averages approximately 1.5 million gallons per day (MGD), which maintains the water level in the quarry at its current elevation and prevents exposed CCR material from contacting the groundwater that interfaces at the bottom of the quarry ¹.

2.1 Regional Hydrogeologic Setting

The SQLF resides in an area characterized by near surface deposits of glacio-lacustrine clay and silt units on top of thick strata of dolomite and limestone bedrock. The uppermost bedrock units in Wayne County consist of Paleozoic sedimentary rock strata of marine origin². According to the bedrock geology map of Wayne County, the site is located in an area where the Dundee Formation (mostly limestone) and the Detroit River Group (limestone, dolostone and some sandstone) underlie the unconsolidated glacial drift. The stratigraphic succession (from youngest to oldest) in the subject area is: Dundee Formation (Limestone), Detroit River Group, Sylvania Sandstone, Bois Blanc, followed by the Bass Island and Salina Group. The general regional bedrock groundwater flow pattern, outside of the influence of the quarry dewatering, in the subject area is west to east toward the Detroit River and Lake Erie³.

2.2 SQLF Hydrogeology

Information provided on local geology is primarily based on soil boring data collected by TRC Engineers Michigan, Inc. (TRC) during installation of the groundwater monitoring system during 2016 and 2017 (Section 3), in addition to well logs from Golder and Associates Inc. (Golder). Golder, on behalf of DTE Electric, oversaw the installation and development of four open-hole bedrock wells (MW-101 through MW-104) during July 2015. Soil borings from the Golder work and the TRC work are included in Appendix A. These data were used to develop the generalized geologic cross sections provided in **Figures 3 through 5**.

The borings advanced at the SQLF (MW-101 through MW-108 and MW-108A) documented that the SQLF uppermost aquifer is within the Dundee Formation limestone bedrock. The Dundee Formation is overlain by anywhere from less than 15 feet to more than 70 feet of unconsolidated material, most of which is clay-rich soil with some fill. The top of the Dundee Formation limestone/dolostone bedrock was encountered at depths ranging from 16.5 to 74.5 feet-bgs and, including the underlying Detroit River Group limestone/dolostone/sandstone, extended to depths ranging from 235 to over 310 feet-bgs (in many cases present to the bottom of the boring/well). The underlying Sylvania Sandstone was encountered at monitoring wells MW-101 (at ~300 feet-bgs), MW-105 (at ~300 feet-bgs) and at MW-108A (at ~235 feet-bgs).

² Mozola, A. J., 1969, Geology for land and ground-water development in Wayne County, Michigan: Michigan Geological Survey Division Report R 3, 25 p.

³ Beth A. Apple and Howard W. Reeves, 2007, Summary of Hydrogeologic Conditions by County for the State of Michigan. U.S. Geological Survey Open-File Report 2007-1236, 78 p.

There are two modes of groundwater movement through the carbonate bedrock: (i) primary porosity (pore spaces in the rock), and (ii) secondary porosity (along an intersecting system of fractures, joints, and bedding planes). Groundwater flow in the carbonate bedrock aquifer in Wayne County is primarily through secondary porosity consisting of fractures, most of which are evident along bedding-plane partings⁴. As expected, data show that groundwater levels are significantly lower within the bedrock in monitoring wells that are the closest to the quarry where significant pumping is occurring (MW-101 through MW-104, MW-106 and MW-107), with water levels ranging from 120 to more than 210 feet bgs. Monitoring wells MW-105 and MW-108A located further away from the quarry have less depressed groundwater elevations (on the order of 22 to 55 feet-bgs) due to their greater distance away from the quarry.

The Detroit River is located within one-half mile to the east of the SQLF and if the quarry were not actively being dewatered, groundwater flow in the SQLF area would likely be to the east towards the Detroit River. Given the high level of continuous pumping from the quarry, groundwater flow in the uppermost aquifer throughout the area and the perimeter of Sibley Quarry is inward on all sides towards Sibley Quarry.

2.2.1 Uppermost Aquifer

Definition

The 40 CFR §257.53 definitions of an aquifer and uppermost aquifer are as follows:

- Aquifer means a geologic formation, group of formations, or portion of a formation capable of yielding useable quantities of groundwater to wells or springs.
- Uppermost aquifer means the geologic formation nearest the natural ground surface that is an aquifer, as well as the lower aquifers that are hydraulically interconnected with this aquifer within the facility's property boundary. Upper limit is measured at a point nearest to the natural ground surface to which the aquifer rises during the wet season.

Site Uppermost Aquifer

As described above, the SQLF uppermost aquifer as defined in 40 CFR §257.53 consists of the Dundee Formation and/or the Detroit River Group limestone and/or dolostone that was present beneath at least 16.5 and up to 74.5 foot thick unconsolidated material (mostly clay-rich) (**Figures 3 through 5**) throughout the SQLF. CCR groundwater monitoring wells MW-16-101 through MW-16-107 and MW-108A were set as open-hole

⁴ Reeves, H.W., Wright, KV and Nicholas, J.R., 2004, Hydrogeology and Simulation of Regional Ground-Water-Level Declines in Monroe County, Michigan, Water-Resources Investigations Report 03-4312, U.S. Department of the Interior, U.S. Geological Survey, Lansing, Michigan, 69 p.

bedrock wells to the total depth drilled (ranging from 270 to 320 feet-bgs) within the uppermost aquifer limestone and/or dolostone. In addition, the underlying, hydraulically connected Sylvania Sandstone was encountered in the lower portions of monitoring wells MW-101, MW-105, and MW-108A. Much of the primarily limestone/dolostone uppermost aquifer has been dewatered in the immediate vicinity of the quarry where significant active pumping keeps the water table depressed to around 304 feet NGVD 88 within the quarry. Boring and well logs for the CCR monitoring wells are included Appendix A.

2.2.2 Groundwater Flow

Groundwater Flow Direction

Groundwater flow is consistently inward toward the base of the quarry due to continuous pumping at the quarry that hydraulically controls groundwater flow. This groundwater flow regime is demonstrated using potentiometric surface data measured during the 8 background groundwater sampling events performed by TRC since August 2016. A representative groundwater potentiometric surface elevation map showing the groundwater elevations and inward flow toward the base of the quarry for April 2017 is illustrated on **Figure 6**. As shown, overall the quarry pumping is keeping groundwater elevations depressed with groundwater flow universally being maintained into the quarry. Quarry dewatering results in all the perimeter CCR monitoring wells being upgradient of the CCR landfill. The potentiometric groundwater elevation data collected in 2016 and 2017 show that overall there is consistent horizontal groundwater flow within the upper aquifer towards the quarry.

Uppermost Aquifer Hydraulic Conductivity

Hydraulic conductivities within three of the CCR monitoring wells set in the SQLF uppermost aquifer were evaluated using single well hydraulic conductivity tests (e.g., slug tests) performed in 2015 by Golder. The measured hydraulic conductivities ranged from approximately 1 to 16 feet/day with a mean hydraulic conductivity of 6.8 feet/day, which is consistent with other sources for the hydraulic conductivity of the Dundee Formation and Detroit River Group Formation⁵.

⁵ Reeves, H.W., Wright, KV and Nicholas, J.R., 2004, Hydrogeology and Simulation of Regional Ground-Water-Level Declines in Monroe County, Michigan, Water-Resources Investigations Report 03-4312, U.S. Department of the Interior, U.S. Geological Survey, Lansing, Michigan, 69 p.

Horizontal Time of Travel

Using the groundwater potentiometric surface elevations measured at the SQLF in 2016 and 2017, the mean gradient from the perimeter of the SQLF towards the quarry pumping basin is as follows:

- From the west (MW-106) 0.087 foot/foot;
- From the north (MW-107) 0.082 foot/foot;
- From the east (MW-101) 0.103 foot/foot; and
- From the south (MW-108A) 0.070 foot/foot.

Assuming an average porosity of 0.1 for the limestone in the uppermost aquifer, a mean hydraulic conductivity of 6.8 feet/day, and a hydraulic gradient ranging from 0.070 to 0.103 foot/foot inwards to the quarry, results in a low mean groundwater flow rate towards the quarry ranging from approximately 4.7 feet/day (1,717 feet/year) to 7.0 feet/day (2,557 feet/year), with a mean of approximately 5.8 feet/day (2,118 feet/year). Overall, the inward gradient to the SQLF is relatively uniform with a slightly higher gradient and flow rate from the east where the distance to the quarry wall is lower.

Section 3 Groundwater Monitoring System

3.1 Groundwater Monitoring System Installation

During July 2015, Golder, on behalf of DTE Electric, oversaw the installation and development of four open-hole bedrock wells (MW-101 through MW-104) by Michigan-licensed wells drillers on the west and east sides of SQLF. In March and April 2016, TRC, on behalf of DTE Electric oversaw the installation and development of four additional open-hole bedrock monitoring wells (MW-105 through MW-108) by a Michigan-licensed well driller. In January 2017, monitoring well MW-108 was decommissioned after that location was found to be unsuitable for monitoring the SQLF southern boundary and a new monitoring well, MW-108A, was installed further to the south. These monitoring wells were installed to establish the groundwater monitoring system in accordance with the 40 CFR Section § 257.91 as described below:

3.1.1 Boring/Bedrock Well Advancement

In July 2015, March/April of 2016, and January 2017, nine borings were advanced to evaluate the subsurface geology and to allow bedrock monitoring well installation using sonic drilling techniques (two wells) and air/water rotary (seven wells) drilling methods along the perimeter of the SQLF. Soil was logged from the ground surface to the top of bedrock, then surface casings were cemented into the upper bedrock interface to isolate the overlying soil from the bedrock prior to drilling through the bedrock. After the cement set in the surface casings, the bedrock was logged from sonic cores (MW-102 and MW-104) or from the rotary cuttings during boring/well advancement to the termination of the boring/open-hole bedrock monitoring well. A Golder or TRC geologist was present to log each boring and describe the soil and bedrock in accordance with the Unified Soil Classification System (USCS).

The borings were advanced to depths ranging from approximately 270 to 320 feet-bgs within the uppermost aquifer Dundee Formation (limestone with some dolostone bedrock), the Detroit River Group Formation (limestone and/or dolostone with some sandstone intervals), and in some cases into the top of the underlying Sylvania Sandstone. Saturation was encountered at deeper depths ranging from approximately 115 to 210 feet-bgs at monitoring wells located closer to the quarry bottom. Shallower depths to groundwater (on the order of 22 to 55 feet-bgs were encountered in areas of lower surface topography and/or at monitoring well locations farthest from the quarry bottom where dewatering is occurring down to approximately 300 ft-bgs (on the order of 304 feet relative to the NGVD 88).

3.1.2 Monitoring Well Installation

As stated above, the CCR monitoring wells MW-101 through MW-107 and MW-108A are set as open-hole within the Dundee Formation (generally limestone) uppermost aquifer and the underlying Detroit River Group Formation (limestone, dolostone, some sandstone intervals), and in some cases into the top of the Sylvania Sandstone with total depths ranging from 270 to 320 feet-bgs at eight locations around the SQLF perimeter (**Figure 2**). Monitoring well construction diagrams from the installed monitoring wells accompany the soil boring logs in Appendix A. A summary of monitoring well details are also included in Table 1. Following well installation, the monitoring wells were allowed to stabilize for more than 24-hours before monitoring well development began.

3.1.3 Monitoring Well Development and Surveying

Following installation, each CCR monitoring well was developed by air lifting methods. In addition, a Michigan-licensed surveyor horizontally located each monitoring well utilizing the Michigan State Plane South Zone-2113, North American Datum 1983 (NAD83), International feet. Vertical elevations were measured at the ground surface at each soil boring and monitoring well, and at the top of casing in feet for each monitoring well relative to the NAVD 88. Monitoring well coordinates, elevations, open-hole intervals, and other monitoring well details are included in Table 1.

3.1.4 Detection Monitoring

The SQLF CCR unit groundwater monitoring system, as shown on Figure 2, will serve as the detection monitoring locations pursuant to Title 40 CFR §257.93 and 257.94 of the CCR Rule. Because the uppermost aquifer is in an area where pumping has been performed continuously before CCR disposal began, and will be continued to be dewatered, a continuous inward hydraulic gradient is maintained. As a result, the uppermost aquifer perimeter monitoring wells cannot have been affected by the SQLF CCR unit operations to date, nor could they be in the future under current pumping conditions. Given that groundwater flow is inward toward the quarry, all of the perimeter monitoring wells in the groundwater monitoring system are located in an up gradient position relative to the landfill; therefore, monitoring of the SQLF CCR unit using inter well statistical methods (upgradient to downgradient) is not possible. Instead, based on these hydrogeologic conditions, intra-well statistical approaches are the appropriate method to evaluate groundwater data statistically. Consequently, intra-well statistical tests will be evaluated for use during detection monitoring. Using the data collected from the monitoring well system, a statistical evaluation plan is being developed to evaluate compliance with the CCR Rules.

Section 4 Groundwater Monitoring System Certification

Groundwater Monitoring System Certification per 40 CFR §257.91(f) Sibley Quarry Landfill Trenton, Michigan

The U.S. EPA's Disposal of Coal Combustion Residuals from Electric Utilities Final Rule Title 40 CFR Part 257 §257.91 requires that the owner or operator of an existing CCR unit install a groundwater monitoring system. The owner or operator must obtain a certification from a qualified professional engineer stating that the groundwater monitoring system has been designed and constructed to meet the requirements of Title 40 CFR §257.91.

CERTIFICATION

I hereby certify that the groundwater monitoring system presented within this document for the SQLF CCR unit has been designed and constructed to meet the requirements of Title 40 CFR §257.91 of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.91.

<u>Name</u>	Expiration Date	
David B. McKenzie, P.E.	October 31, 2017	DAVID B
Company	<u>Date</u>	Engineer E
TRC Engineers Michigan, Inc.	October 13,2017	Commentation of the contract o
		Stamp

Tables

Table 1 Monitoring Well Information Summary DTE Electric Company – Sibley Quarry Landfill Trenton, Michigan

Well Location	Date Installed	Northing	Easting	Ground Surface Elevation (ft AMSL)	TOC Elevation (ft AMSL)	Geologic Unit of Sample Interval	Well Construction	Open Hole Interval Depth (ft BGS)	Dedicated Bladder Pump Inlet Depth (ft BGS)	Dedicated Bladder Pump Elevation (ft AMSL)	Borehole Terminus Depth (ft BGS)	Borehole Terminus Elevation (ft AMSL)
Sibley Quarry La	andfill		T	T	1		1	T	Т	1		
MW-101	7/14/2015	2832.00	2587.40	615.23	617.67	Limestone bedrock	Open hole bedrock	70.00 to 320.00	260.6	354.7	320.0	295.2
MW-102	7/16/2015	3821.60	2394.30	612.62	615.03	Limestone bedrock	Open hole bedrock	18.00 to 270.00	257.6	355.0	270.0	342.6
MW-103	7/15/2015	4635.40	83.10	604.67	607.23	Limestone bedrock	Open hole bedrock	63.00 to 310.00	249.4	355.2	310.0	294.7
MW-104	7/16/2015	1949.90	221.90	605.98	608.39	Limestone bedrock	Open hole bedrock	55.00 to 310.00	250.6	355.4	310.0	296.0
MW-105	3/30/2016	1469.07	3370.82	590.71	593.28	Limestone bedrock	4.75" Open hole bedrock	20.00 to 300.00	235.4	355.3	300.0	290.7
MW-106	3/28/2016	3343.60	71.70	603.99	606.75	Limestone bedrock	4.75" Open hole bedrock	42.00 to 300.00	249.2	354.8	300.0	304.0
MW-107	4/6/2016	5193.15	1841.68	607.51	610.03	Limestone bedrock	4.75", 4.5", and 3.875" Open hole bedrock	60.00 to 271.00	252.5	355.0	271.0	336.5
MW-108A	1/24/2017	174.84	1821.39	590.52	594.06	Sandstone bedrock	5.625" Open hole bedrock	47.00 to 300.00	235.5	355.1	300.0	290.5
MW-108	3/29/2016	961.12	2446.71	600.22	602.96	Limestone bedrock	4.75" Open hole bedrock	80.00 to 300.00	245.3	355.0	300.0	300.2

Notes:

Coordinate System is Sibley Quarry Coordinate System.

Elevation Datum is U.S.C. & G.S. 1929.

TOC: Top of well casing.

ft AMSL: Feet above mean sea level. ft BGS: Feet below ground surface.

GRAY text represents decommissioned monitoring well.

Figures

Appendix A Soil Boring and Monitoring Well Installation Logs

RECORD OF MONITORING WELL: MW-101

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 2832.20 E: 2587.40
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/14/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 1 OF 7

DATUM: Local

N. 2032.20 E. 2307.40 Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/20	015																						IIN	ICLINATION: -9	0°
DEPTH SCALE THEET DRILLING METHOD AND	STRATA PLOT	ELEV. DEPTH (ft)	No.	Ē	USH RI		in acture ECO AL E %	VEF S0	Ortho Cleava	6	Sha PL-F CU-I UN-I I ST-S IR-Ir RQI %		FRA IND PER	CT. EX 0.3	DII	s Ind Bidded Bid		ACE	HY CON k	Felds DRA IDUC , cm/	ULIC	- 1	2 DIAMETRAL 4 POINT LOAD 6 INDEX (MPa)	PIEZOME STANDP OR THERMIS INSTALLA	TOR
Grass/Gravel (SC) CLAYEY SAND, Hetterogeneous, sub angular, trace to some GRAVEL, poorly graded (0-10'), well graded (10-58') - 10 - 25 - 25 - 35 - 40 Grass/Gravel (SC) CLAYEY SAND, Hetterogeneous, sub angular, trace to some GRAVEL, poorly graded (0-10'), well graded (10-58') - 35 - 40 - 45		615.23																						5" Black steel casing	
CONTINUED NEXT PAGE		1	_+	+	_	$ \cdot $	ţΗ	-		\parallel	+	\parallel	+ -		<u></u>		 	_	_ -	-	1	+	$\parallel \parallel$		
DEPTH SCALE 1 in to 6 ft					(A	G	io 50	ld ci	er at	es	<u> </u>				SIFICA GED HEC	: Ste	phe	n Ta	tum			

RECORD OF MONITORING WELL: MW-101

CLIENT: DTE PROJECT: Sibley Quarry Closure LOCATION: Sibley Quarry N: 2832.20 E: 2587.40 Survey Provided by: DTE Energy's Surveying

DRILLING DATE: 7/14/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 2 OF 7

DATUM: Local

Survey	Provid) E: 2587.40 ded by: DTE Energy's Surveying Service, Dated 8/26/20	015																						IIN	CLINATION: -90	
FEET FEET DRILLING RIG	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	No.	<u> </u>	NSH RUI		ECOV	OR-Or CL-Cl€	ID E %	nal S	hape L-Plan U-Cun N-Und T-Step R-Irregi	pped ular Fi It Pt	Ro PO K-S Ig SM Ro- VR- RACT NDEX ER 0.	T. 1 3 C		.r.t. AXIS	illing Brocken Rock Ep-Epidote Py- Biolitie Fe-Iron Qz- Clay Go-Gouge Sa- Chloritie Gr-Gravel Se- Calcite He-Hematite Qfs CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	CC	e irtz Fe HYDF DNDU k, c	eldspar	Sulphid -Other r LIC VITY	- NIAMETRY	6 INDEX (MPa)	PIEZOMET STANDPII OR THERMIST INSTALLAT	PE OR
			-			1	T		T	ΪΪ	4 2		11	1	ΤŢ			5 65		Τī	Ī	Ť	Ť		140		
55		(SC) CLAYEY SAND, Heterogeneous, sub angular, trace to some GRAVEL, poorly graded (0-10'), well graded (10-58') (continued)		557.00																							
60	_	(CL) SILTY CLAY LIMESTONE, Homogeneous, angular, calcareous		557.23 58.00 555.23 60.00																						5" Black steel casing	
65																											
70	(;',2:bL																										inimina.
92 TH-55 Rotary Rig	Air and Water Rotary (Casing:5";)																										
80	Air																										
85																										4.75"	
90																											
95																											
			薜																								
100	Lļ				$\vdash \downarrow$	- 🚽	- -	$\downarrow \downarrow$	- ∐	╽.	$\parallel \parallel$	\mathbb{H}	-	- -	.	\parallel	$\ \ $	$\ \cdot\ $		$ \cdot $	4	4	4-	4	$ \downarrow \downarrow $		
		CONTINUED NEXT PAGE						Щ		\coprod	Щ								SOIL CLASSIFIC	<u> </u>	ON	SV	STE	ΙV.			
DEPT	H S	CALE							A		C.	ر مار	de ia	10					LOGGEI								
1 in to	6 ft						1	Z	J	Ā) TJ 122	UC JI(ia.	1 te	2				CHEC	KEI	D: E	3. Jo	ohns	son			

RECORD OF MONITORING WELL: MW-101

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 2832.20 E: 2587.40
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/14/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 3 OF 7

DATUM: Local

Ourvey i lovided b	by: DTE Energy's Surveying Service, Dated 8/26/2015																					CLINATION: -90°	
DEPTH SCALE FEET DRILLING RIG DRILLING METHOD	DESCRIPTION	STRATA PLOT (tj) H1dad STRATA PLOT	No. PENETRATION RATE	FLUSH COLOUR RETURN	TOTAL CORE 9	COVE	SOLID CORE 9	act ogonal /age	RQE %	itepper regular	FRAG INDI PER	CT. EX 0.3	DIP CORE	gh Ca DIS w.r.t. E AXIS	n-Chlorite Gr-Gravel Se n-Calcite He-Hematite Qfs SCONTINUITY DATA	C	HYE ONE	Su Oti Feldsp DRAU DUCT cm/s	Silt -Sulphic h-Other ar JLIC FIVITY sec	DIAMETR	POINT LOAD INDEX (MPa)	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	
		0)	++	+-	8848	× ×	884	1 5	884	1	TT	2 2	Ť	88 TT		+	Ţ		, ž	,	140		
- 100																						4.75"	
	CONTINUED NEXT PAGE				Щ		Ш	Ш		Ш	Ш	Ш			<u> </u>	L				Ш	Ш		
DEPTH SCAL	E.E.				Ĵ		As	30 50	ldo ci	er at	es	<u> </u>			SOIL CLASSIFIC LOGGEI CHEC	D: S	Step	oher	n Tatı	um			

RECORD OF MONITORING WELL: MW-101

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 2832.20 E: 2587.40
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/14/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 4 OF 7

DATUM: Local

		ovided by: DTE Energy's Surveying Service, Dated 8/26/20	<u> </u>					_	_	_	_	_	_	_		_					_				CLINATION90	
DEPTH SCALE FEET	DRILLING RIG	DESCRIPTION	STRATA PLOT (#)	тн	PENETRATION RATE (m/min)	CO RE	TOTA CORE	ear n cture ECO	VER	Y LID RE %	nal S e IF	QD %	ed lar FR INI PEI	Ro-R VR-V ACT. DEX R 0.3	Smooti lough 'ery Ri DI COI	D D P w.r.t RE AX		He-H	ATA JRFACE	CC	te artz Feli HYDR DNDU k, cri	AULIC ICTIVIT n/sec	; TY	DIAMETRAL POINT LOAD INDEX (MPa)	PIEZOMETER STANDPIPE OR THERMISTOR INSTALLATION	
			· σ	+	+	ш	888	28	88	20 40	88	11	5	258	Ĥ	888 TT	3 J			+		5 5	2	0 4 9		
- 150 155 170 170 180 180	THSS ROADS ROBERT ROBERT	LIMESTONE, Homogeneous, angular, calcareous (continued)	DEP.	ΤΗ	PENETRATION RAT (m/min)	RLUSH COLOI RETUI	SH-She VN-Veir FR-Fra RI	ear n cture ECO	FO-Fe CO-C OR-O CL-CI VER	oliation contact orthogor leavage Y LID RE %	nal S e IF	N-Undi T-Step R-Irregu	ed lar FR INI PEI	SM-S Ro-R VR-V ACT. DEX	Smooti lough 'ery Ri DI COI	ough (Ca-Calcite DISCONTIN	NUITY D	ATA JRFACE	a-Sand e-Sericit fsp-Qua	te artz Feli HYDR DNDU k, cri	Su-Sulp Oth-Oth dspar AULIC	; TY		OR THERMISTOR	
185 185 190 190 195		CONTINUED NEXT PAGE								+																-
		ı				ш		₹	*	++	ш		ш	ш		11	SC	OIL CL	ASSIFIC	CATI	ON	SYST	TEM	<u> </u>		
DEF	PTH	SCALE				4	Ž	À		C.	.1.	ا م							OGGE							
1 in						1	J	7	/	U(U.(اعب	ι to	c					CHE							
2	.0 0	••					4		A	33	UC	<u> 1d</u>	w	<u> </u>												

RECORD OF MONITORING WELL: MW-101

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 2832.20 E: 2587.40
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/14/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 5 OF 7 DATUM: Local

DEPTH SCALE FEET DRILLING RIG	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	No.	₹ È	HSU.	Type IN-Joir ELT-Fa SH-Shi /N-Vei R-Fra R TOTA CORE	ECO AL E %	VEF	ion act igona age	D	ed ar FR INI PEI	Ro- VR-	Roug Very	oth h Roug	DIS v.r.t.		Se- Qfs	cc	e rtz Fe	Oth RAU UCT m/se	Sulphi -Other ar ILIC IVITY ec	1	2 DIAME I KAL 4 POINT LOAD 6 INDEX (MPa)	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
- 200 2010 205 205	(Casing:5";)	LIMESTONE, Homogeneous, angular, calcareous (continued) DOLOSTONE, Homogeneous, angular, calcareous		395.23 220.00						88			97	+												4.75"
DEPTI		CONTINUED NEXT PAGE																SOIL CLASS	IFIC	ATI	ON	SY	STE	EM:		

RECORD OF MONITORING WELL: MW-101

CLIENT: DTE PROJECT: Sibley Quarry Closure LOCATION: Sibley Quarry N: 2832.20 E: 2587.40 Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/14/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 6 OF 7 DATUM: Local

DEPTH SCALE FEET DRILLING RIG	DRILLING METHOD	DESCRIPTION	PLOT	No. PENETRATION RATE	(min) COLOUR	JN-J FLT- SH-S VN-V FR-F	oint Fault Shear /ein racture	BD- FO- CO- OR- e CL-	Beddir Foliati -Conta -Ortho Cleava	ng on ict gonal age	PL-P CU-C UN-U ST-S IR-In	lanar Curveo Indula teppe regula	ting s	PO-Po K-Slick SM-Sr Ro-Ro /R-Ve	mooth	ugh C	h-Chlorite Gr-Gravel Se a-Calcite He-Hematite Qf		ricite Quartz	z Feld		lphide ther	ETRAL	POINT LOAD INDEX (MPa)	PIEZOME STANDF OR THERMIS	PIPE
H H	DRILLING	2000	STRATA PLOT (#) TABEL STRATA PLOT	PENETRY 2	FLUSH	CO	TAL RE %	S	S 4 8	,	RQE %		FRA IND PER	0.3		DI:			k	k, cm	AULIO CTIVI 1/sec			POIN-	INSTALLA	ATION
255	Air and Water Rotary (Casing-5".)		315.2	3 3																					4.75"	
\perp		CONTINUED NEXT PAGE				Ш	Ш	Ш		Ш		Ш		Ш	Ш		SOIL CLASSIFIC	Ţ					Ш	Ш		

RECORD OF MONITORING WELL: MW-101

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 2832.20 E: 2587.40
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/14/2015

DRILLING CONTRACTOR: Pearson Drilling Co.

SHEET 7 OF 7 DATUM: Local

Surve	ey Pro	vided by: DTE Energy's Surveying Service, Dated 8/26/20	015																							IIN	CLINATION: -90°
DEPTH SCALE FEET	DRILLING RIG	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	No.	(m/min)	FLUSH % RETURN	Type N-Join LT-Fa SH-She N-Veir R-Fra TOTA CORE	t ult ear cture	BD-B FO-F CO-C OR-C CL-C VER' SO COF	edding oliation contact orthogo leavage Y	onal e	Shape PL-Pla CU-Cu UN-Un ST-Ste IR-Irre	inar irved idulat epped gular	FRACE INDE	CT. EX 0.3	DIP CORI	Inf Brad Bt- Cl- Chigh Ca DIS w.r.t. E AXIS			CO	e rtz Feli IYDR INDU k, cr	Si-Silt Su-Su Oth-O dspar AULI ICTIV n/sec	C ITY	2 DIAMETRAL 4 POINT LOAD		PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
- 300	TH-55 Rotary Rig Air and Water Rotary (Casing:5";)	SANDSTONE, fine grained, well sorted		300.00																							4.75"
- - - 315 - - - - - - 320 -	Airan	End of Borehole.		295.23 320.00																							
- 325 330 																											 - - - - - - -
- 335 340 																											- - - - - - - -
- 335 - 335 - 340 - 340 - 345 - 350 DEF		SCALE ft									Ge		de						SOIL CLASS	GED): St	eph		Γatu	m		

RECORD OF MONITORING WELL: MW-102

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 3821.60 E: 2394.30
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 1 OF 6 DATUM: Local

DEPTH SCALE FEET	DRILLING RIG	DRILLING METHOD	DESCRIPTION Ground Surface (CL) CLAY, Gravely CLAY, brown,	STRATA PLOT	ELEV. DEPTH (ft) 612.62 0.00	No.	(m/min)	USH RETU	ear n icture ECO	FO-F CO-C OR-C CL-C VER		n C t U onal S je II	Shape PL-Plar CU-Cui JN-Und ST-Step R-Irreg	ved dulatin oped jular FI It	K-	o-Rou R-Ven CT. EX D.3	enside ooth gh y Rou DIP	Ch igh Ca	-Clay Go-Gouge Sa- n-Chlorite Gr-Gravel Se- a-Calcite He-Hematite Qfs SCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	-Sar -Ser isp-C	ricite Quartz HY CON k	Felds DRA DUC , cm.	ULIC	Υ	2 DIAMETRAL 4 POINT LOAD 6 INDEX (MPa)		TOR TION
- 5 - 10	Track Mounted Sonic Drill	Sonic (Casing:4 in. Casing;)	coarse gravel, stiff, w <pl, non-plastic.<="" th=""><th></th><th>0.00</th><th>1 2</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>5" Black steel casing</th><th>атантай тапотапинатапатапананай паказатапананай тапотапанай. Макника капана паказатапана паказатапана паказатапана паказатана ка</th></pl,>		0.00	1 2								_												5" Black steel casing	атантай тапотапинатапатапананай паказатапананай тапотапанай. Макника капана паказатапана паказатапана паказатапана паказатана ка
- 15 -		-	LIMESTONE, fossiliferous, light gray, multiple stylolites.		596.12 16.50									-													antinerimiration Antinerimiration
- 20						3																					
- - - 25						4																					
- 30						5]]]													
	Track Mounted Sonic Drill	PQ Coring		异		6																				4.75"	
- 40 - 45						7																					
- 50	_		CONTINUED NEXT PAGE				+	_			\prod	 -		<u> </u>	- -	-				}-	-	-		_	.		_LL
DEI 1 in			CALE					(G	olo	de cia	r	26				SOIL CLASSIFIC LOGG CHEC	ЭΕI	D: B	riar	ı Eu	stic	е		

RECORD OF MONITORING WELL: MW-102

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 3821.60 E: 2394.30
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015

DRILLING CONTRACTOR: Cascade Drilling

SHEET 2 OF 6

DATUM: Local

Surve	ey Provi	ded by: DTE Energy's Surveying Service, Dated 8/26/2	015																						ı	NCL	.INATION: -90°	
DEPTH SCALE FEET	DRILLING RIG DRILLING METHOD	DESCRIPTION	1 2 1	ELEV. DEPTH (ft)	No. PENETRATION RATE	(m/min)	E S		COVE		nogona avage D %	Sh PL CL UN ST IR- RC %	6	FR. INI PEI	Rou FO-I K-Sli SM-I Ro-F VR-V	Rough Very F	tougii	DIS	Bibling Brocken Rock Ep-Epidote Biblite Fe-Iron Co. Clay Go-Gouge Se-Calcite He-Hematite Of CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	7	icite Quartz HY CON k	Felds DRA IDUC	ULIC	Y	2 DIAMETRAL 4 POINT LOAD 6 INDEX (MPa)	-	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	
- 50 -		LIMESTONE, fossiliferous, light gray, multiple stylolites. (continued)																										
- 55		LIMESTONE, brownish gray, many large round fossils LIMESTONE, gray, angular bedding LIMESTONE, brownish gray,		554.12 58.50 549.72 63.30	8																							
- 65	orill	horizontal bedding			10																							
- 75	Track Mounted Sonic Drill PQ Coring	LIMESTONE, brown, thin-very thin horizontal beddding LIMESTONE, gray, deformed bedding, synclinal folding		538.42 74.20 534.02 78.60	11																						4.75"	
- 85		LIMESTONE, gray, brecciated LIMESTONE, brownish gray, thin horizontal bedding		530.42 529.72 82.90	12																							
- 90		LIMESTONE, light gray, non-laminar bedding LIMESTONE, gray to brownish gray, horizontal wavy bedding		515.92 96.70 514.82 97.80	13																							
- 100			+++			-	+	+	H	H	+	\parallel	H	+	+	+	$\left. \right $	$\left. \right $	 -	-	-	┨-	$\dashv \dashv$	+	H	- -		.L
	PTH S	CALE					(Ż		As		⊔ ld oc	⊔⊔ ler <u>iat</u>	∐ te:	⊔ <u>s</u> _		11		SOIL CLASSIFIC LOGG CHEC	GED	D: E	Briar	ı Eus	stice	е	1		_

RECORD OF MONITORING WELL: MW-102

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 3821.60 E: 2394.30
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 3 OF 6 DATUM: Local

DEPTH SCALE FEET	SIG SINI IIIGU	DELLING AND	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	NO. PENETRATION RATE	(m/min)	USH RETU	ault ear in acture ECC AL E %	COI	oliatio contac orthog leavaç	onal :	UN-U ST-St	urved ndulat epped egular	ting S	Ro-Rou /R-Ver CT. EX 0.3	ensidenooth ugh ny Rou DIP COR	ed Br C C ugh C	t-Biotite Fe-Iron Qz. I-Clay Go-Gouge Sa- th-Chlorite Gr-Gravel Se- ta-Calcite He-Hematite Qfs SCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	С	tz ite artz Fe HYD OND	Oth eldspa RAU UCT cm/sa	Sulphic i-Other ar ILIC IVITY ec	DIAMETRAI	6 INDEX (MPa)	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	
- 100 - -			LIMESTONE, gray to brownish gray, horizontal wavy bedding (continued)																								-
- - 105 - - -			LIMESTONE, gray, thicker (~0.5") bedding, wavy, non-laminar LIMESTONE, light gray, thick (0.5-5") bedding LIMESTONE, thin bedding, brownish gray and black layering LIMESTONE, thick bedding with cross cutting		508.52 104.10 507.32 506.42 106.60	14																					
— 110 - - -			LIMESTONE, brownish gray with thin horizontal layers LIMESTONE, large wavy stylolite marks change in color to gray LIMESTONE, brownish gray, thin mostly horizontal bedding		109.60 501.92 110.70 500.22 112.40																						-
— 115 - -			LIMESTONE, gray, thick bedding LIMESTONE, brown, thinly bedded		497.72 496.82 115.80 494.02	15																					-
- 120 - -			LIMESTONE, sharp contact at 118.6, goes from brown to gray LIMESTONE, light gray, friable, thinly bedded (~1mm) LIMESTONE, brown-brownish gray, fractured, thinly bedded		493.22 119.40 491.72 120.90	16																					-
_ 125 	Track Moun	DO Coring	Po Conng			17																				4.75"	-
- - -			LIMESTONE, gray fragments in a light gray cement. Breccia LIMESTONE, brown-brownish gray, fractured, thinly bedded LIMESTONE, light gray, thin wavy		477.52 476.82 135.80 474.42 138.20																						
1355			bedding, stylolites LIMESTONE, brown-brownish gray, thin horizontal bedding LIMESTONE, gray, thin horizontal bedding		472.62 140.00 471.12 141.50																						- - -
145 — 145			LIMESTONE, brownish gray, deformed wavy bedding LIMESTONE, brownish gray, thin horizontal bedding. Broken into many small pieces 148.5-150ft		467.62 466.62 146.00	20																					-
150 — 150			CONTINUED NEXT PAGE		.52.02							İ				+ -			SOIL CLASSIFIC	\	ION'	6)	(STF	N4-			
DE 1 ii			H SCALE 6 ft					(A	G ss	ol O	de cia	er at	es	<u> </u>			LOGG CHEC	ED	: Bri	ian	Eust	ice			

RECORD OF MONITORING WELL: MW-102

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 3821.60 E: 2394.30
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 4 OF 6

DATUM: Local

Surve	ey F	Provid	ded by: DTE Energy's Surveying Service, Dated 8/26/20	115																							IIN	ICLIN	IATION: -90°	
DEPTH SCALE FEET	DRILLING RIG	DRILLING METHOD	DESCRIPTION	1 A I	ELEV. DEPTH (ft)	No.	PENETRATION RATE (m/min)	USH COL	Type JN-Joir FLT-Fa SH-Shi VN-Vei FR-Fra R TOTA CORE	ear in acture ECO AL E %	VER S0	Ortho	gonal	Sha PL- CU- UN- ST- IR-I	įD	FRA INI PEF	ROL PO-I K-SI SM- Ro-F VR-1 ACT. DEX R 0.3	Rough Very I	ess ned isided oth h Roug	DIS r.r.t.	Filling Brocken Rock Ep-Epidott Biblite Fe-Iron Clay Go-Gouge -Chlorite Gr-Gravel Calcite He-Hemat SCONTINUITY DATA TYPE AND SURF, DESCRIPTION	Qz- Sa- Se- tite Qfs	CC	ertz Feli IYDR INDU k, cn	Si-Silt Su-Sulj Oth-Ot dspar AULIC CTIVI n/sec	C TY	2 DIAMETRAL 4 POINT LOAD 6 INDEX (MPa)		PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	
- 150 155 160			deformed wavy bedding, many small voids thin horizontal bedding, many small voids seam of mostly void spaces in gray Limestone completely crushed, fine sand - large gravel size pieces of Limestone LIMESTONE, gray, thinly bedded, small voids with crystals		461.92 150.70 452.02 160.60	21 22																								
- 165 - - -			LIMESTONE, light gray, deformed bedding, many small voids throughout, some filled with crystals LIMESTONE, gray-dark gray, thin horizontal bedding		164.00 447.22 165.40 443.52	23																								- - -
- 170 - - - - - 175	Mounted Sonic Drill	PQ Coring	voids, many brown crystals LIMESTONE, gray-dark gray, thin horizontal bedding		169.50 436.42	24																							4.75"	-
- - - - 180	Track N		LIMESTONE, gray- dark gray, thin horizontal bedding, many voids, brittle LIMESTONE, brown, thin horizontal bedding, friable, appears fine grained instead of crystalline. LIMESTONE, light brown, fine grain, no bedding, calcite filled vertical		176.20 434.42 178.20 432.62 180.00																									-
185 185		-	graying in color LIMESTONE, light brown-white, some horizontal cracking LIMESTONE gray- dark gray, thin slightly deformed horizontal bedding, stylolites		427.92 185.20	25																								-
190 - 195 -			LIMESTONE, gray, thin horizontal bedding, large crystal filled voids, many small voids throughout		<u>422.62</u> 190.00	26																								-
200	_ '		CONTINUED NEXT PAGE															Ī												
DEF			CALE					(A	G	oi 50	ld ci	ler iat	te	<u>s</u>					SIFIC OGG CHEC	ED:	Bria	n Eu	stic	е			

RECORD OF MONITORING WELL: MW-102

1 in to 6 ft

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 3821.60 E: 2394.30
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015

DRILLING CONTRACTOR: Cascade Drilling

SHEET 5 OF 6

CHECKED: B. Johnson

DATUM: Local

FEET DRILLING RIG	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	No. PENETRATION RATE	(m/min) COLOUR		Fault hear	FO-F CO-G OR-G CL-C	Cleava	on ct gonal ige	UN-U ST-S	Durved Indula teppe egula	d lating S	K-Slick SM-Sr Ro-Ro VR-Ve CT. EX	ery Rou	ed Bt- Cl- Ch ugh Ca	I-Clay Go-Gouge Sa- h-Chlorite Gr-Gravel Se- a-Calcite He-Hematite Qfs SCONTINUITY DATA TYPE AND SURFACE	Pyrite Quartz Sand Sericite p-Qua	te artz Fe HYDI ONDI	Oth eldspa	Sulphid -Other ir LIC IVITY	DIAMETRAL	POINT LOAD INDEX (MPa)	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
<u> </u>	띰		STF	(ft)	H	FLUSH	88	4 8 E 20		368		8 4	- 1	192			8 8 8 T T	DESCRIPTION	10.0	9 2	10.4	10.3	2	140	
205		LIMESTONE, gray, thin horizontal bedding, large crystal filled voids, many small voids throughout (continued)			27																				
10	-	LIMESTONE, gray-light gray, thicker (up to 0.5") wavy bedding LIMESTONE, grayish brown, thin horizontal bedding		401.62 211.00 398.82 213.80	28																				
Track Mounted Sonic Drill	PQ Coring	LIMESTONE, light gray, thick (~0.5") wavy bedding black seam with fracture at base LIMESTONE, gray, thin horizontal bedding		386.12 226.50 384.82 227.90	29																				4.75"
35		LIMESTONE, light gray, many small black crystals, evidence of bioturbation. LIMESTONE, gray, thin mostly horizontal bedding LIMESTONE, no layering, single bed, small black crystals LIMESTONE, gray, thin mostly horizontal bedding, many small black crystals		381.92 380.92 231.70	30																				
45		LIMESTONE, gray-blue, angular bedding until a stylolite at 240.6 where bedding becomes wavy and deformed LIMESTONE, gray, thin horizontal bedding LIMESTONE, gray, deformed bedding LIMESTONE, gray, thin horizontal bedding LIMESTONE, gray, thin horizontal bedding LIMESTONE, gray, deformed wavy bedding, many stylolites LIMESTONE, gray, thin horizontal bedding, many small voids throughout, some large crystals		372.62 240.00 370.72 369.72 368.62 244.00 367.32 245.30	31																				
50	_	CONTINUED NEXT PAGE	+	JOE.02		†	\Box	††	Ħ	IT	Ш	Ħ	Ħ.	t۲	tl	tH	Щ.	T	ı	1	\forall	7-	††	7† -	

RECORD OF MONITORING WELL: MW-102

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 3821.60 E: 2394.30
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 6 OF 6

DATUM: Local

INCLINATION: -90°

LEE!	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	No.	<u> </u>	≝ ¢	I-Joint T-Fau H-Shea H-Vein R-Frac RE TOTAL	COV	SD-Be O-Fo OC-Co DR-Oi CL-Cle ERY SOL COR	.ID E %	F	Shape	F I P	RACINDE RACINDE	T. X).3	DIP	Int Br- d Bt- Cl- Ch gh Ca DIS w.r.t. E AXIS	Filling -Brocken Ro -Biotite -Clay -Clay -Chlorite -Calcite -CONTINU	ock Ep-Epi Fe-Iror Go-Go Gr-Gra He-Hei UITY DA ^T AND SUF	TA RFACE	cc	e rtz Feld HYDR NDU k, cm	AULIC CTIVI	her C TY	DIAMETRAL POINT LOAD	PIEZOMETEI STANDPIPE OR THERMISTOI INSTALLATIO	: R
50 —		LIMESTONE, brownish gray- gray, thick (1-6") deformed bedding, many large crystals that do not react to HCl, harder than 2 on Mohs hardness scale.		250.00	32																							
95 EPO Circo Patrick VocaT	PQ Coring	many small white crystals easily scratched with fingernail			33																						4.75"	
70 —		End of Borehole.		342.62 270.00																								
30																												
35																												
90																												
00																			SO	IL CLA	SSIFIC	CATIO	ON S	SYS	TEN	1:		

1 in to 6 ft

CHECKED: B. Johnson

RECORD OF MONITORING WELL: MW-103

N: 4635.4 Survey Prov	T: Sibley Quarry Closure DN: Sibley Quarry 40 E: 83.10 rided by: DTE Energy's Surveying Service, Dated 8/26/201	DRILLING DATE: 7/15/2015 DRILLING CONTRACTOR: Pearson Drilling Co.	DATUM: Local INCLINATION: -90°
DEPTH SCALE FEET DRILLING RIG DRILLING METHOD	DESCRIPTION	ELEV. Company Fig. Fig	THERMISTOR INSTALLATION
- 5 - 10 - 15 - 20 - 25 - 35 - 40 - 45 - 45 - 45	Grass (SC) CLAYEY SAND, Heterogeneous, sub angular, medium gravels in a FLY ASH SANDY CLAY matrix, well sorted ASH, Homogeneous, very fine grained, FLY ASH, well sorted (SC) CLAYEY SAND, Heterogeneous, sub-angular, medium gravel, poorly sorted (CL) SILTY CLAY, Heterogeneous, sub-angular, fine to medium to coarse, trace to some FLY ASH (9-15'), poorly sorted	604 67 	NUMBING BEACK Steel casing 5" Black steel casing
- 50	CONTINUED NEXT PAGE	1	
DEPTH S		SOIL CLASSIFICATION SYSTE LOGGED: Stephen Tatu CHECKED: B. Johns	ım

RECORD OF MONITORING WELL: MW-103

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry

N: 4635.40 E: 83.10

DRILLING DATE: 7/15/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 2 OF 7

DATUM: Local

Survey Provi	 E: 83.10 ided by: DTE Energy's Surveying Service, Dated 8/26/20 	015																								IN	CLINATION: -90°	
DEPTH SCALE FEET DRILLING RIG DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	No.	PENETRATION RATE (m/min)	S S S	TO	ein racturi RECC	OVE	R-Orth -Clea :RY SOLII	D	Sh PL- CU UN al ST- IR-	-Stepp Irregul	ed ar FR	Rou PO-F K-Sli SM-S Ro-F VR-V ACT. DEX R 0.3	Rough /ery R	Rough I IP w.r	Ch-Ca-C	Chlorite Gr-Gravel Se-	z-Qua -Sar -Ser sp-C	artz nd ricite Quartz HY CON	Felds DRA	ULIC	hide er Y	DIAMETRAL POINT LOAD	INDEX (MPa)	PIEZOMETE STANDPIP OR THERMISTO INSTALLATIO	E DR
		STR	(ft)		FE	FLUSH	COF	5 S Æ %	0	S S	%	88			2 2 3	cc	RE A	XIS	DESCRIPTION				p 5	- 1	2 4			
100 Nation Robin (Casings ² ;)	(CL) SILTY CLAY, Heterogeneous, sub-angular, fine to medium to coarse, trace to some FLY ASH (9-15'), poorly sorted (continued) Homogeneous, angular, coarse grained, calcareous, LIMESTONE, poorly sorted, evidence of fossils (85'), darker grain colors (130-170')		551.67 53.00			FILE TO THE TOTAL TO THE T							40	9					DESCRIPTION		104	10,	10 ₂ 10 ₃ 10 ₃				5" Black steel casing	
100	 	臣	 	L-	ļ_	_	$\downarrow \mid$	4	$\downarrow \downarrow$	$\downarrow \downarrow$	-	4	1	$ \!\!\! \perp \!\!\! $	$ \downarrow $	4	4	4		┨-	┨-	ļ.	$\downarrow \downarrow$	4	\parallel	$\downarrow \mid$		ШЦ
	CONTINUED NEXT PAGE							\prod	Ц		\parallel								0011 01 1222	ļ								
DEPTH S											0£	ld	leı ia	r te	s				SOIL CLASSIFIC LOGGEI CHEC	D:	Ste	phe	n Ta	atun	n			

RECORD OF MONITORING WELL: MW-103

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 4635.40 E: 83.10
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/15/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 3 OF 7

DATUM: Local

RECORD OF MONITORING WELL: MW-103

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 4635.40 E: 83.10
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/15/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 4 OF 7

DATUM: Local

Continued Cont	DESCRIPTION DESCR	STANDPIPE OR THERMISTOR INSTALLATION ON THERMISTOR INSTALLATION
100		N 4 ©
195	Homogeneous, angular, coarse grained, calcareous, LIMESTONE, poorly sorted, evidence of fossils (85'), darker grain colors (130-170') (continued)	
CONTINUED NEXT PAGE 4.75' CONTINUED NEXT PAGE SOIL CLASSIFICATION SYSTEM:	- 160 - 165	
Heterogeneous, fine to coarse grained, abundant calcite crystals, LIMESTONE 195 CONTINUED NEXT PAGE SOIL CLASSIFICATION SYSTEM:	THE ROLL OF THE LOCAL PROPERTY OF THE LOCAL	4.75"
SOIL CLASSIFICATION SYSTEM:	Heterogeneous, fine to coarse grained, abundant calcite crystals, LIMESTONE 195 - 195	
DEPTH SCALE LOGGED: Stephen Tatum		
1 in to 6 ft CHECKED: B. Johnson	DEPTH SCALE LOGGED: Stephen Tatum	

RECORD OF MONITORING WELL: MW-103

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry

N: 4635.40 E: 83.10

DRILLING DATE: 7/15/2015

DRILLING CONTRACTOR: Pearson Drilling Co.

SHEET 5 OF 7

DATUM: Local

N: 4 Surve	ey P	35.40 E: 83.10 Provided by: DTE Energy's Surveying Service, Dated 8/	26/2015																			IN	ICLINATION: -90°
DEPTH SCALE FEET	DRILLING RIG	DESILLING METHOD METHOD METHOD	STRATA PLOT	ELEV. DEPTH (ft)	No.	: IŏI	% FR		ure CL		nogona ivage D	Sha PL-I CU- UN- IR-I RQI %	Planar -Curvec -Undula Steppe rregula	d indicating State of the state	Ro-Rou /R-Ver CT. EX	y Rou	DIS	I-Chlorite Gr-Gravel Se- I-Calcite He-Hematite Qfs SCONTINUITY DATA	HYE	Feldspa	Sulphide -Other ar LIC IVITY	DIAMETRAL POINT LOAD INDEX (MPa)	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
		<u> </u> 6	ST	(11)	l l	ū	1 8	848		884		888	28	102			88 TT	DESCRIPTION	10.0	1 0	103	0.4.0	
- 200	_	Listorogonosus fino to coores					Ш	\bot	Ш	4	#	\parallel	Ш	#	Ш	Щ	#					Ш	
- - -		Heterogeneous, fine to coarse grained, abundant calcite crystals, LIMESTONE (continued)																					
- 205 - - - - - 210 -		Homogeneous, angular, fine grained matrix, LIMESTONE																					
- 215 - - - - - 220																							_
- - - 225 -	TH-55 Rotary Rig	Air and Water Rotary (Casing:5";)																					4.75"
- 230 			垚																				
235 BEIGEOTECH STD) BEIGNICE 9/14/																							
National IM Server GINT, GAL, WATONALM Unique Project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) BEtasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) Betasting 97/4/15 The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) The state of the project ID: Output Form BC, DRILLHOLE (GEOTECH S.TD) The state of the project ID: Output Form BC, DRILLHOLE (GEOT																							
GINT_GAL_NATIONALIM Uni		CONTINUED NEXT PAGE		4			-														-		
DEF		H SCALE 6 ft					(Ź		As	30	ld ci	er iat	es	3			SOIL CLASSIFIC LOGGEI CHEC		ohen	Tatu	m	

RECORD OF MONITORING WELL: MW-103

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 4635.40 E: 83.10
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/15/2015

DRILLING CONTRACTOR: Pearson Drilling Co.

SHEET 6 OF 7

DATUM: Local

Pomogeneous anglair, fire grained maters, LIMES TONE (continued) TO T	DRILLING RIG DRILLING METHOD MOITHING METHOD	STRATA PLOT (#) H1dad CABTA (A) (B) (B) (B) (B) (B) (B) (B	2 3 3 3	% FR-Fractur RECO TOTAL CORE %	CO-Contact OR-Orthogon re CL-Cleavage OVERY SOLID CORE %	RQD	FRACT INDEX PER 0.	Very Roug	DISCO	ICITE He-Hematite Qfs ONTINUITY DATA TYPE AND SURFACE	Sericite p-Quartz HYI CONI k,	Su-S Oth- Feldspar DRAUL DUCTI' cm/se	Sulphide Other IC VITY C	DIAMETRA POINT LOA INDEX (MP	STANDPIPE OR THERMISTOR	
The properties of the properti		100		9049	8 6 4 9	1111	D0	1 0 6			Ť	ŤΤ	Ť	249		
CONTINUED NEXT PAGE SOIL CLASSIFICATION SYSTEM:	matrix, LIMESTONE (continued) THER Rolary Mater Rolary (Cashight): THER Rolary Mater Rolary (Cashight): THOMOGENEOUS, angular,	314.67													4.75"	
CONTINUED NEXT PAGE SOIL CLASSIFICATION SYSTEM:			.	_	 	1111	$\downarrow \downarrow \downarrow$	\prod	ЦL		11_	 	4_	$ \downarrow\downarrow\downarrow $.∐
DEPTH SCALE SOIL CLASSIFICATION SYSTEM: LOGGED: Stephen Tatum																
COUGGED: Stephen Tatum					<u> </u>					SOIL CLASSIFIC	ATIO	N SYS	STEN	Л:		_
1 in to 6 ft CHECKED: B. Johnson	DEDTUCCALE				F											

RECORD OF MONITORING WELL: MW-103

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 4635.40 E: 83.10
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/15/2015 DRILLING CONTRACTOR: Pearson Drilling Co. SHEET 7 OF 7

DATUM: Local

Survey Prov	vided by: DTE Energy's Surveying Service, Dated 8/26/20	15																			IIN	ICLINATION: -90°
DEPTH SCALE FEET DRILLING RIG DRILLING METHOD	DESCRIPTION	ATA DE	EV. PTH ft)	No. PENETRATION RATE (m/min)	FLUSH COLOUR % RETURN	Type JN-Join FLT-Fa SH-She VN-Veir FR-Frac RE TOTA CORE	ECOV	BD-Be FO-Fo CO-Co OR-Or CL-Cle /ERY SOL CORI	.ID E %	al ST	QD %	FR/ INI PEF	Roun PO-F K-Slie SM-S Ro-R VR-V ACT. DEX R 0.3	Pery Ro	ough (Ch-Chlorite Gr-Gravel S Ca-Calcite He-Hematite C DISCONTINUITY DATA t. TYPE AND SURFACE	HYE CONE k,	DRA DUC cm/	-Silt u-Sulphi th-Other par ULIC TIVITY sec	r	2 DIAMETRAL 4 POINT LOAD 6 INDEX (MPa)	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
						ΪΪÌ	Ť	ΪΪ		ΪĬ	Ť	T	П	Ť	ΪΪ		Ť	T	Ť	\top	ΪΪΪ	1
Rig 3005 - 3005 -	DOLOSTONE (continuea)																					4.75"
ary (// 2	94.67																			
210 —	End of Borehole.		10.00																			
- 320																						
- 325																						
- 330																						
- 335																						
- 340																						
- 345 - 350																						
DEPTH S								 A	∭ Go	 lc	 lei	∐ te:	<u> </u>				ICATION ED: Step ECKED:	phe	n Tat	tum	1	

RECORD OF MONITORING WELL: MW-104

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 1949.90 E: 221.90
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 1 OF 7

DATUM: Local

DRILLING RIG DRILLING METHOD		STRATA PLOT	ELEV. DEPTH (ft)	No. PENETRATION RATE	(m/min) FLUSH <u>COL</u>	TC	RECO	VER SC CO	leavage	onal S je II	IN-Und ST-Step R-Irregu	FR IN PE	Ro-I VR- RACT. IDEX IDEX IR 0.3	3 CO		DISC r.t. AXIS	chiorite Gr-Gravel Se-Stadite He-Hematite Qfs CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	C	HYD OND k,	RAU DUCT cm/s	JLIC TIVITY		2 DIAMETRAL 4 POINT LOAD 6 INDEX (MPa)	OR THERMISTO INSTALLATIO	
_	Ground Surface		605.98			ΙΪΪ	ÌÌ		Ti	Ĭ	ÌÌ	Ĭ		ÌĬ	ΪĬ			r			Ì	Ť			
0	Topsoil		604.98				П			П				П	П	П		Г							2000
	CLAY with gravel, brown-dark brown, firm, w <pl, at<br="" becomes="" dry,="" stiff="">3ft</pl,>		1.00	1																					25054654545454545454545454545454545454545
5	Gravelly CLAY, dark brown-dark gray, friable, noncohesive, non-plastic, dry		5.00 598.98																						000000000000000000000000000000000000000
o	Gravelly CLAY, dark brown-gray, cohesive, w>pl, small to large gravel		7.00	2																					принальный матинальный принаментальный принаментальный принаментальный принаментальный принаментальный принаме
5	6" seam of small angular gravel with clay at 15ft																								A 5.0 1.0 0.5 BEAU SECTION OF SECTION
Track Mounted Sonic Drill onic (Casing:4 in. Casing:)				3																				5" Black steel casing	naniensenthassunaniensenstaniensensensensensensensensensensensensense
7 Tacl				4																					
0				5								-													айгандаган ангалган байган
0			556.98 49.00	6									+	+					_			+			100002500 110501105025555
						Ш ъ	4	<u></u>	1	Ш	Ш	Ш	Ш	Ш	П	Ш	SOIL CLASSIFIC	L AT	ION	1 S.	I YSTI	EM:	ш		
SEDTLLO	CALE						7À	1	<u> </u>	_1	de cia						LOGGI	ED.	: Br	ian	Eus	tice			

RECORD OF MONITORING WELL: MW-104

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 1949.90 E: 221.90
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 2 OF 7 DATUM: Local

DESCRIPTION E. P.	Surve	ey F	rovid	ded by: DTE Energy's Surveying Service, Dated 8/26/2	015																							IIN	CLINATION: -9		
Library Control (1997) Library Control (1997) But and Control (1997) But an	DEPTH SCALE FEET	DRILLING RIG	RILLING METHOD	DESCRIPTION	TRATA PLOT	DEPTH	No.	PENETRATION RATE (m/min)	COL REI	FLT-Fa SH-Sh VN-Ve FR-Fra R TOT CORI	ault ear in acture ECO AL E %	VER	Foliatio Contact Orthog Cleavag Y OLID RE %	on et jonal ge	CU-C UN-U ST-St IR-Im RQD	urved ndulat epped egular	FRA IND PER	K-Slick SM-Sn Ro-Ro /R-Ve CT. EX 0.3	ensid nooth ugh ry Rou DIP COR	Of ugh Ca DIS w.r.t. E AXIS	h-Chlorite Gr-Gravel Se a-Calcite He-Hematite Of: SCONTINUITY DATA TYPE AND SURFACE	a-Sa e-Se fsp-(ind cricite Quart H' COI	z Feld YDR. NDU k, cm	Su-S Oth-O dspar AUL CTI\ n/sec	ulphid Other IC /ITY	le IVOLUMVIO	POINT LOAD INDEX (MPa)	STANDF OR THERMIS	TOR	
LEMESTONE, mice forcional and control of the contro					S	()		а.	교	889 TT	1 8	88	1 4 8	8	8 4	۵ <u>.</u>	9 2	12 12	11	888 TT	DESCRIPTION	+	Ť	Ť	Ť	Ť	٠	4 9			
abundant white shells antiform folded beading 68-69th LIMESTONE, thick indicatorials bedding, weathered, many small pedding, small folders 25-50 pedding, weathered, many small pedding, many finatures 17-10 pedding, small folders 25-50 pedding, weathered, many small pedding, many finatures 17-10 pedding, small finatur	- - -	Track Mounted Sonic Drill	Sonic	crystalline, some shell fragments, thin			6																								
antiform folded bedding 68-89ft LIMESTONE, thick horizontal bedding, weathered, many small voots, iscused sortly by 10-10 Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding jame, mild reaction to Hz (Hz) have already bedding, exerts well to Hz (Hz) have already bedd	- - - - - 60						7																								
antiform folded bedding 68-69ft LIMESTONE, thick horizontal bedding, weathered, many small voids, reads strongly to ICH Highly nearched to ICH. To all properties of the control of the Highly nearched to ICH Highly nearched to ICH. No recovery. Online reported that interest the ICH Highly reactive to ICH. No recovery. Online reported that interest the ICH Highly reactive to ICH. No recovery. Online reported that interest the ICH Highly reactive to ICH. No recovery. Online reported that interest the ICH Highly reactive to ICH. No recovery. Online reported that interest the ICH Highly reactive to ICH. No recovery. Online regories to ICH. No recovery. Online regori	- - - - 65			abundant white shells			8																								
LIMESTONE, thick horizontal property and the property of the Children and small voids, reachs strongly to HCI Highly reactives by HCI. LIMESTONIE and the property of the pro	- - -			antiform folded bedding 68-69ft			9																								
SANDSTONE, brown, fine grain, massive layering, protus, very slight reaction to HCL Low to no reaction to HCL SANDSTONE, light brown-gray, fine grain, thin bedding, very porous, slight to no reaction to HCL. SANDSTONE, light brown-gray, fine grain, thin bedding, very porous, slight to no reaction to HCL Low to no reaction to HCL. 100 LIMESTONE, gray, thin horizontal bed, stylolites CONTINUED NEXT PAGE SOIL CLASSIFICATION SYSTEM:	— 75	ed Sonic Drill	oring	bedding, weathered, many small voids, reacts strongly to HCl Highly reactive to HCL. LIMESTONE, brownish gray-gray, thin horizontal bedding, many fractures along bedding plane, mild reaction to HCl Medium reaction to HCL No recovery. Driller reported that	++	71.60 532.28 73.70 529.58	10																						4.750		
SANUS IONE, loght, line grain, massive layering, porous, eye slight reaction to HCI Low to no re	- 80 	Track Mounte	PQC	LIMESTONE, gray-brown, thin angular bedding, reacts well to HCl																									4.75		
LIMESTONE, gray, thin horizontal bed, stylolites CONTINUED NEXT PAGE 12 SOIL CLASSIFICATION SYSTEM:	- -		_	massive layering, porous, very slight reaction to HCI Low to no reaction to HCL. SANDSTONE, light brown-gray, fine grain, thin bedding, very porous, slight to no reaction to HCI Low to no		520.38	11																								
LIMESTONE, gray, thin horizontal 99.65 bed, stylolites CONTINUED NEXT PAGE SOIL CLASSIFICATION SYSTEM:	- -						12																								
SOIL CLASSIFICATION SYSTEM:	- 100	_												\parallel			 -	 - -	-	<u> </u>		 -		<u> </u>	ļ.	 -]				∐
				CONTINUED NEXT PAGE								Ш	\prod								0011 01 100:=:						Ţ				
DEPTH SCALE 1 in to 6 ft LOGGED: Brian Eustice CHECKED: B. Johnson				CALE									G	ol	de	er	~				LOGG	3EI	D: I	Bria	n E	usti	ice				

RECORD OF MONITORING WELL: MW-104

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 1949.90 E: 221.90
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 3 OF 7 DATUM: Local

	DRILLING RIG	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	No.	PENETRATION RATE (m/min)	FLUSH COLOUR % RETURN	TO"	Fault hear ein ractur RECO	FO- CO- OR- CL- OVEF	Cleav	tion act ogona vage	CU UN al ST	6	ed lating ed ar FR INI PEI	K-S SM Ro- VR	Rough Very	sided oth n Roug	DIS V.r.t.	-Biotite	Ţ	artz nd icite Quartz HY CON k,	Felds DRA DUC cm/	ULIC	er Y	DIAMETRAL POINT LOAD INDEX (MPa)	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
- 100 · 105			Interbedded layers of brown SANDSTONE and gray LIMESTONE, 1-5mm thick horizontal layers, many fractures		505.08 100.90	13																						
- - - - 110			LIMESTONE, gray-light brown, thin horizontal layers brecciated limestone from 107.9-108.1 ft		499.38 106.60 494.98 111.00																							
- - - 115			wavy stylolites LIMESTONE, gray-light brown, thin horizontal bedding LIMESTONE, gray-brown, very porous, many voids, large crystals		493.28 112.70 490.68 115.30	-																						
- - - 120		-	Interbedded SANDSTONE and LIMESTONE LIMESTONE, gray-brown, thin horizontal bedding		487.78 118.20 485.68 120.30 484.18																							
- 125 -	Mou	PQ Coring	SANDSTONE, brown, porous, thick bedding, weathered, little to no reaction to HCI Low to no reaction to HCI. BRECCIA, limestone fragments Interbedded SANDSTONE and LIMESTONE, brown-gray, porous, and of bedding to 4.27.98 beginnet to		121.80 481.73 480.88 125.10																							4.75"
- - - 130	Track		angled bedding to 127.2ft horizontal to 130ft LIMESTONE, light brown, fine grain, porous, thick bedding, reacts to HCl		475.98 130.00																							
- - - 135 - -			Medium reaction to ĂCL.			16																						
- 135 140 145 150 - DEI			BRECCIA, limestone, brittle LIMESTONE, light brown-gray, thin bedding, many sinuous stylolites LIMESTONE, crystalline, light gray,		462.88 143.10 461.38 144.60 459.98 146.00] "																						
- - - - 150 -			thick bedding, reacts well to HCl Highly reactive to HCL. CONTINUED NEXT PAGE		455.98		_										-	+						-	-	-		
DEI 1 in			CALE					(A	G	60	ld oc	leı ia	te	s				SOIL CLASSIFIC LOGG CHEC	E	D: B	riar	Eus	tice	е	

RECORD OF MONITORING WELL: MW-104

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 1949.90 E: 221.90
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 4 OF 7

DATUM: Local

	d by: DTE Energy's Surveying Service, Dated 8/26/20																								CLINATION: -90°	
DEPTH SCALE FEET DRILLING RIG DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	No. PENETRATION RATE	(m/min) COLOUR FLUSH RETURN		hear ein racture RECO TAL RE %	VER		n C t U onal S je IF	Shape PL-Plan DU-Cur JN-Un- ST-Ste R-Irrec RQD %	rved dulatin pped gular F I P	na Si	M-Sm to-Rou R-Ver	enside ooth	Ch gh Ca DIS w.r.t.	Filling Brocken Rock Ep-Epidote Py- Biotite Fe-Iron Qz Clay Go-Gouge Sa- Chlorite Gr-Gravel Se- Calcite He-Hematite Ofs SCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	i-Sar i-Ser isp-C	nd ricite Quartz HY CON k	z Feld /DRA NDU(Si-Silt Su-Sulp Oth-Oth spar AULIC CTIVIT /sec	: ГҮ	2 DIAMETRAL 4 POINT LOAD		PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	
1 ' 1		t			\top	ŤŤ	ΪÏ	ĬΪ	Ti	Ť	\prod	Ť	T	П	ĬΪ	ŢŢ	1	Ť	Ť	Ť	ΤĪ		11	Ť		
	DOLOSTONE, light gray-whitish, thin horizontal-wavy bedding, reacts to HCl when scratched Low to no reaction to HCL.		150.00																							
	LIMESTONE, dark gray, very weathered/crumbly, many voids and fractures, abundant mineralization LIMESTONE, gray-light brown, thin horizontal bedding		450.58 449.88 156.10	18																						
165	DOLOSTONE, light gray with light brown and black swirling, reacts to HCl when scratched Low to no reaction to HCL.		442.58 163.40	19																						
170	LIMESTONE, light gray, thin horizontal - wavy bedding, weathered,		435.58 170.40																							
unted Sonic Drill	voids LIMESTONE, brownish gray, thin		430.88 175.10	20																					4.75"	
Track M	horizontal bedding, some small voids, reacts to HCl Highly reactive to HCL.																									
185				21																						
190	LIMESTONE, gray, crystalline, thin horizontal bedding, many stylolites becomes more fine grain than crystalline		416.98 189.00																							
195				22																						
200	CONTINUED NEXT PAGE	╁┷┺			+-	$\dagger \dagger \dagger$	$\parallel \parallel$	Ш	$\dagger \dagger$	\dagger	$\parallel \parallel$	+	- +	+	\dagger	Ħ		1-	†-	†-				\dagger		Ш
DEPTH SCA	ALE							A	G ss	ole OC	de cia	r	es				SOIL CLASSIFIC LOGG CHEC	E	D: E	3ria:	n Eu	stic	е			

RECORD OF MONITORING WELL: MW-104

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 1949.90 E: 221.90
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 5 OF 7

DATUM: Local

FEET DRILLING RIG DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	No. PENETRATION RATE	(m/min) COLOUR FLUSH RETURN		ault near ein acture RECO	CO-Ci OR-O CL-Cli	oliation ontact rthogor eavage / _ID E %	nal Si	thape L-Plana U-Curv IN-Undi T-Stepi R-Irregu	ed ulating ped ilar FR IN PE	K-S g SM Ro-	Roug -Very	isided oth h	I Bt-I Cl-I Ch- h Ca- DIS I.r.t. AXIS	-Chlorite Gr-Gravel Se-	-Sand -Serio sp-Qu	d icite uartz HY CON k	Felds DRA DUC , cm	Si-Silt Su-Sulp Oth-Oth spar AULIC CTIVIT /sec	ner : ΓΥ	2 DIAMETRAL 4 POINT LOAD 6 INDEX (MPa)	PIEZOMETE STANDPIPE OR THERMISTO INSTALLATIO	Ē 0R
200	LIMESTONE, gray, crystalline, thin horizontal bedding, many stylolites (continued) weak to no reaction to HCI Low to no reaction to HCL. fractured zone, many		403.48 202.50																						
205	broken/crushed pieces LIMESTONE, light gray, thin-thick bedding, some stylolites, reacts to HCI Highly reactive to HCL.			23																					
210	LIMESTONE, crystalline, light gray-blue layered, thin horizontal		395.08 394.28 211.70																						
215	bedding LIMESTONE, dark gray-brown, thick-thin wavy deformed bedding, reacts when scratched. Low to no reaction to HCL. LIMESTONE, light gray-gray, thin		391.28 214.70	24																					
	horizontal bedding, many small thin voids, likely crystals that were dissolved.																								
220				25																					
Track Mounted Sonic Drill	LIMESTONE, thin wavy bedding,		381.58 224.40																					4.75"	
	thickening with depth LIMESTONE, brecciated LIMESTONE, solid gray layer Stylolite ~0.5" thick with fractures on either side LIMESTONE, light gray-gray, thin-thick horizontal-wavy bedding		380.08	26																					
30	g																								
35				27																					
240								$\frac{\parallel}{\parallel}$																	
245				28																					
	LIMESTONE, fine grain, light brown, thin horizontal bedding, porous, many voids, abundant white non reactive crystals		360.38 245.60																						
250	CONTINUED NEXT PAGE			\vdash	-	H		+	\mathbb{H}		\parallel	+	+	+	\parallel	H.	 	-	-	-	+	-	$\cdot + +$.	. L l
		-1						-	щ				- 1		_		SOIL CLASSIFIC	TAC	гю	N S	YST	EN	1:	•	

RECORD OF MONITORING WELL: MW-104

PROJEC CLIENT:	T No.: 1530539 / 0002		REC	ORI) (DF	MC	NC	IT	OF	ΚIN	1G	W	/E	LL	: I	۷V	V-104								OF 7 Local	
PROJEC LOCATIO	T: Sibley Quarry Closure DN: Sibley Quarry											ΓE: T					cade	e Drilling					·	J, (1			
	90 E: 221.90 rided by: DTE Energy's Surveying Service, Dated 8/26/20	15			_	· I:	Type					Shana		D,	nuahi	naee	Inf	filling	_					_	INC	CLINATION: -90°	
DEPTH SCALE FEET DRILLING RIG DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	No.	(m/min)	USH %	TOTA	Cture (ECOV	FO-F CO-C OR-C CL-C VER' SO COF	eavage Y LID RE %	onal S e IF	Shape PL-Plan PL-Plan U-Cur JN-Und ST-Step R-Irregi	ped ular Fi	RAC NDE	T. X	ooth gh Rou	DIS w.r.t.	-Clay Go-Gouge Sa n-Chlorite Gr-Gravel Sa a-Calcite He-Hematite QI SCONTINUITY DATA	7	nd ricite Quart: H\ CON	z Feld YDR/ NDU(k, cm	Si-Silt Su-Su Oth-O dspar AULI CTIV n/sec	Other C	DIAMETR	4 POINT LOAD 5 INDEX (MPa)	PIEZOMETER, STANDPIPE OOR THERMISTOR INSTALLATION	
250	LIMESTONE, fine grain, light brown, thin horizontal bedding, porous, many voids, abundant white non reactive crystals (continued)			30 31 32						40		000000000000000000000000000000000000000		100			99			0)	0)	91	31		4 0	4.75"	
	CONTINUED NEXT PAGE						<u>ال</u>	\parallel	<u> </u>	Ц	Ш	Ш			Ш			SOIL CLASSIFIC	CA.	TIC	N S	SYS	 STEM	<u> </u>	Ш		_
DEPTH S						(Ž		A	Go ss	olo <u>00</u>	de: cia	r te	<u>es</u>				LOGO CHE	GEE	D: E	3ria	ın Eı	ustic	се			

RECORD OF MONITORING WELL: MW-104

CLIENT: DTE
PROJECT: Sibley Quarry Closure
LOCATION: Sibley Quarry
N: 1949.90 E: 221.90
Survey Provided by: DTE Energy's Surveying Service, Dated 8/26/2015

DRILLING DATE: 7/16/2015 DRILLING CONTRACTOR: Cascade Drilling SHEET 7 OF 7 DATUM: Local

INCLINATION: -90°

RIG																										
FEET DRILLING RIG DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	No.	PENETRATION RATE (m/min)	HSU	TOTA CORE	ECO	VER	Y DLID RE %	t onal ge	RQD %	Indula tepped egular	FRA IND PER	CT. EX 0.3	DIF	DI w.r.t. E AXI	CI-Clay Go-Gouge Ch-Chlorite Gr-Gravel Ca-Calcite He-Hematite DISCONTINUITY DATA t. TYPE AND SURFAC	_	and ericite -Quart H' COI	tz Feld YDR/ NDU(k, cm	AULIO CTIVI n/sec	C TY	DIAMETRAL		PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
+		S			_	ш	888 TT	% 	88	1 5 8	8	8 4	ρ 	192	£8 ∏) S	888 	8 52001111 11011	\dashv	7	Ť	10.4	10	2 4	9	ł
Track Mounted Sonic Drill PQ Coring	LIMESTONE, fine grain, light brown, thin horizontal bedding, porous, many voids, abundant white non reactive crystals (continued)			34																						4.75"
310		井	295.98				Ш	Ш	Ш	Ш	Щ	Щ	Ц	Ш	Ш	Ш	Ш									
115	End of Borehole.		310.00																							
130																										
135																										
145																										
150																										

1 in to 6 ft

CHECKED: B. Johnson

,6													7 (9	O. M\ Page 1		
acility	/Projec	t Name	e:					Date Drilling Start	ed:	Date	Drilling	Complet	ed:		t Number:	
			D	TE: Sibley	Quarry C	CR		3/22/16	3		3/30	0/16		2318	328.000	2.000
Orilling	Firm:				Drilling Me			Surface Elev. (ft)		OC Elevati			Depth	(ft bgs)	Borehole	
	S	tock I	Orillin	a	М	ud/Wate	r Rotary	590.71		593.2	8	:	300.0	0	8"/4	.75"
oring				p house, E of			0 357950.	Personnel				Drilling	Equi	pment:	100110	1,000
1. 146	SQ 07	E. 3	370.82					Logged By - C. S Driller - J. Bacon		ka				CME	750Y	
	P.L. L. C.	y/or Vil		County:		State:		Water Level Obse	0.7	ns:				CIVIL	7507	
		75 -	.ugu.	V 3 244		O.C.C.		While Drilling:	I	Date/Time					h (ft bgs)	
T. E. T. E.	Trer	iton		Wa	yne		MI	After Drilling:		Date/Time	4/19/	16 18:45	7	- Dept	h (ft bgs)	23.2
SAMF	PLE															
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET				LITHOLOGI DESCRIPTIO				nscs	GRAPHIC LOG	WELL DIAGRAM	C	OMMEI	NTS
								to few sand, trac	e cla	y, /	-		1			
			-				dry, loose.	, little to some sil	t [j##	le	162		1	1		
			" o					ine to coarse gra			CL-		11	1		
			40	brown (*				(10YR 2/1), no o		moist,	ML		11	1		
			10-	stiff.									11	1		
Ш			1										11	1		
			1	LIMEST	ONE gra	y to whit	e, high react	ion to HCL.				Í				
			0-	0.0000	- T		AC-FACTORY				1 7		1	1		
			20 —										1		e casing set	
4				Ā								\Box		peiow (ground surfa	ice.
			1 5	SANDS	TONE CO	arse gra	ined, brown.	brittle, high read	tion	to						
			-	HCL.												
			30 —													
Ħ			-													
Ш																
			5													
			40 —	LIMEST	ONE da	rk gray to	gray, trace	to few black frag	men	ts	-					
+			1	present,	, medium	reaction	to HCL.				- 1					
			-	HCL.	IUNE CO	arse gra	inea, brown,	brittle, high read	tion	10						
	9				ONE dai	rk grav to	gray, trace	to few black frag	men	ts	1					
			50 —		, slight re				-1,100,00	A.	1	ΗĖ				
#			1	SANDS	TONE fin	ne graine	d. brown bri	ttle, very slight re	eaction	on		7.7.5				
				to HCL.	9-2-1 -1 -140	3.30		-, -, -, -, -, -, -, -, -, -, -, -, -, -		5/1		1				
M				1000												
			60-								1					
+			1				445									
			1 02	LIMEST	ONE gra	ay, little c	alcite crystal	s, medium to hig	ın			出				
												H				
			70 —	SANDS' HCL.	IONE fir	ne graine	d, brown, bri	ttle, slight reaction	on to							
+			0		ONE are	v to darl	c gray no ca	lcite crystals, me	diun	n to						
			3.4	high rea	action to h	HCL.	. g. ~ j , 110 oa									
اار			7													
			80-		TONE fir	ne graine	d, brown, bri	ttle, medium rea	ction	to		1				
#				HCL.												
		6 U	11									1	ı I I	TI.		

Checked By: R. Pulliam

		T	RC	WELL CONSTRUCTION LOG		WEL		0. MW-105 Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	uscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
10 AU 11 AU			90-	Change to trace to few limestone cuttings mixed with sandstone cuttings, slight reaction to HCL at 85 feet. Change to no limestone cuttings at 92 feet.				
12 AU			110-	LIMESTONE grayish brown to bluish gray, flat angular cuttings, medium reaction to HCL.				
13 AU			120-	Change to grayish brown, slight reaction to HCL at 112 feet.				
14 AU 15 AU			130-					
16 AU			140-	Change to medium reaction to HCL at 142 feet.				
17 AU			160-					
18 AU			170	FRACTURE 170 to 171 feet. LIMESTONE grayish brown, slight reaction to HCL.				
19 AU 20			180-	Change to high reaction to HCL at 182 feet.				
20 AU			190-	Change to gray at 190 feet. Change to medium reaction to HCL at 192 feet.				

SAM	/PLE							Page 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
22 AU			200	Change to few to little black fragments present, slight to medium reaction to HCL at 202 feet. SANDSTONE brown to yellowish brown, fine grained, calcite				
			210-	crystals present, slight to medium reaction to HCL. Change to dark brown to black at 212 feet.				
23 AU			220-					
24 AU			-	LIMESTONE dark gray to dark grayish brown, angular cuttings, trace to few crystals, slight to medium reaction to HCL.				
05			230	cuttings, trace to few crystals, slight to medium reaction to HCL.		H		
25 AU			240			H		
26 AU			-			Ħ		
			250			Ħ		
27 AU			260			Ħ		
28 AU			-			H		
			270 —			Ħ		
29 AU			280 —			H		
30 AU			-					
31 AU			290	SANDSTONE white, fine grained.				No recovery from 290 to feet. Cuttings in mud-par likely sandstone too fine sieve.
AU			300	End of boring at 300 feet below ground surface.				

acility/Project Nam		de Trans Trans	CCR	Date Drilling Started:	Date	Drilling	Comple		Page 1	t Number:	000
rilling Firm:	D	TE: Sibley Quarry Drilling M		3/23/16 Surface Elev. (ft)	TOC Elevati		8/16	Denth ((ft bgs)	328.0002 Borehole D	
Stock	Drillin		/lud/Water Rotary	603.99	606.7		1.50	300.0	10.5250	8"/4.7	
		ry, approximately 50 feet		Personnel	000.1			g Equip		0 / 4.1	-
: 3343.60 E: 7	12000000		Lac	Logged By - C. Scie Driller - J. Bacome		4			СМЕ	750X	
vil Town/City/or V	llage:	County:	State:	Water Level Observa While Drilling:	tions: Date/Time				Dept	h (ft bgs)	
Trenton		Wayne	MI	After Drilling:	Date/Time	4/19/	16 10:5	0 1	Dept	h (ft bgs)	189.
SAMPLE (%)	EET		LITHOLOG	IC			90	SAM		OMMEN	т.
AND TYPE RECOVERY (%) BLOW COUNTS	DEPTH IN FEET		DESCRIPTI	ON		nscs	GRAPHIC LOG	WELL DIAGRAM		OMMEN	15
	10— 20— 30— 40— 50— 60—	SILTY CLAY m \(\) grayish brown (\) \(\) COAL ASH WIT \(\) fragments, blace \(\) Change to no cool \(\) SILTY CLAY m \(\) brown (10YR 4/) \(\) \(\) Change to trace \(\) \(\) LIMESTONE graying \(\) \(\) Change to dark	brown (10YR 3/3), no ostly clay, little to son 10YR 4/2), no odor, no H COAL mostly coal at (10YR 2/1), white flucture at 5.0 flostly clay, little to son 3), no odor, very stiff. The to few medium to coal ay, low reaction to House ay, low reaction to House ay, medium reaction and the son ay, medium reaction and the son ay, low reaction to House ay, medium reaction and the son ay, low reaction to House ay, medium reaction and the son a	ne silt, low plasticity, noist, very stiff. ash, little coal ecks, soft. eet. ne silt, low plasticity, barse sand at 25 feet	dark ,	CL-ML			Surface	e casing set at	: 42

Checked By: R. Pulliam

SAM			RC			WEL		D. MW-106 Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
10 AU			90 —	LIMESTONE gray, high reaction to HCL.				
11 AU			100-	Change to grayish brown, low to medium reaction to HCL at 95 feet.				
12 AU			110					
13 AU 14 AU			120	Change to trace to few calcite crystals present, medium to strong reaction to HCL at 122 feet.				
15 AU			130-	Change to no calcite crystals, brown, no to low reaction to HCL at 132 feet.				
16 AU			140					,
17 AU			150-					
18 AU			160	DOLOSTONE dark gray, no reaction to HCL.				
19 AU			170-					
20 AU			180	LIMESTONE little to some calcite crystals, gray to white, low reaction to HCL.	-	7	4 2 1	
21			190-	±		H		

SAM			RO					. MW-106 age 3 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
22			200-	LIMESTONE little to some calcite crystals, gray to white, low reaction to HCL. Change to few calcite crystals at 202 feet.				
3 U			210-					
4 U			220					
5 U			230 —					
6 U			250					
7			260 —					
8 U			270					
ð			280 —					
0			290 —					
1 U			300	End of boring at 300 feet below ground surface.				

acility	Project	t Name					Date Drilling Starte	od.	Date		Complete	P	age 1	V-107 of 3 Number:	
acility	rrojec	t Name		TE: Sibloy C	worn CC	`D	3/23/16		Date		6/16		200	328.000	
rilling	Firm:		D	TE: Sibley C	Drilling Meth		Surface Elev. (ft)		Elevation		Total D			Borehole	
illing		tock I	Drillin			d/Water Rotary	607.51	100	610.0		1 10 10 10 10 10	70.0	12.5	8"/4.75	5.50
orina				ey Road gate, N		u/vvaler rectary	Personnel		010.0		Drilling			0 14.70	70.0
							Logged By - C. S								
			841.68			To: 1	Driller - J. Bacom					C	ME	750X	
IVII I C	own/Cit	y/or Vil	lage:	County:		State:	Water Level Obse While Drilling:		te/Time				Depth	(ft bgs)	
	Trer	iton		Wayı	ne	MI	After Drilling:	Da	te/Time	4/19/	16 07:51	Ţ	Depth	(ft bgs)	153.
SAMF	PLE									1117					
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	TOPPOU	von do	LITHOLOG DESCRIPTI	ON	do		nscs	GRAPHIC LOG	WELL DIAGRAM	С	ОММЕ	NTS
,				\dense. SILTY CL sand, me stiff.	AY mos dium pla	rk grayish brown (1 tly clay, some silt, t sticity, brown (10Yf	race medium to c R 4/3), no odor, dr	oarse y, ver	у	CL- ML					
Į			10	\ at 5 feet. SILTY CL some silt, gravel, lo	AY WITH little me w to med	SAND AND GRAV I SAND AND GRAV dium to coarse san lium plasticity, brow	ÆL mostly clay, lind, little fine to coa	ttle to rse odor,	'	CL- ML	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
1			30-			stly clay, little to so brown (10YR 4/2)		arse							
'												1 11			
			40-							CL					
			50 —												
י ק <u>ר</u>			60-	to HCL.	ONE gray	rish brown to white,	, medium to high r	eactic	n				Surface	e casing se	t at 60
			70-	Change t	o brown	at 72 feet.									
,			80-	Change t	o slight t	o medium reaction	to HCL at 82 feet								

TRC Environmental Corporation 1540 Eisenhower Place Ann Arbor, Michigan

Checked By: R. Pulliam

		T	R	WELL CONSTRUCTION LOG		WEL	L N	O. MW-107 Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	SOSO	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
10 AU			90 — 100 — 110 — 120 — 130 — 140 — 150 — 1	Change to gray, high reaction to HCL at 92 feet. Change to grayish brown, medium to high reaction to HCL at 125 feet. Change to dark gray to gray, styolites present, low to medium reaction to HCL. Change to no styolites at 137.5 feet. Change to slight reaction to HCL at 142 feet. Change to slight to medium reaction to HCL at 152 feet. SANDSTONE fine grained, grayish brown, low reaction to HCL. DOLOSTONE gray to dark gray to grayish brown, no reaction to HCL. LIMESTONE dark gray, little to some calcite crystals present, low to medium reaction to HCL. Change to gray to grayish brown, trace to few calcite crystals present at 177 feet. Change to no calcite crystals present at 181 feet.				Fractured zone at 105 feet, lost return. Advanced 4.5 inch casing to 127 feet, to case off fractured zone. Advanced 4.5 inch casing to 135 feet, to case off fractured zone. Continue drilling with 3 7/8" tri-cone drill bit at 135 feet.
23 AU			190 —					Temporarily lost return, likely smaller fractured zone at approximately 187 feet.

nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
		×	
st. L.			Ended boring due to smal diameter tooling locking u
	t.		t.

acility	/Projec	t Name	e:	1000			Date Drilling Starte	ed: [Date Drilling	Comple	ted:	Projec	t Number:
			D	TE: Sibley			3/21/16			29/16			828.0002.000
rilling	Firm:				Drilling Me		Surface Elev. (ft)	0.000	evation (ft)	1 2 2	Depth (fl	bgs)	Borehole Dia. (in
			Orillin		M	ud/Water Rotary	600.22 Personnel	60	2.96		300.0 g Equipr	nont:	8"/4.75"
			of quar	у.			Logged By - C. S			Dimini			5500
	A PACIFICATION OF THE PACIFIC PROPERTY OF THE PACIFIC	E: 24		County:		State:	Driller - J. Bacom Water Level Obser				(SME	750X
IVII I			laye.			100	While Drilling:	Date/T			1		h (ft bgs)
SAM	Tren	iton		Wa	yne	MI	After Drilling:	Date/T	ime <u>4/19</u>	9/16 13:1	<u>6</u> ¥	Dept	h (ft bgs) 82.15
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	7\(10YR 4	/1), no o	LITHOLOG DESCRIPTI fine to coarse grave dor, moist, loose. tly fine to coarse sar	ON el, trace to few silt,		SSO NSCS	G GRAPHIC LOG	WELL DIAGRAM	c	COMMENTS
			10-	\trace to \\ SAND in \\ (10YR 3 \\ \) present \\ CLAYE\\ trace to \\ loose.	few cind mostly fir 8/1), moth SAND few fine	ers, black (10YR 2/1 he to coarse sand, tra hball odor, loose, son mostly fine to coarse gravel, dark grayish n (10YR 4/3) at 15 fe), moist, no odor, lace silt, very dark one wood fragment e sand, little to son brown (10YR 4/2)	gray s ne clay,	sw / / sc				
			30-	coarse : 4/3), no	sand, fev odor, so		plasticity, brown ((10YR	CL				
, (50 —	SILTY C	CLAY mo	ostly clay, little to sor s), no odor, stiff.	ne silt, low plastici	ty,	CL				
			70 —	LIMEST 76 to 77	ONE gra	ay to dark gray, 1 foo	ot thick soft interva	al from		1			
١,١			80-	▼ Change	to dark	gray , low to medium ts present.	n HCL reaction, da	rker		H			

	APLE .		RO			WEL		D. MW-108 Page 2 of 3
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	SOSN	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
IO AU			90-	Change to dark gray to grayish brown, no dark grained fragments present, high HCL reaction.				
11 NU			100-					
12			110-					
3			120	SANDSTONE fine grained, brown, very slight HCL reaction.				
4			130	LIMESTONE dark gray to grayish brown, no dark grained fragments present, high HCL reaction.				
5 .U			140	DOLOSTONE dark gray, no HCL reaction.				
6 .U			150	LIMESTONE gray to grayish brown, slight HCL reaction.				
7			160	Change to brown at 152 feet.				
8 .U			170—	Change to gray, medium reaction to HCL at 162 feet.				
9 U			180	Change to slight reaction to HCL at 172 feet.				
0			-	Change to medium reaction to HCL at 182 feet.		H		
			190 —	Change to slight reaction to HCL at 192 feet.		臣		

SAMPLE WELL NO. MW							
NUMBER AND TYPE RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		200 — 210 — 220 — 230 — 240 — 250 — 260 — 270 — 280 — 230 — 230 — 230 — 230 — 230 — 230 — 230 — 230 — 230 — 230 — 230 — 230 — 2300 — 23	Change to medium reaction to HCL at 212 feet. Change to high HCL reaction at 252 feet. Change to dark gray to gray, few dark grained fragments, medium reaction to HCL at 262 feet. Change to slight reaction to HCL at 272 feet.				

		T	R (RUCTION LC			W	ÆLL.	NO). MW-108A
acility	y/Proje	ct Name	e:					Date Drilling Started	<u>j:</u>	Date Dri	lina	Complet	ted:	Page 1 of 4 Project Number:
	•			TE: Sibley	Quarry CC	CR		1/23/17	,		•	4/17		265513.0000.00
Drilling	Firm:				Drilling Metho			Surface Elev. (ft)	TOC	l Elevation			Depth	(ft bgs) Borehole Dia. (i
	Pe	arsor	n Drill	ing .	_	lud/Air Rot	tary	590.5		94.06	•		300.	
oring		on: N	of King	Road Approxing, 10 feet S of s	natley 20 feet	W of E acces		Personnel				1		ipment:
l: 17	4.17	su E: 18		ii, ivieet 3 01 5	oustation tend	ue.		Logged By - J. Kre Driller - B. Pearsor						GEFCO 30K
		ty/or Vil		County:		State:		Water Level Observ	vations:					•
	Trei	nton		Way	yne		МІ	While Drilling: After Drilling:				17 00:00 17 10:00		 Depth (ft bgs) <u>50.0</u> Depth (ft bgs) <u>49.1</u>
SAM	PLE				,								_	
AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET				THOLOGIC SCRIPTION				nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
	100		-	plasticity Change	, brown (1 to few fine	0YR 5/3), to coarse	no odor. sand at 2.5							
	i		10-	plasticity	, stiff at 6.	5 feet.	m sand, trac	e gravel, low to	med		CL			
	100		20-	low plast	icity, gray	(10YR 5/1	ay, little med 1), no odor, s at 20.0 feet.	ium to coarse s soft.	and,		CL.			
	100		30 —	(10YR 5/	1), mediur	m to high p	plasticity, no	edium sand, gra			CL			
	100		-	LIMESTO	ONE gray	to white, lo	ow reaction	to HCI.				田	$ \cdot $	
			40	Change	to medium	reaction t	to HCl at 40	.0 feet.					11	1
		!			ONE med			orown (10YR 5/2	2), no				1	Suface cesing set at 47.0
	100		50-	<u>♥</u> Limesto	ONE dark	gray (10Y	R 4/1), low r	eaction with HC	ā.——-		ļ			feet below ground surface. Open hole beneath surface casing.
			60	Change t	to light gra	ıy (10YR 7	'/2) at 60.0 f	eet.						
	100		70-	SANDST (10 Y R 6/	ONE fine 2), no read	to mediun	n grained, lig Cl.	ght brownish gra	īy					
gnatu	ıre: /	ms.l		02	/ 4 ₋	13-17	Firm: TRC	Environmental				<u> (2.2.3.1</u>	· · ·	F

C. Scieszka

£4:	MPLE	T	R	WELL CONSTRUCTION LOG	V	/ELL		MW-108A Page 2 of 4
NUMBER AND TYPE	(%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENT
6			80	SANDSTONE				
6 CS	100		90 -	Change to gray (10YR 5/1) at 88.0 feet,	:			
			100 —	Change to grayish brown (10YR 5/2) at 95.0 feet. Change to medium grained, pale brown (10YR 6/3), no reaction to HCl at 100.0 feet.				
7 CS	100		110					
			120-	Change to grayish brown (10YR 5/2) at 166.0 feet.				
8 CS	100		130 —	DOLOSTONE gray (10YR 5/1), no reaction to HCI.				
			140-	LIMESTONE grayish brown (10YR 5/2), slight reaction to HCl.		/ / / / / / / / / / / / / / / / / / /		
9 SS	100		150	Change to light gray (10YR 7/1), no reaction to HCl at 146.0 feet.				
			160 —	Change to gray (10YR 6/1) at 156.0 feet.			:	
10 CS	100							

		T	R	WELL CONSTRUCTION LOG	w	ÆLL		MW-108A Page 3 of 4
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
11 25	100		180 —	SANDSTONE fine to medium grained, pale brown (10YR 6/3), no reaction to HCI. LIMESTONE gray (10YR 5/1), slight reaction to HCI.				
2 2 2 5	100		200 -	SANDSTONE medium grained, brown (10 YR 5/3), no reaction to HCI.				
ဘ (၇	100		220 —	DOLOSTONE brown (10YR 4/3), slight reaction to HCl.				
4 \$	100		240 —	SANDSTONE fine grained, light gray (10YR 7/1), no reaction to HCl.				
			260					

	APLE	l i	R	_	W	/ELL		MW-108A Page 4 of 4
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET	LITHOLOGIC DESCRIPTION	nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
15 CS	100		270-	SANDSTONE Change to medium grained, gray (10YR 5/1) at 273.0 feet.				6.41
16 [†] CS_	100		280					
17 CS	100		290 -	End of Boring at 300.0 feet below ground surface.				
			310-					
			320-					
			330					
			340					
!			350				ļ	

PROJ. NAME:	DTE EC: Sibley Quarry CCR MW Installation					MW-105
PROJ. NO:	231828.0002	DATE INSTALLED: 3/30/2016	INSTALLED BY:	C. Scieszka		CHECKED BY: R. Pulliam

PROJ. NAME:	DTE EC: Sibley Quarry CCR MW Installation					MW-106
PROJ. NO:	231828.0002	DATE INSTALLED: 3/28/2016	INSTALLED BY:	C. Scieszka		CHECKED BY: R. Pulliam

PROJ. NAME:	DTE EC: Sibley Quarry CCR MW Installation					MW-107
PROJ. NO:	231828.0002	DATE INSTALLED: 3/28/2016	INSTALLED BY:	C. Scieszka		CHECKED BY: R. Pulliam

NOTES:

OPEN HOLE MONITORING WELL

AIR LIFTED FOR 2.5 HOURS WITHOUT RETURN,

DEVELOPMENT

WATER LIKELY WENT INTO FRACTURES FROM 125-135 FT-

REVISED 11/2013

MEASUREMENT (FEE	DATE	TIME		
DTB BEFORE DEVELOPING:	271.40	GS	4/7/2016	7:15
DTB AFTER DEVELOPING:		TOC		
SWL BEFORE DEVELOPING:	151.80	GS	4/7/2016	7:15
SWL AFTER DEVELOPING:	155.62	TOC	4/19/2016	7:51
OTHER SWL:		TOC		
OTHER SWL:		TOC		

PROTECTIVE CASING DETAILS

PERMANENT, LEGIBLE WELL LABEL ADDED?

PERMANENT, LEGIBLE WELL LABEL ADDED?	√ YES	☐ NO
PROTECTIVE COVER AND LOCK INSTALLED?	✓ YES	☐ NO

LOCK KEY NUMBER: 3120

PROJ. NAME:	DTE EC: Sibley Quarry CCR MW Installation					MW-108
PROJ. NO:	231828.0002	DATE INSTALLED: 3/29/2016	INSTALLED BY:	C. Scieszka		CHECKED BY: R. Pulliam

PROJ. NAME:	: DTE EC CCR: Sibley Well Install/Abandonment					MW-108A
PROJ. NO:	265513.0000	DATE INSTALLED: 1/24/2017	INSTALLED BY:	Jacob Krenz		CHECKED BY: Chris Scieszka

